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The renormalization group running of the gravitational constant has a universal form and represents a
possible extension of general relativity. These renormalization group effects on general relativity will cause
the running of the gravitational constant, and there exists a scale of renormalization αν, which depends on
the mass of an astronomical system and needs to be determined by observations. We test renormalization
group effects on general relativity and obtain the upper bounds of αν in the low-mass scales: the Solar
System and five systems of binary pulsars. Using the supplementary advances of the perihelia provided by
INPOP10a (IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides, we obtain new upper bounds
on αν in the Solar System when the Lense–Thirring effect due to the Sun’s angular momentum and the
uncertainty of the Sun’s quadrupole moment are properly taken into account. These two factors were absent
in the previous work. We find that INPOP10a yields the upper bound as αν ¼ ð0.3� 2.8Þ × 10−20 while
EPM2011 gives αν ¼ ð−2.5� 8.3Þ × 10−21. Both of them are tighter than the previous result by 4 orders of
magnitude. Furthermore, based on the observational data sets of five systems of binary pulsars: PSR
J0737 − 3039, PSR B1534þ 12, PSR J1756 − 2251, PSR B1913þ 16, and PSR B2127þ 11C, the upper
bound is found as αν ¼ ð−2.6� 5.1Þ × 10−17. From the bounds of this work at a low-mass scale and the
ones at the mass scale of galaxies, we might catch an updated glimpse of the mass dependence of αν, and it
is found that our improvement of the upper bounds in the Solar System can significantly change the
possible pattern of the relation between log jανj and logm from a linear one to a power law, where m is
the mass of an astronomical system. This suggests that jανj needs to be suppressed more rapidly with the
decrease of the mass of low-mass systems. It also predicts that jανj might have an upper limit in high-mass
astrophysical systems, which can be tested in the future.
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I. INTRODUCTION

Although all of astronomical and physical experiments
have proven the validation of Einstein’s general relativity
(GR) with increasing precision [1,2], it seems that the
theory might be incomplete. In the macroscopic scale, it is
difficult for GR to explain the flat rotation curves of spiral
galaxies, e.g., Refs. [3–5] without introducing dark matter
and the present acceleration of the Universe, e.g.,
Refs. [6,7], without dark energy. At the microscopic scale,
a more intrinsic problem is that, within the framework of
GR itself, the theory will be broken by approaching the
singularities of the relevant solutions. Two distinct exam-
ples of singularities are the center of a black hole and the
starting point of the big bang. A highly possible way to
erase the singularities is to apply the renormalization group
technique in dealing with matter on curved spacetime
background, e.g., Refs. [8–17]. It may also be effectively
realized by a semiclassical approach: a classical action with
quantum corrections [18,19]. If GR is the classical limit of a

theory of quantum gravity, there should also exist a
semiclassical limit.
In the present investigation, we focus on the renormal-

ization group effects on GR (RGGR) [20–32]. It predicts
the possibility of the running of the gravitational constantG
due to quantum corrections. This running effect of RGGR
can be observed and tested at the low-energy scale, which
was proposed phenomenologically in Ref. [29] and then
justified theoretically in Ref. [33]. The variation of G was
also investigated within different contexts, such as orbital
motions [34–38] and cosmology [39–41]. In RGGR, there
exists a scale of renormalization. The identification of this
scale has some uncertainty, which is measured by a
dimensionless parameter αν, and it needs to be determined
by astronomical observations and physical experiments.
A remarkable property of this parameter is that its value

grows with the increase of the masses of the astronomical
systems [22,23,33]. Several works have studied RGGR in
the mass scale of galaxies. Rodrigues et al. [29] found
αν ∼ 10−7 by analyzing the rotation curves of some spiral
galaxies without dark matter. Rodrigues [31] extended the
investigation on the spiral galaxies to some elliptical
galaxies, including ordinary and giant samples, and found*yixie@nju.edu.cn
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RGGR could be applied with good results to these elliptical
galaxies. Rodrigues et al. [32] considered modified gravity
models and the central cusp of dark matter haloes in
galaxies and found the RGGR could achieve fits with
better agreement than modified Newtonian dynamics and
almost as good as a Navarro–Frenk–White halo.
However, little attention has been paid for RGGR in the

low-mass scales, such as the scales of the Solar System and
stellar systems. One exception is that Farina et al. [30]
calculated the dynamics of the Laplace–Runge–Lenz vec-
tor for a planet in the Solar System and found αν ∼ 10−17

based on the uncertainty in the measurement of the
precession of Mercury [42]. Therefore, in order to gain
better understanding of the mass dependence of the
renormalization scale αν and its upper bounds at the
scale of mass much less than the one of galaxies, we focus
on the Solar and stellar tests of RGGR and their upper
bounds on αν in this work, shedding light on the variation
of the renormalization scale from stellar mass to the
galaxy’s mass.
We improve and extend the previous work of Farina et al.

