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We explore an effective supergravity action in the presence of a massless gauge field which contains a
Gauss-Bonnet term as well as a dilaton field. We construct a new class of black brane solutions of this
theory with a Lifshitz asymptotic by fixing the parameters of the model such that the asymptotic Lifshitz
behavior can be supported. Then we construct the well-defined finite action through the use of the
counterterm method. We also obtain two independent constants along the radial coordinate by combining
the equations of motion. Calculations of these two constants at infinity through the use of the large-r
behavior of the metric functions show that our solution respects the no-hair theorem. Furthermore, we
combine these two constants in order to get a constant C which is proportional to the energy of the black
brane. We calculate this constant at the horizon in terms of the temperature and entropy and at large-r in
terms of the geometrical mass. By calculating the value of the energy density through the use of the
counterterm method, we obtain the relation between the energy density, the temperature, and the entropy.
This relation is the generalization of the well-known Smarr formula for AdS black holes. Finally, we study
the thermal stability of our black brane solution and show that it is stable under thermal perturbations.
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I. INTRODUCTION

The formulation of the quantum theory of gravity and
its applications to physical systems in order to understand
physics at strong gravity is one of the most interesting
challenges of modern theoretical physics. The area where
quantum gravity may play a significant role includes
cosmology and black hole physics. Although the leading
candidates are the ten-dimensional superstring theories,
most analyses have been performed by using low-energy
effective theories inspired by string theories. This is due to
the fact that it is difficult to study geometrical settings in
superstring theories. The effective theories are the super-
gravities which typically involve not only the metric but
also a dilaton field (as well as several gauge fields). On the
other hand, the effective supergravity action coming from
superstrings contains higher-order curvature correction
terms. The simplest correction is the Gauss-Bonnet (GB)
term coupled to the dilaton field in the low-energy effective
heterotic string [1]. It is then natural to ask how the black
hole solutions are affected by higher-order terms in these
effective theories. To our knowledge, just one exact solu-
tion of such a theory has been obtained [2]. Indeed, in
Ref. [2], a dilatonic Einstein-Gauss-Bonnet (EGB) theory
with a nonminimal coupling between the EGB term and
dilaton field has resulted by applying the general Kaluza-
Klein reduction on EGB gravity, and an exact solution has

been introduced. Also in Ref. [3], it was shown that the
anti–de Sitter (AdS) metric can be an exact solution of this
theory. In addition, asymptotically AdS solutions of this
theory have been considered in Refs. [3,4] numerically.
Here, we would like to find Lifshitz solutions of this theory.
The motivation for this investigation is that Lifshitz black
holes have received much attention recently. Indeed, black
hole configurations in Lifshitz spacetime are dual to non-
relativistic conformal field theories enjoying anisotropic
conformal transformations,

t → λzt; ~x → λ~x; ð1Þ

where the constant z > 1 is called the dynamical exponent
and shows the anisotropy between space and time. In other
words, while AdS black holes are dual to scale invariant
relativistic field theories which respect the isotropic con-
formal transformation [5]

t → λt; ~x → λ~x; ð2Þ

Lifshitz black holes are dual to nonrelativistic field theories.
Furthermore, there are many situations where isotropic
conformal transformation (2) is not respected. For instance,
in many condensed matter systems, there are phase
transitions governed by fixed points which exhibit dynami-
cal scaling (1). The gravity models dual to such systems are
no longer AdS and one needs a spacetime that its boundary
respects anisotropic conformal transformation (1). This
spacetime, which is known as Lifshitz spacetime, was first
introduced in [6] as
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ds2 ¼ −
r2z

l2z
dt2 þ l2dr2

r2
þ r2d~x2: ð3Þ

From the beginning of the introduction of the Lifshitz
spacetime, it was known that this is not a vacuum
solution of Einstein gravity or even the Einstein equation
with the cosmological constant in the case of an arbitrary
value of z. Therefore, one needs some matter sources
or higher-curvature corrections in order to guarantee
that the asymptotic behavior of spacetime is Lifshitz.
One of the matter sources considered in many works is a
massive gauge field [7–11]. In the latter case, some exact
solutions have been obtained, more often for fixed z
[7,8]. However, it seems impossible in some cases to find
an exact solution of the field equations of motion
especially for arbitrary z, either in Einstein [8,9] or in
Lovelock gravities [10,11]. But, it is possible to study the
thermodynamics of these black hole configurations by
using a conserved quantity along the radial coordinate
[9,10]. Another way to guarantee the Lifshitz asymptotic
behavior is by considering higher-curvature corrections
[12]. In addition, the asymptotic supporting matter
source can also be chosen to be a dilaton field and a
massless gauge field [13–15]. One of the advantages of
the latter matter source over the massive gauge field is
that in this case it is possible to find analytic Lifshitz
black hole solutions in Einstein gravity for arbitrary z.
Some charged exact solutions have been presented in
[13,14]. In [15], the thermal behavior of uncharged
dilaton Lifshitz black branes has been studied by using
perturbation theory.
Motivated by the above two paragraphs, it is interesting

