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Lorentzian fuzzy spheres

A. Chaney,* Lei Lu,T and A. Stern”

Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487, USA
(Received 16 June 2015; published 16 September 2015)

We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix
models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch
singularities appear only after taking the commutative limit. The commutative limit of these solutions
corresponds to a sphere embedded in Minkowski space. This “sphere” has several novel features. The
induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a
fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed
latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and
are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become

tachyonic for a range of the parameters of the theory.
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I. INTRODUCTION

It is well known that fuzzy spheres and fuzzy coset
spaces [1-8] are solutions to matrix models. More
specifically, they are solutions to the bosonic sector of
Euclidean Ishibashi, Kawai, Kitazawa and Tsuchiya
(IKKT) matrix models [9]. The solutions have been
applied in particle physics to make extra dimensions
noncommutative [10]. Here we show that fuzzy spheres
can also be solutions to IKKT-type matrix models with a
Minkowski background metric tensor. This means that in
addition to making extra dimensions noncommutative,
fuzzy spheres, and more generally fuzzy coset spaces, can
be used to make space-time noncommutative. Moreover,
they can serve as toy models for noncommutative cos-
mological space-times.

Various aspects of Lorentzian IKKT matrix models
have been discussed in the literature, including classical
solutions and their implications for cosmology [11-15].
The solutions were generally written in terms of infinite-
dimensional matrices, and they may or may not be
associated with finite-dimensional Lie algebras. Unlike
previous solutions to Lorentzian matrix models, fuzzy
spheres are expressed in terms of N x N matrices, where
N is finite. Upon taking N — oo, corresponding to the
commutative limit, they lead to closed two-dimensional
space-time cosmologies. Big bang/crunch singularities then
appear in this limit, while the finite-dimensional matrix
description is singularity free.

In Sec. II we write down a fuzzy sphere solution to a
Lorentzian IKKT-type model. The model is written down
specifically in three space-time dimensions and cubic and
quadratic terms are added to the bosonic sector of the
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action of [9]. We show that the solution yields a closed
(two-dimensional) universe in the commutative limit.
While the commutative limit of the solution is topologi-
cally a two-sphere, there are a number of novel features,
arising from the fact that it is embedded in a three-
dimensional Minkowski space. The induced metric does
not agree with the standard metric on the sphere, and,
moreover, it does not have a fixed signature. The curvature
computed from the induced metric is not constant, and it is
negative. It is singular at two fixed latitudes (which are
not located at the poles) and timelike geodesics originate
and terminate at these latitudes. Thus in this toy model,
the big bang/crunch singularities occur at nonzero spa-
tial size.

We examine perturbations around the fuzzy sphere
solution in Sec. III. In the commutative limit, the pertur-
bations are described by a scalar field coupled to a gauge
field. The latter can be eliminated, yielding a scalar field
which can propagate in the Lorentzian region of the
two-dimensional surface. Depending on the choice of
parameters, the scalar field can be massive, massless or
tachyonic.

Concluding remarks are given in Sec. IV.

II. FUZZY SPHERE SOLUTION
TO A LORENTZIAN IKKT-TYPE
MATRIX MODEL

The setting here is the bosonic sector of a Lorentzian
IKKT-type matrix model in three space-time dimensions.
The dynamical degrees of freedom for the matrix model
are contained in three infinite-dimensional Hermitian
matrices X¥, u = 0, 1,2, with u = 0 indicating a timelike
direction. In addition to the standard Yang-Mills term, we
include a cubic term and a quadratic term in the action
(both of which are necessary for obtaining fuzzy sphere
solutions),
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where g, a and S are real coefficients. Our conventions are
€912 = 1, and we raise and lower indices u, v, ... with the
flat metric [n,,] = diag(—1, 1, 1). The resulting equations
of motion are

X, X, XY] + i, [X. X1 = =X, (2)
The dynamics is invariant under three-dimensional
Lorentz transformations, X* — L¥ X, where L is a
3 x 3 Lorentz matrix, and unitary “gauge” transforma-
tions, X* — UX*U", where U is an infinite-dimensional
unitary matrix. The equations of motion also have discrete
symmetries, namely proper reflections. An example is

(X0, X', X2) - (=X, X', -Xx?). (3)

Translation invariance in the three-dimensional
Minkowski space is broken when g # 0.