[30] in the following prospectives. First, we will improve
the upper bound of αν in the Solar System by making use of
current and highly accurate data sets of the planetary
motions. And we will also try to reduce the contamination
in our investigation due to the uncertainty of the Sun’s
quadrupole moment, which affects the motion of Mercury
significantly [43]. For these purposes, we will use the
supplementary advances of the perihelia provided by the
INPOP10a (IMCCE, France) [44] and EPM2011 (IAA
RAS, Russia) [45] ephemerides. These two ephemerides
were recently adopted in planetary science [46,47] and in
detecting gravitational effects and testing modified theories
of gravity [48–57]. Since INPOP10a and EPM2011 are
significantly improved compared with their previous ver-
sions and the data sets they provide are much more
accurate, we expect to obtain a tighter upper bound on
αν. To find a clearer bound, besides the uncertainty of the
Sun’s quadrupole moment, we will also take the Lense–
Thirring effect due to the Sun’s angular momentum into
account. Neither of the two factors is considered in the
previous work of Farina et al. [30].
Second, we will take binary pulsars into our investiga-

tion. These binaries usually have the masses two times
larger than the mass of the Solar System. According to its
mass dependence of RGGR, αν in these systems should
have different values from the one in the Solar System,
though the discrepancy is expected to be small but not
negligible. Another reason for the inclusion of binary
pulsars is their much stronger gravitational fields than
the Solar System’s. The relativistic periastron advances in
some binary pulsars can exceed the corresponding value for
Mercury by a factor of ∼105 so that these systems are
taken as an ideal and clean laboratory for testing GR,
alternative relativistic theories of gravity, and modified

gravity [58–79]. To test RGGR in these systems, we
will adopt five well-observed binary pulsars: PSR
J0737 − 3039, PSR B1534þ 12, PSR J1756 − 2251,
PSR B1913þ 16, and PSR B2127þ 11C.
The rest of the paper is organized as follows. Section II is

devoted to describing primary ideas of RGGR. Effects of
RGGR on the dynamics in the Solar System and binary
pulsars will be studied in Sec. III and will be confronted
with observational data sets in Sec. IV. In Sec. V, the scale
of renormalization αν is estimated in both the Solar System
and the binary pulsars we taken. Our improved upper
bounds on the low-mass scales significantly changes the
pattern of the mass dependence of jανj, which will be
represented and discussed in Sec. VI. Finally, in Sec. VII,
we summarize our results and discuss their implication.

II. RENORMALIZATION GROUP EFFECTS ONGR

In this section, we will briefly review some essentials of
RGGR. More details can be found in Refs. [20–32] and
references therein.
From a semiclassical perspective, the Einstein–Hilbert

action of gravity can be extended by applying the renorm-
alization group effects, and the action will depend on the
metric tensor of spacetime gμν and the renormalization
group scale μ. With the convention of Ref. [80], it reads as

SRGGR ¼ c3

16π

Z
R − 2ΛðμÞ

GðμÞ
ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where c is the speed of light, g ¼ detðgμνÞ < 0 is the
determinant of the metric tensor gμν, and R is the Ricci
scalar. In the above action,G is the gravitational “constant,”
and ΛðμÞ is the cosmological constant. Both of them
depend on the scale of μ. Varying the action with respect
to the metric tensor gμν, we can have its field equations as

Gμν þ Λgμν þ G□G−1gμν −GðG−1Þ;μν ¼
8πG
c4

Tμν; ð2Þ

where a semicolon denotes the covariant derivative,
□ð·Þ≡ ð·Þ;μνgμν, and Tμν is the energy-momentum tensor
accounting for matter. Because we only focus on the scales
of the Solar System and binary pulsars, the effects of Λ will
be neglected in the following parts of this work.
The dependence GðμÞ is governed by the renormaliza-

tion group equation

μ
dG−1

dμ
¼ 2νG−1

0 ; ð3Þ

whereG0 ¼ Gðμ0Þ ¼ ℏcM−2
P ,MP is the Planck mass, and ν

characterizes the strength of renormalization group effects.
If ν vanishes, G remains as a constant without running, and
the action in Eq. (1) recovers Einstein’s GR. Equation (3)
can be solved, and the solution is
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GðμÞ ¼ G0