to study the thermodynamics of Lifshitz black brane
solutions in the effective supergravity action coming
from superstrings, which contains higher-order curvature
correction terms and a dilaton field. In this paper we
attack this problem. We shall investigate the thermody-
namics of Lifshitz black branes in the presence of a
dilaton, a massless gauge field, and GB term. Although
exact dilatonic Lifshitz solutions have been introduced
in Einstein gravity [13,14], no exact asymptotically
Lifshitz solution has been obtained in dilaton EGB
gravity. Therefore, we seek the thermodynamics of
Lifshtiz black branes in GB-dilaton gravity using a
conserved quantity along the radial coordinate, as in
the case of massive gauge field matter sources. We find
the relation between energy density, temperature, and
entropy by using the fact that the values of our constant
quantity along the radial coordinate are related to the
temperature and entropy at the horizon and to the energy
density for large r.
The layout of this paper is as follows. In Sec. II, we

obtain the one-dimensional Lagrangian and derive the
field equations of motion for a general spherically
symmetric spacetime. In Sec. [6], we show that this

theory can accept the Lifshitz metric as its solution.
Two constants along the radial coordinate will be
introduced in Sec. IV. Section V is devoted to the
generalization of the counterterm method of Ref. [16]
in the presence of a dilaton field. In Sec. VI, we calculate
the thermodynamic and conserved quantities of asymp-
totic Lifshitz black branes and obtain the Smarr relation.
We also show that our solution is thermally stable. We
finish our paper with a summary and some concluding
remarks.

II. FIELD EQUATIONS

The effective action of the heterotic string theory in the
Einstein frame in the presence of a gauge field may be
written as

Ibulk ¼
1

16π

Z
M

dnþ1x
ffiffiffiffiffiffi
−g

p �
R − 2Λþ αeηΦL2

−
4

n − 1
ð∂ΦÞ2 − e−4λΦ=ðn−1ÞF

�
; ð4Þ

where F ¼ FμνFμν, Fμν ¼ ∂ ½μUν�, η is a constant, λ is the
coupling constant of dilaton and matter, Λ is the cosmo-
logical constant, α is the Gauss-Bonnet (GB) coefficient,
L2 ¼ RμνγδRμνγδ − 4RμνRμν þ R2 is the GB Lagrangian,
and Φ is the dilaton field. While the ten-dimensional
critical string theory predicts the coupling constant
η ≠ 0, we set it equal to zero. This is due to the fact that,
as we will see later and also in the absence of the Gauss-
Bonnet term considered in Ref. [14], the dilaton goes to
infinity as r goes to infinity. Thus, eηΦ becomes very large
at large rwhich effectively rescales the coupling constant α
to large values. Indeed, a large value eηΦ leads to a large
modification to general relativity which is ruled out by the
weak-field approximation [17]. So, we set η ¼ 0. In this
case the GB term for n ≤ 3 does not contribute to the field
equations and is a total derivative in the action. Here we
consider the GB coefficient α positive as in the heterotic
string theory [18].
We write the spherically symmetric gauge fields

and the metric of an ðnþ 1Þ-dimensional asymptotically
Lifshitz static spacetime with zero curvature boundary
as

U ¼ qeKðrÞdt; ð5Þ

ds2 ¼ −e2AðrÞdt2 þ e2CðrÞdr2 þ l2e2BðrÞd~x2; ð6Þ

where d~x2 ¼ P
n
i¼2ðdxiÞ2. Inserting (5) and (6) into

the action (4) and integrating by part, one obtains the
one-dimensional Lagrangian as L1D ¼ ðn − 1Þln−1 ~L1D,
where
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~L1D ¼ −
2Λ
n − 1

eAþCþðn−1ÞB þ eA−Cþðn−1ÞB½2A0B0 þ ðn − 2ÞB02� − 2~αeA−3Cþðn−1ÞB
�
2

3
B03A0 þ n − 4

6
B04

�

−
4

ðn − 1Þ2 e
A−Cþðn−1ÞBΦ02 þ 2q2

n − 1
e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK02; ð7Þ

~α ¼ αðn − 2Þðn − 3Þ, and prime denotes the derivative with respect to the r coordinate. Varying the action (7) with respect
to AðrÞ, BðrÞ, CðrÞ, ΦðrÞ, and KðrÞ, respectively, one obtains the following equations of motion:

