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Within the framework of the “brick wall model,” a novel method is developed to compute the
contributions of a scalar field to the thermodynamic quantities of black holes. The relations between
(transverse) momenta and frequencies in Rindler space are determined numerically with high accuracy and
analytically with an accuracy of better than 10% and are compared with the corresponding quantities in
Minkowski space. In conflict with earlier results, the thermodynamic properties of black holes turn out to
be those of a low-temperature system. The resulting discrepancy for partition function and entropy by 2
orders of magnitude is analyzed in detail. In the final part we carry out the analogous studies for scalar
fields in de Sitter space and thereby confirm that our method applies also to the important case of
spherically symmetric spaces.
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I. INTRODUCTION

The relations between momenta and energies are funda-
mental quantities in statistical physics. They determine the
density of states and, therefore, the partition function and
other thermodynamic quantities. Similarly, the momentum-
frequency relations (m-f relations) of fields in the presence
of a Killing horizon determine the corresponding thermo-
dynamic quantities. Before calculating them, singularities
of the fields at the horizon have to be regularized. We adopt
the most commonly used “brick wall” method [1–3] which
regularizes these singularities by restricting the fields to a
region close to but outside the horizon. Within this
framework a variety of investigations (cf. [4] or the reviews
[5,6] where other approaches are also discussed) have
been carried out, and corrections to the semiclassical
approximation have been investigated (cf. [7,8]). Other
methods have been applied and related to the brick
wall method such as the regularization via a Pauli-
Villars method [9]. In the most commonly applied pro-
cedure, the density of states of massless fields is evaluated
in a modified WKB approximation where, in addition, it
is assumed that the summation over the modes can be
replaced by an integration. To the best of our knowledge,
the validity of these approximations has never been
verified. It will be analyzed in detail.
We will apply the brick wall model for scalar fields in

Rindler spacetime. However, we will neither assume
a priori that the WKB approximation is appropriate nor

that the discrete set of eigenvalues can be replaced by a
continuum. We will present “exact” numerical results for
the m-f relations and the horizon induced partition function
and entropy. To provide insight we also will present various
approximate, analytical results which together cover the
whole range of frequencies. We will show that in the WKB
approximation the numerically determined value of the
partition function is underestimated by a factor of 3. It is
overestimated by 2 orders of magnitude if the sum over the
discrete modes is replaced by an integral which can be
determined analytically. It will be seen that the partition
function is, up to 1%, given by the lowest frequency mode.
The source of this large discrepancy will be identified
and its consequences will be discussed. We also will show
that finite mass effects are visible only under extreme
conditions.
In order to demonstrate the validity of our method

applied to spherically symmetric spaces, we have chosen
to calculate the thermodynamic quantities of scalar fields
in de Sitter space (in the static metric) where not only
numerical but again also approximate analytical results
can be obtained. We will establish the connection between
the angular momentum-frequency relations (am-f relations)
of de Sitter space and the m-f relations of Rindler space
(cf. [10]).

II. MOMENTUM-FREQUENCY RELATIONS OF
SCALAR FIELDS IN RINDLER SPACE

A. Scalar fields in Rindler space

A uniformly accelerated observer in Minkowski space
moves along the hyperbola [11]
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x2 − t2 ¼ 1

a2
; x⊥ ¼ 0;

with the acceleration denoted by a and the coordinates
transverse to the motion by x⊥. After the coordinate
transformation

t; x;x⊥ → τ; ξ;x⊥∶ tðτ; ξÞ ¼ 1

a
eaξ sinh aτ;

xðτ; ξÞ ¼ 1

a
eaξ coshaτ;

ð1Þ

a particle at rest in the observer’s system at ξ ¼ ξ0
corresponds to the uniformly accelerated motion in
Minkowski space with acceleration ae−aξ0 . The spacetime
defined by Eq. (1) is the Rindler space with the metric

ds2 ¼ e2κξðdτ2 − dξ2Þ − dx2⊥; κ ¼ a; ð2Þ

where the identity of the acceleration a and the surface
gravity κ has been used, cf. [12]. The coordinate trans-
formation (1) is not one-to-one. The coordinates −∞ < τ;
ξ < ∞ cover only one quarter of the Minkowski space, the
“Rindler wedge” Rþ,

R� ¼ fxμjjtj ≤ �xg:

Upon reversion of the sign of x in Eq. (1) it is the Rindler
wedge R− which is covered by the corresponding para-
metrization. No causal connection exists between the two
Rindler wedges R�.
We consider a noninteracting scalar field ϕ in Rindler

space with the action

S ¼ 1

2

Z
dτdξdx⊥fð∂τϕÞ2 − ð∂ξϕÞ2

− ðm2ϕ2 þ ð∇⊥ϕÞ2Þe2κξg; ð3Þ

which is nothing other than the Minkowski space action
restricted to one of its quarters. The solutions of the
equations of motion, vanishing exponentially with
ξ → ∞, read

ϕðτ; ξ;x⊥Þ ¼ e−iωτeik⊥x⊥Kiω=κðzðξÞÞ;

zðξÞ ¼ 1

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

q
eκξ; ð4Þ

with the MacDonald function satisfying the differential
equation

�
−

d2

dξ2
þ ðm2 þ k2⊥Þe2ξ − ω2

�
Kiω=κðzðξÞÞ ¼ 0: ð5Þ

Here and in the following we assume dimensionful quan-
tities to be given in units of powers of κ.

B. Partition functions and momentum-frequency
relations

For calculating the thermodynamic quantities, we follow
the procedure in [2] and restrict the system under consid-
eration to a part of the Rindler space. The resulting discrete
spectrum consists of eigenvalues characterized by three
integers n; n2; n3 and the basic thermodynamic quantity, the
partition function, is given by

lnZ ¼ −
X∞
n;n2;n3

lnð1 − e−βωðn;n2;n3ÞÞ: ð6Þ

In the transverse directions the system is restricted to a
square with side-length L. We impose periodic boundary
conditions and replace the sum over n2; n3 by an integral,

lnZ ¼ −
A
2π

X∞
n¼1

Z
∞

0

k⊥dk⊥ lnð1− e−βωnðk⊥ÞÞ; A ¼ L2:

ð7Þ

The restriction of the ξ variable has to account for the
infinite degeneracy of the spectrum [13]. Related to this
degeneracy is the well-known fact that the Minkowski
ground state is seen by a uniformly accelerated observer
as a system at finite temperature, the (Unruh) temperature,
cf. [14],

T ¼ 1

β
¼ 1

2π
: ð8Þ

Various possibilities exist to remove the degeneracy. We
also follow here the procedure in [2] and remove the
degeneracy by requiring the space to be limited to the
region ξ ≥ ξ0. We impose Dirichlet boundary conditions
for the eigenmodes at the finite distance eξ0 from the
horizon. Due to the exponential increase of the repulsive
“potential” in the wave equation (5), a discrete spectrum
with respect to the ξ variable is obtained without erecting a
second wall. For a given value of ω and given the number n
of zeroes, the vanishing of the MacDonald function
[cf. Eq. (4)] determines the value of k⊥,

KiωðKnðωÞÞ ¼ 0; with KnðωÞ ¼ eξ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ðn;ωÞ þm2

q
:

ð9Þ

For evaluation of the thermodynamic quantities, the level
density [cf. Eq. (7)] associated with the transverse motion
has to be computed. We shall refer to the resulting relation
between Kn and ω as the “momentum-frequency (m-f)
relation” (cf. the corresponding well-known m-f relation
(14) in Minkowski space). In terms of these quantities
the level density can be computed for any value of the
parameters ξ0;A; m,
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A
2π

X∞
n¼1

k⊥ðn;ωÞdk⊥ðn;ωÞ

¼ A
2πl2

X∞
n¼1

KnðωÞ
dKnðωÞ
dω

θðKnðωÞ −mlÞdω; ð10Þ

where l ¼ eξ0 denotes the distance of the boundary to the
horizon and ml the mass of the field in units of 1=l.
According to Eq. (7) the logarithm of the partition function
reads

lnZ ¼ A
4l2

X∞
n¼1

ζnðβ;ω0
nÞ; ð11Þ

where, after an integration by parts, the functions ζn are
given by,

ζnðβ;ω0
nÞ¼

1

π

�
K2

nðω0
nÞ lnð1−e−βω

0
nÞþβ

Z
∞

ω0
n

dωΦnðω;βÞ
�
;

Φnðω;βÞ¼
K2

nðωÞ
eβω−1

; ð12Þ

with the lower limit of the ω integration [cf. Eq. (9)],

Knðω0
nÞ ¼ ml: ð13Þ

In the following we assume the mass to vanish. It will be
shown in the last paragraph of Sec. III that only under
extreme conditions finite mass effects can become relevant.