1þ 2ν lnðμ=μ0Þ
; ð4Þ

where μ=μ0 needs to be specified.
Observations and experiments have shown that Newton’s

law of gravity and GR serve quite well in small scales, such
as the Solar System and binary pulsars [1,2,81]. It might be
expected that the leading contribution of the RGGR
departure from GR can be treated as a perturbation. In
the limit of weak fields and low speeds, Eq. (2) recovers
Newton’s law in the form of Poisson’s equation as

∇2ΦN ¼ 4πG0ρ; ð5Þ
where ΦN is the Newtonian potential and ρ is the density of
matter. The Newtonian potential is chosen to vanish at
space infinity, according to the classical limit of GR.
For maintaining the Newtonian limit, there is a choice of
μ=μ0 [29],

μ

μ0
¼

�
ΦN

Φ0

�
α

; ð6Þ

where Φ0 and α are two parameters. We can have the
running of G from Eq. (4) as

G ¼ G0

1þ 2αν lnðΦN=Φ0Þ
: ð7Þ

If we consider δG ¼ G − G0 is much less than G0 in the
scales of the Solar System and binary pulsars, we can
obtain that, for a point mass, the variation ofG has the form

GðrÞ ¼ G0 þ δGðrÞ þOðδG2Þ; ð8Þ
where

δGðrÞ ¼ 2G0αν ln

�
r
r0

�
: ð9Þ

Here, the solution of Eq. (5) for a point mass is used, i.e.,
ΦN ∝ r−1, and it is assumed that Φ0 depends on r0, which
makes μ ¼ μ0 in Eq. (6) and G ¼ G0 in Eq. (4). In
obtaining Eqs. (8) and (9), we assume that the celestial
body we considered can be approximated as a point mass.
This assumption works well for a pulsar due to its
compactness, but it might not be sufficient for the Sun.
The quadrupole moment of the Sun and the uncertainty of
its measured value cannot be ignored for planetary motions,
and we will take them into account (see Sec. IV).
To work out the leading contribution of RGGR in the

Solar System and binary pulsars, we need to know the
effective potential Φ, which governs the motion of a
particle by ẍ ¼ −∇Φ. The “00” component of the
metric tensor is connected to Φ with g00 ¼ −1 − 2c−2Φ
so that, after applying the conformal transformation that

G0ð1þ 2c−2ΦÞ ¼ Gð1þ 2c−2ΦNÞ and with the help of
Eqs. (8) and (9), we can have the relation between Φ and
ΦN as

Φ ¼ ΦN þ c2

2

δG
G0

¼ −
G0M
r

þ c2αν ln

�
r
r0

�
: ð10Þ

In the following parts of this work, Eq. (10) will used to
formulate the dynamics of the Solar System and binary
pulsars, and RGGR will be confronted with the observa-
tional data sets.

III. DYNAMICS IN THE FRAMEWORK OF RGGR

In this section, we will study the gravitational perturbed
two-body problem in the framework of RGGR with its
leading contribution given by Eq. (10). Although this
perturbed model is definitely not sufficient for fully
describing the dynamics of the Solar System which is
essentially anN-body system, it can give the leading effects
of the αν term in Eq. (10) on the planetary orbits around the
Sun, and the coupling effects between the planet-planet
interaction and the αν term are expected to be much
smaller.
With the effective potential Φ, we can have the equations

of relative motion of two point masses m1 and m2 as

̈r ¼ FN þ FδG; ð11Þ
where

FN ¼ −
G0m
r3

r; ð12Þ

FδG ¼ −
c2αν
r

r: ð13Þ

Here,m≡m1 þm2, and r is the vector pointing fromm2 to
m1. To work out the influence of FδG, we will apply the
standard procedure of the methods of perturbation in
celestial mechanics [82–84].
For a unperturbed two-body problem in the framework

of Newton’s law of gravity, there exist six integration
constants, i.e., the Keplerian elements: a is the semimajor
axis, e is the eccentricity, i is the inclination, Ω is the
longitude of the ascending node, ω is the argument of
periastron, andM is the mean anomaly. When the orbit of a
Keplerian two-body problem is disturbed, these elements
will become some functions of time. With conventional
notations, they can be described by the Gauss perturbing
equations as [82–84]

da
dt

¼ 2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ½Se sin f þ Tð1þ e cos fÞ�; ð14Þ

de
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na
½S sin f þ Tðcos f þ cosEÞ�; ð15Þ
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di
dt