E1 ¼ eA−Cþðn−1ÞB
�
B00 þ n

2
B02 − B0C0 þ 2

ðn − 1Þ2Φ
02
�
−

~αn
2
eA−3Cþðn−1ÞB

�
4

n
B00B02 þ B04 −

4

n
B03C0

�

þ Λ
n − 1

eAþCþðn−1ÞB þ q2

n − 1
e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK02 ¼ 0; ð8Þ

E2 ¼ −eA−Cþðn−1ÞB
�
−ðn − 2ÞB00 − A00 −

ðn − 1Þðn − 2Þ
2

B02 − A02 þ ðn − 2ÞB0ðC0 − A0Þ þ A0C0 −
2

n − 1
Φ02

�

− 2~αeA−3Cþðn−1ÞB
�
B00B0½2A0 þ ðn − 4ÞB0� þ B02

�
A00 þ ðn − 2Þðn − 3Þ − 2

4
B02

þ B0ððn − 2ÞA0 − ðn − 4ÞC0Þ þ A0ðA0 − 3C0Þ
��

þ eAþCþðn−1ÞBΛ − q2e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK02 ¼ 0; ð9Þ

E3 ¼ eA−Cþðn−1ÞB
�
A0B0 þ ðn − 2Þ

2
B02 −

2

ðn − 1Þ2Φ
02
�
− 2~αeA−3Cþðn−1ÞB

�
A0B03 þ n − 4

4
B04

�

þ Λ
n − 1

eAþCþðn−1ÞB þ q2

n − 1
e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK02 ¼ 0; ð10Þ

E4 ¼
4

ðn − 1Þ2 f−e
A−Cþðn−1ÞB½Φ00 þ Φ0ðA0 − C0 þ ðn − 1ÞB0Þ� þ q2λe−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK02g ¼ 0; ð11Þ

E5 ¼
8q2

ðn − 1Þ2 e
−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2K

�
K00 þ K02 þ K0

�
−

4

n − 1
Φ0 − A0 − C0 þ ðn − 1ÞB0

��
¼ 0: ð12Þ

One should also note that there is a relation between the
equations of motion,

A0E1 þ B0E2 þ C0E3 − E0
3 þ Φ0E4 þ K0E5 ¼ 0; ð13Þ

where prime denotes the derivative with respect to r. The
above Eq. (13) reduces the number of independent field
equations to four. One may note that E5 is the Maxwell
equation that can be solved for KðrÞ as

ðeKðrÞÞ0 ¼ l−ne4λΦ=ðn−1ÞþAþC−ðn−1ÞB; ð14Þ

and, therefore, we leave with three independent equations
of motion.

III. LIFSHITZ SOLUTION

We used the metric (6) in order to find the constants
of the system along the radial coordinate r, which will be
done in the next section. Here we want to find the Lifshitz
solutions. In order to do this, we use the standard form of

the asymptotic Lifshitz metric through the use of the
following transformations:

AðrÞ ¼ 1

2
ln

�
r2z

l2z
fðrÞ

�
;

CðrÞ ¼ −
1

2
ln

�
r2

l2
gðrÞ

�
;

BðrÞ ¼ ln
r
l
;

KðrÞ ¼ ln
kðrÞ
lz

: ð15Þ

Using the above transformation (15), the metric and gauge
field can be written as

ds2 ¼ −
r2z

l2z
fðrÞdt2 þ l2dr2

r2gðrÞ þ r2d~x2;

U ¼ q
lz
kðrÞdt:

In this frame, the solution of the electromagnetic equation is
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k0ðrÞ ¼ e4λΦ=ðn−1Þrz−n
ffiffiffi
f
g

s
: ð16Þ

Here we choose the horizon as the reference point of the
potential. Thus, one obtains

kðrÞ ¼
Z

r
e4λΦ=ðn−1Þrz−n

ffiffiffi
f
g

s
drþD; ð17Þ

with

D ¼ −
Z

r0
e4λΦ=ðn−1Þrz−n

ffiffiffi
f
g

s
dr;

where r0 is the horizon radius. We first investigate the
possibility of having (nþ 1)-dimensional Lifshitz solutions.
For this aim, the field equations should be satisfied for
fðrÞ ¼ gðrÞ ¼ 1. In this case, by using (15) and (17),
Eqs. (8)–(11) reduce to

− r2Φ02
lif −

nðn − 1Þ2
4

þ ~αnðn − 1Þ2
4l2

−
n − 1

2

�
Λl2 þ q2e4λΦlif=ðn−1Þ

r2ðn−1Þ

�
¼ 0 ð18Þ

r2Φ02
lif þ ðn − 1Þðn − 2Þ

�ðn − 1Þ
4

þ z2

2ðn − 2Þ þ
z
2

�

−
~αðn − 1Þ

l2

�ðn − 1Þðn − 4Þ
4

þ ðn − 2Þzþ z2
�

þ n − 1

2

�
Λl2 −

q2e4λΦlif=ðn−1Þ

r2ðn−1Þ

�
¼ 0; ð19Þ

r2Φ02
lif −

ðn − 1Þ2ððn − 2Þ þ 2zÞ
4

þ ~αðn − 1Þ2
l2

�
zþ n − 4

4

�

−
n − 1

2

�
Λl2 þ q2e4λΦlif=ðn−1Þ

r2ðn−1Þ

�
¼ 0; ð20Þ

rΦ00
lif þ ðzþ nÞΦ0

lif −
λq2e4λΦlif=ðn−1Þ

r2ðn−1Þþ1
¼ 0: ð21Þ

Subtracting (18) from (20) one can find

2r2Φ02
lif −

ðn − 1Þ2ðz − 1Þ
2

�
1 −

2~α

l2

�
¼ 0; ð22Þ

with the solution

ΦlifðrÞ ¼ ξ ln

�
r
b

�
; ξ ¼ n − 1

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1Þðl2 − 2~αÞ

q
: ð23Þ

Substituting the solution (23) in the Eqs. (18)–(21), it is a
matter of calculation to show that they are fully satisfied,
provided

λ ¼ ðn − 1Þlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1Þðl2 − 2~αÞ

p ;

q ¼ bn−1ffiffiffi
2

p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1Þðl2 − 2~αÞðzþ n − 1Þ

q
;

Λ ¼ −
ðzþ n − 1Þðzþ n − 2Þ

2l2

þ ~α½2z2 þ 2ð2n − 3Þzþ ðn − 2Þðn − 3Þ − 2�
2l4

: ð24Þ

Please note that in the case of α ¼ 0 and z ¼ 1, Λ reduces to
−nðn − 1Þ=2l2 and in the case of z ¼ 1, it reduces to
−nðn − 1Þð1 − ~α=l2Þ=2l2 as expected in the cases of AdS
spacetimes in Einstein and Einstein-Gauss-Bonnet gravity,
respectively. We can also find the asymptotic value of kðrÞ as
r goes to infinity by using (12), (23), and (24) as

klif ¼
b2−2nrzþn−1

zþ n − 1
: ð25Þ

IV. THE CONSTANT ALONG THE RADIAL
COORDINATE

As in the case of the Einstein equation in the presence of
a dilaton [15], one can find two independent constants
along the radial coordinate r for this spacetime. It could be
checked that there are two combinations of field equations
which are exact differentials:

E1 −
E2

n− 1
þE5 ¼ −

1

n− 1
½eA−Cþðn−1ÞBðA0 −B0Þ

þ 2~αeA−3Cþðn−1ÞBðB03 −A0B02Þ
− 2q2e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK0�0

¼ 0: ð26Þ

E4 þ
2λE5

n − 1
¼ −

4

ðn − 1Þ2 ½e
A−Cþðn−1ÞBΦ0

− λq2e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK0�0
¼ 0: ð27Þ

This fact results in two independent constants:

C1 ¼ −
1

n − 1
½eA−Cþðn−1ÞBðA0 − B0Þ

þ 2~αeA−3Cþðn−1ÞBðB03 − A0B02Þ
− 2q2e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK0�

¼ −
1

2ðn − 1Þlnþz

��
1 −

2~α

l2
g

�

×

�
rzþnf0

ffiffiffi
g
f

r
þ 2rzþn−1

ffiffiffiffiffi
fg

p
ðz − 1Þ

�
− 4q2k

�
;

ð28Þ
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C2 ¼ −
4

ðn − 1Þ2 ½e
A−Cþðn−1ÞBΦ0

− λq2e−A−Cþðn−1ÞB−4λΦ=ðn−1Þþ2KK0�

−
4

ðn − 1Þ2lnþz ½rnþz
ffiffiffiffiffi
fg

p
Φ0 − λq2k�: ð29Þ

We pause to remark that q and Φ vanish for z ¼ 1, and
the theory reduces to Einstein-Gauss-Bonnet (EGB)
gravity. Thus, with fðrÞ ¼ gðrÞ the first constant (28)
reduces to

C1 ¼
rnþ1

2ðn − 1Þlnþ1

�
f −

~α

l2
f2
�0
;

which is known to be constant in EGB gravity and is
proportional to the mass parameter of the spacetime. Also,
note that the second constant is zero in EGB gravity.
Combining the constants (28) and (29), one can get a

constant which is very useful in our future discussions in
this work:

C ¼ −2ðn − 1Þln−1
�
C1 −

n − 1

2λ
C2

�

¼ rnþz

lzþ1

��
1 −

2~α

l2
g
��

f0
ffiffiffi
g
f

r
þ 2r−1

ffiffiffiffiffi
fg

p
ðz − 1Þ

�

−
4

ffiffiffiffiffi
fg

p
Φ0

λ

�
: ð30Þ

In this section, we want to calculate the constant C, which
is conserved along the radial coordinate r. Since there is
no exact GB-Lifshitz-dilaton solution, we calculate it at
the horizon and at infinity. We will use this to relate the
constant that appears in the expansion at r ¼ ∞ to the
coefficients at the horizon.

A. C at the horizon

Considering nonextreme black branes, one can assume
that fðrÞ and gðrÞ go to zero linearly at the horizon. Also,

we have chosen the reference point of kðrÞ at the horizon.
Thus, one can write

fðrÞ ¼ f1fðr − r0Þ þ f2ðr − r0Þ2 þ f3ðr − r0Þ3
þ f4ðr − r0Þ4 þ � � �g;

gðrÞ ¼ g1ðr − r0Þ þ g2ðr − r0Þ2 þ g3ðr − r0Þ3
þ g4ðr − r0Þ4 þ � � � ;

kðrÞ ¼ k1ðr − r0Þ þ k2ðr − r0Þ2 þ k3ðr − r0Þ3
þ k4ðr − r0Þ4 þ � � � ;

ΦðrÞ ¼ Φ0 þ Φ1ðr − r0Þ þ Φ2ðr − r0Þ2 þ Φ3ðr − r0Þ3
þ Φ4ðr − r0Þ4 þ � � � : ð31Þ

One can solve for the various coefficients by inserting
these expansions into the equations of motion arising
from the action (4) for the metric (6) with the con-
ditions (24).
The constant C (30) can be evaluated at r ¼ r0 by using

the above expansion. One obtains

C ¼ rzþn
0

ffiffiffiffiffiffiffiffiffi
f1g1

p
lzþ1

: ð32Þ

This must be preserved along the flow in r.

B. C at infinity

We now turn to the calculation of C at large r. In order to
do this, we investigate the behavior of the metric functions
at large r by using straightforward perturbation theory.
Using the following expansions,

fðrÞ ¼ 1þ εf1ðrÞ;
gðrÞ ¼ 1þ εg1ðrÞ;
ΦðrÞ ¼ Φlif þ εΦ1ðrÞ;

and finding the field equations (8)–(10) up to the first order
in ε, we obtain

0 ¼ ðn − 1Þ½ðl2 − 2~αÞrf01þðzþ n − 1Þl2g1 − 2~αð3zþ n − 3Þg1� þ 4l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1Þðl2 − 2~αÞ

q
½ðzþ n − 1ÞΦ1 − rΦ0

1�
0 ¼ ðl2 − 2~αÞ½r2f001 þ ð2zþ n − 1Þrf01� þ ½ðzþ n − 2Þl2 − 2~αð3zþ n − 4Þ�rg01 þ ðzþ n − 1Þ

