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The nonextremal stationary black holes do have “hidden” conformal symmetry in which case the
generators form the SLð2;RÞ group. Here, I explicitly show that the Sultana-Dyer black hole solution also
possesses the similar near horizon conformal symmetry. This is the first example of a time dependent case
which also exhibits such a feature. Moreover, using the corresponding generators I find the expression of
the horizon entropy in the context of Virasoro algebra and the Cardy formula. The result matches with the
earlier findings. The present analysis is important since, in reality, the metric is not stationary and, hence,
one must look into these realistic situations to obtain more information about our Universe. I expect that the
analysis will illuminate certain features of the time dependent situations.
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I. INTRODUCTION

The geometry of an extremal Kerr black hole, in the near
horizon limit, has SLð2;RÞ ×Uð1Þ group symmetry [1].
Following the observation that the certain nontrivial diffeo-
morphisms of the near horizon extremal Kerr geometry lead
to two copies of Virasoro algebra whose central charge
gives the entropy, it has been conjectured in [2] that the
extremal Kerr black hole is dual to two dimensional
conformal field theory (CFT). Unfortunately, all attempts
to extend the analysis for nonextremal cases have failed.
Later on, a different approach, based on the wave equation
for a massless scalar field in the nonextremal Kerr back-
ground, has been proposed [3]. It was found that the radial
part of the scalar equation in the near horizon and low
frequency limits exhibits SLð2;RÞL × SLð2;RÞR sym-
metry. This has been extended in various cases [4,5].
Until now, as far as I am aware, none of the existing

discussions encounter the time dependent situation. The
main obstacle is that the scalar field cannot be decomposed
in the mode functions in which the time part is of the form
∼e−iωt because the metric coefficients do not have the time
translational symmetry. Because of this the rest of the
program cannot be simply followed. Now the question is as
follows: why do we need to worry about such situations?
The answer is as follows. In our practical life the black
holes are a part of the cosmological model and they are
surrounded by a local mass distribution. Therefore, the
metrics are not asymptotically flat and moreover the
spacetimes evolve with time. So the stationary results
are no longer blindly acceptable without a prior verifica-
tion. Therefore, in order to know the real universe one
needs to study the time dependent black hole solutions. The
aim of the paper is twofold. First we shall study whether a
time dependent solution possesses any near horizon

SLð2;RÞ symmetry like the stationary ones. Finally, it
will be investigated whether the generators of the symmetry
can illuminate the horizon entropy.
It must be pointed out that the straightforward application

of the existing method [3] is not feasible. This is because the
analysis is mainly based on that fact that the stationary
metric is time independent. Therefore, there exists a timelike
Killing vector, corresponding to which the energy of any
particle on this spacetime is conserved. But in the evolving
cases we do not have such vector. Hence, the mode
decomposition, as stated in the above paragraph, is not
possible. Therefore, in this paper I shall adopt a different
approach based on the solutions of the conformal Killing
equation (CKE) near the horizon introduced earlier in [6] for
a static spherically symmetric metric. Since no introduction
of the auxiliary scalar field is needed here, one can, in
principle, use this method for any spacetime metric. The
steps are as follows. The solution of the CKE for a specific
submanifold of spacetime, particularly the (t − r) sector,
near the horizon leads to a set of diffeomorphism vectors.
Then it can be shown that the generators corresponding to
them form SLð2;RÞ algebra.
In this paper, I shall consider this alternative approach

to uncover the hidden symmetries of the Sultana-Dyer
(SD) black hole [7]. The metric is related to the
Schwarzschild metric by a time dependent conformal
factor. Also it is a solution of general relativity with two
types of fluid as a source. I will show that the solution of
CKE leads to generators which are identical to those of the
Schwarzschild metric. Therefore, following the arguments
made in [6], we can immediately conclude that the SD has
conformal symmetry near the horizon which follows the
SLð2;RÞ group. So far as I know, this will be the first
example for the evolving case which exhibits such a
phenomenon. The next issue I shall address in this paper
is the role played by these generators in finding the entropy*bibhas.majhi@iitg.ernet.in
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of the horizon. There are some attempts for the stationary
case [4] but they are not complete and free of ambiguity.
Here, I shall first find the near horizon, regular form of the
generators and then calculate a bracket among the Noether
charges, obtained earlier in one of my papers [8] (see also
[9–12]).1 The central charge corresponding to the eigenm-
odes, þ1 and −1, will lead to the correct value of the
entropy upon using the Cardy formula [15–17] which
matches with the earlier findings [12,18].
I shall organize the paper as follows. In the next

section, a brief introduction on the SD metric will be
presented. In Sec. III, the near horizon conformal gen-
erators for the submanifold will be found out. Also, it will
be shown that they satisfy the SLð2;RÞ algebra. Then,
using them the entropy of the horizon will be calculated
in Sec. IV. Finally, I shall conclude. For clarity and
completeness, three appendixes, containing some details
of the analysis, will be given at the end. Before going into
the next discussion let me now introduce the notations
which I shall adopt in this paper. The unbar quantities
correspond to the seed metric while the bar ones are for
the conformal metric. The small latin indices a; b; c, etc.
represent all the spacetime indices and the large ones,
like A; B;C, etc., denote the angular (or transverse)
coordinates.