¼ r cos u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p W; ð16Þ

dΩ
dt

¼ r sin u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin i

W; ð17Þ

dω
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

nae

�
−S cos f þ T

�
1þ r

p

�
sin f

�

− cos i
dΩ
dt

; ð18Þ

dM
dt

¼ n −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p dω
dt

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos i

dΩ
dt

−
2

na2
Sr: ð19Þ

Here, n is the Keplerian mean motion satisfying Kepler’s
third law n2a3 ¼ G0m, f is the true anomaly, u ¼ f þ ω,
and p ¼ að1 − e2Þ. S, T, and W are the radial, transverse,
and out-of-plane components of the perturbing force.
In the case of RGGR, the perturbing force FδG of

Eq. (13) has an S component only and no T and W parts:

S ¼ −
c2αν
r

; ð20Þ

T ¼ 0; ð21Þ

W ¼ 0: ð22Þ

It can be immediately obtained that di=dt ¼ 0 and
dΩ=dt ¼ 0. For secular evolution of the orbit, we need
to average the fast changing variables over one orbital
revolution in Eqs. (14)–(19). After that, we can have

�
da
dt

�
¼ 0; ð23Þ

�
de
dt

�
¼ 0; ð24Þ

�
di
dt

�
¼ 0; ð25Þ

�
dΩ
dt

�
¼ 0; ð26Þ

�
dω
dt

�
¼ −

c2αν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ; ð27Þ

�
dM
dt

�
¼ nþ 2c2αν

na2
: ð28Þ

The operator h·imeans calculating the average value during
one Keplerian period P, i.e.,

hXi≡ 1

P

Z
P

0

Xdt; ð29Þ

and there are two relations we used in the above equations:

�
a
r
sin f

�
¼ 0; ð30Þ

�
a
r
cos f

�
¼ −

e

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p : ð31Þ

Equation (27) is the same as the result of Farina et al. [30],
in which the dynamics of the Laplace–Runge–Lenz vector
was calculated to find it out.
In the next section, we will confront the secular advance

of periastron due to _ωδG ≡ hdω=dti [see Eq. (27)] with the
available data sets of the Solar System and binary pulsars.

IV. CONFRONTATION OF _ωδG WITH
OBSERVATIONAL DATASETS

In this section, we will confront _ωδG with the data sets of
the Solar System’s ephemerides and the timing results of
five binary pulsars. These two kinds of systems have their
distinct characteristics so that they are expected to have
different values of αν. To achieve improved upper bounds,
several factors need to be included in our investigation
within the Solar System; meanwhile, the binary pulsars
systems are much cleaner.

A. Solar System

In the case of the Solar System’s planets, _ωδG is closely
connected with the supplementary advances of the perihelia
_ωsup provided by modern ephemerides, such as INPOP10a
[44,85] and EPM2011 [45,86,87].
INPOP10a and EPM2011 were obtained by fitting the

“standard model” of dynamics to observational data, where
standard model means Newton’s law of gravity and
Einstein’s GR (apart from the Lense–Thirring effect; see
below for details). In the INPOP10a and EPM2011
ephemerides, the standard model fitted to observations
includes not only dynamics of natural bodies and artificial
spacecrafts but also propagation of electromagnetic waves
and how instruments onboard the spacecrafts and on Earth
work. Therefore, RGGRwas modeled neither in INPOP10a
nor in EPM2011, and the parameter αν was not determined
in these least-square fittings. In this sense, the results we
obtain in the next section may not be considered as genuine
“constraints” (it would be so if one solved for them in a
covariance analysis by reanalyzing the data with modified
software including these effects) but as preliminary indi-
cations of acceptable values to the best of the contemporary
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knowledge in the field of ephemerides [51]. It is necessary
to stress that this method has also been adopted by other
authors and has been proven valuable in several other
circumstances [49,50,88]. Because, after all, such modified
models are often not too analytically complex in the sense
that they contain just a few parameters; if they contained
several parameters, then an explicit and dedicated covari-
ance analysis perhaps would be more necessary.
These _ωsup might represent possibly mismodeled or