C. m-f relations in Rindler and Minkowski space

The m-f relations and partition function in Rindler space
will be compared in the following with the corresponding
quantities in Minkowski space. To this end, we assume a
scalar massless field to be confined in one direction to an
interval of size λ, i.e., the Minkowski space m-f relations
are given by [for comparison, cf. Eq. (9)]

KM;nðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ðnπ=λÞ2

q
; ð14Þ

and the partition function reads [cf. Eq. (7) and for
comparison Eqs. (11) and (12)]

lnZM ¼ A
4λ2

X∞
n¼1

ζM;nðβ; λÞ;

with ζM;nðβ; λÞ ¼
βλ2

π

Z∞

nπ=λ

dωΦM;nðω; βÞ;

ΦM;nðω; βÞ ¼
K2

M;nðωÞ
eβω − 1

: ð15Þ

The core of our numerical studies of the m-f relations are
displayed in Fig. 1. In a log-log plot are shown the m-f

relations in Rindler [KnðωÞ] and in Minkowski space
[KM;nðωÞ] for various values of n. While the Minkowski
space m-f relations are given analytically by Eq. (14), the
Rindler space m-f relations have been obtained by solving
Eq. (9) numerically. Also shown is the square root of the
“Boltzmann factor” which, if multiplied withKnðωÞ, yields
the square root of the integrands of the partition function,
cf. Eq. (12). The peculiarities of the Rindler space m-f
relations are evident in the comparison with the Minkowski
m-f relations. In Minkowski space each of the momenta
KM;n exhibits a threshold which for vanishing mass is given
by ω ¼ nπ=λ [cf. Eq. (14)], while in Rindler space the m-f
relations cover the whole range of ω. This is a consequence
of imposing in Rindler space only one boundary condition
[cf. Eq. (9)]. Unlike in Minkowski space, a second
boundary condition is not necessary due to the infinitely
increasing strength of the repulsion [cf. Eq. (5)] with
increasing ξ. In other words, the waves “tunnel” into a
region which for instance would not be accessible to a
classical particle.
For assessing the accuracy of the numerically determined

zeroes of the MacDonald functions, cf. Eq. (9), a well-
defined measure is the following quantity, cf. [15],

χðω; nÞ ¼ KiωðzÞ
z d
dz KiωðzÞ

¼ Kiω−1ðzÞ − Kiωþ1ðzÞ
iωðKiω−1ðzÞ þ Kiωþ1ðzÞÞ

.

For −2.4 ≤ lnω ≤ 6.0 (cf. Fig. 1), and for n ¼ 1 (with
similar results for n > 1) the accuracy varies in the interval,

−42 ≤ ln χðω; 1Þ ≤ −32:

Having determined the m-f relations one can proceed
directly to Sec. III and determine by integrations the
thermodynamic quantities. Before proceeding, however,
we will develop two different but complementary analytical
approximations, the “pole dominance” (PD) and the WKB

FIG. 1 (color online). Double logarithmic plots of numerically
determined momentum-frequency relations KnðωÞ [Eq. (9)] in
Rindler space for five values of n (solid, red curves) are compared
with m-f relations [Eq. (14)] in Minkowski space (dashed, black
curves) with λ ¼ 2.1 and n ¼ 1 and 64. The curve decreasing
with lnω is half the logarithm of the “Boltzmann factor”
−0.5 lnðeβω − 1Þ [cf. Eq. (12)] (solid black curve).
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approximation in order to gain insight into the properties of
the m-f relations.