II. SD METRIC: A BRIEF REVIEW

In this section, the SD spacetime will be introduced with
some salient features. The SD metric is a cosmological
black hole solution of general relativity (GR) with two
noninteracting perfect fluids: one is timelike and the other
one is null-like. It is an expanding black hole in the
asymptotic background of the Einstein-de Sitter universe.
The spacetime is asymptotically Friedmann-Lemaitre-
Robertson-Walker (FLRW). One can obtain this by just
giving a time dependent conformal transformation of the
Schwarzschild black hole metric. (Details can be seen from
the original paper of Sultana and Dyer [7].) The metric is
given by [7]

d̄s2 ¼ a2ðηÞ
h
−dη2 þ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ

þ 2M
r

ðdηþ drÞ2
i
: ð1Þ

The constant M, taken to be positive, is identified as the
mass of the Schwarzschild black hole and a2ðηÞ is
the conformal factor whose explicit form is aðηÞ ¼ η2.
Here η, r are the time and the radial coordinates,
respectively, while θ and ϕ are angular coordinates.
Later on I shall, in general, denote these transverse (or

angular) coordinates as x⊥. By imposing the coordinate
transformation η ¼ tþ 2M lnðr=2M − 1Þ in (1), we
can express the SD metric in Schwarzschild-like
coordinates

d̄s2 ¼ a2ðt; rÞ
�
−FðrÞdt2 þ dr2

FðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ
�
;

ð2Þ

where FðrÞ ¼ 1 − 2M=r. The conformal factor in this case
turns out to be [19]

aðt; rÞ ¼
�
tþ 2M ln

���� r
2M

− 1

����
�

2

: ð3Þ

Note that the above diverges near the event horizon
r ¼ 2M of the Schwarzschild spacetime.
Let us now find the location of the horizon. To obtain

this we shall present below a general analysis following
[20]. First, denote the stationary seed metric as gab.
Remember that for the present case this is actually the
Schwarzschild spacetime. Since the seed metric is time
independent, there must exist a timelike Killing vector χa

such that £χgab ¼ 0 and the Killing horizon is determined
by gabχaχb ≡ χ2 ¼ 0. Next, consider a metric ḡab such that
it is related to the earlier one by a spacetime dependent
conformal factor; i.e., ḡab ¼ Ω2gab. In this case one can
show that [20]

£χ̄ ḡab ¼ ð£χ̄Ω2Þgab ¼ ð£χ̄ lnΩ2Þḡab; ð4Þ

where £χ̄ is the Lie derivative along χ̄a; i.e., χ̄a ¼ χa is the
conformal Killing vector of the metric ḡab. Although the
contravariant components are identical to that of the seed
metric, the covariant components are related to that of seed
by the conformal factor, χ̄a ¼ ḡabχ̄b ¼ Ω2gabχb ¼ Ω2χa.
Now as χ2 ¼ 0 at the Killing horizon, we must have
ḡabχ̄aχ̄b ¼ Ω2χ2 ¼ 0, provided Ω2 ≠ Oðχ−2Þ. This implies
that the same remains as the horizon for the conformal
metric. We shall call the later one the conformal Killing
horizon. Therefore, r ¼ 2M is the conformal horizon of
the SD metric. In the present paper, we shall define all the
quantities on this horizon.
Before going into the main discussion, I shall conclude

this section by pointing out an issue of the SD solution. It
is known that the SD metric is a solution in GR gravity
sourced by two types of matter distribution: one is
timelike dust and the other is null fluid. The energy-
momentum tensor of this theory is Tab ¼ μuaub þ τkakb,
where the first term is for timelike dust with energy
density μ and zero pressure while last term is for the null
source. Here, the four velocity ua is timelike and ka is the
null vector. The nontrivial components of ua and ka are
the time and radial components. The explicit expressions
of them are given by [7]

1The original approach was done in [13] and the complete
literature for further development can be followed from [14].
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u0 ¼ r2þMð2r− ηÞ
rη2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ 2Mðr− ηÞ

p ; u1 ¼ Mðη− 2rÞ
rη2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ 2Mðr− ηÞ

p ;

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mðr− ηÞþ r2

p
rη2

; k1 ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mðr− ηÞþ r2

p
rη2

:

ð5Þ

It is observed in [7] that the energy density of the dust

μ ¼ 12ðr2þ2Mðr−ηÞÞ
r2η6

is positive in the region

η <
rðrþ 2MÞ

2M
: ð6Þ

Note that in this region of η both u0 and k0 are positive
while both u1 and k1 are negative when we are on the
horizon, r ¼ 2M. So the energy conditions are satisfied
and it implies that an observer who is outside the horizon
will see that the dust and the null fluid flow radially into
the black hole. On the other hand, for late times, i.e., for
η > rðrþ2MÞ

2M where all the energy conditions are broken,
the sources become unphysical and the dust becomes
superluminal. For r ¼ 2M, the physically acceptable
region of the time coordinate is η < 4M. Although there
exists such an unphysical feature in the SD solution, it
is still interesting to study the different aspects as the
global structure is similar to that of a cosmological black
hole and therefore represents a more realistic situation.
Moreover, the metric is simple enough (as it is conformally
related to the simplest solution, the Schwarzschild space-
time, of GR) to handle and so as a starting example we can
study it to explore more information about our Universe.
(The calculation of different thermodynamical quantities
for SD metric has been done in [12,18,21–23].) Of course,
we feel that this unphysical superluminal feature is due to
the fact that it is far from the realistic one. However, it is
expected that if one can find an exact solution of this theory,
that will be free of this problem. In the absence of such
solutions, here I shall adopt the SD metric as a model,
representing our “real world,” with the expectation that it
mimics the realistic situation.