× ½ð2zþ n − 3Þl2 − 2~αð4zþ n − 5Þ�g1 − 4l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1Þðl2 − 2~αÞ

q
½ðzþ n − 1ÞΦ1 þ rΦ0

1�

0 ¼ ðn − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1Þðl2 − 2~αÞ

q
½2ðzþ n − 1Þg1 þ rðf01 þ g01Þ� þ 4l½r2Φ00

1 þ ðzþ nÞrΦ0
1 − 2ðn − 1Þðzþ n − 1ÞΦ1�: ð33Þ

Demanding the fact that the solutions corresponding to these field equations should go to zero as r → ∞, one can find the
desired solutions of Eqs. (33) as

THERMODYNAMICS OF GAUSS-BONNET-DILATON … PHYSICAL REVIEW D 92, 064023 (2015)

064023-5



f1ðrÞ ¼ −
C1

rnþz−1 þ
C2

rðnþz−1þγÞ=2 ;

g1ðrÞ ¼ −
ðl2 − 2~αÞðzþ n − 1Þðzþ n − 2ÞC1

Grnþz−1 −
T KþC2

rðnþz−1þγÞ=2 ;

Φ1ðrÞ ¼ −
ðn − 1Þðz − 1Þ3=2 ~α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 2~α

p
C1

2lGrnþz−1 þ ðn − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 2~α

p
T KþC2

4l
ffiffiffiffiffiffiffiffiffiffi
z − 1

p
rðnþz−1þγÞ=2 ; ð34Þ

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ n − 1Þð9zþ 9n − 17Þ þ 16~αðz − 1Þ2

l2 − 2~α

s
;

G ¼ ðl2 − 2~αÞðzþ n − 1Þðzþ n − 2Þ − 4~αðz − 1Þðn − 1Þ;
K� ¼ ðl2 − 2~αÞðzþ n − 1Þðzþ n − 2Þ − ~αðz − 1Þðn − zþ 1� γÞ;

T −1 ¼ ðl2 − 2~αÞðzþ n − 1Þðzþ n − 2Þ − 2~αðz − 1Þn −
8~α2ðz − 1Þ2
ðl2 − 2~αÞ ;

W ¼ ðl2 − 2~αÞðnþ z − 2Þγ − ~αðz − 1Þð3γ þ 9nþ 7z − 15Þ:
Substituting (34) in (17), one could find the large-r behavior of kðrÞ as

kðrÞ ¼ klif − ε
T ðW þK−ÞC2

4b2ðn−1Þðz − 1Þrðγ−n−zþ1Þ=2 : ð35Þ

It is easy to check that ðγ − n − zþ 1Þ=2, which is the power of r in the denominator of (35), is always positive and,
therefore, kðrÞ → klif as r → ∞.
Now we want to calculate the conserved quantity C given by (30). The constant C can be obtained as

C ¼ ðzþ n − 1Þðl2 − 2~αÞ½ðzþ n − 2Þðzþ n − 1Þðl2 − 2~αÞ þ 2~αðz − 1Þ2�C1

Glzþ3
: ð36Þ

For α ¼ 0, C reduces to

C ¼ ðzþ n − 1ÞC1

lzþ1
: ð37Þ

It is worthwhile mentioning that although there are two
constants C1 and C2 in the solutions (34), at infinity
only the constant C1, which is the geometrical mass of
the black hole as we will show in Sec. VI, appears in the
conserved quantities along the radial coordinate. Thus, one
can conclude that our solution respects the no-hair theorem.

V. FINITE ACTION FOR GB-LIFSHITZ
SOLUTIONS

The action (4) is neither well defined nor finite. In order
to get a finite and well-defined action, one may add a few
covariant boundary terms to the action. The boundary term
Ibdy is the sum of the boundary terms which are needed to
have a well-defined variational principle and the counter-
terms which guarantee the finiteness of the action. Ibdy, for

the case of the zero curvature boundary which is our
interest, can be written as

Ibdy ¼
1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−h

p �
Θþ 2αJ −

ðn − 1Þðl2 − 2~αÞ
l3

þ 1

2
fðe−4λΦ=ðn−1ÞUγUγÞ

�
þ Ideriv; ð38Þ

where the boundary ∂M is the hypersurface at some
constant r and, therefore, the Greek indices take the values
0 and i ¼ 2…n. In Eq. (38), h is the determinant of the
induced metric hαβ, Θ is the trace of the extrinsic curvature
Θαβ, and J is the trace of [19]

Jαβ ¼
1

3
ð2ΘΘαγΘ

γ
β þ ΘγδΘγδΘαβ − 2ΘαγΘγδΘδβ − Θ2ΘαβÞ:

ð39Þ

For our case with the flat boundary, Ideriv—which is a
collection of terms involving derivatives of the boundary
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fields—is zero. This is due to the fact that both the
curvature tensor constructed from the boundary metric
and covariant derivatives of Uα will not contribute to
the on-shell value of the action for the pure Lifshitz
solution or its first variation around the Lifshitz back-
ground. The boundary term for the matter part of the
action in the absence of the dilaton has been introduced
in Ref. [16]. Here, we generalize it to the case of the
Lifshitz solutions in the presence of the dilaton field.
For this case, we consider the matter part of the
boundary term to be a function of e−4λΦ=ðn−1ÞUγUγ

because it is constant on the boundary. One could find
that fðe−4λΦ=ðn−1ÞUγUγÞ ¼ að−e−4λ=ðn−1ÞΦUγUγÞ1=2 where
a ¼ 4q=ðlbn−1Þ [Note that q can be substituted by (24)].
The variation of the total action Itot ¼ Ibulk þ Ibdy about
the solutions is

δItot ¼
Z

dnxðSαβδhαβ þ SLαδUαÞ; ð40Þ

where

Sαβ ¼
ffiffiffiffiffiffi
−h

p

16π
fΠαβ −

a
2
e−2λΦ=ðn−1Þð−UγUγÞ−1=2

× ðUαUβ −UγUγhαβÞg; ð41Þ

SLβ ¼ −
ffiffiffiffiffiffi
−h

p

16π
f4e−4λΦ=ðn−1ÞnαFαβ

þ ae−2λΦ=ðn−1Þð−UγUγÞ−1=2Uβg; ð42Þ

with

Παβ ¼ Θαβ − Θhαβ þ 2αð3Jαβ − JhαβÞ

þ ðn − 1Þðl2 − 2~αÞ
l3

hαβ: ð43Þ

In the Lifshitz background due to cancellation between
different terms, Sαβ ¼ 0 and SLβ ¼ 0, and therefore the
total action satisfies δItot ¼ 0 for arbitrary variations
around the Lifshitz solution. Thus, we have a finite on-
shell action which defines a well-defined variational
principle for our background spacetime.
After constructing a well-defined finite action, one may

compute the finite stress tensor. This job has been done for
asymptotically AdS spacetimes which are dual to relativ-
istic field theory [20,21]. For asymptotically Lifshitz
spacetimes, the dual field theory is nonrelativistic and,
therefore, its stress tensor will not be covariant. However,
one can define a stress tensor complex [16], consisting of
the energy density E, energy flux Ei, momentum densityPi,
and spatial stress tensor Pij,

E ¼ 2Stt − StLUt; Ei ¼ 2Sit − SiLUt; ð44Þ

Pi ¼ −2Sti þ StLUi; Pj
i ¼ −2Sji þ SjLUi; ð45Þ

which satisfies the following conservation equations:

∂tE þ ∂iEi ¼ 0; ∂tPj þ ∂iPi
j ¼ 0: ð46Þ

In Eqs. (44) and (45), the Latin indices (i; j) go from 2 to n
and Sαβ and SiL are given in Eqs. (41) and (42).

VI. THERMODYNAMICS OF LIFSHITZ
BLACK BRANES

Now, we are ready to consider the thermodynamics
of Lifshitz black brane solutions. The entropy in Gauss-
Bonnet gravity can be calculated by using [22]

S ¼ 1

4

Z
dn−1x

ffiffiffi
~g

p
ð1þ 2α ~RÞ; ð47Þ

where ~g is the determinant of ~gij which is the induced
metric of the (n − 1)-dimensional spacelike hypersurface
of the Killing horizon. Since we are dealing with a
flat horizon, ~R ¼ 0 and, therefore, the entropy per unit
volume is

S ¼ rn−10

4
: ð48Þ

The temperature of the event horizon is given by

T ¼ 1

2π

�
−
1

2
∇bχa∇bχa

�
1=2

r¼r0

; ð49Þ

where χ ¼ ∂t is the Killing vector. Using (49) and the
expansions of the metric functions near the event horizon
given in Sec. IV, one can obtain the temperature as

T ¼ rzþ1
0

4πlzþ1
ðf0g0Þ1=2r¼r0 ¼

rzþ1
0

4πlzþ1

ffiffiffiffiffiffiffiffiffi
f1g1

p
: ð50Þ

The conserved quantities of our solution can be calcu-
lated through the use of the counterterm method of the
previous section. The energy density of the black brane can
be calculated by using Eq. (44) as

E ¼ ðn − 1Þ ffiffiffi
f

p ð1 − ffiffiffi
g

p Þrzþn−1

8πlzþ1

þ ðn − 1Þ ~α ffiffiffi
f

p ðg3=2 − 1Þrzþn−1

12πlzþ3

þ q2kðe−2λΦ=ðn−1ÞðrbÞn−1 − 1Þ
4πlzþ1

: ð51Þ

Inserting the large r expansions given in the previous
section for the metric function in the above equation, the
energy density may be calculated as
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E ¼ ðn − 1Þðl2 − 2~αÞ½ðzþ n − 2Þðzþ n − 1Þðl2 − 2~αÞ þ 2~αðz − 1Þ2�C1

16πGlzþ3
: ð52Þ

For α ¼ 0, E reduces to

E ¼ ðn − 1ÞC1

16πlzþ1
; ð53Þ

which is the energy of the spacetime obtained in Ref. [14]
as E ¼ ðn − 1Þm=16πlzþ1, where m was the geometrical
mass. This shows that in our solution, the constant C1 is the
geometrical mass too. It is remarkable to note that by using
(45) one can calculate the angular momentum which is zero
for our solution as one expected.
Now, using Eqs. (48)–(52), the constant C can be written

in terms of the thermodynamics quantities T, S, and E as

C ¼ 16πTS ¼ 16πðnþ z − 1ÞE
n − 1

:

Thus, one obtains

E ¼
�

n − 1

nþ z − 1

�
TS: ð54Þ

Finally, we would like to perform thermal stability
analysis in the case of asymptotically Lifshitz solution
in dilaton Gauss-Bonnet gravity. Since our solution is
uncharged, the positivity of the heat capacity C ¼
T=ðdT=dSÞ is sufficient to ensure the local stability. In
order to calculate the heat capacity, we first use the first law
of thermodynamics dE ¼ TdS with the relation (54) for the
energy density to obtain

dT
dS

¼ z
n − 1

T
S
: ð55Þ

Thus, the heat capacity can be obtained as

C ¼ ðn − 1Þ
z

S ¼ ðn − 1Þrn−10

4z
;

which is positive and therefore our black brane solution is
thermally stable. Also, it is worth noting that the curve of
logT versus logS is a line with slope z=ðn − 1Þ,

logT ¼ z
n − 1

logS þ Γ;

where Γ is an integration constant.

VII. CONCLUSION

In this paper, we considered asymptotic Lifshitz black
branes of the effective supergravity action coming from
superstrings, which contains a GB term and a dilaton field,

in the presence of a massless gauge field. Although it is
known that the GB term is coupled to the dilaton, we
considered them decoupled for simplicity. By variation of
the action, we found four independent equations of motion.
Then, we fixed the parameters of our model such that the
asymptotic Lifshitz behavior is supported. Next, we
obtained two independent constants along the radial coor-
dinate by combining the equations of motion. We com-
bined these two constants in order to get a constant C which
was proportional to the energy density. In addition, we
calculated the value of this constant quantity at the horizon
in terms of the thermodynamic quantities, temperature, and
entropy. Also, using the large-r behaviors of the metric
functions, we found the value of this constant at large r.
Although there are two independent constants in our theory,
we found out that only one will appear at infinity. This
shows that our solution respects the no-hair theorem. In
order to compute the finite stress energy tensor, we
constructed the well-defined finite action. This action is
the generalization of the action presented in the case where
no dilaton field exists [16]. By calculating the value of the
conserved quantity (energy density) in terms of the constant
C, we obtained the relation between energy density,
temperature, and entropy. This relation is the generalization
of the well-known Smarr formula for AdS black holes.
Finally, we performed the thermal stability analysis on our
solution and showed that our black brane solution is stable
under thermal perturbations.
In this paper we studied the thermodynamics of

uncharged dilaton Lifshitz black branes in the context of
GB gravity where the GB term is decoupled from the
dilaton. This work can be extended in various ways. First,
one can consider the case where the GB term is coupled to
the dilaton field. Second, one may seek the thermodynam-
ics of the linearly and nonlinearly charged Lifshitz black
branes of this theory. Another interesting case is the
consideration for black holes that their horizons’ geom-
etries are not flat. A study of these solutions can also be
extended to the case of the effective supergravity action
coming from superstrings, which contains higher-curvature
terms. We hope to address some of the above-mentioned
suggestions in future works.
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