D. Pole dominance approximation

In the small Kn=ω regime, the m-f relations are deter-
mined by the asymptotics, ξ0 ≪ −1, of the MacDonald
functions (cf. [15]),

kiωðKnÞ ≈ −
ffiffiffi
2

π

r
sinðωξ0 − δÞ;

e2iδ ¼ Γð1þ iωÞ
Γð1 − iωÞ

�
e−ξ0KnðωÞ

2

�
−2iω

:

Thus, kiωðKnÞ vanishes ifωξ0 − δþ nπ ¼ 0, and we obtain

lnKnðωÞ ≈ ðargΓð1þ iωÞ − nπÞ=ωþ ln 2≡ ln ~KnðωÞ:
ð16Þ

The positions of the singularities of Kn in the complex
ω-plane coincide with the positions of the poles of the
Rindler space propagator Fourier transformed in time [16],
and we shall refer to (16) as pole dominance (“PD”)
approximation. The accuracy of this approximation
together with the WKB approximation as functions of
the logarithm ofω for various values of n is shown in Fig. 2.
To analyze the shape of the m-f relations we first

consider the small ω region where the m-f relation (16)
simplifies,

~Kn ∼
ω→0

e−ðnπ=ωþγ−ln 2Þ; ð17Þ

with Euler’s constant γ. It exhibits an essential singularity
at ω ¼ 0 which is responsible for the steep increase of
~Kn with ω. This behavior has its origin in the infinite
degeneracy of the spectrum of the Rindler space
Hamiltonian in the absence of the boundary [cf. the wave
equation (5)] corresponding to a vertical line for each
value of ω. Furthermore, as in the degenerate case, in
the regime of validity of Eq. (17), the curves for different
n are parallel, i.e., for ~KmðωmÞ ¼ ~KnðωnÞ these curves
satisfy lnωm − lnωn ¼ lnm − ln n. The vertical distances
between the curves (cf. Fig. 1) are given by Eq. (16),

ln ~KmðωÞ − ln ~KnðωÞ ¼ ðn −mÞπ=ω; ð18Þ
in agreement within 10% with the numerical results for
ω ≤ 8 (cf. Fig. 2). According to Eq. (16), the m-f relations,
evaluated in PD approximation, converge to the limit,

~KnðωÞ ∼
ω→∞

2ω

e
e−ðn−1=4Þπ=ω; ð19Þ

which deviates from the numerically determined asymp-
totics by the factor 2=e.

E. WKB approximation

For not too small values of ω (cf. Fig. 2), the WKB
approximation [1], can be applied successfully for calcu-
lating the m-f relations. Together with an additional
approximation, it has become the most common tool
for calculating analytically thermodynamic quantities in
Schwarzschild [1] and Rindler [2] spaces (cf. also the
reviews [5] and [6]). The WKB m-f relations, K̂nðωÞ, are
obtained by solving the equation, cf. [1,2],

nπ ¼
Z

ξ1

ξ0

dξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − e2ðξ−ξ0ÞK̂2

nðωÞ
q

; ð20Þ

where ξ1 denotes the turning point. This integral can be
evaluated analytically and the WKB m-f relations are
obtained as solutions of the following equation,

nπ
ω

¼ hðηÞ;

hðηÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
þ lnð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
þ 1Þ − ln η;

0 ≤ η ¼ K̂n

ω
≤ 1: ð21Þ

This equation implies that the solutions K̂n are given in
terms of the inverse of the function,

K̂nðωÞ ¼ ωh−1
�
nπ
ω

�
: ð22Þ

Although a complete analytical solution cannot be attained,
expansion of hðηÞ around η ¼ 0 and η ¼ 1 yield explicit
expressions in the limits of small and of large values of ω,
respectively,

FIG. 2 (color online). Deviations ~Kn=Kn − 1 of the pole
dominance approximation, decreasing with increasing lnω,
(dotted, purple lines) and of the WKB approximations
K̂n=Kn − 1, increasing with increasing lnω, (dashed, blue lines)
from the exact results. Asymptotically, the deviations
~KnðωÞ=KnðωÞ − 1 approach the lnω axis (δK=K ¼ 2=e − 1)
[cf. Eq. (19)] and the deviations K̂nðωÞ=KnðωÞ − 1 approach 0,
[cf. Fig. 1 and Eq. (23)]. For fixed ω the absolute values of the
deviations (of pole dominance and WKB approximations)
decrease with increasing n.
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K̂nðωÞ ∼
ω→0

ωe−ðnπ=ωþ1−ln 2Þ;

K̂nðωÞ ∼
ω→∞

ω

�
1þ 1

2

�
3nπ
ω

�
2=3

þ 7

40

�
3nπ
ω

�
4=3

�
−1
:

ð23Þ
As one might expect, the semiclassical WKB approxima-
tion fails to describe properly the m-f relations in the small
ω limit. Compared to the PD approximation ~KnðωÞ (17)
which becomes exact in the small ω limit, the correspond-
ing WKB approximation is suppressed (cf. Fig. 2) by the
factor ωe−1þγ. It reproduces, however, in agreement with
the numerical results, the ω → ∞ limit of the m-f relation.
We observe that for large values of ω the Rindler and

Minkowski space m-f relations still exhibit significant
differences. While in Minkowski space, the momenta
with different n converge, they diverge in Rindler space
[cf. Eq. (23)]

KM;nðωÞ −KM;mðωÞ →
ω→∞

1

2ω

π2

λ2
ðm2 − n2Þ;

K̂nðωÞ − K̂mðωÞ →
ω→∞

ð3πÞ
2

2=3
ðm2=3 − n2=3Þω1=3:

Figure 1 demonstrates this difference between Rindler and
Minkowski space at lnω ≥ 4.6. Related to this property is
the difference of the level density at large ω [cf. Eq. (14)],

1

2

d
dω

K̂2
nðωÞ →

ω→∞
ω −

2

3
ð3nπÞ2=3ω1=3;

1

2

d
dω

K2
M;nðωÞ ¼ ω:

ð24Þ

III. THERMODYNAMIC QUANTITIES

A. Thermodynamic properties of massless fields

Given the m-f relations, the thermodynamic quantities
are, apart from a boundary term, (present only if m ≠ 0)
obtained by integrating K2

nðωÞ over ω weighted with the
“Boltzmann factor” [Eq. (12)] and by summing over n.
The integrands are shown in Fig. 3 for n ¼ 1; 2; 3. These
curves are the result of the interplay between the increasing
squared momenta and the decreasing “Boltzmann factor”
as a function of ω (cf. Fig. 1). The positions of the maxima
coincide roughly with the positions of the crossing of the
squared momenta and of the “Boltzmann factor” in Fig. 1.
These results demonstrate dominance of the n ¼ 1 con-
tribution which in turn is dominated by the maximum at
ω ≈ 1 with K1 ≈ 0.06 (cf. Fig. 1). Also shown is the
integrand of the corresponding Minkowski space quantity
ΦM;1ðωÞ [cf. Eq. (15)] which, due to the presence of
threshold at ωth ¼ π=λ ¼ π=2.1 (cf. Fig. 1), exhibits
a rather different structure. The maximum is reached
at ω ≈ ωth þ 1=β and approaches Φ1ðωÞ asymptotically
[cf. Eqs. (15) and (23)]

ΦM;1ðωÞ
Φ1ðωÞ

→
ω→∞

1þ ð3π=ωÞ2=3:

Given these results for ΦnðωÞ, it is straightforward to
determine numerically the logarithm of the partition func-
tion [cf. Eqs. (11), (12)] and the entropy,

S ¼ A
4l2

ð1 − β∂βÞ
X∞
n¼1

ζnðβ;ω0
nÞjβ¼2π; ð25Þ

and to study analytically these quantities. In the PD
approximation the n-sum can be carried out with the help
of the relation (18), and the calculation of the logarithm of
the partition function is reduced to a quadrature [cf.
Eq. (16)],

ln ~Z ¼ βA
πl2

Z
∞

0

e2 argΓð1þiωÞ=ωdω
ðeβω − 1Þðe2π=ω − 1Þ : ð26Þ

Correspondingly, in the WKB approximation, Eq. (22)
implies,

K̂nðωÞ ¼ nK̂1ðω=nÞ; ð27Þ

and the partition function can be expressed in terms of
K̂1ðωÞ

ln Ẑ ¼ A
4l2

Z
∞

0

dωσ̂ðωÞ; with

σ̂ðωÞ ¼ β

π
K̂2

1ðωÞ
X∞
n¼1

n3

eβnω − 1
: ð28Þ

The results of our studies of the thermodynamic quan-
tities are compiled in Table I. Up to corrections of about
1%, the n ¼ 1 terms of the logarithm of the partion function
(and similarly of the entropy) coincide with the n-summed

FIG. 3 (color online). Logarithm of the integrand Φn of the
partition function [Eq. (12)] as a function of lnω for n ¼ 1; 2; 3,
calculated numerically (solid, (red) lines), in the PD approxima-
tion (dotted, (purple) lines) and in the WKB approximation
(dashed, (blue) lines) in comparison with the Minkowski-space
quantity lnΦM;1ðωÞ [cf. Eq. (15)].
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results reflecting the strong suppression of lnΦn with
increasing n as displayed in Fig. 3. The PD results agree
with the corresponding numerically determined “exact”
results with an accuracy of better than 1% (cf. Fig. 3), while
the WKB results are too small by a factor of about 3.

B. Black holes as low-temperature systems

Qualitative confirmation of and insights into the numeri-
cal results can be obtained by applying the approximate
expression (17) according to which

Φnðω; βÞ ≈ 4e−2γe−2πn=ω−βω: ð29Þ

We conclude that the maxima of Φnðω; βÞ are given by

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn=β

p
; n ¼ 1; 2;…; ð30Þ

implying

ln
Φnðωn; 2πÞ
Φ1ðω1; 2πÞ

¼ −4πð ffiffiffi
n

p
− 1Þ ¼ −5.2;−9.2

for n ¼ 2; 3:

These values of the positions and ratios of the maxima
agree well with the numerical results shown in Fig. 3.
Furthermore, by carrying out the ω integration we obtain
[cf. Eq. (12)]

ζn
ζ1

≈ n1=4e−4πð
ffiffi
n

p
−1Þ ≈ 0.0065; 0.00013 for n ¼ 2; 3;

which, within 10% and 25%, agree with the corresponding
numerical results. The partition function is dominated by
the n ¼ 1 term with

ζ1 ≈ 25=2e−2γe−4π ¼ 6.22 × 10−6;

which agrees within a factor of 2 with the numerical results
in Table I. In the language of thermodynamics, the
dominance of the n ¼ 1 term is to be interpreted as the
low-temperature limit. Only by a sufficient increase of
the temperature T ≫ 1=2π, i.e., by decreasing the slope of
the Boltzmann factor in Fig. 1, the modes with n > 1 can
contribute significantly. According to Eq. (30), this is the

case if the temperature increases by a factor
of ð4πð ffiffiffi

n
p

− 1ÞÞ2.
This dominance of the n ¼ 1 contribution is not at all

specific for the Rindler space or the other spaces to be
considered. For sufficiently large values of υ ¼ βπ=λ
which is the case for the choice λ ¼ 2.1, (cf. Fig. 1),
the Minkowski space partition function is given by
[cf. Eq. (15)]

lnZM ≈
A
λ2

X∞
n¼1

πð1þ nυÞ
2υ2

e−nυ: ð31Þ

The sudden increase of ΦM;nðωÞ is due to the thresholds at
νn ¼ nπ=λ and is dominated by ζM;1.

C. Modified WKB approximation and analytical
expressions for partition function and entropy

Since the work of ’t Hooft and of Susskind and Uglum a
simplified version of the WKB approximation has been the
commonly used tool for calculating analytically the black
hole thermodynamic quantities. This simplification is valid
only if two conditions are satisfied: The sum over the
modes in Eq. (28) can be replaced by an integral and the
range of this integration can be increased by changing
the lower limit of the integration from 1 to 0, i.e.,

ln Ẑ → ln Ẑapx ¼
βA
4πl2

Z
∞

0

dνν3
Z

∞

0

dω
1

eβνω − 1
K̂2

1ðωÞ:
ð32Þ

After carrying out the ν integration, also the ω integral
can be calculated analytically with the help of Eqs. (21)
and (22),

Z
∞

0

ν3

eνβω − 1
dν ¼ 1

240

�
2π

βω

�
4

;

Z
∞

0

dω
K̂2

1ðωÞ
ω4

¼ −
1

π

Z
1

0

dηη2
dh
dη

¼ 1

3π
; ð33Þ

and yields the following well-known expression for the
logarithm of partition function and entropy,

ln Ẑapx ¼
A=4l2

360π
≡ 1

4
Ŝapx; ð34Þ

in agreement with the results in [1,2] (provided l is
identified with the Planck length). However, they are in
disagreement with the WKB results in Table I which are
smaller by a factor of 235 and 116 for partition function and
entropy, respectively. The increase of the partition function
by 2 orders of magnitude if the range of ν is extended from
1 to 0 does not come as a surprise. An increase of similar
strength occurs in the increase of Φn when decreasing n
from 2 to 1 (cf. Fig. 3) which in turn has its origin in the

TABLE I. n ¼ 1 and summed contributions to the logarithm of
the partition function and up to a factor the entropy S [cf.
Eq. (25)] for vanishing mass calculated numerically in the PD and
WKB approximations.