When f#0, there exist finite-dimensional matrix
solutions to the equations of motion (2), which are
associated with the su(2) algebra in an N-dimensional
representation. Say the latter is spanned by N x N
Hermitian matrices J;,i = 1,2,3, satisfying [J,,Jj]
iaeiijk.] Let us set

w
x0=22y, xt=21y
a

where w; are real. Upon substituting this expression into the
equations of motion one gets

(W} + w3 + B)ws + 2aww, =0
(w3 = wi + B)w; — 2awywy =0

(W} = w} + B)wy — 2aw;ws =0, (5)

which has nontrivial solutions. Lorentz symmetry is in
general broken by the solutions, unlike the case with de
Sitter and anti-de Sitter solutions [14,15]. The su(2)
Casimir operator for any of the solutions can be written
as (XO) + 11 (xX')? +Wi§(X2)2, which has the value

(N2 —1) in the N-dimensional representation, thereby
deﬁmng a fuzzy sphere [or, actually, a fuzzy ellipsoid, since
rotational invariance in the (X°, X!, X?) space does not in
general hold].

'"The Levi-Civita symbol here is associated with Euclidean
space, unlike the ones appearing in (1) and (2), which are
associated with Minkowski space.
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In the special case where w} = w3 = w3, the solution is

invariant under the full three-dimensional rotation group
(and not the Lorentz group). Let us more generally restrict
to the case of rotational invariance in the (X', X?) plane,
which means w? = w3. Two simple solutions exist in this

case,

X0 =2J, Xlzv_ﬁjl XZ:—”_ﬂJZ, (6)
a a
and
X0=-2J; X'= v_ﬁJl X2 = V_ﬂjz (7)
(04 a

Nontrivial solutions require the presence of both the cubic
and quadratic terms in (1), @ # 0 and § < 0. Solutions (6)
and (7) are equivalent due to the discrete symmetry (3). For
the sake of definiteness we choose to work with the former,
(6). The su(2) Casimir operator for this solution can be
written as

- Lo ooy ep, ®)

having the value —Z(N?>-1) in the N-dimensional
representation. The “time” matrix X° then has discrete
eigenvalues 2am, where m = =ML =N M= For any
m defining a time slice we can also define a spatial size.
Call A the “space” matrix, where A? =X, X_ and
X, = X' +iX2. We can identify it with —5(J°~J3~J3)
for the solution (6). A% then commutes with X° and has
~p(=L — m? — m). Thus the time and the
spatial size are discrete. Examples of spectra for (X°, A%)
for some N-dimensional representations are

eigenvalues

(—a,=p). (a.0)

(—2a.-2p). (a.—f). (22.0)

(=3a,=3p). (—a. —4p), (a. =3p), (3a.0)

(—4a, -4p). (-2a. —6p). (a. —6p),

(2a, —4p), (4a,0). 9)

2
3
4
5

zZ =z =z =z
I

Say a > 0. Then, for large N, the spatial size operator A has
eigenvalue \/—pN for the lowest time eigenvalue ~ — aN,
1.e., the initial state. It then increases to a maximum value of
\/=PN/2 as the time goes to zero, and then decreases to
zero upon approaching the highest time eigenvalue ~aN,
i.e., the final state. This solution can thus be regarded as a
discrete analogue of a closed cosmological space-time. The
eigenvalues of X° versus those of A are plotted for N = 100
in Fig. 1.
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FIG. 1 (color online). Fuzzy closed universe solution. Plot of
the eigenvalues x! of the time matrix X° versus the eigenvalues
a, of the space matrix A for N =100, a =1 and f = —1.

