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Quantum field theory in curved spacetime can be used to
understand a lot of interesting features of black holes in a
semiclassical approximation, most notably particle produc-
tion near the black hole horizon [1]. The calculation of
vacuum polarization or hϕ2i (for a scalar field) is the
simplest standard probe of quantum fluctuations in a black
hole background, and can also be used to understand the
symmetry breaking and Casimir effects near a black hole.
Computation of hϕ2i is also a preliminary step in evaluating
the stress-energy tensor hTμνi, which contributes to the
backreaction through the semiclassical Einstein equation.
Candelas studied the vacuum polarization of a scalar

field in the Schwarzschild black hole [2] and was able to
obtain an analytical expression for hϕ2i at the horizon.
Candelas’ methods extend easily to charged static black
holes; there have also been numerical studies of vacuum
polarization of scalar fields on general static black hole
backgrounds beyond the event horizon [e.g. [3] for asymp-
totically flat solutions and [4] for the asymptotically anti–
de Sitter (AdS) case], and analytical computations at the
horizon of a black hole threaded with a cosmic string [5].
The case of rotating black holes is much more challenging.
Frolov [6] was able to calculate the analytical expression
for hϕ2i only at the pole (θ ¼ 0) of the event horizon, and
Ottewill and Duffy [7] have provided a numerical evalu-
ation throughout the black hole horizon. However so far no
one has been able to give an analytical formula for hϕ2i
throughout the horizon of a four-dimensional rotating black

hole. (An analytic approximation good for fields with large
mass is available, however [8], and exact results are
obtainable in d ¼ 3 with AdS asymptotics [9,10].)
In this case we will be studying a particular example of

rotating black holes that exist in “subtracted geometry”
[11–14]. Subtracted geometry black holes are nonextremal
solutions of the bosonic sector of N ¼ 2 STU supergravity
coupled to three vector multiplets. These black holes are
obtained by subtracting some terms in the “warp factor” of
the original black hole metric in such a way that the wave
equation for a massless minimally coupled scalar field
becomes separable and analytical solutions are obtainable.
This subtracted black hole metric effectively places the
black hole in an asymptotically conical box and mimics the
“hidden conformal symmetry” [15] of the wave equation on
rotating black holes in the near-horizon, near-extremal,
and/or low energy regimes, which is a key motivator for the
Kerr/conformal field theory conjecture (see e.g. [16]). The
energy density of the matter fields in this new geometry
falls off as second power of radial distance, thus confining
thermal radiation. The classical near-horizon properties of
the subtracted black hole are the same as the original black
hole ones; in particular, the classical thermodynamics
of the subtracted black hole is analogous to the standard
one [17], although loop corrections to the horizon entropy
differ [18].
The horizon vacuum polarization in the static subtracted

metric was studied in [19]. In this article we shall consider
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the subtracted geometry of the uncharged rotating Kerr
black hole. We shall see that the special features of the
subtracted rotating metric, in particular the well-defined
nature of the thermal vacuum and the solvability of the
wave equation, allow us to obtain analytical results that are
unavailable for the standard Kerr black hole.
The subtracted Kerr metric is given by

ds2 ¼ −Δ−1=2GðdtþAd ~φÞ2

þ Δ1=2

�
dr2

X
þ dθ2 þ X

G
sin2θd ~φ2

�
: ð1Þ

with

X ¼ r2 − 2Mrþ a2; G ¼ r2 − 2Mrþ a2cos2θ;

A ¼ 2Marsin2θ
G

; Δ ¼ 8M3r − 4M2a2cos2θ: ð2Þ

(The only difference between this metric and the standard
Kerr metric is the form of the warp factor Δ. For the explicit
form of gauge potentials and axio-dilatons of the STU
model, supporting this geometry, see [13].) The horizons and
their surface gravities and angular velocities are given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
;

κ� ¼ 1

2M

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p � 1

�
−1
;

Ω� ¼ κ�
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p : ð3Þ

We switch to corotating coordinates ðt; r; θ;φÞ, with the
new angular variable being defined by

φ ¼ ~φ −Ωþt: ð4Þ

These are adapted to observers corotating with the black
hole at the horizon. A noteworthy feature of subtracted
geometry is that outside the horizon there is a globally
defined timelike Killing vector, written as ∂t in the corotat-
ing coordinates [20,21]. This guarantees that there are no
superradiant modes and ensures the existence of a Hartle-
Hawking-like vacuum state adapted to the corotating observ-
ers. This is different from the case of ordinary Kerr black
hole, where there is no such Killing vector [22,23] and a
physical corotating vacuum requires enclosing the black hole
in a reflective box [7,24]. The subtracted Kerr resembles
more in this respect the Kerr/AdS black hole [9].
The general algorithm we follow for computing the

horizon vacuum polarization in the Hartle-Hawking state
starts by defining the Euclidean Green’s function GHðx; x0Þ
(in a state regular at the horizon and infinity, and where the
modes are adapted to corotating coordinates). Then we will
evaluate −iGH with radial point splitting, perform the mode
sum, and subtract the covariant divergent counterterms.

After writing the metric in coordinates ðt; r; θ;φÞ we
perform the Wick rotation setting t ¼ −iτ. The metric
becomes

ds2E¼−
G

Δ1=2 ½Adφ− ið1þAΩþÞdτ�2

þΔ1=2

�
dr2

X
þdθ2þX

G
sin2θðdφ− iΩþdτÞ2

�
: ð5Þ

On writing the massless minimally coupled wave
equation and proposing a solution of the form
einκþτeimφPm

l ðcos θÞχlmnðrÞ, we obtain straightforwardly
a radial equation which, in the rescaled variable
x ¼ ðr − 1

2
ðrþ þ r−ÞÞ=ðrþ − r−Þ, reads
� ∂
∂x

�
x2 −

1

4

� ∂
∂x −

n2

4ðx − 1
2
Þ

þ βmn

4ðxþ 1
2
Þ − lðlþ 1Þ

�
χlmnðxÞ ¼ 0; ð6Þ

where

βmn ¼
2Mn2r− − a2ð4m2 þ n2Þ − 4iamnr−

r2þ
: ð7Þ

Two independent solutions of the equation, respectively
regular at the horizon and at infinity, are

χð1;2Þlmn ¼ ðx − 1
2
Þn2

ðxþ 1
2
Þn2þlþ1

Fðalmn; blmn; c
ð1;2Þ
ln ; zð1;2ÞÞ; ð8Þ

where

cð1Þln ¼ nþ 1; cð2Þln ¼ 2lþ 2;

zð1Þ ¼ x − 1
2

xþ 1
2

; zð2Þ ¼ 1

xþ 1
2

;

ðalmn; blmnÞ ¼ lþ 1þ jnj
2

�
ffiffiffiffiffiffiffiffi
βmn

p
2

; ð9Þ

and the symmetry of the hypergeometric function makes
irrelevant which branch of the square root is chosen.
The full Green’s function is expanded as

GHð−iτ; x; θ;φ;−iτ0; x0; θ0;φ0Þ

¼ iκ
2πr0

X∞
n¼−∞

einκðτ−τ0Þ

×
X∞
l¼0

Xl

m¼−l
Ym
l ðθ;φÞYm�

l ðθ0;φ0ÞGmlnðx; x0Þ; ð10Þ

where r0 ¼ rþ − r− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, κ≡ κþ as defined in

(3), and
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Gmlnðx;x0Þ ¼
ΓðamlnÞΓðbmlnÞ

Γð2lþ2ÞΓð1þjnjÞχ
ð1Þ
mlnðx<Þχð2Þmlnðx>Þ: ð11Þ

To evaluate the vacuum polarization at the horizon we
set x ¼ 1=2; x0 ¼ ϵþ 1

2
[note that this is a dimensionless

regulator ϵ ¼ ðr0 − rÞ=r0] and join the points in the other
directions, calling the resulting Green’s function GHðϵ; θÞ.
All the terms in the sum vanish except n ¼ 0, so we are
reduced to

−iGHðϵ;θÞ ¼
κ

8π2r0

X∞
l¼0

Xl

m¼−l

ðl−mÞ!
ðlþmÞ! ½P

m
l ðcosθÞ�2

×
Γðlþ 1þ iαmÞΓðlþ 1− iαmÞ

Γð2lþ 1Þ ð1þ ϵÞ−ðlþ1Þ

×F

�
lþ 1þ iαm;lþ 1− iαm;2lþ 2;

1

1þ ϵ

�
;

ð12Þ

where the parameter α≡ a=rþ takes values between 0 and
1. We replace the hypergeometric by an integral expression
using formula (9.111) of [25], leading to

−iGHðϵ;θÞ¼
κ

8π2r0

X∞
l¼0

ð2lþ1Þ
Xl

m¼−l

ðl−mÞ!
ðlþmÞ! ½P

m
l ðcosθÞ�2

×
Z

1

0

dt

�
tð1− tÞ
1þ ϵ− t

�
l 1

1þ ϵ− t
cosðmα lnλÞ;

ð13Þ

where λ ¼ ðð1þϵÞð1−tÞ
tð1þϵ−tÞ Þ.

The addition theorem for the associated Legendre poly-
nomials is used to compute the sum over m, and formula
(III.4) from [26] subsequently yields the sum over l. This
leads, after a change of variables to x ¼ 1 − t, to the
integral expression

−iGHðϵ; θÞ ¼
κ

8π2r0

Z
1

0

dxfϵðxÞ; ð14Þ

fϵðxÞ ¼
ϵ2þ2ϵxþð2−xÞx3

ðx2þϵÞ3

½1þ 4xð1−xÞðxþϵÞ
ðx2þϵÞ2 sin2θ sin2ðα

2
ln λÞ�3=2

; ð15Þ

with λ ¼ λðtðxÞÞ. It is easy to see from numerical evaluation
that the leading divergences in the integral as ϵ → 0 match
those provided by the standard counterterms [27],

Gdiv ¼
1þ 1

12
Rμνσ

;μσ;ν

8π2σ
−

1

96π2
R lnðμ2σÞ; ð16Þ

where σ is the halved geodesic distance between the points
and μ is an arbitrary mass scale. It is more difficult,

however, to obtain an explicit expression for the finite
result of the subtraction. To make progress we perform the
following sequence of changes of variables:

u ¼ 1

2
ln

�
xð1þ ϵÞ

ð1 − xÞðxþ ϵÞ
�
; w ¼ sinh u: ð17Þ

This leads to the more tractable expression for the integral
Iϵ ≡ R

1
0 dxfϵðxÞ:

Iϵ¼
Z

∞

0

dw

ffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p

½ϵþð1þ ϵÞw2þv2sin2ðα sinh−1wÞ�3=2 ; ð18Þ

where v≡ sin θ. The intermediate u-integral expression is
also obtainable directly from dimensional reduction from
the Euclidean Green’s function in AdS3 × S2, using the
higher-dimensional embedding of subtracted geometry
described in [12].1

To analyze the small ϵ limit and subtract explicitly the
counterterms, we set aside momentarily the

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
prefactor and split the integral in two subintervals, I<ϵ
over ð0; ϵ1=6Þ and I>ϵ over ðϵ1=6;þ∞Þ. In the second
subinterval we can set ϵ to zero, at the expense of an error
that vanishes as ϵ → 0. Then we can add and subtract terms
compensating for the leading divergences at the lower limit,
take ϵ → 0 safely in the subtraction, and integrate explicitly
the added counterterms. This leads to

