
Lorentzian fuzzy spheres

A. Chaney,* Lei Lu,† and A. Stern‡

Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487, USA
(Received 16 June 2015; published 16 September 2015)

We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix
models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch
singularities appear only after taking the commutative limit. The commutative limit of these solutions
corresponds to a sphere embedded in Minkowski space. This “sphere” has several novel features. The
induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a
fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed
latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and
are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become
tachyonic for a range of the parameters of the theory.
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I. INTRODUCTION

It is well known that fuzzy spheres and fuzzy coset
spaces [1–8] are solutions to matrix models. More
specifically, they are solutions to the bosonic sector of
Euclidean Ishibashi, Kawai, Kitazawa and Tsuchiya
(IKKT) matrix models [9]. The solutions have been
applied in particle physics to make extra dimensions
noncommutative [10]. Here we show that fuzzy spheres
can also be solutions to IKKT-type matrix models with a
Minkowski background metric tensor. This means that in
addition to making extra dimensions noncommutative,
fuzzy spheres, and more generally fuzzy coset spaces, can
be used to make space-time noncommutative. Moreover,
they can serve as toy models for noncommutative cos-
mological space-times.
Various aspects of Lorentzian IKKT matrix models

have been discussed in the literature, including classical
solutions and their implications for cosmology [11–15].
The solutions were generally written in terms of infinite-
dimensional matrices, and they may or may not be
associated with finite-dimensional Lie algebras. Unlike
previous solutions to Lorentzian matrix models, fuzzy
spheres are expressed in terms of N × N matrices, where
N is finite. Upon taking N → ∞, corresponding to the
commutative limit, they lead to closed two-dimensional
space-time cosmologies. Big bang/crunch singularities then
appear in this limit, while the finite-dimensional matrix
description is singularity free.
In Sec. II we write down a fuzzy sphere solution to a

Lorentzian IKKT-type model. The model is written down
specifically in three space-time dimensions and cubic and
quadratic terms are added to the bosonic sector of the

action of [9]. We show that the solution yields a closed
(two-dimensional) universe in the commutative limit.
While the commutative limit of the solution is topologi-
cally a two-sphere, there are a number of novel features,
arising from the fact that it is embedded in a three-
dimensional Minkowski space. The induced metric does
not agree with the standard metric on the sphere, and,
moreover, it does not have a fixed signature. The curvature
computed from the induced metric is not constant, and it is
negative. It is singular at two fixed latitudes (which are
not located at the poles) and timelike geodesics originate
and terminate at these latitudes. Thus in this toy model,
the big bang/crunch singularities occur at nonzero spa-
tial size.
We examine perturbations around the fuzzy sphere

solution in Sec. III. In the commutative limit, the pertur-
bations are described by a scalar field coupled to a gauge
field. The latter can be eliminated, yielding a scalar field
which can propagate in the Lorentzian region of the
two-dimensional surface. Depending on the choice of
parameters, the scalar field can be massive, massless or
tachyonic.
Concluding remarks are given in Sec. IV.

II. FUZZY SPHERE SOLUTION
TO A LORENTZIAN IKKT-TYPE

MATRIX MODEL

The setting here is the bosonic sector of a Lorentzian
IKKT-type matrix model in three space-time dimensions.
The dynamical degrees of freedom for the matrix model
are contained in three infinite-dimensional Hermitian
matrices Xμ, μ ¼ 0; 1; 2, with μ ¼ 0 indicating a timelike
direction. In addition to the standard Yang-Mills term, we
include a cubic term and a quadratic term in the action
(both of which are necessary for obtaining fuzzy sphere
solutions),
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SðXÞ ¼ 1

g2
Tr

�
−
1

4
½Xμ; Xν�½Xμ; Xν�

þ 2

3
iαϵμνλXμXνXλ þ β

2
XμXμ

�
; ð1Þ

where g, α and β are real coefficients. Our conventions are
ϵ012 ¼ 1, and we raise and lower indices μ; ν;… with the
flat metric ½ημν� ¼ diagð−1; 1; 1Þ. The resulting equations
of motion are

½½Xμ; Xν�; Xν� þ iαϵμνλ½Xν; Xλ� ¼ −βXμ: ð2Þ

The dynamics is invariant under three-dimensional
Lorentz transformations, Xμ → Lμ

νXν, where L is a
3 × 3 Lorentz matrix, and unitary “gauge” transforma-
tions, Xμ → UXμU†, where U is an infinite-dimensional
unitary matrix. The equations of motion also have discrete
symmetries, namely proper reflections. An example is

ðX0; X1; X2Þ → ð−X0; X1;−X2Þ: ð3Þ

Translation invariance in the three-dimensional
Minkowski space is broken when β ≠ 0.
When β ≠ 0, there exist finite-dimensional matrix

solutions to the equations of motion (2), which are
associated with the suð2Þ algebra in an N-dimensional
representation. Say the latter is spanned by N × N
Hermitian matrices Ji; i ¼ 1; 2; 3, satisfying ½Ji; Jj� ¼
iαϵijkJk.

1 Let us set

X0 ¼ w3

α
J3 X1 ¼ w1

α
J1 X2 ¼ w2

α
J2; ð4Þ

where wi are real. Upon substituting this expression into the
equations of motion one gets

ðw2
1 þ w2

2 þ βÞw3 þ 2αw1w2 ¼ 0

ðw2
2 − w2

3 þ βÞw1 − 2αw2w3 ¼ 0

ðw2
1 − w2

3 þ βÞw2 − 2αw1w3 ¼ 0; ð5Þ

which has nontrivial solutions. Lorentz symmetry is in
general broken by the solutions, unlike the case with de
Sitter and anti–de Sitter solutions [14,15]. The suð2Þ
Casimir operator for any of the solutions can be written
as 1

w2
3

ðX0Þ2 þ 1
w2
1

ðX1Þ2 þ 1
w2
2

ðX2Þ2, which has the value
1
4
ðN2 − 1Þ in the N-dimensional representation, thereby

defining a fuzzy sphere [or, actually, a fuzzy ellipsoid, since
rotational invariance in the ðX0; X1; X2Þ space does not in
general hold].

In the special case where w2
1 ¼ w2

2 ¼ w2
3, the solution is

invariant under the full three-dimensional rotation group
(and not the Lorentz group). Let us more generally restrict
to the case of rotational invariance in the ðX1; X2Þ plane,
which means w2

1 ¼ w2
2. Two simple solutions exist in this

case,

X0 ¼ 2J3 X1 ¼
ffiffiffiffiffiffi
−β

p
α

J1 X2 ¼ −
ffiffiffiffiffiffi
−β

p
α

J2; ð6Þ

and

X0 ¼ −2J3 X1 ¼
ffiffiffiffiffiffi
−β

p
α

J1 X2 ¼
ffiffiffiffiffiffi
−β

p
α

J2: ð7Þ

Nontrivial solutions require the presence of both the cubic
and quadratic terms in (1), α ≠ 0 and β < 0. Solutions (6)
and (7) are equivalent due to the discrete symmetry (3). For
the sake of definiteness we choose to work with the former,
(6). The suð2Þ Casimir operator for this solution can be
written as

−
β

4α2
ðX0Þ2 þ ðX1Þ2 þ ðX2Þ2; ð8Þ

having the value − β
4
ðN2 − 1Þ in the N-dimensional

representation. The “time” matrix X0 then has discrete
eigenvalues 2αm, where m ¼ −Nþ1

2
; −Nþ3

2
;…; N−1

2
. For any

m defining a time slice we can also define a spatial size.
Call A the “space” matrix, where A2 ¼ XþX− and

X� ¼ X1 � iX2. We can identify it with − β
α2
ð~J2−J23−J3Þ

for the solution (6). A2 then commutes with X0 and has
eigenvalues −βðN2−1

4
−m2 −mÞ. Thus the time and the

spatial size are discrete. Examples of spectra for ðX0; A2Þ
for some N-dimensional representations are

N ¼ 2 ð−α;−βÞ; ðα; 0Þ
N ¼ 3 ð−2α;−2βÞ; ðα;−βÞ; ð2α; 0Þ
N ¼ 4 ð−3α;−3βÞ; ð−α;−4βÞ; ðα;−3βÞ; ð3α; 0Þ
N ¼ 5 ð−4α;−4βÞ; ð−2α;−6βÞ; ðα;−6βÞ;

ð2α;−4βÞ; ð4α; 0Þ: ð9Þ

Say α > 0. Then, for large N, the spatial size operator A has
eigenvalue

ffiffiffiffiffiffiffiffiffiffi
−βN

p
for the lowest time eigenvalue ∼ − αN,

i.e., the initial state. It then increases to a maximum value offfiffiffiffiffiffi
−β

p
N=2 as the time goes to zero, and then decreases to

zero upon approaching the highest time eigenvalue ∼αN,
i.e., the final state. This solution can thus be regarded as a
discrete analogue of a closed cosmological space-time. The
eigenvalues of X0 versus those of A are plotted forN ¼ 100
in Fig. 1.

1The Levi-Civita symbol here is associated with Euclidean
space, unlike the ones appearing in (1) and (2), which are
associated with Minkowski space.

A. CHANEY, LEI LU, AND A. STERN PHYSICAL REVIEW D 92, 064021 (2015)

064021-2



Just as with the fuzzy sphere in a Euclidean background,
the commutative limit of the matrix solution here is
obtained by taking N → ∞. Here we also need α; β → 0,
with αN and

ffiffiffiffiffiffi
−β

p
N finite in the limit. The commutative

limit of the solution is then characterized by two real
parameters, which we denote by a0 (not to be confused
with an eigenvalue of A) and r2,

ffiffiffiffiffiffi
−β

p
2α

→ a0

ffiffiffiffiffiffi
−β

p
N

2
→ r: ð10Þ

One typically defines the commutative limit in an analo-
gous fashion to the classical limit of a quantum theory,
where α plays an analogous role to ℏ. In this limit one
replaces the matrices Xμ by commuting space-time coor-
dinates which we denote by xμ, where x0 and xi; i ¼ 1; 2,
denote the time and space coordinates, respectively. The
constraint on the suð2Þ Casimir operator (8) means that in
the commutative limit the solution satisfies

a20ðx0Þ2 þ ðx1Þ2 þ ðx2Þ2 ¼ r2: ð11Þ

While real a0 means that the solution is topologically a
two-sphere, there are a number of novel features, which we
show below, due to the fact that this “sphere” is embedded
in Minkowski space-time.
The commutative limit also requires replacing the

commutator of functions of Xμ, evaluated for the solution
(6), by iα times the Poisson bracket of the same functions
of the coordinates xμ. The commutators of Xμ lead to the
following Poisson brackets of the coordinates:

fx0; x1g ¼ −2x2 fx2; x0g ¼ −2x1

fx1; x2g ¼ −2a20x0: ð12Þ

We can express xμ in terms of angular momenta
ji; i ¼ 1; 2; 3, which satisfies the suð2Þ Poisson bracket
algebra fji; jjg ¼ ϵijkjk, using

0
B@

x0

x1

x2

1
CA ¼ 2

0
B@

j3
a0j1
−a0j2

1
CA; ð13Þ

and from (11), j21 þ j22 þ j23 ¼ ð r
2a0

Þ2. For simplicity,
we set r ¼ 2a0 so that ji spans a sphere of unit radius.
We can introduce standard spherical coordinates ðθ;ϕÞ,
0 < θ < π; 0 ≤ ϕ < 2π, and write

j1 ¼ sin θ cosϕ j2 ¼ sin θ sinϕ j3 ¼ cos θ:

ð14Þ
The suð2Þ Poisson bracket algebra for ji is recovered upon
defining the Poisson brackets on the sphere to be

fF;Ggðθ;ϕÞ ¼ csc θð∂θF∂ϕG − ∂ϕF∂θGÞ; ð15Þ

for any two functions F and G on the sphere.
The induced metric gab ¼ ∂axμ∂bxμ, a; b;… ¼ θ;ϕ,

computed from (13) and (14) does not agree with the
standard metric on the sphere, and, moreover, it does not
have a fixed signature. Moreover, the curvature computed
from the induced metric is not constant, and it is negative.
The invariant interval constructed from the induced
metric is

−dτ2 ¼ 4ða20cos2θ − sin2θÞdθ2 þ 4a20sin
2θdϕ2: ð16Þ

gθθ vanishes at two latitudes θ ¼ θ� on the sphere defined
by tan θ� ¼ �a0. Say that θ ¼ θþ is contained in the
northern hemisphere, 0 < θþ < π

2
, while θ ¼ θ− is con-

tained in the southern hemisphere, π
2
< θ− < π. The sig-

nature on the sphere is Euclidean for 0 < θ < θþ and
θ− < θ < π, while it is Lorentzian for θþ < θ < θ−. We
can regard θ as a timelike variable for the latter, with
2a0 sin θ being the spatial radius at any time slice. θ ¼ θ�
correspond to singularities in the curvature, as opposed to
coordinate singularities. The Ricci scalar computed from
the induced metric is

R ¼ −
1

2ða20 cos θ2 − sin2θÞ2 ; ð17Þ

and thus it is singular at the latitudes θ ¼ θ�. Equation (17)
shows that the curvature in the nonsingular regions is
everywhere negative. The singularities of the Ricci tensor
are analogous to big bang/crunch singularities, with the
distinction that they occur at a nonzero spatial radius

2a0 sin θ� ¼ 2a2
0ffiffiffiffiffiffiffiffi

a2
0
þ1

p . Timelike longitudinal geodesics exist

in the Lorentzian region which originate and terminate at

an

–100

–50

50

100

10 20 30 40 50

x0
n

FIG. 1 (color online). Fuzzy closed universe solution. Plot of
the eigenvalues x0n of the time matrix X0 versus the eigenvalues
an of the space matrix A for N ¼ 100, α ¼ 1 and β ¼ −1.
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the singular latitudes θ ¼ θ�. This is because their tangent
vectors ðdθdτ ; dϕdτÞ ¼ ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2θ−a2
0
cos θ2

p ; 0Þ are well defined in the
Lorentzian region, θþ < θ < θ−, while they are imaginary
in the Euclidean regions, 0 < θ < θþ and θ− < θ < π.
The total elapsed proper time along these geodesics is
finite and given by the elliptic integral

2
R π−tan−1a0
tan−1a0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θ − a20 cos θ

2
p

.

III. EMERGENT FIELD DYNAMICS

Here we perturb around the matrix solution (6). Similar
to [8], we find it useful to define noncommutative field
strengths Fμν on the fuzzy sphere. Here we take

F01 ¼ 1

α
½X0; X1� þ 2iX2

F02 ¼ 1

α
½X0; X2� − 2iX1

F12 ¼ 1

α
½X1; X2� − iβ

2α
X0; ð18Þ

which transform covariantly under unitary gauge trans-
formations, Fμν → UFμνU†, and vanish when evaluated on
the fuzzy sphere solutions (6). The matrix action (1) can
then be reexpressed in terms of the noncommutative field
strengths

g2SðXÞ ¼ Tr

�
−
α2

4
FμνFμν −

4

3
iα2ðF01X2 þ F20X1Þ

þ iα2
�
2

3
−

β

2α2

�
F12X0 þ

�
β

2
−
2α2

3

�

×

�
ðX1Þ2 þ ðX2Þ2

�
þ β

�
β

8α2
−
5

6

�
ðX0Þ2

�
:

ð19Þ
Now we perturb around the matrix solution (6) using

X0 ¼ 2

�
J3 þ

α2ffiffiffiffiffiffi
−β

p A0

�

X1 ¼
ffiffiffiffiffiffi
−β

p
α

J1 þ αA1

X2 ¼ −
ffiffiffiffiffiffi
−β

p
α

J2 − αA2; ð20Þ

where the perturbations are functions on the fuzzy sphere,
Aμ ¼ AμðJ1; J2; J3Þ. If we write infinitesimal unitary gauge
transformations using U ¼ 1 − iαffiffiffiffiffi

−β
p Λ, where Λ is a

Hermitian matrix with infinitesimal elements, then the
infinitesimal variations of Aμ read

δAμ ¼ −i
�
1

α
½Λ; Jμ� þ αffiffiffiffiffiffi

−β
p ½Λ; Aμ�

�
; ð21Þ

where we identify ðJ0; J1; J2Þ with ðJ3; J1; J2Þ.
Substituting (20) into (19) gives

SðXÞ ¼ α2

g2
Tr

�
−
1

4
FμνFμν −

4

3
iαðF01A2 þ F20A1Þ

þ 2iα2ffiffiffiffiffiffi
−β

p
�
2

3
−

β

2α2

�
F12A0

þ 8iα
3

ð½J1; A2� − ½J2; A1�ÞA0

− 2iα

�
2

3
−

β

2α2

�
½A1; A2�J3

þ
�
β

2
−
2α2

3

��
ðA1Þ2 þ ðA2Þ2

�

− 2α2
�

β

4α2
−
5

3

�
ðA0Þ2

�
þ SðXjsolutionÞ: ð22Þ

As stated previously, the commutative limit is obtained
by taking N → ∞, along with α; β → 0 and both αN andffiffiffiffiffiffi
−β

p
N are finite in the limit. Upon using (10) and (13), the

commutative limit of the field strengths (18) is

F01 → 2iαðfj3; A1g − fj1; A0g − A2Þ
F02 → −2iαðfj3; A2g − fj2; A0g þ A1Þ
F12 → −2iαa0ðfj1; A2g − fj2; A1g − A0Þ; ð23Þ

where Aμ are now functions on the commutative sphere.
The trace on functions of the fuzzy sphere is replaced by the
corresponding integration on the sphere in the commutative
limit. The relevant integration measure dμðθ;ϕÞ should be
such that the standard trace identities survive in the limit;
i.e., for any three functions G;H and K on the sphere
we want

R
dμðθ;ϕÞfG;HgK ¼ R

dμðθ;ϕÞGfH;Kg. From
(15) we need to choose the standard integration measure
on the sphere dμðθ;ϕÞ ¼ sin θdθdϕ (rather than, say,ffiffiffiffiffiffi−gp

dθdϕ, where g is the determinant of the induced
metric). Then the action (22) reduces to

SðXÞ− SðXjsolutionÞ→
2α4

g2c

Z
sinθdθdϕf−ðfj3;A1g

− fj1;A0gÞ2 − ðfj3;A2g− fj2;A0gÞ2
þ a20ðfj1;A2g− fj2;A1gÞ2
þ 2ða20 þ 1Þfj3;A1gA2

þ ðA0Þ2 − a20ððA1Þ2 þ ðA2Þ2Þg; ð24Þ

where gc is the commutative limit of the constant g.
Following [8] we write the perturbations Aμ in terms of
commutative gauge potentials ðAθ;AϕÞ and a scalar field ψ
on the sphere using
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A0 ¼ Aϕ þ j3ψ

A1 ¼ − sinϕAθ − cot θ cosϕAϕ þ j1ψ

A2 ¼ cosϕAθ − cot θ sinϕAϕ þ j2ψ : ð25Þ

Then from the fundamental Poisson bracket (15), gauge variations ðδAθ; δAϕÞ ¼ ð∂θΛ; ∂ϕΛÞ agree with the commutative
limit of (21), where Λ is now an infinitesimal function on the commutative sphere. Substituting (25) in (24) gives

SðXÞ − SðXjsolutionÞ →
2α4

g2c

Z
sin θdθdϕfða20cot2θ − 1ÞF 2

θϕ − csc2θð∂ϕψÞ2

þ ða20sin2θ − cos2θÞð∂θψÞ2 − ð3 − 2ða20 þ 1Þsin2θÞψ2

þ 2 csc θðða20 þ 1Þsin2θ − 2a20 þ 1ÞF θϕψ − 2 cos θða20 þ 1ÞF θϕ∂θψg; ð26Þ
where F θϕ ¼ ∂θAϕ − ∂ϕAθ is the commutative Uð1Þ field strength on the surface. We remark that the gauge-field and
scalar-field kinetic energies have opposite signs, a feature that was present in similar two-dimensional systems [15].
However, gauge fields are nondynamical in two dimensions. We can solve for F θϕ from the field equations, yielding

F θϕ ¼ cos θða20 þ 1Þ∂θψ − ðða20 þ 1Þsin2θ − 2a20 þ 1Þ csc θψ
a20cot

2θ − 1
þ const; ð27Þ

and substitute back into the action. Upon setting the constant equal to zero, we get

SðXÞ − SðXjsolutionÞ →
2α4a20
g2c

Z
sin θdθdϕ

� ð∂θψÞ2
ða20 þ 1Þsin2θ − a20

−
csc2θ
a20

ð∂ϕψÞ2 − 4m2
effψ

2

�

¼ 16α4a20
g2c

Z
sin θdθdϕ

�
−
1

2
∂aψ∂aψ −

1

2
m2

effψ
2

�
; ð28Þ

where the index a ¼ ðθ;ϕÞ is raised and lowered using the induced metric given in (16). The effective mass squared of the
scalar field is θ dependent,

m2
eff ¼

ða20 − 1Þðða20 þ 1Þsin2θ − 3a20Þ
4a20ðða20 þ 1Þsin2θ − a20Þ2

: ð29Þ

As stated before, the signature of the induced metric is

Euclidean when sin2θ < a2
0

a2
0
þ1
, and Lorentzian when

sin2 θ > a2
0

a2
0
þ1
. Therefore (28) describes a Euclidean field

theory for the former and a Lorentzian field theory for
the latter. There are three different possibilities for the
Lorentzian field theory:

(i) The action describes a tachyon when a20 > 1. This is
because the factor ða20 þ 1Þsin2θ − 3a20 in (29) is
negative in this case.

(ii) The scalar field is massless when a20 ¼ 1.
(iii) The effective mass squared for the scalar field is

positive when

a20 < 1 and
a20

a20 þ 1
< sin2θ <

3a20
a20 þ 1

: ð30Þ

It follows that the action (28) describes a massive
scalar field throughout the entire Lorentzian region

when 1
2
≤ a20 < 1. On the other hand, when a20 <

1
2

the scalar field becomes tachyonic in the region

where sin2θ > 3a2
0

a2
0
þ1
.

IV. CONCLUDING REMARKS

We found fuzzy sphere solutions to a Lorentzian IKKT-
type model which provide toy models of a noncommutative
two-dimensional closed universe, where time and spatial
size have discrete values. Singularities in the Ricci tensor
appear in the large N (i.e., commutative) limit. They are
analogous to big bang/crunch singularities, with the novel
feature that they occur at nonzero spatial size. Perturbations
around the fuzzy sphere solution are described by a scalar
field in the commutative limit which can propagate in the
Lorentzian region of the manifold. (Additional field
degrees of freedom would appear if one started with a
ten-dimensional matrix model.) The scalar field can be
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massive, massless or tachyonic, the choice depending on
the parameter a20 (and also on the range of θ when a20 <

1
2
).

For 1
2
≤ a20 < 1 the scalar field is always massive, ensuring

the stability of the commutative field theory in this case.
Corrections to the commutative limit are obtained by
expressing the matrix product in the action (22) in terms
of the star product on the sphere [4–7] and keeping the next
order terms in the 1=N expansion.
For a more realistic model of a noncommutative cos-

mological space-time, one can look for fuzzy coset space
solutions to Lorentzian IKKT-type matrix models associ-
ated with dimension d > 2 [7]. One possible example
worth consideration is the fuzzy analogue of the four-
dimensional coset SUð3Þ=Uð2Þ or CP2. For coset spaces
with d > 4 one may be able to make both four-dimensional
space-time and extra dimensions noncommutative. Just as
with the example of the fuzzy sphere, the commutative limit

may lead to a manifold divided up into regions with
different signatures of the metric. Perturbations about such
solutions are expected to be described by a coupled gauge-
scalar theory in the commutative limit. A common feature
of the emergent field theories in previous examples [15] is
that scalar-field and gauge-field kinetic energies can appear
with opposite signs, which is also seen in (26). This sign
discrepancy was harmless for d ¼ 2, since the gauge field
could be eliminated. On the other hand, it is of concern for
d > 2, so it would be interesting to see if this discrepancy
can be cured upon taking the commutative limit of higher-
dimensional fuzzy coset space solutions.
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