Just as with the fuzzy sphere in a Euclidean background,
the commutative limit of the matrix solution here is
obtained by taking N — oco. Here we also need a, 8 — 0,
with aN and \/—pN finite in the limit. The commutative
limit of the solution is then characterized by two real
parameters, which we denote by a, (not to be confused
with an eigenvalue of A) and 2,

ﬂ —a @ -7 (10)
2 2 ‘

One typically defines the commutative limit in an analo-
gous fashion to the classical limit of a quantum theory,
where a plays an analogous role to 7. In this limit one
replaces the matrices X# by commuting space-time coor-
dinates which we denote by x*, where x%and x',i = 1,2,
denote the time and space coordinates, respectively. The
constraint on the su(2) Casimir operator (8) means that in
the commutative limit the solution satisfies

a3(x°)? + (x1)? + (x2)? = r2. (11)

While real a, means that the solution is topologically a
two-sphere, there are a number of novel features, which we
show below, due to the fact that this “sphere” is embedded
in Minkowski space-time.

The commutative limit also requires replacing the
commutator of functions of X#, evaluated for the solution
(6), by ia times the Poisson bracket of the same functions
of the coordinates x*. The commutators of X* lead to the
following Poisson brackets of the coordinates:

{20, x!} = =242 {x%,x0} = —2x!

{x!,x?} = —2a3x°. (12)
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We can express x* in terms of angular momenta
Ji-i=1,2,3, which satisfies the su(2) Poisson bracket

algebra {j;. j;} = €ijujss using

x° J3
=21 au |, (13)
x2 —aopjr

and from (11), j1+j5+j3= (ﬁ)2
we set r = 2a, so that j; spans a sphere of unit radius.
We can introduce standard spherical coordinates (6, ),

0<60<n0<¢ <2, and write

For simplicity,

Jj1 =sinfcos¢ J» = sin@sin¢ J3 =cosé.

(14)

The su(2) Poisson bracket algebra for j; is recovered upon
defining the Poisson brackets on the sphere to be

{F, G}(Q, Q’)) = CSC 6’(89F84,G - 8(/)F89G), (15)

for any two functions F and G on the sphere.

The induced metric g,, = 0, x*0yx,, a,b,...=0,¢,
computed from (13) and (14) does not agree with the
standard metric on the sphere, and, moreover, it does not
have a fixed signature. Moreover, the curvature computed
from the induced metric is not constant, and it is negative.
The invariant interval constructed from the induced
metric is

—d7* = 4(ajcos’0 — sin0)d6* + 4alsin®0dg*.  (16)

ggp Vanishes at two latitudes = 6, on the sphere defined
by tanf. = *+a,. Say that § =6, is contained in the
northern hemisphere, 0 < 6, <7, while § = 6_ is con-
tained in the southern hemisphere, 7 < 0_ < 7. The sig-
nature on the sphere is Euclidean for 0 <6 < 6, and
0_ < 6 < &, while it is Lorentzian for 6, <6 < 6_. We
can regard O as a timelike variable for the latter, with
2a sin @ being the spatial radius at any time slice. 0 = 6
correspond to singularities in the curvature, as opposed to
coordinate singularities. The Ricci scalar computed from

the induced metric is

1
R=- , 17
2(a3 cos 0% — sin?0)? (17)

and thus it is singular at the latitudes & = 0. Equation (17)
shows that the curvature in the nonsingular regions is
everywhere negative. The singularities of the Ricci tensor
are analogous to big bang/crunch singularities, with the
distinction that they occur at a nonzero spatial radius
2(1%

in the Lorentzian region which originate and terminate at

200 sin gﬂ: =

Timelike longitudinal geodesics exist
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the singular latitudes @ = 6. This is because their tangent
vectors (42, 49%) — ( 1 0) are well defined in the

dr dr \/sin?0—a? cos 67
Lorentzian region, 8, < € < 8_, while they are imaginary
in the Euclidean regions, 0 <8 <6, and 6_ <6 < 7.
The total elapsed proper time along these geodesics is

finite and given by the elliptic integral

_t -1 .
2 [FE0 % gy /sin*0 — aj cos 0.
0

tan” " a

III. EMERGENT FIELD DYNAMICS

Here we perturb around the matrix solution (6). Similar
to [8], we find it useful to define noncommutative field
strengths F,, on the fuzzy sphere. Here we take