ζ1
P

nζn S · 4l2=A

NUM 1.27 × 10−5 1.30 × 10−5 9.68 × 10−5

PD 1.26 × 10−5 1.28 × 10−5 9.64 × 10−5

WKB 3.72 × 10−6 3.77 × 10−6 3.08 × 10−5
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increase of both, the square of the momentum KνðωÞ and
the “Boltzmann factor” 1=ðeβω − 1Þ (cf. Fig. 1). As shown
in the Appendix, the value of ln Ẑapx [Eq. (34)] is obtained
within 0.1% if the ν integration, [cf. Eq. (32)] is limited to
the unphysical region 0 ≤ ν ≤ 1.
The same phenomenon occurs if we proceed to calculate

the Minkowski space partition function (31) in a similar
way and approximate the n-sum by an integration with the
result,

lnZM;apx ¼
A
λ2

Z
∞

ν0

dνζμν ¼ A
λ2

πð2=υþ ν0Þ
2υ2

e−υν0 : ð35Þ

With the values ν0 ¼ 0 and ν0 ¼ 1, the ratio of the
exact [Eq. (31)] and the approximate results are given,
for υ ≫ 1, by

lnZM;apx

lnZM

����
ν0¼0

≈
2

υ2
eυ;

lnZM;apx

lnZM

����
ν0¼1

≈
1

υ
; ð36Þ

i.e., we find the same pattern as above. Also the Minkowski
space partition function is overestimated by orders of
magnitude if ν0 ¼ 0 and much closer to the exact results
if ν0 ¼ 1.
Qualitatively, the failure of replacing the sum over either

the Rindler or the Minkowski space modes, by an integra-
tion is evident in view of Fig. 1. Only if, as a function of ω,
the “Boltzmann factor” is significantly flatter the replace-
ment of the summation by an integration can be justified.
In turn, this can be achieved only by increasing the
temperature, i.e., by decreasing β significantly which,
however, is not an option for the black hole thermody-
namics where β ¼ 2π.

D. The role of the boundary condition

In concluding our discussion of the thermodynamic
quantities of massless fields, we discuss the role of the
boundary condition for the thermodynamic quantities. We
have seen that the only way to vary the thermodynamic
quantities is via the prefactor A=4l2. As will be shown in
Sec. IV, the expressions for the thermodynamic quantities
apply also for de Sitter space and more generally for
spherically symmetric spaces with static metrics. The only
freedom which is left is the choice of the boundary
condition. While irrelevant, cf. [5], if many modes con-
tribute, the choice of the boundary condition becomes
important if only one or a few modes dominate. We
demonstrate this uncertainty by modifying the brick wall
model and replace the Dirichlet [Eq. (9)] by the Neumann
boundary condition which in PD amounts to replace in
Eq. (16) nπ=ω → ðn − 1=2Þπ=ω resulting in the following
expression for the partition function,

ln ~ZNe ¼
βA
πl2

Z
∞

0

eð2 argΓð1þiωÞþπÞ=ωdω
ðeβω − 1Þðe2π=ω − 1Þ : ð37Þ

Numerical evaluation of this expression yields, in com-
parison with the results (PD) of Table I an enhancement of
the partition function by a factor of 32 and of the entropy by
a factor of 22. Taking into account that the numerical and
the PD values of partition function and entropy are larger
than the WKB results (cf. Table I) by factors of 3.4 and 3.1,
respectively, we find that up to factors of 2.1 and 1.7 the
values of Eq. (34) are obtained by imposing Neumann
boundary conditions, cf. Eq. (37).

E. Effects of masses on thermodynamic properties

With introduction of a mass, a new scale enters, (for a
calculation of the free energy for massive fields within the
WKB approximation cf. [17]). The distance l ¼ eξ0 to the
horizon appears not only as prefactor l−2 in the partition
function. According to Eq. (12) the thermodynamic proper-
ties of both massive and massless fields are determined by
the same quantities, KnðωÞ. Differences result exclusively
from the surface terms, ∼K2

n, and the presence of the
nonvanishing lower limit ω0

n in the ω integration which is
determined by ml, the product of the mass and the distance
to the horizon, cf. Eq. (13). As indicated by Fig. 3, the
effect of the nonvanishing surface term and of the lower
limit of integration for n ¼ 1 is, at the level of 1% or
smaller, negligible for ω ≤ 0.5. Therefore the minimal
mass, necessary for affecting the thermodynamic quan-
tities, must satisfy [cf. Eq. (13)],

m ≥ K1ð0.5Þl−1 ¼ 2πK1ð0.5ÞTl;

where Tl denotes the Tolman temperature at the distance l
from the horizon. Identifying l with the Planck length the
above inequality reads in terms of the Planck mass MP

m ≥ 2 × 10−3MP: ð38Þ

Thus unless there are particles with masses of the order of at
least 10−3× the Planck mass (“Micro black holes”), or there
is a reason to increase the distance of the boundary to the
horizon from the Planck length to at least 10−3× Compton
wavelength of the corresponding particle, the mass of the
particle does not affect the thermodynamic quantities.
Given the independence of the thermodynamic quantities

from the mass of the particles outside the range (38) we
can get a rough estimate of the entropy generated by the
particles of the standard model. To this end, we assume
that, apart from the multiplicity, all fundamental particles
(leptons, quarks, gauge bosons and the Higgs particle)
contribute the same amount to the entropy resulting in a
value of sð0Þ (cf. Table I) of the order of 10−2. The
ambiguity in the choice of the boundary condition results in
an uncertainty of a factor of 22 [cf. Eq. (37)]. Together with
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the uncertainty in choosing the value of the distance to the
horizon, this estimate could be wrong by 1 or 2 orders of
magnitude. Beyond this uncertainty we also have to take
into account that all particles beyond the standard model
with masses in the range

1 TeV ≤ m ≤ 1013 TeV;

such as possible supersymmetric partners of the particles in
the standard model, contribute with the same weight to the
partition function and other thermodynamic quantities as
the particles with masses below 1 TeV.

IV. ANGULAR MOMENTUM-FREQUENCY
RELATIONS IN DE SITTER SPACE

The purpose of the following study is twofold. We will
first determine the angular momentum-frequency relations
(am-f relations) in de Sitter space by applying analytical
and numerical methods and at the same time we will
establish quantitatively the connection between the Rindler
space m-f and de Sitter space am-f relations. Thereby we
will exhibit quantitatively validity and limits of the near
horizon approximation.

A. am-f relations in de Sitter space

Starting point of our studies is the de Sitter space metric
in static coordinates, cf. [18]

ds2 ¼ ð1 − r2κ2Þdt2 − 1

1 − r2κ2
dr2 − r2dΩ2; ð39Þ

with the de Sitter radius given by the inverse of the surface
gravity κ. The radial eigenfunctions φlðrÞ with angular

momentum l of the wave equation associated with the
above metric are well known [19]. We impose the same
type of boundary condition as for the Rindler space
eigenfunctions,

φlðrÞ
���
r2¼1−e2ξ0

¼ 0;

φlðrÞ ¼ rlð1 − r2Þ12iω2F1

�
ðKþe−ξ0 þ iωÞ=2;

ðK−e−ξ0 þ iωÞ=2; lþ 3=2; r2
	
; ð40Þ

where we have introduced,

K� ¼ eξ0
�
lþ 3=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2

q �
:

In accordance with Eq. (9), we have included in this
definition the suppression factor eξ0 accounting for the
time dilation of the transverse motion which, close to the
horizon, affects the de Sitter space am-f and the Rindler
space m-f relations in the same way. We therefore expect
the relevant values of l to be of the order of e−ξ0 .
By applying one of the linear transformation formulas

for the hypergeometric function [20] the change in Eq. (40)
from 1 − e2ξ0 to the more appropriate variable e2ξ0 is
achieved,

φlð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2ξ0

p
Þ

¼ ð1 − e2ξ0Þl=2Re½ρðω;Kþ;K−; ξ0Þσðω;Kþ;K−; ξ0Þ�;
ð41Þ

with

ρðω;Kþ;K−; ξ0Þ ