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This paper studies a class ofD ¼ nþ 2ð≥6Þ dimensional solutions to Lovelock gravity that is described
by the warped product of a two-dimensional Lorentzian metric and an n-dimensional Einstein space.
Assuming that the angular part of the stress-energy tensor is proportional to the Einstein metric, it turns out
that the Weyl curvature of an Einstein space must obey two kinds of algebraic conditions. We present some
exact solutions satisfying these conditions. We further define the quasilocal mass corresponding to the
Misner-Sharp mass in general relativity. It is found that the quasilocal mass is constructed out of the
Kodama flux and satisfies the unified first law and the monotonicity property under the dominant energy
condition. Making use of the quasilocal mass, we show Birkhoff’s theorem and address various aspects of
dynamical black holes characterized by trapping horizons.
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I. INTRODUCTION

In general relativity, ormore general gravitational theories
admitting diffeomorphism invariance, the role played by the
mass is quite different from that in other branches of physics.
The weak equivalence principle makes it impossible to
construct awell-defined “local” gravitational mass since it is
always possible to set the local gravitational energy to vanish
by working in a local Lorentz frame. This conceptual
obstacle forced us to focus upon globally defined conserved
quantities, e.g. the Arnowitt-Deser-Misner (ADM) mass in
an isolated system [1]. However, one can circumvent this
difficulty when the spacetime admits a spherical symmetry.
In this case, the gravitational degrees of freedom is localized
because of the absence of gravitationalwaves and it turns out
to be extremely useful to define the “quasilocal” mass
referring to the compact and orientable surfaces, as first
demonstrated by Misner and Sharp [2]. A number of local
geometric properties of spacetime are encoded in the
Misner-Sharp mass [3], including the causal property of
central singularities, trapped surfaces and asymptotic
charges. It follows that the Misner-Sharp mass provides a
fruitful venue for dexterously capturing the dynamical
aspects of gravitational collapse.
Inspired by recent advances of string theory, many people

have tried to extend Einstein’s gravity. A covariant gravita-
tional theory constructed by Lovelock [4] is a natural
extension of general relativity into Dð≥ 5Þ dimensions.
The most appealing and characteristic feature of Lovelock
gravity inherited from general relativity is that the field
equations continue to remain second order, irrespective of the
fact that they are accompanied by higher-order polynomials
of curvature tensors. This traces back to the topological
interpretation of each Lovelock term as the dimensionally
continued Euler densities, allowing the understanding of
Lovelock terms in the context of the BRST cohomology [5].

Therefore, there appear no ghost degrees of freedom at
the linearized level [6,7], and the Lovelock gravity is a
classically well-posed gravitational theory (see [8,9] for a
recent discussion opposing this belief). Apart from this
theoretical aesthetic beauty, the quadratic Lovelock term
dubbed the “Gauss-Bonnet term” arises as a low-energy
effective action in heterotic string theory [10–12]. This moti-
vates us to explore quantum aspects of higher-curvature
terms as well in light of AdS/CFT correspondence [13].
Since higher-curvature terms come into play where the

gravitational force becomes very strong, black holes are
the best test beds in which deviations from general relativity
are capitally encoded. The complexity of Lovelock field
equations has restricted the analysis especially to the
spacetimes with a high degree of symmetry. Among other
things, many works have focused upon the spacetime
which is the warped product of two-dimensional
Lorentzian spacetime and an n-dimensional maximally
symmetric space. The simplest solution is the spherically
symmetric black hole found by Whitt [14], as a generali-
zation of the Schwarzschild solution in general relativity.
Thermodynamics [15,16] and gravitational instabilities
[17–22] of this type of black hole have been intensively
studied. This class of metrics also contains the Tolman-
Bondi inhomogeneous dust spacetime [23–25] and the
Vaidya-type radiating solution [26–29], both of which
describe the gravitational collapse. The examinations of
gravitational collapse have revealed that the global struc-
ture turns out to be quite different from that encountered in
general relativity, and a peculiar type of massive singularity
emerges in every odd dimension. In these analyses, the
generalized Misner-Sharp quasilocal mass [30,31] plays
an essential role as in general relativity. In this sense, the
Misner-Sharp quasilocal mass is more advantageous than
the Brown-York quasilocal mass [32] constructed based
upon the Hamiltonian formalism.
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In general relativity, the n-dimensional maximally sym-
metric space can be replaced by arbitrary Einstein spaces,
since their Weyl curvature fails to contribute to Einstein’s
equations.1 In Lovelock gravity, on the other hand, theWeyl
tensor appears explicitly in field equations and, therefore,
the generic Einstein manifold fails to satisfy the vacuum
field equations of the warped metric. The condition that this
type of metric admit vacuum solutions imposes two con-
ditions upon the Weyl curvature of the Einstein space.
When one takes the Einstein space satisfying these con-
ditions, the causal structures of the black hole considerably
differ from those with maximally symmetric horizons, as
argued in theGauss-Bonnet gravity [34–36] and in the third-
order Lovelock gravity [37]. This motivates our present
attempt to explore the conditions for an Einstein horizon
in general Lovelock gravity, by extending the analysis
in [34–37].2
In this paper, we generalize the previous studies [34–37]

into Lovelock gravity where the spacetime consists of the
warped product of the two-dimensional Lorentzian metric
and the n-dimensional Einstein space.We find that theWeyl
tensor of n-dimensional Einstein space must obey two
conditions. We find that a dozen new Einstein spaces turn

out to satisfy the Lovelock field equations. We extend the
definition of theMisner-Sharp type quasilocal mass adapted
to the present context. It turns out that the quasilocal mass
displays some desirable physical properties under suitable
energy conditions, provided that some conditions on the
Weyl curvature and the coupling coefficients of Lovelock
action are satisfied. Using the quasilocal mass, we further
explore the properties of trapping horizons and their
thermodynamics.
The present paper proceeds as follows. In the next section,

we give a brief review of Lovelock gravity and derive field
equations under the setup described above. In Sec. III, we
define a quasilocal mass as a generalization of the Misner-
Sharpmass.We explore a number of properties of dynamical
black holes defined by the trapping horizons using the
quasilocal mass in Sec. IV. Final remarks are described in
Sec. V. In the Appendix, we give a variety of exact solutions
for vacuum and electrovacuum cases. We follow the con-
ventions of Wald’s textbook [42] for curvature tensors.

II. SETUP

The action of Lovelock gravity in D dimensions is [4]

S ¼ 1

2

Z
dDx

ffiffiffiffiffiffi−gp �Xk
m¼1

1

2m
am
m

δμ1μ2…μ2m−1μ2m
ν1ν2…ν2m−1ν2m Rμ1μ2

ν1ν2…Rμ2m−1μ2m
ν2m−1ν2m þ 2Λ

�
þ Smat; ð2:1Þ

where am are real constants and we set a1 ¼ 1 and
8πG ¼ 1. k is given by k≡ ⌊ðD − 1Þ=2⌋, where the
symbol ⌊x⌋ denotes the integer part of x.3 Smat is the
action for the matter field, Λ is a cosmological constant
and δ denotes the totally antisymmetric product of
Kronecker delta normalized by

δμ1μ2…μm−1μm
ν1ν2…νm−1νm ¼ δμ1ν1δ

μ2
ν2…δμm−1

νm−1δ
μm
νm þ cyclic: ð2:2Þ

The gravitational field equations derived from the action
(2.1) reads

Gμν ¼ Tμν; ð2:3Þ

where Tμν ¼ −2δSmat=δgμν describes the stress tensor of
the matter fields. The Lovelock tensor Gμν is given by

Gμ
ν ¼ −Xk

m¼1

1

2mþ1

am
m

δμρ1ρ2…ρ2m−1ρ2m
νσ1σ2…σ2m−1σ2mRρ1ρ2

σ1σ2…

× Rρ2m−1ρ2m
σ2m−1σ2m; ð2:4Þ

obeying the Bianchi identity ∇νGμν ¼ 0. A notable feature
of Lovelock gravity is that the equations of motion involve
no more than the third derivative of the metric.
In this paper, we consider the D ¼ nþ 2-dimensional

spacetime ðMD; gμνÞ for which the metric takes the cross
product of the two-dimensional orbit spacetime ðM2; gabÞ
and the n-dimensional Einstein space ðKn; γijÞ. Namely,
the local metric reads

ds2 ¼ gabðyÞdyadyb þ r2ðyÞγijðxkÞdxidxj; ð2:5Þ

where r is the scalar on M2 corresponding to the warp
factor. Indices a; b;… run over 0,1 and i; j;… correspond
to those of the Einstein space. The Ricci tensor of Einstein
space ðKn; γijÞ reads Rij½γ� ¼ ðn − 1Þκγij, where κ is the
constant normalized by κ ¼ �1; 0. We assume that
ðKn; γijÞ is compact with the area Vκ

n and that ðM2; gabÞ
is a time-orientable Lorentzian manifold. The Riemann
tensor of (2.5) decomposes into

3Note that some literatures have employed the convention k ¼
⌊D=2⌋ different from ours. Since the D=2th term in even
dimensions amounts to the topological invariant, it fails to
contribute to the field equation. Hence, both of these conventions
do not make any physical difference.

2The solutions to special cases of Lovelock gravity with a more
general base space were also studied in [38–41].

1The replacement to the Einstein space has a significant impact
upon the linear instability of black holes [33].
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Rabcd ¼ ð2ÞRabcd; Raibj ¼ −rðDaDbrÞγij;
Rijkl ¼ r2½Rijkl½γ� − 2ðDrÞ2γi½kγl�j�; ð2:6Þ

where Da is a covariant derivative with respect to gab and
ðDrÞ2 ≡ gabðDarÞðDbrÞ. The suffix “2” is attached with
quantities of M2, which are distinguished by those of
ðKn; γijÞ represented by ½γ�. One can express the Weyl
tensor of the Einstein space as

Rij
kl½γ� ¼ Cij

kl½γ� þ κδklij : ð2:7Þ

When (Kn; γij) is maximally symmetric, the present setup
collapses to the case analyzed in [31]. Note that the Einstein
space is necessarily maximally symmetric in n ¼ 3, the
nontriviality arises in D ≥ 6 dimensions.

A. Field equations

In the following calculation, we frequently use the
quantities WðsÞij and WðsÞ, which are defined as

WðsÞij≡
8<
:
δij s¼0

δii1i2…i2s−1i2s
jj1j2…j2s−1j2sCi1i2

j1j2 ½γ�…Ci2s−1i2s
j2s−1j2s ½γ� s≥1

ð2:8Þ

and

WðsÞ≡
�
1 s ¼ 0

δi1i2…i2s−1i2s
j1j2…j2s−1j2sCi1i2

j1j2 ½γ�…Ci2s−1i2s
j2s−1j2s ½γ� s ≥ 1:

ð2:9Þ

WðsÞij are symmetric tensors on (Kn; γij). We also define

�
m

l

�
≡ mCl: ð2:10Þ

By a straightforward computation, the Lovelock tensor
decomposes into

Ga
b ¼

Xk
m¼1

Xm−1

l¼0

am2l−mþ1

r2m−2

�
m − 1

l

��
δab

D2r
r

−DaDbr
r

− δabðn − 2mþ 1Þ κ − ðDrÞ2
2ðlþ 1Þr2

�

×

�Y2l
p¼0

ðn − 2mþ 2þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 1 − lÞ −

Xk
m¼1

1

2mþ1

am
m

δab
WðmÞ
r2m

þ Λδab; ð2:11Þ

Gi
j ¼

Xk
m¼1

am
2m−1

D2r
r2m−1

�Xm−1

l¼0

2l
�
m − 1

l

��Y2l
p¼0

ðn − 2mþ 1þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 1 − lÞij

�

−
Xk
m¼1

am
2m

ð2ÞR
r2ðm−1Þ

�Xm−1

l¼0

2l

n − ð2m − 1Þ
�
m − 1

l

��Y2l
p¼0

ðn − ð2m − 1Þ þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 1 − lÞij

�

−
Xk
m¼1

ðm − 1Þam
2m−2

δabcdðDaDcrÞðDbDdrÞ
r2ðm−1Þ

�
ðn − 2mþ 2Þ

Xm−2

l¼0

2l
�
m − 2

l

�

×
�Y2l

p¼0

ðn − ð2m − 3Þ þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 2 − lÞij

�

−
Xk
m¼1

am
2mþ1mr2m

�Xm
l¼0

2l

n − 2m

�
m

l

��Y2l
p¼0

ðn − 2mþ pÞ
�
ðκ − ðDrÞ2ÞlWðm − lÞij

�
þ Λδij: ð2:12Þ

For a generic Einstein space ðKn; γijÞ, WðmÞ are
functions dependent on the coordinates xi and the
(trace-free part of) symmetric tensor WðmÞij is non-
trivial. In that case, the Lovelock tensor Gμ

ν involves
the convoluted coordinate dependence on xi, as well
as the dependence on ya. In order to avoid these
technical difficulties and make the discussion focused,
we impose in this paper the following two conditions
on ðKn; γijÞ:

WðmÞij ¼
n − 2m

n
δijWðmÞ; ð2:13aÞ

WðmÞ ¼ const: ð2:13bÞ

With these conditions, the xi dependence of Gμ
ν drops out

except for the contribution stemming from the metric γij.
In [34] a similar condition was imposed in them ¼ 2 case.
On account of the dimensionally dependent Lovelock
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identities [43], the constraint (2.13a) is automatically
satisfied for m ≥ ⌊ðnþ 1Þ=2⌋ ¼ k. Obviously, the condi-
tions (2.13) restrict the permissible horizon topologies for
static black holes. Appendix A illustrates some explicit
examples of Einstein spaces satisfying (2.13).
The stress tensor compatible with these assumptions,

therefore, reads

Tμνdxμdxν ¼ ðT̂abðyÞ − PðyÞgabÞdyadyb
þ r2ðyÞpðyÞγijðxÞdxidxj; ð2:14Þ

where

P≡− 1

2
Ta

a; gabT̂ab ¼ 0: ð2:15Þ

The stress-energy tensor obeys the conservation law

0 ¼ 1

rn
Db½rnðT̂ab − PgabÞ� − n

r
ðDarÞp: ð2:16Þ

Under these settings, the Lovelock field equations are
given by

T̂ab ¼ −
Xk
m¼1

Xm−1

l¼0

am2l−mþ1

r2m−1

�
m − 1

l

��Y2l
p¼0

ðn − 2mþ 2þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 1 − lÞ

�
DaDbr − 1

2
D2rgab

�
; ð2:17Þ

P ¼ −
Xk
m¼1

Xm−1

l¼0

am2l−m
r2m−2

�
m − 1

l

��
D2r
r

− ðn − 2mþ 1Þ κ − ðDrÞ2
ðlþ 1Þr2

�

×
�Y2l

p¼0

ðn − 2mþ 2þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 1 − lÞ þ

Xk
m¼1

1

2mþ1

amWðmÞ
mr2m

− Λ; ð2:18Þ

p ¼
Xk
m¼1

am
2mnr2ðm−1Þ

�
2
D2r
r

−
ð2ÞR

n − ð2m − 1Þ
�Xm−1

l¼0

2l
�
m − 1

l

��Y2lþ1

p¼0

ðn − 2mþ 1þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 1 − lÞ

−
Xk
m¼1

ðm − 1Þam
2m−2n

δabcdðDaDcrÞðDbDdrÞ
r2ðm−1Þ

Xm−2

l¼0

2l
�
m − 2

l

��Y2lþ2

p¼0

ðn − 2mþ 2þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 2 − lÞ

−
Xk
m¼1

am
2mþ1mr2m

�Xm
l¼0

2lðn − 2mþ 2lÞ
nðn − 2mÞ

�
m

l

��Y2l
p¼0

ðn − 2mþ pÞ
�
ðκ − ðDrÞ2ÞlWðm − lÞ

�
þ Λ: ð2:19Þ

If r is not constant, the angular part of field equation (2.19)
follows from (2.17), (2.18) and (2.16).
In the above we assumed (2.13) to simplify the system.

As far as the vacuum solution is concerned, the condition
(2.13) actually follows from the consistency with the field
equations, as shown in [34] for Gauss-Bonnet gravity.
In the following sections, we shall discuss the general

properties of the metric under suitable energy conditions,
without resorting to the exact solutions. In Appendix B, we
give some exact solutions of physical interest.

III. QUASILOCAL MASS

In general relativity, the spacetime admitting spherical
symmetry allows no freedom of gravitational radiations.
This fact enables us to localize the gravitational energy
and one can define the quasilocal mass [2] that plays
an important role in the analysis of dynamics [3]. When
ðKn; γijÞ is a maximally symmetric space, analogous
quasilocal quantities have been generalized to Gauss-
Bonnet [30] and to Lovelock gravities [31]. These

definitions have been further extended to the case of
Einstein spaces in the Gauss-Bonnet gravity [35] and in
the third-order Lovelock gravity [37]. Here we complete
the series of research by studying the nonconstant curvature
case in the full Lovelock gravity, which encompasses all
the previous studies.
By mimicking the quantity in Maeda’s paper [35], our

proposed definition of the quasilocal mass reads

MðyÞ≡ Vκ
n

�Xk
m¼1

1

2mþ1

am
m

rn−2mþ1

ðn − 2mþ 1ÞWðmÞ − rnþ1

ðnþ 1ÞΛ

þ
Xk
m¼1

Xm−1

l¼0

am2l−m
rn−2mþ1

lþ 1

�
m − 1

l

�

×

�Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�

× ðκ − ðDrÞ2Þlþ1Wðm − 1 − lÞ
�
: ð3:1Þ
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Due to the assumption (2.13b), one may view the quasilocal
mass as a scalar on (M2; gab). It is constructed out of the areal
radius r and its first derivative, as well as the Weyl tensor of
Einstein space. When the space (Kn; γij) is maximally
symmetric, the above definition reduces to the one given
in [31]. It also recovers the well-defined Misner-Sharp mass
[2] in general relativity (am≥2 ¼ 0), and its generalization in
Gauss-Bonnet gravity (am≥3 ¼ 0) [30,35].Using (2.11), one
can easily verify that M satisfies the variation formula

DaM ¼ Vκ
nrnðGabDbr − Gb

bDarÞ: ð3:2Þ

This formula takes exactly the same form as those analyzed
in previous studies [30,31,35]. This relation is of crucial
importance in the following discussion.

A. Locally conserved currents

The physical meaning of M is less clear in the geometric
definition (3.1). In this section, we shall demonstrate that M
can be rebuilt in terms of a locally conserved energy flux.
To proceed, let us first define the Kodama vector [44]

Kμ ≡−ϵμν∇νr; ð3:3Þ

where ϵμν ¼ ϵabðdyaÞμðdybÞν and ϵab is a volume element
of (M2; gab). This current can be viewed as a vector field on
M2 since Ki ¼ 0. The Kodama vector fulfills the following
crucial property:

KμKμ ¼ −ð∇rÞ2: ð3:4Þ

This means that the Kodama vector is timelike (spacelike)
in the untrapped (trapped) region and specifies the preferred
time direction. Using the Kodama vector, one can also
define a Kodama current,

Jμ ≡−Gμ
νKν; ð3:5Þ

which is again a vector field on M2. Using the Lovelock
field equation (2.3), one obtains Jμ ¼ −Tμ

νKν. Hence Jμ

describes an energy flux. Because of the properties
KaDar ¼ 0 and GabDaKb ¼ 0, one sees that these vectors
are divergence free:

∇μKμ ¼ 0; ∇μJμ ¼ 0: ð3:6Þ
Using Dar ¼ −ϵabKb, one can easily derive the following
relations,

Ka ¼ −r−nϵabDbðV=Vκ
nÞ; Ja ¼ −r−nϵabDbðM=Vκ

nÞ;
ð3:7Þ

where

V ≡ Vκ
n

nþ 1
rnþ1 ð3:8Þ

is a weighted volume ofKn. It follows that vector quantities
Kμ and Jμ are the Hamiltonian vector fields with the
corresponding Hamiltonian V and M. This expression
makes the divergence-free property (3.6) rather manifest.
It is also obvious to see

V ¼ −
Z
Σ
KμuμdΣ; M ¼ −

Z
Σ
JμuμdΣ; ð3:9Þ

where Σ is a (D − 1)-dimensional hypersurface without an
interior boundary and uμ is a future pointing unit normal
to Σ. This accomplishes our first aim to prove that M is a
quasilocal quantity associated with the locally conserved
energy flux. The definition of the Misner-Sharp quasilocal
mass based upon the energy flux illustrates the direct
physical relevance rather than the original geometric
definition (3.1).

B. Unified first law

The first law of thermodynamics is one of the funda-
mental laws in nature. Hence, the validity of the first law
deserves a nice criterion for the well-defined mass. We
can easily check from (3.2) that the following unified first
law [45] holds

dM ¼ Aψadxa þ PdV; ð3:10Þ
where P has been defined in (2.15), and

ψa ≡ T̂a
bDbr; A≡ Vκ

nrn: ð3:11Þ

A is the weighted area of Einstein space and is related to the
volume (3.9) as DaV ¼ ADar. As it turns out from the
analysis of the next subsection, ψa describes a momentum
flux. Therefore, (3.10) represents the physical circumstance
that the energy balance is compensated by the work term
PdV and the energy inflow provided by ψa. The unified 1st
law allows us to interpret M as an energy contained in the
closed surface enclosed by the geometric radius r.

C. Birkhoff’s theorem

The theorem of Birkhoff plays a significant role when
one analyzes the gravitational collapse of a spherical body
in general relativity. One of the characteristic features of
Lovelock gravity is that Birkhoff’s theorem (and modified
versions thereof) continues to hold, as discussed in
[30,31,46–48].
Let us consider the matter fields with T̂ab ¼ 0. Suppose

that the coefficient DaDbr − 1
2
D2rgab of equation (2.17) is

nonvanishing.4 This implies that

4We shall not discuss in this paper the case where the first line
of (2.17) identically vanishes. For these artfully chosen values of
am with a given Einstein space, there appears a solution for which
the metric gab is undetermined. For this class of metrics, we refer
the reader to Refs. [30,31,46].
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0 ¼ DaDbr − 1

2
D2rgab: ð3:12Þ

Assume that Dar does not vanish. Then, Dar describes a
conformal Killing field on M2, which implies

DaKb ¼
1

2
D2rϵab: ð3:13Þ

It follows that Ka is a Killing vector on M2. Thanks to
the property ∇μKν ¼ DaKbðdyaÞμðdybÞν, Kμ describes a
hypersurface-orthogonal Killing vector on MD,

K½μ∇νKρ� ¼ 0; ∇ðμKνÞ ¼ 0: ð3:14Þ

On account of the property (3.4), this means that the
spacetime is static in the untrapped region. Hence, T̂ab ¼ 0

provides a sufficient condition for the validity of staticity
(in the untrapped region). This also justifies the physical
interpretation of ψa as a flux current, since it vanishes in
static spacetimes.
In order to obtain the metric explicitly, let us concentrate

on the vacuum spacetime (P ¼ p ¼ 0) in what follows.
Then, the variation formula (3.2) [or the unified first law
(3.10)] immediately givesM ¼ μ ¼ const. Let us introduce
the coordinate t byK ¼ ∂=∂t and denote the norm ofKμ by
−f, i.e, Kμ ¼ −f∇μt. Under the condition ðDrÞ2 ≠ 0 one
can use r as the coordinate on M2 conjugate to t, and the
general solution reads

ds22 ¼ −fðrÞdt2 þ dr2

fðrÞ ; ð3:15Þ

where fðrÞ satisfies

μ ¼ Vκ
n

�Xk
m¼1

1

2mþ1

am
m

rn−2mþ1

n − 2mþ 1
WðmÞ − rnþ1

nþ 1
Λþ

Xk
m¼1

Xm−1

l¼0

2l−mam
rn−2mþ1

lþ 1

�
m − 1

l

�

×

�Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�
ðκ − fðrÞÞlþ1Wðm − 1 − lÞ

�
: ð3:16Þ

This is a simple Lovelock generalization of the Dotti-Gleiser solution [34] for Einstein-Gauss-Bonnet gravity.
The case r ¼ r0 ¼ const. also solves (3.12). In this case, (2.19) gives that ð2ÞR is constant, thus (M2; gab) is a spacetime of

constant curvature. The metric can therefore be written as

ds2 ¼ −ð1 − λx2Þdt2 þ dx2

1 − λx2
þ r20γijdx

idxj; ð3:17Þ

where r0 and λ satisfy the following relations

Λ ¼
Xk
m¼1

Xm−1

l¼0

am2l−m
r2m0

�
m − 1

l

�
n − 2mþ 1

lþ 1
κlþ1

�Y2l
p¼0

ðn − 2mþ 2þ pÞ
�
Wðm − 1 − lÞ þ

Xk
m¼1

1

2mþ1

amWðmÞ
mr2m0

; ð3:18Þ

Λ ¼
Xk
m¼1

am

2m−1nr2ðm−1Þ
0

λ

n − ð2m − 1Þ
Xm−1

l¼0

2l
�
m − 1

l

��Y2lþ1

p¼0

ðn − 2mþ 1þ pÞ
�
κlWðm − 1 − lÞ

þ
Xk
m¼1

am
2mþ1mr2m0

Xm
l¼0

2lðn − 2mþ 2lÞ
nðn − 2mÞ

�
m

l

��Y2l
p¼0

ðn − 2mþ pÞ
�
κlWðm − lÞ: ð3:19Þ

(3.17) describes a Nariai-type metric ðAÞdS2 ×Kn.

D. Physical properties of quasilocal mass

In order to analyze the dynamics of the warped space-
time (2.5), it is advantageous to work in the double null
coordinates

ds2 ¼ −2e−fðu;vÞdudvþ r2ðu; vÞγijdxidxj; ð3:20Þ

where the orientation is fixed to be ϵuv > 0. Then we can
see that the variation formula (3.2) may be cast into

∂uM ¼ 1

n
Vκ
nefrnþ1ðTuvθ− − TuuθþÞ; ð3:21aÞ

∂vM ¼ 1

n
Vκ
nefrnþ1ðTuvθþ − Tvvθ−Þ; ð3:21bÞ

where θ� describe the expansion rate for the null directions
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θþ ¼ n
∂vr
r

; θ− ¼ n
∂ur
r

: ð3:22Þ

The variation formula (3.21) does not involve the Lovelock
coupling coefficients nor the information on the Weyl
tensor of the Einstein space explicitly. This fact is advanta-
geous for discussing the monotonicity property of the
quasilocal mass as described below.
We fix the spacetime orientation by declaring that the

future-directed null vector ∂=∂v (resp. ∂=∂u) is outgoing
(reps. ingoing). Namely, θþ > 0 and θ− < 0 hold on an
untrapped surface. Remark that each value of θ� is not an
invariant quantity by virtue of the remaining freedom of
rescaling u → UðuÞ; v → VðvÞ. Instead, efθþθ− enjoys an
invariant physical meaning characterizing the trapping
nature.
In order to extract the physically reasonable results, we

impose the energy conditions on the matter fields. The null
energy condition for the matter field implies

Tuu ≥ 0; Tvv ≥ 0; ð3:23Þ

while the dominant energy condition for the matter field
implies

Tuu ≥ 0; Tvv ≥ 0; Tuv ≥ 0: ð3:24Þ

Note that only the information of radial directions is
encoded on these inequalities.
Let us now establish that our quasilocal mass exhibits

a monotonicity property, which is desirable for M as a
physically reasonable mass function.
Proposition 1 (Monotonicity) If the dominant energy

condition holds, the quasilocal mass is nondecreasing along
outgoing null or spacelike directions on an untrapped
surface.
The proof follows immediately from (3.21). □

Let us next move on the positivity claim. To this end, let
us first define the regular center. The central point is said to
be regular center if

κ − ðDrÞ2 ∼ Cr2 ð3:25Þ

holds where C is a nonvanishing constant.
Proposition 2 (Positivity-I) If the dominant energy

condition holds and the spacetime has a regular center
which is surrounded by untrapped surfaces, the quasilocal
mass is non-negative.
Suppose that WðkÞ is nonvanishing. Around the regular

center, the quasilocal mass behaves as

M ≃ Vκ
n

1

2kþ1

ak
k

rn−2kþ1

ðn − 2kþ 1ÞWðkÞ: ð3:26Þ

This implies

∂vM ≃ Vκ
n

1

2kþ1

ak
k
rn−2kþ1θþ

n
WðkÞ; ð3:27Þ

∂uM ≃ Vκ
n

1

2kþ1

ak
k
rn−2kþ1θ−

n
WðkÞ: ð3:28Þ

Combining with the monotonicity property and (3.27), the
dominant energy condition requires

akWðkÞ > 0: ð3:29Þ
This proves the positivity of the quasilocal mass around the
regular center. The monotonicity property establishes the
claim, as we desired. □

It is worth noting that for the κ ¼ 1 case, the regular
center is always surrounded by untrapped surfaces, while
this is not the case for κ ¼ −1. Remark also that the Misner-
Sharp mass behavesM ∝ rnþ1 around the regular center for
the case with Kn being the maximally symmetric space,
whereas M ∝ rn−2kþ1 for the present case.
Next, let us consider the case in which the spatial

hypersurface admits a marginal surface as its inner boun-
dary. On the marginal surface we have ðDrÞ2 ¼ 0; hence,
the following version of the positivity holds.
Proposition 3 (Positivity-II) Suppose the dominant

energy condition and Λ ≤ 0. If the spacelike hypersurface
admits a marginal surface as its inner boundary, then the
quasilocal mass admits a positive lower bound, provided
that the Lovelock coefficients and Weyl tensor satisfy the
following conditions for all m,

am

�Xm−1

l¼0

2lþ1

lþ 1

�
m − 1

l

��Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�

× κlþ1Wðm − 1 − lÞ þ WðmÞ
mðn − 2mþ 1Þ

�
≥ 0: ð3:30Þ

This is clear from the monotonicity and the definition of
quasilocal mass. □

We obtained a condition (3.30) under which the pos-
itivity of the mass holds. Inspired by string theory, we may
physically fix some of the Lovelock coefficients. However,
it appears that the sign of Weyl tensor of the Einstein space
is not controllable. It would be better if we have a clearer
physical and mathematical meaning of (3.30). We leave this
for future investigations.
To conclude this section, let us make a brief comment

on the asymptotic behavior of the quasilocal mass. If the
Einstein space is a round sphere, the metric falls into the
standard definition of asymptotic flatness, and it would be
meaningful if the asymptotic value of the quasilocal mass
converges to the ADM mass, as argued in [30,31]. If the
Einstein space is not the maximally symmetric space, the
metric exhibits a slow falloff and it does not allow
asymptotically flat/AdS solutions in the standard sense.
For this reason, we shall not attempt to discuss the
asymptotics for the quasilocal mass.
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IV. TRAPPING HORIZONS

The concept of event horizon is not of practical use
because the identification of its locus requires the knowledge
of the evolution of Einstein’s equations into the entire future.
A more convenient manner to characterize locally the
strong gravity is the trapping horizon, which was originally
proposed by Hayward [49]. In this section, we address
some properties of trapping horizons in the present settings.
The trapping horizons are the nþ 1-dimensional hyper-

surface foliated by n-dimensional marginal surfaces on
which θþθ− ¼ 0 is satisfied. Set θþ ¼ 0 on the marginal
surface in what follows. Then the marginal surface is said to
be future for θ− < 0, past for θ− > 0, outer for ∂uθþ < 0
and inner for ∂uθþ > 0. By definition, the notion of trapping
horizons is quasilocal and does not make any references to
the asymptotic structure.Onemaydeduce intuitively that the
future-outer trapping horizons are of themost relevance for a
local description of dynamical black holes, since inside the
trapping horizon both of the outgoing and ingoing rays are
converging. In the following discussion, we shall be mainly
interested in (future-)outer trapping horizons. According
to the proposition 12.2.4 of [42], trapped regions cannot
be causally connected to null infinity, provided the null
convergence condition and the cosmic censorship are valid.
Therefore, the existence of the trapped regions implies the
event horizon in a physically reasonable condition.
The properties of trapping horizons have been analyzed

in detail for the Gauss-Bonnet gravity [50] and for the
Lovelock gravity [31] with the maximally symmetric
horizons. In order for the trapping horizons to inherit
properties in general relativity, we have to assume a certain
inequality involving the Lovelock coefficients and theWeyl
tensor for the Einstein space.
The next proposition specifies the causal character of the

trapping horizon. The proof is the same as in Ref. [50].
Proposition 4 (Signature law) Under the null energy

condition the outer trapping horizon is nontimelike, pro-
vided that the following condition on Weyl tensor and the
Lovelock coefficients holds for all m,

am

�Xm−1

l¼0

2lþ1

�
m − 1

l

��Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�

× κlWðm − 1 − lÞ
�
≥ 0: ð4:1Þ

Let ξ ¼ ξv∂v þ ξu∂u be a generator of the outer trapping
horizon at which θþ ¼ 0 and ∂uθþ < 0. Since the trapping
horizon is foliated by marginal surfaces, we have

Lξθþ ¼ ξv∂vθþ þ ξu∂uθþ ¼ 0: ð4:2Þ

Evaluating the (v; v) component of (2.17) at the trapping
horizon we get

Tvv ¼ −Xk
m¼1

Xm−1

l¼0

am2l−mþ1

nr2m−2

�
m − 1

l

�

×

�Y2l
p¼0

ðn − 2mþ 2þ pÞ
�
κlWðm − 1 − lÞ∂vθþ:

ð4:3Þ

The null energy condition and the inequality (4.1) thus
assures ∂vθþ < 0. Hence (4.2) implies that ξuξv ≤ 0 is
satisfied. If the trapping horizon is timelike, this inequality
is not satisfied. We therefore arrive at the claim. □

The most interesting property of the event horizon of a
black hole is the area increasing theorem (Proposition of
12.2.6 of [42]). It turns out that a similar property holds for
the trapping horizon.
Proposition 5 (Area law) Under the null energy con-

dition and the conditions in Proposition 4, the area of outer
trapping horizon,AðrÞ ¼ Vκ

nrn, increases along its generator.
The proof directly follows from

LξA ¼ nrn−1Vκ
nðξu∂urþ ξv∂vrÞ

¼ rnVκ
nθ−ξu > 0; ð4:4Þ

where we have used ξv > 0 for the nonspacelike (spacelike)
trapping horizon to be future-pointing (outgoing), hence
ξu ≤ 0 from the signature law. This completes the proof.□

A. Dynamics of trapping horizon

In general relativity, the trapping horizons display laws
analogous to ordinary black-hole thermodynamics even
in a dynamical circumstance [49]. Since the unified first
law (3.10) represents the energy balance, it can be used to
deduce the thermodynamic first law for a trapping horizon.
One can recast (3.10) into

Aψa ¼ DaM þ Vκ
n

2
rnDar

Xk
m¼1

Xm−1

l¼0

am2l−mþ1

r2m−2

�
m − 1

l

��
D2r
r

− ðn − 2mþ 1Þ ðκ − ðDrÞ2Þ
ðlþ 1Þr2

�

×

�Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�
ðκ − ðDrÞ2ÞlWðm − 1 − lÞ − Vκ

n

2
rnDar

Xk
m¼1

1

2m
am
m

WðmÞ
r2m

þ Vκ
nrnDarΛ ð4:5Þ

Let ξa be a generator of the trapping horizon. Hence, along the trapping horizon ðDrÞ2 ¼ 0, we get
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Aψaξ
a ¼ κTHVκ

nξ
aDa

�Xk
m¼1

Xm−1

l¼0

am2l−mþ1
rn−2mþ2

n − 2mþ 2

�
m − 1

l

�Y2l
p¼0

ðn − ð2m − 2Þ þ pÞκlWðm − 1 − lÞ
�
; ð4:6Þ

where we have defined

κTH ≡ 1

2
D2r

����
rh

: ð4:7Þ

One can interpret (4.7) as a surface gravity of a trapping horizon, since it fulfills [45]

KaD½aKb� ¼ κTHKb; ð4:8Þ
where the equality is evaluated on the trapping horizon. Note that this equation resembles the equation defining the surface
gravity of a Killing horizon [42]. It deserves to emphasize that the surface gravity is not constant over the trapping horizon,
as can be inferred from the Vaidya-type radiating solution (see Appendix B.).
The unified first law reads δξM ¼ Aiξψ þ PδξV, hence Aiξψ term should be identified as TδξS term. Assuming that the

temperature is related to κTH by T ¼ κTH=ð2πÞ, we can identify the entropy of a trapping horizon as

S ¼ 2πVκ
n

�Xk
m¼1

Xm−1

l¼0

am2l−mþ1
rn−2mþ2
h

n − 2mþ 2

�
m − 1

l

��Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�
κlWðm − 1 − lÞ

�
: ð4:9Þ

Eq. (4.6) also justifies the physical interpretation of ψa as
flux current, since the change of trapping horizon entropy is
responsible for the flux through the horizon. In the general
relativistic case, the entropy is proportional to the area of
the trapping horizon. The Lovelock black holes therefore
admit a correction arising from higher-curvature terms [15].
The highest term l ¼ m − 1 is also present for the max-
imally symmetric horizons, while the other terms represent
the contribution coming from the Einstein horizon.

Now the entropy of a trapping horizon is obtained, we
move to prove the entropy increasing law. This corresponds
to the second law of black hole dynamics.
Proposition 6 (Entropy law) Under the null energy

condition and the conditions in Proposition 4, the
entropy of outer trapping horizon increases along its
generator.
The variation of the entropy along the generator

gives

LξS ¼ 2πVκ
n

�Xk
m¼1

Xm−1

l¼0

am
n
2l−mþ1rn−2mþ2

h

�
m − 1

l

��Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�
κlWðm − 1 − lÞ

�
θ−ξu: ð4:10Þ

The proof follows immediately from the same argument as the area theorem. □

B. Wald’s entropy

In the previous subsection, we derived the entropy of a trapping horizon by requiring the first law of thermodynamics for
the trapping horizon. Here we reproduce it by Wald’s prescription for the Killing horizons [51,52].
Suppose that the metric admits a nondegenerate, bifurcate Killing horizon r ¼ rh with a bifurcation surface B,

SW ¼ −2π
Z � ∂L

∂Rμνρλ

�
ϵμνϵρλdVκ

n; ð4:11Þ

where ϵμν is the binormal to B given by (3.3),

SW ¼ −2π
Z Xk

m¼1

1

2m
am
m

�∂δμ1μ2…μ2m−1μ2m
ν1ν2…ν2m−1ν2m Rμ1μ2

ν1ν2…Rμ2m−1μ2m
ν2m−1ν2ν

∂Rμνρλ

�
ϵμνϵρλdVκ

n

¼ −2π
Z Xk

m¼1

am

�
δacμ3μ4…μ2m−1μ2m
bdν3ν4…ν2m−1ν2m Rμ3μ4

ν3ν4…Rμ2m−1μ2m
ν2m−1ν2ν

�
ϵacϵ

bddVκ
n

¼ 2πVκ
n

�Xk
m¼1

Xm−1

l¼0

am2l−mþ1
rn−2mþ2
h

n − 2mþ 2

�
m − 1

l

�Y2l
p¼0

ðn − ð2m − 2Þ þ pÞκlWðm − 1 − lÞ
�
: ð4:12Þ
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Therefore, we can see that the entropy we defined from the
quasilocal mass coincides with Wald’s entropy.
We have derived the expressions of entropy for the

Killing horizons and see that it coincides with the stationary
limit of trapping horizons. One can alternatively utilize the
Kodama vector instead of the generator of the Killing
horizon to directly derive for the trapping horizon as
demonstrated in [53].

V. FINAL REMARKS

In this paper we explored various properties of the
spacetimes which are the warped product of a two-
dimensional Lorentzian spacetime and an n-dimensional
Einstein space. Assuming the form of the stress-energy
tensor to be (2.14), we revealed that the Weyl curvature of
the Einstein space must obey certain conditions (2.13). This
assumption comes not only from the simplification, but
also from the requirement that the metric (2.5) admits a
vacuum solution. Some nontrivial examples are given in
Appendix A. We found that all the isotropy irreducible
spaces fulfill this property. Our study enlarges considerably
the solution space of Lovelock gravity.
One immediate conclusion for replacing the

n-dimensional maximally symmetric subspace by the
Einstein space is that the metric shows the fall-off behaviors
different from the standard one. This means that theM − rh
diagram for the static black hole is much more complicated
than [14]. A possible future work in this direction is to
examine the P-V criticality of a black hole with Einstein
horizons and to expose the thermodynamic phase structure.
We then proceeded to define a quasilocal mass and

explored its physical properties, by extending the previous
works [30,31]. The rederivation of the quasilocal mass in
terms of the Kodama flux is desirable for the physical
interpretation of the quasilocal mass. Up to the certain
conditions among the Lovelock coefficients and the Weyl
curvature of the Einstein space, it turns out that the quasilocal
mass shares the samebehavior as that in general relativity [3].
This implies that the Misner-Sharp-type quasilocal mass
continues to be useful also in Lovelock gravity and can be
utilized to obtain a coherent picture of spacetime dynamics
as exemplified by gravitational collapse. We hope to come
back to the point for the deeper mathematical and physical
understanding of the conditions (3.30), (4.1).
Our formulation of Lovelock solutions with the warped

n-dimensional Einstein space is very robust and has plenty
of potential applications. We expect that the geometrody-
namics approach to Hamiltonian formulation of Lovelock
black holes [54] can be extended to the case with Einstein
horizons. It is also interesting to consider the effects of
nonlinear Maxwell field [55] and higher-rank p-form fields
[56], which would display an intriguing thermodynamic
phase by the interplay with Weyl curvatures of Einstein
spaces. One may also explore the generalization of C

functions [57] and the maximal entropy principle [58] into
the present context.
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APPENDIX A: EXAMPLES
OF EINSTEIN SPACES

We give some examples of Einstein spaces satisfying
(2.13). The condition (2.13b) is trivially met for the
homogeneous spaces G=H since they admit a frame in
which the curvature tensors take constant values. Remark
that not all the homogeneous spaces fulfill (2.13a). For
instance, we find that the homogeneous Sasaki-Einstein
space Tð1;1Þ described by the coset SUð2Þ × SUð2Þ=Uð1Þ
[59] fails to satisfy the m ¼ 2 condition of (2.13a). It has
been also shown in [34] that the family of homogeneous
Bohm metrics does not satisfy (2.13b). The following
examples are either the products of maximally symmetric
spaces or the symmetric spaces.

1. Products of maximally symmetric spaces

a. Kp × Kq

Let us consider the space consisting of the two products
of maximally symmetric spaces Kp × Kq (pþ q ¼ n),
where Kp denotes the p-dimensional maximally symmetric
space with a sectional curvature κ ¼ 0;�1. Then the
n-dimensional Einstein metric reads

γijdxidxj ¼
p − 1

pþ q − 1
dΩ2ðKpÞ þ q − 1

pþ q − 1
dΩ2ðKqÞ:

ðA1Þ

Decomposing indices i; j;… into fA;B;…g for Ωp and
fI; J;…g forΩq, the nonvanishing components of theWeyl
tensor are

CAB
CD ¼ κq

p − 1
δCDAB ; CAI

BJ ¼ −κδBAδJI ;
CIJ

KL ¼ κp
q − 1

δCDAB : ðA2Þ

In order to see whether the constraints (2.13a) are satisfied,
it is enough to check thatWðmÞij is proportional to δij for all
m. The constraint for m ¼ 1 is trivial, whereas the m ¼ 2
imposes the condition obtained in [34] and requires p ¼ q.
For arbitrary order, the left-hand side of (2.13a) reads
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WðmÞij ¼ κmδij
p

p − 1

Xm
s¼0

Xm−s

t¼0

22m−ðsþtÞ
�
m

s

��
m − s

t

��
p

p − 1

�
sþt ð−1Þm−ðsþtÞ

½p − ðmþ s − tÞ − 1�½p − ðl − sþ tÞ�

×

� Ymþs−t

α¼0

ðp − ðmþ s − tÞ − 1þ αÞ
�� Ymþt−s

β¼0

ðp − ðm − sþ tÞ þ βÞ
�
: ðA3Þ

This proves that the constraints (2.13a) are satisfied at arbitrary order of m.

b. Kp × � � � × Kp

The qth products of maximally symmetric spaces Kp also satisfy the condition (2.13a). The metric in this space is
given by

γijdxidxj ¼
Xq
σ¼1

�
p − 1

pq − 1

�
dΩ2ðKp

ðσÞÞ: ðA4Þ

The Weyl tensor is computed to give

CiðσÞjðσÞ
kðσÞlðσÞ ¼ κ

pðq − 1Þ
p − 1

δk
ðσÞlðσÞ
iðσÞjðσÞ ; CiðσÞjðρÞ

kðσÞlðρÞ ¼ −κδkðσÞ
iðσÞ δ

lðρÞ
jðρÞ for σ ≠ ρ; ðA5Þ

where fiðσÞ; jðσÞ;…g are indices for Ω2ðKp
ðσÞÞ. After lengthy calculations, the left-hand side of (2.13a) is

WðmÞij ¼ κmδji

�
pq

pq − 2m

� X
P

1≤σ≤ρ≤q
aðσÞðρÞ¼m

�
m!Q

1≤ζ≤η≤qaðζÞðηÞ!

�
2pðq − 1Þ
p − 1

�Pq
ξ¼1

aðξÞðξÞ ð−4Þ
P

1≤π<τ≤q
aðπÞðτÞ

×
�

1

p − ðaðγÞðγÞ þ
Pq

β¼1 aðβÞðγÞÞ − 1

YaðγÞðγÞþ
P

q
β¼1

aðβÞðγÞ

χγ¼0

�
p −

�
aðγÞðγÞ þ

Xq
β¼1

aðβÞðγÞ

�
− 1þ χγ

��

×
Yq

α¼1;α≠γ

�
1

p − ðaðαÞðαÞ þ
Pq

β¼1 aðαÞðβÞÞ
YaðαÞðαÞþ
P

q
β¼1

aðαÞðβÞ

χα¼0

�
p −

�
aðαÞðαÞ þ

Xq
β¼1

aðαÞðβÞ

�
þ χα

���
; ðA6Þ

where aðσÞðρÞ (1 ≤ σ; ρ ≤ q) are numbers satisfyingP
1≤σ≤ρ≤qaðσÞðρÞ ¼ m. One can easily see that the right-

hand side of (A6) is independent of any choice of γ. This
proves that the constraints (2.13a) are satisfied at arbitrary
order of m.

2. Isotropy irreducible spaces

We discuss here a class of homogeneous spaces satisfy-
ing (2.13). Let us start by introducing some mathematical
definitions (see [60] for details). Let G be the semisimple
Lie group. A manifold is said to be homogeneous when G
acts transitively. Letting H denote the isotropy subgroup of
G, the homogeneous space is described by a coset space
G=H. The homogeneous space is said to be symmetric if
there exists an involutive automorphism σ such that
σðhÞ ¼ h, σðkÞ ¼ −k, where h is the Lie algebra of H
and k is its complement in the Lie algebra g of G; i.e., we

have a Cartan decomposition, g ¼ h⊕ k. The homo-
geneous space is isotropy irreducible if the linear isotropy
representation of H is irreducible and the symmetric
isotropy irreducible space is simply called an irreducible
symmetric space.
As we commented earlier, the first condition (2.13a) is

always satisfied for any homogeneous spacesG=H, whereas
not all the homogeneous spaces meet the second condition
(2.13b). Let us here remind the theorem that any symmetric
G-invariant rank-two tensors are unique up to the multipli-
cation constant in the isotropy irreducible spaces [61]. It
follows that the symmetric tensor WðmÞij, as well as the
Ricci tensor, constructed out of the G-invariant metric must
be proportional to the G-invariant metric in the isotropy
irreducible spaces. Therefore, we have proven that all the
isotropy irreducible G-homogeneous spaces are Einstein
and satisfy the required conditions for the Weyl tensor
(2.13). In what follows, we shall provide some examples by
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focusing on the Riemannian irreducible symmetric spaces5

for which the explicit metrics are known. Of course, all the
G-homogeneous spaces listed in Tables 7.102–7.107 of
Besse’s textbook [60] provide desired examples.

a. Complex projective space CPN

The complex projective space is a Kähler-Einstein
symmetric space CPN ¼ SUðN þ 1Þ=SUðNÞ. In the com-
plex coordinates, the Kähler potential is given by

K ¼ l2 ln

�
1þ

XN
I¼1

zIz̄I
�
: ðA7Þ

The standard Fubini-Study metric ds2 ¼ 2γIJ̄dz
Idz̄J with

γIJ̄ ¼ ∂2K=∂zI∂z̄J reads

ds2 ¼ 2l2

1þ jzj2
�
dzIdz̄I − jz̄Idz̄Ij2

1þ jzj2
�
; ðA8Þ

where I ¼ 1;…; N ¼ n=2. The curvature tensors in the
complex basis are given by

RI
J
K
L½γ� ¼ −2l−2δIðJδKLÞ; RI

J½γ� ¼ ðN þ 1Þl−2δIJ;
R½γ� ¼ 2NðN þ 1Þl−2: ðA9Þ

Hence, l2 ¼ ðnþ 2Þ=½2ðn − 1Þ� gives the unit normaliza-
tion. In the real basis, we have

Cij
kl½γ� ¼ l−2

�
− 3

n − 1
δk½iδ

l
j� þ JijJkl þ Ji½kJjl�

�
; ðA10Þ

where J is the complex structure satisfying JikJkj ¼ −δij
and Jij ¼ J½ij�. Hence, it is almost obvious to see that the
symmetric tensor WðmÞij ¼ WðmÞji is proportional to γij
for eachm, although we omitted the detailed computations.
One can also consider the Bergmann space, which is the

negative curvature version of CPN ; namely, it is described
by a coset SUðN − 1; 1Þ=SðUðN − 1Þ × Uð1ÞÞ. This metric

arises as nonlinear sigma models of vector and hyper
multiplets in the framework of N ¼ 2 supergravity [62].
The Kähler potential is given by

K ¼ −l2 ln

�
1 −XN

I¼1

zIz̄I
�
; ðA11Þ

Since the curvature tensors of the Bergmann space are
given by the Wick rotation l → il of (A9), it is obvious
that the Bergmann space also satisfies (A9) as the complex
projective space.

b. Quadratic surface QN−2ðCÞ ¼ SOðN þ 2Þ=
SOðNÞ × SOð2Þ

The quadratic surface is the compact space of positive
curvature in n ¼ 2N dimensions. The noncompact version
SOðN; 2Þ=SOðNÞ × SOð2Þ appears as the nonlinear sigma
model forN ¼ 2 supergravity [63]. The Kähler potential is
given by

K ¼ l2 log

�
1þ 2

XN
I

zIz̄I þ
XN
I;J

ðzIz̄JÞ2
�
: ðA12Þ

The curvature tensors in the complex basis are

RI
J
K
L ¼ −l−2ðδIJδKL þ δILδ

K
J − δIKδJLÞ; ðA13Þ

giving l2 ¼ n=½4ðn − 1Þ�. It is then straightforward to
show explicitly that the condition (2.13) holds.

c. G2ð2Þ=SOð4Þ
This is a negative curvature, noncompact space

and describes a nonlinear sigma model arising from the
Uð1Þ2 reduction of five-dimensional minimal supergravity.
Setting ξ → ln f and f → −f [this sign flip ensures
H ¼ SOð4Þ instead of O(2,2)] in Ref. [64], the metric is
given by ds2 ¼ l2

P
8
i¼1ðeiÞ2, where

e1 ¼ dfffiffiffi
2

p
f
; e2 ¼ 1ffiffiffi

2
p

f
ðdχ þ v1du1 þ v2du2Þ; e3 ¼

ffiffiffi
3

2

r
dϕ; e4 ¼

ffiffiffi
3

2

r
eϕdκ;

e5 ¼ 1ffiffiffiffiffiffi
2f

p e−3ϕ=2dv1; e6 ¼ 1ffiffiffiffiffiffi
2f

p e3ϕ=2½du1 þ κ3dv1 −
ffiffiffi
3

p
κðdu2 − κdv2Þ�;

e7 ¼ 1ffiffiffiffiffiffi
2f

p e−ϕ=2ðdv2 þ
ffiffiffi
3

p
κdv1Þ; e8 ¼ 1ffiffiffiffiffiffi

2f
p eϕ=2ðdu2 − 2κdv2 −

ffiffiffi
3

p
κ2dv1Þ: ðA14Þ

Here eight variables (f; χ;ϕ; κ; v1; u1; v2; u2) span the co-
ordinate basis. TheRicci tensor isRij½γ� ¼ −4l−2γij; hence,

l2 ¼ 4=7 gives the correct normalization. From the general
argument given at the beginning of this appendix, this space
satisfies (2.13), which can also be checked explicitly (the
quartic term is trivial due to the dimensionally dependent
identities [43]). One can also confirm that the curvature
tensors take constant values in the above orthogonal basis.

5As far as the noncompact case is concerned, this exhausts all
the possibilities (Proposition 7.46 of [60]).
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d. SLðN;RÞ=SOðNÞ
This is the negative curvature symmetric space of

dimension n ¼ 1
2
ðN þ 2ÞðN − 1Þ. The coset arises as a

nonlinear sigma model when one dimensionally reduces
the D-dimensional Einstein’s gravity on an N-dimensional
torus [65]. The metric reads

γijdxidxj ¼ −l2

4
TrðdMdM−1Þ; ðA15Þ

where M is an N × N symmetric matrix with detM ¼ 1.
The Ricci tensor is given by Rij½γ� ¼ −ðN=l2Þγij, hence
l2 ¼ 2N=ðN2 þ N − 4Þ. A convenient parametrization of
the matrix M is M ¼ UT

RUDUR where UD is the diagonal
unimodular matrix and UR is the upper triangle matrix with
the diagonal entries equal to unity. To the best of our
knowledge, the Riemann curvature of this space does not
seem to have a simple expression for general N. In spite of
this, the group-theoretical reason ensures (2.13), as can be
checked for small N explicitly.

APPENDIX B: INCLUSION OF MATTER FIELDS

We present in this appendix some solutions with matter
sources. These solutions are instructive to give some
physical insights for readers.

1. Maxwell field

Let Fμν be a Faraday two-form satisfying

dF ¼ 0; d ⋆ F ¼ 0; ðB1Þ
with a stress-energy tensor

Tμν ¼ 2
	
FμρFν

ρ − 1

4
gμνFρσFρσ



: ðB2Þ

Due to the restriction Tai ¼ 0, the permissible form of the
two-form reads

F ¼ 1

2
Eϵabdya ∧ dyb þ 1

2
F̂ijdxi ∧ dxj: ðB3Þ

From the field equations, we get E ¼ EðyÞ, F̂ij ¼ F̂ijðxkÞ
with

E ¼ Qe

rn
; dF̂ ¼ 0; d ⋆γ F̂ ¼ 0; ðB4Þ

where Qe is a constant. Hence, F̂ is a harmonic two-form
on Kn. The nontrivial F̂ exists provided the second Betti
number of Kn is nonvanishing. Moreover, the stress-tensor
of the electromagnetic field must fall into the form (2.14),
which yields the additional restrictions

F̂ikF̂j
k ∝ γij; F̂ijF̂

ij ¼ const: ðB5Þ
The existence of nontrivial F̂ satisfying these conditions also
puts a restriction on the Einstein manifold. For instance, the
condition (B5) is satisfied if Kn is even dimensional and
admits an almost complex structure J with F̂ij ∝ Jij. Note

that in odd dimensions we have det F̂ij ≡ 0; hence, the first
condition of (B5) implies F̂ij¼0 provided Kn is Euclidean
(this can be shown by taking the determinant of γklF̂ikF̂jl¼
n−1γijF̂klF̂

kl. See e.g. [66] for a similar analysis).
Denoting F̂ikF̂j

k ¼ Q2
mγij where Qm is a constant, we

have

Tab ¼ −
�
Q2

e

r2n
þ nQ2

m

2r4

�
gab;

Tij ¼
�

Q2
e

r2n−2
þ ð4 − nÞQ2

m

2r2

�
γij: ðB6Þ

Since T̂ab ¼ 0 is fulfilled, it follows that Birkhoff’s
theorem holds for the present field configurations. The
solution of ðDrÞ2 > 0 is given by (3.15) with the left-hand
side of (3.16) replaced by

μ → μþ Vκ
n

�
Q2

e

ð1 − nÞrn−1 þ
nQ2

m

2ðn − 3Þr3−n
�
: ðB7Þ

Remark that we have Qm ¼ 0 for odd n. One sees that the
nonvanishing Qm gives rise to the slow falloff of the metric
at infinity.

2. Vaidya solution

Another interesting solution of physical interest is the
Vaidya-type radiating solution [26–29]. Let us consider the
null dust fluid as the stress-energy tensor

Tμν ¼ ρlμlν; ðB8Þ
where lμ is a null vector and ρ is the energy density of the null
dust. Here, let us introduce the outgoing null coordinates:

ds22 ¼ −fðv; rÞdv2 þ 2dvdr; lμ ¼ −∇μv: ðB9Þ
It follows that P ¼ 0, T̂ab ¼ ρ∇av∇bv; hence, the unified
first law implies dM ¼ ρAdv. This means that M is a
function of v only and the metric function fðv; rÞ satisfies

MðvÞ ¼ Vκ
n

�Xk
m¼1

1

2mþ1

am
m

rn−2mþ1

n − 2mþ 1
WðmÞ − rnþ1

nþ 1
Λ

þ
Xk
m¼1

Xm−1

l¼0

2l−mam
rn−2mþ1

lþ 1

�
m − 1

l

�

×

�Y2l
p¼0

ðn − ð2m − 2Þ þ pÞ
�

× ðκ − fÞlþ1Wðm − 1 − lÞ
�
: ðB10Þ

ρðv; rÞ is given by

ρ ¼ 1

Vκ
nrn

∂MðvÞ
∂v : ðB11Þ

The null energy condition requires thatMðvÞ is an increas-
ing function of v.
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