1

FOl = — X9 X1 + 2iXx?
a
1

F2 = —[X% X?] - 2ix!
a

1 ip
F'? :a[xl,xz] —ﬂxo, (18)

which transform covariantly under unitary gauge trans-
formations, F,, - UF,,U _and vanish when evaluated on
the fuzzy sphere solutions (6). The matrix action (1) can
then be reexpressed in terms of the noncommutative field
strengths

2
PS(X) = Tr{—%

.,(2 P B 2a°
22 _ P \pi2yo0 P_=%
+ ia <3 2a2>F X"+ (2 3 )

X <(X‘)2 + (XZ)Z) +ﬂ<% —%) (X0)2}.
(19)

4
F, F — 3 i?(FO'X? + F2x1)

Now we perturb around the matrix solution (6) using

2
X0 = 2(13 +-2 A°>

V=B
Xl = g‘ll + (AfA1
X2 = —@Jz — aA?, (20)

where the perturbations are functions on the fuzzy sphere,
A" = A*(Jy, J,, J3). If we write infinitesimal unitary gauge

i

transformations using U =1 — \/71\, where A is a

Hermitian matrix with infinitesimal elements, then the
infinitesimal variations of A* read

SAH = —i<; A, J#] + \/L_ A, A”]), (21)
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where we identify (J,J',J?) (J3,J1,J5).
Substituting (20) into (19) gives

with

o 1 4. o140 20 41
S(X) = 5 Try = F P — S ia(FO'A? 4 FAT)

gZ 4 iz2

2ia? (2 Y/
== |(z_ F12A0
+ V=P (3 2a2>

) )

-2 (L= 3) 0P+ ) (2

As stated previously, the commutative limit is obtained
by taking N — oo, along with a, f — 0 and both aN and
\/=PN are finite in the limit. Upon using (10) and (13), the
commutative limit of the field strengths (18) is

FOU = 2ia({j;,A'} = {j;, A%} — A?)
F? = 22ia({j3, A%} = {j», A%} + A")
F'2 = 2iaay({j. A%} — {j».A'} =A%),  (23)

where A* are now functions on the commutative sphere.
The trace on functions of the fuzzy sphere is replaced by the
corresponding integration on the sphere in the commutative
limit. The relevant integration measure du(0, ¢») should be
such that the standard trace identities survive in the limit;
i.e., for any three functions G,H and K on the sphere
we want [ du(0,¢){G,H}K = [du(0,$)G{H,K}. From
(15) we need to choose the standard integration measure
on the sphere du(6,¢p) = sinOdOd¢ (rather than, say,
\/—8d0d¢p, where g is the determinant of the induced
metric). Then the action (22) reduces to

2a% [ . .
S0 = S(X o) =~ [ sin0a0Gp~({j. A"

— {1, A%)? = ({j3. A%} = {2, A%})?
+aj({j1.A*} = {jr,A'})?

+2(ag + 1){js A" }A?

+(A%)? —ag((A')> + (A7)}, (24)

where g¢. is the commutative limit of the constant g.
Following [8] we write the perturbations A” in terms of
commutative gauge potentials (A, A,) and a scalar field y
on the sphere using
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=A, + jsw
Al = —sing Ay — cotfcos pA, + jiy
A? = cos p Ay — cot@sinp Ay + joy. (25)

Then from the fundamental Poisson bracket (15), gauge variations (6.4, 8.A,) = (9pA, 0,\) agree with the commutative
limit of (21), where A is now an infinitesimal function on the commutative sphere. Substituting (25) in (24) gives

2 4
— S(Xsoruion) = —- / sin 0d0dep{ (ajeot’d — 1)F3, — csc20(d )
g

+ (a3sin?0 — cos?0) (Ogy)? —
+2cscO((ad +

5(X)

(3 —2(a + 1)sin’0)y?

1)sin?6 — 2af + 1) Fpyy — 2cos 0(af + 1) F pyOgy }, (26)

where Fgy = 0y A, — 04 Ag is the commutative U(1) field strength on the surface. We remark that the gauge-field and
scalar-field kinetic energies have opposite signs, a feature that was present in similar two-dimensional systems [15].
However, gauge fields are nondynamical in two dimensions. We can solve for Fy, from the field equations, yielding

O(ag + 1)0gw — ((a} + 1)sin®0 — 2a3 + 1
0 = cos B(ag + 1)Ogy ((g’o "; )sin aj + 1) esc Oy + const, (27)
ageot™d — 1
and substitute back into the action. Upon setting the constant equal to zero, we get
2a*a3 (Ogw)? csc?6
S(X) = S(X|somui 0dod - Opw)? — dm> .y
( ) ( |solullon) - g% /Sln ¢{(a(2) + 1)sin29—a(2) a% ( ¢l//) Mg
16a*a? 1 1
=25 / sin9d¢9d¢{—§6"y/8au/—Emgffl/lz}, (28)

where the index a = (0, ¢) is raised and lowered using the induced metric given in (16). The effective mass squared of the

scalar field is 8 dependent,

2 (a%—l)( a(z)

1)sin?0 — 3a3)

(
et = 4“0((“(2)

As stated before, the signature of the induced metric is

2
. . a .
Euclidean when sinZ2@ < —° and Lorentzian when

2+19

theory for the former and a Lorentzian field theory for
the latter. There are three different possibilities for the
Lorentzian field theory:

(i) The action describes a tachyon when a% > 1. This is
because the factor (af + 1)sin®0 —3aj in (29) is
negative in this case.

(i) The scalar field is massless when a(z) =1.

(iii) The effective mass squared for the scalar field is
positive when

2 2 ) 361(2)
ay<1 and — <sin“f < ———. (30)
ag+1 ag+1

It follows that the action (28) describes a massive
scalar field throughout the entire Lorentzian region

+ 1)sin?0 — a3)?

(29)

when 1 < a3 < 1. On the other hand, when aj <}

the scalar field becomes tachyonic in the region
3110
ag+1’

where sin?6 >

IV. CONCLUDING REMARKS

We found fuzzy sphere solutions to a Lorentzian IKKT-
type model which provide toy models of a noncommutative
two-dimensional closed universe, where time and spatial
size have discrete values. Singularities in the Ricci tensor
appear in the large N (i.e., commutative) limit. They are
analogous to big bang/crunch singularities, with the novel
feature that they occur at nonzero spatial size. Perturbations
around the fuzzy sphere solution are described by a scalar
field in the commutative limit which can propagate in the
Lorentzian region of the manifold. (Additional field
degrees of freedom would appear if one started with a
ten-dimensional matrix model.) The scalar field can be
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massive, massless or tachyonic, the choice depending on
the parameter a} (and also on the range of 6 when a} < ).
For } < af < 1 the scalar field is always massive, ensuring
the stability of the commutative field theory in this case.
Corrections to the commutative limit are obtained by
expressing the matrix product in the action (22) in terms
of the star product on the sphere [4—7] and keeping the next
order terms in the 1/N expansion.

For a more realistic model of a noncommutative cos-
mological space-time, one can look for fuzzy coset space
solutions to Lorentzian IKKT-type matrix models associ-
ated with dimension d > 2 [7]. One possible example
worth consideration is the fuzzy analogue of the four-
dimensional coset SU(3)/U(2) or CP?. For coset spaces
with d > 4 one may be able to make both four-dimensional
space-time and extra dimensions noncommutative. Just as
with the example of the fuzzy sphere, the commutative limit

PHYSICAL REVIEW D 92, 064021 (2015)

may lead to a manifold divided up into regions with
different signatures of the metric. Perturbations about such
solutions are expected to be described by a coupled gauge-
scalar theory in the commutative limit. A common feature
of the emergent field theories in previous examples [15] is
that scalar-field and gauge-field kinetic energies can appear
with opposite signs, which is also seen in (26). This sign
discrepancy was harmless for d = 2, since the gauge field
could be eliminated. On the other hand, it is of concern for
d > 2, so it would be interesting to see if this discrepancy
can be cured upon taking the commutative limit of higher-
dimensional fuzzy coset space solutions.
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