I>ϵ ∼
Z

∞

0

dw

�
1

½w2 þ v2sin2ðαsinh−1wÞ�3=2

−
�

1

w3ð1þ α2v2Þ3=2 þ
v2α2ð1þ α2Þ

2wð1þ wÞð1þ α2v2Þ5=2
��

þ 1

2ϵ1=3ð1þ α2v2Þ3=2 −
v2α2ð1þ α2Þ ln ϵ
12ð1þ α2v2Þ5=2 ; ð19Þ

where ∼ stands for equivalence as ϵ → 0. The second
subintegral is thus reduced to a finite integral involving
no regulator, that can be evaluated numerically, plus two
explicit divergent terms.
In the first subinterval, we can show that

I<ϵ ¼
Z

ϵ1=6

0

dw

½ϵþ ð1þ ϵÞw2 þ v2sin2ðαsinh−1wÞ�3=2

∼
Z

ϵ1=6

0

dw

½ϵþ ð1þ ϵÞw2 þ v2ðα2w2 − α2ðα2þ1Þw4

3
Þ�3=2

;

ð20Þ

which is expressible [formula (3.163.3) of [25]] in terms of
the incomplete elliptic integrals of first and second kind,
Fðγ; kÞ and Eðγ; kÞ. Here

1We thank Finn Larsen for bringing this point to our attention.
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γ¼ arcsin

�
ϵ1=6ffiffiffiffiffiffi
cþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−þcþ
c−þ ϵ1=3

r �
; k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ

c−þcþ

r
; ð21Þ

and c� are the coefficients appearing in the denominator of
the integrand when it is factored in a form proportional to
½ðc2þ − w2Þðc2− þ w2Þ�3=2. We need the expansions of the
elliptic functions near ðγ; kÞ ¼ ðπ

2
; 1Þ, which have been

derived in [28]. In order to obtain all the divergent and finite
contributions to I<ϵ , we need F accurately to order 1 and E
accurately to order ϵ. This in turns require obtaining the
argument k accurately to order ϵ and γ to order ϵ4=3. The
result of this expansion is the following expression for
the divergent and finite pieces of I<ϵ :

I<ϵ ∼ −
1

2ϵ1=3ð1þ α2v2Þ3=2 þ
1

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2v2

p

þ 1

6ð1þ α2v2Þ5=2 × ð−3 − α2ð7þ 4α2Þv2

þ α2ð1þ α2Þv2ðlnð8ð1þ α2v2Þ3=2Þ − ln ϵÞÞ: ð22Þ

There is an additional finite contribution coming from
the prefactor

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
to the integral, which yields when

expanded a 1=2 multiplied by the coefficient of the linear
divergence of the integral. The complete result is thus
expressed as

Iϵ ¼ I<ϵ þ I>ϵ þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2v2

p ; ð23Þ

with the first to terms given by (22) and (19) respectively.
We see that the ϵ−1=3 divergences cancel out, leaving only
linear and logarithmic divergences that will match those of
counterterms (16), leaving a finite renormalized result.
This concludes the computation of the explicit divergent

and finite portions of the Green’s function’s coincidence
limit. The counterterms (16) need now to be evaluated as a
function of ϵ to the order Oð1Þ. The form of σ can be
computed from the formulas expressing σ in terms of
coordinate separation:

σ ¼ 1

2
gabΔxaΔxb þ AabcΔxaΔxbΔxc

þ BabcdΔxaΔxbΔxcΔxd þ � � � ð24Þ

where A;B are obtained from symmetrized derivatives of
the metric tensor, as described in [29].
These expressions are valid in a coordinate system in

which the metric is regular. We use the Kruskal coordinates
for the subtracted geometry that have been derived in [21],
which take the form ðU;V; θ;φÞ with ð−UVÞ ∝ ðr − rþÞ
near the horizon. Our radial coordinate separation is
therefore written as Δxa ¼ ð−δ; δ; 0; 0Þ (with δ ∝

ffiffiffi
ϵ

p
).

After computing σ by this procedure [leading to an

expression of the form σ ¼ β1ϵþ β2ϵ
2 þOðϵ3Þ] it is easy

to obtain the Ricci counterterm in (16) because to the
relevant order OðϵÞ we have Rμνσ

;μσ;ν ¼ Rrrσ
;rσ;r.

Once all the counterterms are computed by this
procedure, when expressed in terms of the α parameter
they take the relatively simple form

Gdiv ¼
1þ α2

64π2M2

�
1

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2v2

p −
α2v2ð1þ α2Þ ln ϵ
4ð1þ α2v2Þ5=2

þ ð−1þ α2ð−4þ α2 þ ð7þ α2 þ α4Þv2 þ 3α2v4ÞÞ
12ð1þ α2v2Þ5=2

�
;

ð25Þ

[plus a term of the form Rðrþ; θÞ ln μ2]. Then, absorbing
some R-proportional terms into the arbitrary constant μ, the
final result for the vacuum polarization is

hϕ2irþ ¼Rðrþ;θÞ lnμ2þ 1þα2

64π2M2

�
1

12ð1þα2v2Þ5=2
× ½ð1−α2ð−4þα2ð9þ9α2þα4Þv2−3α2v4ÞÞ
−3α2ð1þα2Þ2 lnð1þα2v2Þ�

þ
Z

∞

0

dw

�
1

½w2þv2sin2ðαsinh−1wÞ�3=2

−
�

1

w3ð1þα2v2Þ3=2þ
v2α2ð1þα2Þ

2wð1þwÞð1þα2v2Þ5=2
���

;

ð26Þ

where

Rðrþ; θÞ ¼
3α2ð1þ α2Þ2v2

8M2ð1þ α2v2Þ5=2 : ð27Þ

The angular profile for the vacuum polarization, neglect-
ing the arbitrary term proportional to R, is depicted in

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 1 (color online). Vacuum polarization (without R term) at
the horizon as a function of v ¼ sin θ, for α≡ a=rþ ¼ 0 (full
line), α ¼ 0.5 (dashed line), α ¼ 0.75 (dotted line), and α ¼ 1
(dot-dashed line).
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Fig. 1. Notice that in the absence of rotation spherical
symmetry is recovered, with its value hϕ2iSchsubrþ ¼
ð768π2M2Þ−1 matching the result obtained in [19] for
the subtracted Schwarzschild black hole. In addition,
the result at the pole takes the form hϕ2irþ;θ¼0 ¼
ð768π2M2Þ−1ð1þ α2Þð1þ 4α2 − α4Þ, agreeing with result
found in [19] using a non-corotating vacuum state (at the
pole, the distinction is irrelevant). The dot-dashed plot
corresponds to the extremal case a ¼ M.
We may compare our results to numerical evaluations of

hϕ2irþ on the standard Kerr space-time (with a mirror in
place to define the vacuum).2 We use for comparison
purposes the value exhibited in Fig. 1, with the arbitrary
R-proportional term set to zero (its value in standard Kerr).
The Kerr numerical result shown in Fig. 1 of [7] uses
a ¼ 0.3, M ¼ 1, implying α ≈ 0.15. For these values, both
the subtracted and the standard values are positive, of the
same order of magnitude, and constant over the horizon to

within ∼20% of their value. The subtracted value is,
however, approximately one quarter of the standard one.
This is similar to the results for static subtracted black
holes [19] where the same qualitative similarity and rough
quantitative proportion of the subtracted to the standard
value is observed (in the Schwarzschild case, the ratio is
exactly 1∶4).
We expect our calculations to be easily generalized to the

case of rotating charged black holes, including multicharged
solutions [30–32]. We also expect our methods to be
applicable to the analytical computation of the vacuum
polarization beyond the horizon, and to the evaluation of
the stress-energy tensor. This would open the possibility of
using the subtracted approximation to study analytically the
backreaction for rotating four-dimensional black holes.
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