III. NEAR HORIZON SYMMETRY AND THE
GENERATORS

Here, by solving the conformal Killing equation under
the SD background, I shall show that the generators
corresponding to conformal Killing vectors, in the near
horizon limit, obey the standard SLð2;RÞ algebra. The
analysis will be similar to that of [6]. Throughout this
paper, I define the horizon by the location of the radial
coordinate where the norm of the conformal Killing vector
vanishes. As discussed in the earlier section [see below
Eq. (4)], the horizon, in this case, is given by r ¼ 2M. The
term “near horizon limit” here will be used to imply that at
the end of every calculation the r → 2M limit will be taken.

To start with, consider ξa as the conformal Killing vector
of the seed metric gab; i.e., £ξgab ¼ fðxÞgab where fðxÞ is a
function of spacetime coordinates. Therefore, for any
diffeomorphism xa → xa þ ξ̄a ¼ xa þ ξa of the conformal
metric ḡab ¼ Ω2gab, we obtain

£ξ̄ḡab ¼ £ξðΩ2gabÞ ¼ ð£ξ̄ lnΩ2 þ fÞḡab; ð7Þ

i.e., ξ̄a ¼ ξa is also a conformal Killing vector for the
metric ḡab, but in this case the proportionality factor on the
right-hand side of the equation is shifted by £ξ̄ lnΩ2. This is
the consequence of the earlier discussion around Eq. (4)
with the difference that in the later case the diffeomorphism
is the conformal Killing vector of the seed metric, instead of
the Killing vector.
Next we want to solve (7) to find the vectors for the SD

metric (2), like as has been done in [6], under the
assumptions ξ̄t ≡ ξ̄tðt; rÞ, ξ̄r ≡ ξ̄rðt; rÞ, and ξ̄A ¼ 0 where
A corresponds to the transverse indices. This choice is
motivated by the fact that the near horizon theory is a two
dimensional conformal theory and the metric of a black
hole is effectively given by a two dimensional form in
which only the (t − r) sector is important [24]. That means
the mass and interaction terms of the action of the external
field do not contribute and the theory becomes a two
dimensional free one. The SD spacetime also behaves in a
similar manner. An explicit analysis has already been done
in the Appendix of [18]. Keeping this in mind, and since
our whole analysis is near to the horizon, one can make
such a restricted diffeomorphism which only deforms the
(t − r) sector. Also remember that here Ω ¼ aðt; rÞ, which
is given by (3). With these assumptions let us first consider
the angular part of the equation (7); i.e., a ¼ A and b ¼ B.
Then the choice A ¼ θ ¼ B leads to

fðxÞ ¼ 2F
a2r

ξ̄r: ð8Þ

An identical result can also be obtained for A ¼ ϕ ¼ B.
This helps us to find the factor f in terms of the metric
coefficients and the conformal Killing vector. We shall use
it in the following calculation to find the nontrivial
expressions for the components of ξ̄a. Expansion of (7)
under the background (2) and use of (8) lead to the
following nontrivial equations:

∂
∂t

�
ξ̄t
a2

�
−
FF0

2a2
ξ̄r ¼ −

F2

a2r
ξ̄r; ð9Þ

∂
∂r

�
ξ̄r
a2

�
þ F0

2a2F
ξ̄r ¼

1

a2r
ξ̄r; ð10Þ

∂
∂t

�
ξ̄r
a2

�
þ ∂
∂r

�
ξ̄t
a2

�
−

F0

a2F
ξ̄t ¼ 0: ð11Þ
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The prime denotes the derivative with respect to the radial
coordinate “r.” In the above, the first equation is for the
choice a ¼ t ¼ b while the second one is for a ¼ r ¼ b
and the last one comes by taking a ¼ t; b ¼ r. Others are
trivially satisfied.
In principle, the solutions of the above equations give us

the required components. Here I shall solve them in the
near horizon limit; i.e., r → 2M. In this limit, remember
that F vanishes and a diverges while a2F → 0. Therefore,
the terms on the right-hand sides of Eqs. (9) and (10) can be
neglected as they are decreasing fast compared to the other
terms. Hence, the above equations simplify to the following
forms in the near horizon region:

∂
∂t

�
ξ̄t
a2

�
−
FF0

2a2
ξ̄r ¼ 0; ð12Þ

∂
∂r

�
ξ̄r
a2

�
þ F0

2a2F
ξ̄r ¼ 0; ð13Þ

∂
∂t

�
ξ̄r
a2

�
þ ∂
∂r

�
ξ̄t
a2

�
−

F0

a2F
ξ̄t ¼ 0: ð14Þ

The above can be solved by using the identical steps
employed in [6]. The solutions can be directly written by
borrowing the general logic presented below Eq. (4). Since
the terms on the right-hand sides of Eqs. (9) and (10) do not
contribute in the near horizon limit, Eqs. (12)–(14) re-
present the conformal Killing equations which are the
modification of the Killing equations of the Schwarzschild
metric by a conformal factor. Therefore, as stated above, the
contravariant components for the SD metric are identical to
those of the Schwarzschild spacetime while the covariant
components will be modified by a conformal factor which,
in the present case, is given by a2. Therefore, as the
components for the Schwarzschild metric have already
been obtained in [6], we can write those for the SD metric
directly and, hence, the generators. But for the complete-
ness and as the paper should be self-contained so that a new
reader can understand, I present below some details for
obtaining the components by solving Eqs. (12)–(14). The
solutions are

ξ̄t ¼ a2
�
KF þ F0 ffiffiffiffi

F
p

2
ffiffiffi
λ

p ðαe
ffiffi
λ

p
t − βe−

ffiffi
λ

p
tÞ
�
; ð15Þ

ξ̄r ¼
a2ffiffiffiffi
F

p ðαe
ffiffi
λ

p
t þ βe−

ffiffi
λ

p
tÞ: ð16Þ

Here K, α, β, and λ are integration constants. For com-
pleteness, I present the steps to obtain these in Appendix A.
It must be noted that for the present case the covariant
components of the vector are modified by the conformal
factor a2 compared to the static case which was obtained

earlier in [6]. Also, since these are calculated near the
horizon, where the fðxÞ factor has been neglected [see
Eq. (8)], the static case vector reduces to the Killing vector
while that for the SD metric remains as the conformal
Killing vector. This is happening as the term £ξ̄ lnΩ2 in (7)
contributes to the near horizon equations, (12)–(14). This
fact is the consequence of the general argument given
around Eq. (4).
Although the covariant components get modified by the

conformal factor, the contravariant components remain
identical to the static metric. This is because to find them
one has to raise the index by the inverse conformal metric,
ḡab ¼ Ω−2gab ¼ a−2gab. Below I give the expressions for
the contravariant components

ξ̄t ¼ −K −
F0

2
ffiffiffiffiffiffi
λF

p ðαe
ffiffi
λ

p
t − βe−

ffiffi
λ

p
tÞ

ξ̄r ¼
ffiffiffiffi
F

p
ðαe

ffiffi
λ

p
t þ βe−

ffiffi
λ

p
tÞ: ð17Þ

The generators corresponding to these can be found by the
different choice of the constants K; α, and β. Note that the
components, given in (17), are identical to what was
obtained in [6] for the static case. Therefore, the generators
will also be same for the SDmetric. Therefore, here I do not
give the steps to achieve the final forms. These can be
followed from [6]. The near horizon generators are given by

H̄þ1 ¼ Hþ1 ¼ iγeκt
� ffiffiffiffi

F
p ∂r −

F0

2κ
ffiffiffiffi
F

p ∂t

�
;

H̄0 ¼ H0 ¼ −
i
κ
∂t;

H̄−1 ¼ H−1 ¼ −iγe−κt
� ffiffiffiffi

F
p ∂r þ

F0

2κ
ffiffiffiffi
F

p ∂t

�
; ð18Þ

where κ ¼ F0ð2MÞ=2 is the surface gravity of the seed
metric and γ is a constant. One can notice that these satisfy
the SLð2;RÞ algebra

½H̄0; H̄�1� ¼ ∓iH̄�1; ½H̄þ1; H̄−1� ¼ 2iH̄0; ð19Þ

with the choice γ2F00ðrÞ ¼ 2. A brief detail to obtain the
above form of the generators is also given in Appendix B.
This tells us that the above is valid for the value of FðrÞ up
to order ðr − 2MÞ2 (for a detailed analysis, see [6]).
So what I found so far is that the generators correspond-

ing to the near horizon conformal Killing vectors, obtained
by solving the conformal Killing equation under certain
conditions, obey the SLð2;RÞ algebra where the metric
coefficient FðrÞ has to be up toOðr2Þ. This implies that the
near horizon SD metric has a conformal symmetry like the
static Schwarzschild [5,6] or stationary Kerr [3] solutions.
So far I am aware of, this is the first example of a time
dependent case which exhibits the “hidden” conformal
symmetry.
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IV. VIRASORO GENERATORS AND ENTROPY

After finding the hidden symmetries, I am interested in
examining if they have any role in the thermodynamics of
the horizon. This issue will be addressed in the present
section in the context of Virasoro algebra and the Cardy
formula. First, I shall find the convenient Virasoro gen-
erators and then calculate the charge defined in my earlier
papers [8,12]. Finally, this will be compared with the
standard algebra to identify the correct zero mode eigen-
value and central charge to obtain the entropy of the
horizon.
To obtain the Virasoro generators, let us first rewrite (18)

in the following form. In the near horizon we substitute
F0ðr → 2MÞ ¼ 2κ. This will lead to

H̄þ1 ¼ iγeκt
1ffiffiffiffi
F

p ðF∂r − ∂tÞ;

H̄0 ¼ −
i
κ
∂t;

H̄−1 ¼ −iγe−κt
1ffiffiffiffi
F

p ðF∂r þ ∂tÞ: ð20Þ

Next, express the above in the null coordinates, given by

u ¼ t − r�; v ¼ tþ r�; ð21Þ

where r� is the tortoise coordinate, defined through the
differential equation, dr� ¼ dr=F. In this, coordinates (20)
reduce to the following form:

H̄þ1 ¼ −
2i

κ
ffiffiffiffi
F

p e
κ
2
ðuþvÞ∂u;

H̄0 ¼ −
i
κ
ð∂u þ ∂vÞ;

H̄−1 ¼ −
2i

κ
ffiffiffiffi
F

p e−
κ
2
ðuþvÞ∂v; ð22Þ

with the choice, γ ¼ 1=κ. Notice that H̄þ1 and H̄−1 are not
regular at the horizon. Here I shall choose the Virasoro
generators such that the components must be regular near
the horizon so that all the derived results are finite in this
limit. For that consider the following redefined general
form of the generators:

H̄n ¼ −
i
κ
e
nκ
2
ðuþvÞ½ð1þ nÞ∂u þ ð1 − nÞ∂v�; ð23Þ

with n ¼ þ1; 0;−1. In the above H̄þ1 and H̄−1 have been
scaled by the factor,

ffiffiffiffi
F

p
. So the components of the

parameter, corresponding to the generator (23) can be read
off as

ζ̄un ¼−
ið1þnÞ

κ
e
nκ
2
ðuþvÞ; ζ̄vn¼−

ið1−nÞ
κ

e
nκ
2
ðuþvÞ: ð24Þ

Next, impose the following properties on the Virasoro
generators: (i) the zero mode value of the Noether charge
corresponding this vector, calculated at the horizon, is real,
(ii) the Lie bracket among them obeys one subalgebra
isomorphic to Diff S1, i.e., ifξm; ξnga ¼ ðm − nÞξamþn, and
(iii) they are a periodic function of time coordinate t ¼
ðuþ vÞ=2 as Euclidean time has a periodicity, 2π=κ. These
can be achieved by dividing by i and then replacing n by
−in in the right-hand side of the above. So we choose the
components of Virasoro generators as

ξ̄un ¼ −
ð1 − inÞ

κ
e
−inκ
2
ðuþvÞ; ξ̄vn ¼ −

ð1þ inÞ
κ

e
−inκ
2
ðuþvÞ:

ð25Þ

Remember that contravariant components are the same
both for the seed metric and the conformal metric while
covariant components among these spacetimes differ by the
conformal factor. So the above are also the Virasoro
generators for the Schwarzschild metric; i.e., ξ̄an ¼ ξan.
Now I shall calculate the Noether charge and the bracket

among the charges corresponding to diffeomorphism near
the horizon. Here (25) will be chosen as the diffeomor-
phism vector. The charge and the bracket for the conformal
metric are given by [8]

Q̄m ¼ 1

2

Z
H

ffiffiffī
σ

p
dΣ̄abJ̄ab½ξ̄m�; ð26Þ

and

½Q̄m; Q̄n� ¼
Z
H

ffiffiffī
σ

p
dΣ̄ab½ξ̄anJ̄bm − ðm↔nÞ�; ð27Þ

respectively. Here σ̄ is the determinant of the reduced
metric on the horizon and the potential, which is an
antisymmetric tensor, is in the following form:

J̄ab½ξ̄m� ¼
1

16πG
ð∇aξ̄bm −∇bξ̄amÞ; ð28Þ

where J̄am ≡ J̄a½ξ̄m� and so on. The Noether current is
defined as J̄am ¼ ∇̄bJ̄abm . The surface element on the horizon
is dΣ̄ab ¼ −d2x⊥ðN̄aM̄b − N̄bM̄aÞ. N̄a and M̄a are the
spacelike and timelike unit normals, respectively, which
satisfy ḡabN̄aN̄b ¼ þ1 and ḡabM̄aM̄b ¼ −1. For clarity, a
brief discussion has been given in Appendix C. For
simplicity of the calculation, I shall express (26) and
(27) in terms of the quantities defined for the seed metric.
This has already been done by me in one of my earlier
papers [12]. The expressions are as follows:

Q̄m ¼ 1

2

Z
H

ffiffiffi
σ

p
Ω2dΣab

�
Jab½ξm� þ

2

16πG
ξbm∇aðlnΩ2Þ

�
;

ð29Þ
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and

½Q̄m; Q̄n� ¼
Z
H

ffiffiffi
σ

p
Ω2dΣab½ðξanJbm þ ξanKb

mÞ − ðm↔nÞ�:

ð30Þ

Here Kb
m is given by

Kb
m ¼ 2

Ω
Jbc½ξm�∇cΩ −

1

Ω2
∇cKbc

m ; ð31Þ

where Kab
m ¼ 1=16πGðξam∇bΩ2 − ξbm∇aΩ2Þ. The above

expressions are valid for any diffeomorphism vector for
which the relation between the conformal and seed vectors
is ξ̄a ¼ ξa, ξ̄a ¼ Ω2ξa. Since the same happens for (25), the
above charge and bracket expressions can also be used
here. Next, these will be calculated explicitly by using (25)
as they are also applicable to the seed metric.
For the Schwarzschild metric, in the ðt; r; x⊥Þ coordinate

system, the unit normals are given by Na ¼ ð0; ffiffiffiffi
F

p
; 0Þ and

Ma ¼ ð−1= ffiffiffiffi
F

p
; 0; 0Þ. Transforming them in light cone

coordinates (21) we find

Na ¼
�
−

1ffiffiffiffi
F

p ;
1ffiffiffiffi
F

p ; 0

�
; Ma ¼

�
−

1ffiffiffiffi
F

p ;−
1ffiffiffiffi
F

p ; 0

�
:

ð32Þ

The above are written in the order ðu; v; x⊥Þ. So to
calculate (29) and (30) explicitly, we need only the uv
component of the surface element. This turns out to be
dΣuv ¼ ð−2=FÞd2x⊥. Now using this and substituting the
expressions for Virasoro generators (25) in the first and the
last terms of (29), we find

dΣabJab½ξm� ¼ 2dΣuvJuv ¼ d2x⊥e−
imκ
2
ðuþvÞ

�
2F0

κ
þ 2m2

�
;

ð33Þ

and

dΣabξmb∇aðlnΩ2Þ ¼ dΣuv½ξmu∇vðln a2Þ − ξmv∇uðln a2Þ�

¼ −d2x⊥
2

κ
e−

imκ
2
ðuþvÞ

�
Fa0

a
þ im _a

a

�
;

ð34Þ

respectively. Since a is given by (3), it is easy to see
a0 ¼ ð4Ma1=2Þ=ðrFÞ while _a ¼ 2a1=2. Therefore, the term
within the bracket in (34) is of the order a−1=2 which
vanishes near the horizon as a diverges in this limit.
Hence, the last term in (29) can be neglected compared to
the first term. Then substituting (33) in (29) and integrat-
ing near the horizon we obtain

Q̄m ¼ Ā
8πG

ð1þm2=2Þe−imκ
2
ðuþvÞ; ð35Þ

where Ā ¼ 16πM2a2 is the horizon area of the SD metric.
Similarly, one can show that the term dΣabξ

a
nKb

m in the
bracket (30) will not contribute near the horizon. So in an
identical way one finds

½Q̄m;Q̄n� ¼−iðm−nÞ
�
Q̄mþn−

Ā
16πG

ðmþnÞ2e−iðmþnÞκ
2

ðuþvÞ
�

− i
Ā

16πG
ðm3−n3Þe−iðmþnÞκ

2
ðuþvÞ: ð36Þ

Therefore, the central term comes out to be

K̄½ξ̄m; ξ̄n� ¼ ½Q̄m; Q̄n� þ iðm − nÞQ̄mþn

¼ −i
Ā

16πG
e−

iðmþnÞκ
2

ðuþvÞðmn2 −m2nÞ: ð37Þ

Now in the usual two dimensional conformal field theory,
the central term is given by −im3ðC̄=12Þδmþn;0, where C̄ is
the central charge [25]. Therefore, from the above we find

K̄½ξ̄þ1; ξ̄−1� ¼ −i
Ā

8πG
≡ −i

C̄
12

: ð38Þ

Similarly, taking m ¼ 0 in (35) one obtains the zero mode
eigenvalue of the charge. Hence, our values of Q̄0 and C̄
are

Q̄0 ¼
Ā

8πG
;

C̄
12

¼ Ā
8πG

: ð39Þ

Finally, the Cardy formula [15–17] yields the entropy as

S̄ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̄ðQ̄0 − C̄=24Þ

6

r
¼ Ā

4G
: ð40Þ

The identical value was assumed earlier in [18,21] and
later derived in [12].
Before closing the present section, let me make couple of

comments. The Virasoro generators (25) were constructed
by imposing certain conditions on the original ones (22)
which led to the correct expression for the entropy.
Particularly, when (23) was constructed, we rescaled the
original ones by factor

ffiffiffiffi
F

p
to make them regular near

the horizon. Hence, it is expected that (23) is no longer the
solution of the near horizon conformal Killing equations,
(12)–(14). One can check that these equations are not even
satisfied up to Oðχ̄2Þ; i.e., the generators are not conformal
Killing vectors even at very near to the horizon. Still it is
interesting to verify that they represent the SLð2;RÞ
algebra. That means these regular ones correspond to the
states of some CFT; or in other words, the near horizon
quantum states can be identified with those of CFT. Now
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the question is the following: what type of symmetry is
represented by the vectors (25)? For that let us first
calculate the quantity, ξ̄aξ̄b£ξ̄ḡab. It turns out that it is of
the order χ̄2 which vanishes near the horizon. This implies
that now the Virasoro generators satisfy a more weaker
condition than (7). Hence, the new vectors correspond to
asymptotic symmetry of the particular boundary condi-
tion, ξ̄aξ̄b£ξ̄ḡab ¼ Oðχ̄2Þ.
Finally, it must be noted that the modes of the charge

(35) and the central term (37), hence, the central charge,
are not finite in the near horizon limit as the conformal
factor a diverges [see Eq. (3)]. This is due to the bad
choice of coordinates. In Schwarzschild-like coordinates
a diverges while in (η; r; θ;ϕ) coordinates a is finite as
a ¼ η2. On the other hand, when we calculated the
charges, the Virasoro generators (24) were obtained by
regularizing (22). The reason is to obtain the finite results.
This is necessary as (26) and (27) are invariant in any
coordinate systems and so whatever coordinate we choose,
the final result will be same. Hence, if we do not take the
regular one, our final results are always divergent, irre-
spective of any coordinate system, even for the usual
Schwarzschild metric. Therefore, the regularization in the
generators are necessary.

V. CONCLUSIONS

It has been generously agreed that the near horizon
nonextremal stationary black hole geometry exhibits a
hidden conformal symmetry. This has been explored by
studying the massless Klein-Gordon equation under the
metric background. The radial equation in the low fre-
quency limit, near the horizon, is generated by the SLð2;RÞ
group generators [2]. This has been explored in a com-
pletely different way in [6] by studying the conformal
Killing equation for the submanifold, mainly the (t − r)
sector, of a static spherically symmetric metric. In this
paper, I took the time dependent black hole solution and
examined if it has similar symmetry. The metric represents
a solution of GR with two types of fluid as sources, known
as SD spacetime [7]. Since it does not have time symmetry,
the original approach is not applicable. Here, I followed the
second method.
I found that the generators, coming from the conformal

Killing equation near the horizon for the (t − r) sector,
exhibit SLð2;RÞ symmetry. As far as I know, this is the first
instance for an evolving case where such an issue has been
addressed. This is an important attempt as in reality one
does not encounter stationary black holes. Next, I calcu-
lated a bracket among the Noether charges, defined earlier
in one of my papers [8], for these generators. It was
observed that for the þ1 and −1 modes the bracket gives
the correct value of the central charge which leads to
entropy of the horizon. This expression matches with the
earlier result [12,18] obtained for the SD metric.

Now let me conclude by mentioning the following
weakness of the present paper which needs to be further
investigated. First of all, the SD solution is not the exact
representation of our real universe. It is a prototype
example and hence it has some basic issues which I have
already mentioned in the second section. I believe the exact
solution will be free of these flaws and as a result of this, the
SD metric can enlighten several features of the time
dependent situation. That is why this study is important.
Furthermore, the correct Virasoro generators were obtained
by regularizing the original ones which has been done by
hand. Interestingly, the new ones also satisfy the SLð2;RÞ
algebra. That means the near horizon of the SD metric has
the conformal symmetry. It would have been nice if there
exists a direct method to obtain the generators and the
hidden symmetry which will lead to all the results in more
concrete way. Finally, it is worth pointing out that although
the Schwarzschild/CFT correspondence is motivated by the
Kerr/CFT correspondence, originally introduced in [3], the
structure of the generators for both cases does not have
any connection. For instance, one cannot reach to the
Schwarzschild/CFT generators by just taking the limit
J → 0 of those for the Kerr/CFT case, where J is the
angular momentum of Kerr black hole. It is quite surpris-
ing. Further study in this direction will be very interesting
by itself. All these are under investigation.
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APPENDIX A: EVALUATION OF
EQS. (15) AND (16)

First solve Eq. (13). The solution is

ξ̄r
a2

¼ AðtÞffiffiffiffi
F

p ; ðA1Þ

where AðtÞ is the integration constant. Next, substitute this
in (12) and (14), respectively. That leads to

∂
∂t

�
ξ̄t
a2

�
−
F0 ffiffiffiffi

F
p

2
AðtÞ ¼ 0; ðA2Þ

_Affiffiffiffi
F

p þ ∂
∂r

�
ξ̄t
a2

�
−

F0

a2F
ξ̄t ¼ 0: ðA3Þ

Taking the time derivative of (A3) and then using (A2) we
obtain

Äþ 1

4
ð2FF00 − F02ÞA ¼ 0: ðA4Þ
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As A is function of time only while F is function of the
radial coordinate, the above equation can be separated into
the time dependent part and the radial coordinate dependent
part. Both of them must be equal to a constant, say λ. Then
the two equations are as follows:

Ä − λA ¼ 0; ðA5Þ

2FF00 − ðF0Þ2 þ 4λ ¼ 0: ðA6Þ

The solution for A is

AðtÞ ¼ αe
ffiffi
λ

p
t þ βe−

ffiffi
λ

p
t; ðA7Þ

where α and β are two integration constants. The sub-
stitution of it in (A1) leads to (16). Now to find ξ̄t, we
integrate (A2) first

ξ̄t
a2

¼ F0 ffiffiffiffi
F

p

2

Z
AðtÞdtþ gðrÞ: ðA8Þ

Here gðrÞ is the constant of integration. Using (A5) in the
above and then absorbing the part which depends only on
the radial coordinate in gðrÞ we obtain

ξ̄t
a2

¼ F0 ffiffiffiffi
F

p

2λ
_AðtÞ þ gðrÞ: ðA9Þ

The substitution of the value of ξ̄t=a2 from the above in
(A3) and finally the use of (A6) lead to

g0ðrÞ
gðrÞ ¼ F0

F
: ðA10Þ

The solution of it is

gðrÞ ¼ KFðrÞ; ðA11Þ

where K is the constant of integration. Making use of the
value of AðtÞ from (A7) and gðrÞ from (A11) in (A9) we
find (15).

APPENDIX B: DERIVATION OF
GENERATORS (18)

Equation (17) has three independent constants. Three
choices of the values of them will lead to three generators.
The choices are as follows: (i) α ¼ i, β ¼ 0 ¼ K;
(ii) α ¼ 0 ¼ β, K ≠ 0; and (iii) β ¼ −i, α ¼ 0 ¼ K.
Correspondingly, the generators are

~̄Hþ1 ¼ ie
ffiffi
λ

p
t

� ffiffiffiffi
F

p ∂r −
F0

2
ffiffiffiffiffiffi
λF

p ∂t

�
;

~̄H0 ¼ −K∂t;

~̄H−1 ¼ −ie−
ffiffi
λ

p
t

� ffiffiffiffi
F

p ∂r þ
F0

2
ffiffiffiffiffiffi
λF

p ∂t

�
: ðB1Þ

Now, to achieve the SLð2;RÞ algebra we redefine the above
as H̄0 ¼ ~̄H0 and H̄�1 ¼ γ ~̄H�1. Then the commutators are
given by (19) with the following choices: K

ffiffiffi
λ

p ¼ i and
γ2F00 ¼ 2. The solution of the second choice leads to

FðrÞ ¼ r2

γ2
þ C0rþ C1; ðB2Þ

where C0 and C1 are integration constants. This tells us that
the results are valid near the horizon up to order r2. The
constants can be determined by imposing the conditions,
FðrHÞ ¼ 0 and F0ðrHÞ ¼ 2κ, where rH is the location of
the horizon and κ is the surface gravity. These lead to C0 ¼
2κ − 2rH=γ2 and C1 ¼ r2H=γ

2 − 2κrH. Using all these in
(A6) we find λ ¼ κ2 and so K ¼ i=

ffiffiffi
λ

p ¼ i=κ. Substituting
them in (B1), we obtain the final expressions for generators
presented in Eq. (18).

APPENDIX C: NOETHER CURRENT,
POTENTIAL, AND A BRACKET

AMONG THE CHARGES

Here I shall use the Noether prescription to obtain the
current and potential for a gravity theory. This will be based
on the Lagrangian formalism. Consider a covariant
Lagrangian Lðḡab; R̄abcdÞ. Under the metric variation, it
varies as

δðL ffiffiffiffiffiffi
−ḡ

p Þ ¼ ffiffiffiffiffiffi
−ḡ

p ½Ēabδḡab þ ∇̄aδva�: ðC1Þ

The first term corresponds to the equation of motion
while the last term is the total derivative term and so it
is a surface contribution. Its explicit form turns out
to be δvj¼2P̄ibjdð∇̄bδḡdiÞ−2δḡdið∇̄cP̄ijcdÞ where P̄abcd ¼
∂L=∂R̄abcd. In this paper we are interested in the variation
due to a diffeomorphism xa → xa þ ξ̄a, in which case
δḡab ¼ ∇̄aξ̄b þ ∇̄aξ̄b. In this case the right-hand side of
the above can be expressed as total derivative term,ffiffiffiffiffiffi
−ḡ

p ½∇̄að−2Ēa
bξ̄

b þ δvaÞ�. On the other hand, as the
Lagrangian is a scalar, the Lie variation of it is given by
δðL ffiffiffiffiffiffi

−ḡ
p Þ ¼ ffiffiffiffiffiffi

−ḡ
p ∇̄aðLξ̄aÞ. Equating these two, one finds a

conservation relation ∇̄aJ̄a ¼ 0, where J̄a is the Noether
current. Here it is given by

J̄a ¼ Lξ̄a þ 2Ēabξ̄b − δva: ðC2Þ

Note that the above is valid for any diffeomorphism vector
ξ̄a. Now as J̄a is conserved, it can be expressed as a covariant
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derivative of an antisymmetric tensor J̄ab; i.e., J̄a ¼ ∇̄bJ̄ab.
In the literature, J̄ab is called the Noether potential. In
the case of the covariant Lagrangian, these are coming out
to be [26]

J̄a ¼ 2P̄abcd∇̄b∇̄cξ̄d − 2∇̄bðP̄adbc þ P̄acbdÞ∇̄cξ̄d

− 4ξ̄d∇̄b∇̄cP̄abcd; ðC3Þ
J̄ab ¼ 2P̄abcd∇̄cξ̄d − 4ð∇̄cP̄abcdÞξ̄d: ðC4Þ
ForGR theory, substitution of each term in the above leads to
J̄a ¼ ∇̄bJ̄ab where J̄ab ¼ ∇̄aξ̄b − ∇̄bξ̄a. For the details, see
the discussion given on page 394 of Ref. [26]. Remember
that the expressions for current and potential are general and

can be used for any diffeomorphism vector. Inserting the
proper normalization factor 1=16πG and integrating over the
horizon, we obtain (26).
To define a bracket among the charges, we take another

variation of the charge Q̄½ξ̄m� for diffeomorphism, xa →
xa þ ξ̄an. Then an antisymmetric combination of m; n is
taken which is in the following form:

½Q̄m; Q̄n�≡ δξ̄mQ̄n − δξ̄nQ̄m: ðC5Þ

This leads to Eq. (27) (for details, see [8]). For GR theory,
this exactly matches with the result obtained in [27] by the
Hamiltonian formalism.
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