unmodeled parts of perihelion advances according to
Newton’s law and GR. They are almost all compatible
with zero so that they can be used to draw bounds on
quantities parametrizing unmodeled “forces” like the
RGGR in this case. Nonetheless, the latest results by
EPM2011 [86,87] returned nonzero values for Venus
and Jupiter. Although the level of their statistical signifi-
cance was not too high and further investigations are
required, we still take them into account in this work. In
the recent past, an extra nonzero effect on Saturn’s
perihelion was studied [89]. And, the ratios of the nonzero
values of the supplementary precessions of Venus and
Jupiter by EPM2011 [86,87] have been recently used to test
a potential deviation from GR [52].
In the construction of _ωsup (see Ref. [85] for details), the

effects caused by the Sun’s quadrupole mass moment J⊙2
are considered and isolated in the final results, but the
perihelion shifts caused by the Lense–Thirring effect [90]
due to the Sun’s angular momentum S⊙ are absent.
Therefore, by assuming these leading effects can be linearly
added together, we can have the entire relation between _ωδG
and _ωsup as

_ωsup ¼ _ωδG þ _ωLT þ _ωJ⊙ : ð32Þ

Here, the RGGR term _ωδG can be rewritten in a more
convenient form as

_ωδG ¼ −c2ανðG0M⊙aÞ−1=2e−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ;
ð33Þ

where Kepler’s third law is applied and we neglect the
masses of the planets: m ¼ M⊙ þMPlanet ≈M⊙ due
to M⊙ ≫ MPlanet.
The Lense–Thirring term _ωLT is [90]

_ωLT ¼ −
6G0S⊙ cos i

c2a3ð1 − e2Þ3=2 ; ð34Þ

where S⊙ ¼ 1.9 × 1041 kgm2 s−1 [91] and i is the incli-
nation of the planetary orbit to the equator of the Sun. The
uncertainty of S⊙ is currently about 1% [91]. This effect of
the Sun on the planetary motions has been studied in
several works [92–94]. Equation (34) only holds in a
coordinate system of which the z axis is aligned with
the Sun’s angular momentum. A general formula for an

arbitrary orientation can be found in Refs. [95,96]. It is
useful in extrasolar planets and black holes, for which the
orientation of the spin axis is generally unknown.
We add the third term in Eq. (32) to include the

dimensionless uncertainty of the Sun’s quadrupole moment
J ⊙ [97], which is currently about �10% [98–102]. The
Sun’s quadrupole moment in INPOP10a is fitted to
observations as J⊙2 ¼ ð2.40� 0.25Þ × 10−7 [44], and its
value in EPM2011 is J⊙2 ¼ ð2.0� 0.2Þ × 10−7 [45]. This
uncertainty of J⊙2 can cause an extra precession for a planet,
which is [103]

_ωJ⊙ ¼ 3

2
J ⊙

J⊙2 R2⊙
p2

n

�
2 −

5

2
sin2i

�
; ð35Þ

where R⊙ is the Sun’s radius. It is clearly shown [55,104]
that, although the uncertainty of J⊙2 can barely affect the
outer planets, such as Jupiter and Saturn, it will signifi-
cantly change the dynamics of the inner planets, especially
Mercury. The higher-order multipoles like J⊙3 and J⊙4 have
negligible impacts on the perihelion precessions, e.g.,
Refs. [105,106]. There are also post-Newtonian GR effects
driven by J⊙2 [107,108]. While they may have an impact in
other systems like close extrasolar planets with highly
eccentric orbits, they can be left aside in the present case of
the Solar System.
The effect of the cosmological constant Λ, which should

be considered as somewhat “standard” in GR in view of the
observed acceleration of the Universe, e.g., Refs. [6,7], has
not been included in INPOP10a and EPM2011 so that it
should appear in Eq. (32) as well. Its effects on the
perihelion of planets were studied [50,104,109–118], and
it was found that the perihelion shift caused by Λ is

_ωΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

2n
Λc2: ð36Þ

Measurements of the cosmic microwave background radi-
ation [119,120] imply the ratio between the energy density
of Λ and the critical density of the Universe has a value of
ΩΛ ≈ 0.7, which means Λ ∼ 10−52 m−2. It yields that, for
the planets fromMercury to Saturn, _ωΛ ranges from ∼10−12
to ∼10−10 milliarcsecond per century (mas cy−1), which are
smaller than the _ωsup provided by INPOP10a [44,85] and
EPM2011 [45,86,87] by about 8 orders of magnitude (see
Table I for details). Therefore, given its extremely small
influences, Λ can be left out from the analysis of the present
work, in which we only take the _ωsup of the planets from
Mercury to Saturn into account (see Sec. V for details).

B. Binary pulsars

Like the cases of the Solar System ephemerides, obser-
vations of binary pulsars were also obtained by fitting the
standard model of dynamics of these systems to measured
timing data [121–123]. In the present work, we did not
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modify the pulsar timing software to take RGGR into
account. Instead, we confronted the theoretical prediction
of RGGR with the measurements of the periastron
advances _ωPK and their uncertainties of binary pulsars.
_ωPK is a post-Keplerian parameter [124,125] and has been
measured with great accuracy in some systems. In fact, this
approach has also been used by several authors
[52,71,74,75,78], and they did not actually reprocess the
pulsar(s) timing data by ad hoc modifying the dynamics
models to include the effects they were interested in, which
were not solved for in covariance analyses.
Together with the leading term of the periastron advance

caused by GR [126], the total periastron advance can be
written as

_ωPK ¼ _ωGR þ _ωδG; ð37Þ

where the GR and RGGR parts are, respectively, in more
convenient forms as

_ωGR ¼ 3

�
Pb

2π

�
−5=3

�
G0m
c3

�
2=3

ð1 − e2Þ−1; ð38Þ

_ωδG ¼ −c2ανðG0mÞ−2=3
�
Pb

2π

�
−1=3

× e−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ; ð39Þ

where Pb is the period of the binary. We can see from
Eq. (37) that binary pulsars systems are much cleaner than
the Solar System for gravitational tests.

V. UPPER BOUNDS ON αν

In this section, we will estimate the upper bounds on αν
based on the data sets provided by the Solar System
ephemerides and five systems of binary pulsars. The
method of minimizing χ2 [127] will be used.

A. Upper bounds in the Solar System

The INPOP10a [44] ephemeris provides _ωsup for some
planets in the Solar System: Mercury, Venus, Earth-Moon
barycenter (EMB), Mars, Jupiter, and Saturn. Similarly,
EPM2011 [45] also gives those values of the planets from
Mercury to Saturn. These numbers are taken from Table 5
in Ref. [44] and Tables 4 and 5 in Refs. [86] and [87] (see
Table I for details). It can be found that _ωsup of Mercury and
Venus from EPM2011 are considerably larger than those of
INPOP10a, while Venus and Jupiter have nonzero values of
_ωsup in EPM2011.
We estimate the parameter αν and uncertainty of the Sun’s

quadrupole moment J ⊙ simultaneously by minimizing

χ2SS ¼
X
j

1

σ2j;sup
ð _ωj;sup − _ωj;δG − _ωj;LT − _ωj;J⊙Þ2; ð40Þ

where j enumerates each planet in Table I. We find
that (i) INPOP10a yields the upper bounds as αν ¼ ð0.3�
2.8Þ × 10−20 and J⊙ ¼ ð5.7� 1.1Þ% and (ii) EPM2011
gives αν ¼ ð−2.5� 8.3Þ × 10−21 and J ⊙ ¼ ð6.4� 5.6Þ%.
These results are summarized in Table III. The results
obtained by INPOP10a and EPM2011 are compatible with
each other. Furthermore, the values of J ⊙ given by
INPOP10a and EPM2011 are compatible with the current
uncertainty of �10%.
Compared with the result of αν ∼ 10−17 given by Farina

et al. [30], the upper bounds of jανj ∼ 10−21 we obtain in
the Solar System are improved by 4 orders of magnitude.

B. Upper bound in binary pulsars

Long-term timing observations can determine the geo-
metrical and physical parameters of binary pulsars very
well. Among them, PSR J0737 − 3039 [60], PSR B1534þ
12 [128], PSR J1756 − 2251 [129], PSR B1913þ 16
[130], and PSR B2127þ 11C [131] are good samples
for gravitational tests. Some of their timing parameters are
listed in Table II. The uncertainties of _ωPK are given in the
parentheses.

TABLE I. Supplementary advances in the perihelia _ωsup given
by INPOP10a and EPM2011.

_ωsup (mas cy−1)
INPOP10a a EPM2011 b

Mercury 0.4� 0.6 −2.0� 3.0
Venus 0.2� 1.5 2.6� 1.6
EMB −0.2� 0.9 � � �
Earth � � � 0.19� 0.19
Mars −0.04� 0.15 −0.020� 0.037
Jupiter −41� 42 58.7� 28.3
Saturn 0.15� 0.65 −0.32� 0.47

aTaken from Table 5 in Ref. [44].
bProvided by Table 4 in Ref. [86] and Table 5 in Ref. [87].

TABLE II. Timing parameters of five binary pulsars.

PSR Pb (d) m (M⊙) e _ωPK (° yr−1) Ref.

J0737 − 3039 0.10225156248 2.58708 0.0877775 16.89947(68) [60]
B1534þ 12 0.420737299122 2.678428 0.2736775 1.755789(9) [128]
J1756 − 2251 0.319633898 2.574 0.180567 2.585(2) [129]
B1913þ 16 0.322997448911 2.828378 0.6171334 4.226598(5) [130]
B2127þ 11C 0.33528204828 2.71279 0.681395 4.4644(1) [131]
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We estimate αν in these five systems by minimizing

χ2BP ¼
X
j

1

σ2j;PK
ð _ωj;PK − _ωj;GR − _ωj;δGÞ2; ð41Þ

where j enumerates each system of binary puslars in
Table II. It is found that αν ¼ ð−2.6� 5.1Þ × 10−17, which
is much larger than the values we obtained in the Solar
System.
A summary of our and previous results are given in

Table III. It is expected that the upper bounds given by the
Solar System ephemerides and binary pulsars will be
tighter due to the increase of the accuracy and precision
of observations in the future.

VI. IMPLICATION OF MASS DEPENDENCE OF αν

With the upper bounds obtained in the Solar System, the
binary pulsars, and the spiral galaxies, we might catch a
glimpse of the mass dependence of αν. It is worth
mentioning that the mass dependence of αν we obtained
in the following part of this section is very preliminary, and
it is just an implication provided by the available upper
bounds. The reason for this preliminary implication is that
the number of the upper bounds we can obtain is quite
limited. Figure 1 shows jανj against mass. The blue squares
denote the upper bounds we obtained based on the Solar
System ephemerides INPOP10a and EPM2011, and the
mass of Solar System is taken as 1M⊙. The blue circle
denotes the upper bound we obtained according to five
systems of binary pulsars, and the mass scale is taken as
2.6M⊙ by averaging the masses of these systems. The
green triangle represents the bound given by Farina et al.
[30] based on Mercury, and the red triangle represents the
result obtained by Rodrigues et al. [29] based on the
rotation curves; the mass is chosen to be the typical mass of
a spiral galaxy 2 × 1011M⊙ (without dark matter).
We can fit these data points in two cases:
(i) Case 1.—It includes the upper bound of Farina et al.

[30] based on Mercury, ours based on the binary
pulsars, and the upper bound of Rodrigues et al. [29]
based on spiral galaxies. The three points are almost
in a linear pattern in Fig. 1 and can be fitted as

log10jανj ¼ 0.88log10

�
m
M⊙

�
− 17.0: ð42Þ

It is clear that, according to Eq. (42), if m → ∞,
jανj → ∞, which means a more massive system has
a larger value of jανj.

(ii) Case 2.—It includes the upper bounds of both the
Solar System and the binary pulsars obtained in this
work and the one of Rodrigues et al. [29] based on
spiral galaxies. Because our upper bounds in the
Solar System are tighter than the one of Farina et al.
[30] by about 4 orders of magnitude, the pattern of
these points is far from a linear relation but in a curve
of the power law, which can be fitted as

log10jανj ¼ −13.5 exp
�
−0.8log10

�
m
M⊙

��
− 7.0:

ð43Þ

Equation (43) imposes an upper bound for jανj, i.e.,
jανj≲ 10−7, which is dramatically different from Eq. (42).
In fitting Eqs. (42) and (43), we only chose the simplest

patterns, i.e., a linear one and a power law, because the very
limited data points prevent us from exploring more com-
plicated forms of the mass dependence of αν. Nevertheless,
these two cases clearly show the improvement of the upper
bounds of αν in the Solar System in this work can
significantly change the pattern of mass dependence
between log10ðm=M⊙Þ and log10 jανj from a linear one
to a power law. This suggests that jανj need to be
suppressed more rapidly at the low-mass scale than the
previous result [30] indicated. It also predicts that jανj

TABLE III. Summary of upper bounds on αν.

αν J ⊙ (%) Adopted data

This work ð0.3� 2.8Þ × 10−20 5.7� 1.1 INPOP10a
ð−2.5� 8.3Þ × 10−21 6.4� 5.6 EPM2011
ð−2.6� 5.1Þ × 10−17 � � � Binary pulsars

[30] ∼10−17 � � � Mercury
[29] ∼10−7 � � � Rotation curves

10-25

10-20

10-15

10-10

10-5

100 102 104 106 108 1010 1012

|α
ν |

mass (MSun)

Solar system
Binary pulsars

Solar system (F11)
Rotation curves (R10)

Fitted line in  Case 1
Fitted curve in Case 2

FIG. 1 (color online). Mass dependence of αν. The blue squares
denote the upper bounds we obtained based on the Solar System
ephemerides INPOP10a and EPM2011, and the blue circle
denotes the upper bound we obtained according to five systems
of binary pulsars. The green triangle represents the bound given
by Farina et al. [30] based on Mercury (F11 for short), and the red
triangle represents the result obtained by Rodrigues et al. [29]
based on the rotation curves (R10 for short). The orange line is
plotted by Eq. (42) in case 1, and the magenta curve is is plotted
by Eq. (43) in case 2.
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might have an upper limit in high-mass astrophysical
systems, which can be tested in the future. It is also
possible that more accurate and precise observations will
change our present implication of the mass dependence
of αν.

VII. CONCLUSIONS AND DISCUSSION

In this work, we test RGGR in the low-mass scales and
obtain the upper bounds of its renormalization scale
parameter αν in the Solar System and the binary pulsars,
which shed new light on the mass dependence of αν.
Using the supplementary advances of the perihelia

provided by INPOP10a [44] and EPM2011 [45] ephemeri-
des and taking the Lense–Thirring effect due to the Sun’s
angular momentum and the uncertainty of the Sun’s
quadrupole moment J ⊙ into account, we find that
INPOP10a yields the upper bound as αν ¼ ð0.3� 2.8Þ ×
10−20 and J ⊙ ¼ ð5.7� 1.1Þ%while EPM2011 gives αν ¼
ð−2.5� 8.3Þ × 10−21 and J ⊙ ¼ ð6.4� 5.6Þ%. Compared
with the Solar System’s upper bound of αν ∼ 10−17 by
Farina et al. [30], our bounds of jανj ∼ 10−21 are improved
by 4 orders of magnitude. Furthermore, based on the
observation of five systems of binary pulsars, we find
the upper bound is αν ¼ ð−2.6� 5.1Þ × 10−17. See
Table III for a summary.
With the upper bounds we obtain in the present inves-

tigation and other results from previous works, we might
catch a glimpse of the mass dependence of αν, but this mass
dependence we obtained is a preliminary implication
provided by the available upper bounds. Figure 1 shows
jανj against the mass. Our improvement of the upper
bounds of jανj in the Solar System can significantly change

the pattern of mass dependence between log10 jανj and
log10ðm=M⊙Þ from a linear one (based on the previous
result of Farina et al. [30]) to a power law. This suggests
that αν needs to be suppressed more rapidly at the low-mass
scale than the previous result indicated. It also predicts that
jανj might have an upper limit in high-mass astrophysical
systems, which can be tested in the future.
With tremendous advances in techniques for deep space

exploration in the Solar System, ephemerides are going to
be improved increasingly by high-precision data sets
provided from spacecraft tracking and by sophisticated
data analysis [132–134]. Future more sensitive and accu-
rate timing observations will also improve the timing
parameters of binary pulsars significantly. They will thus
provide more stringent constraints on RGGR and might
change our present implication of the mass dependence
of αν.
However, there is still a huge blank in the picture of mass

dependence of αν between the scale of stellar masses and
the one of galaxies (see Fig. 1). It might be necessary to
make a similar analysis for these effects with other
astronomical systems, such extrasolar planets [135,136],
other binary systems [49], and globular clusters [137].
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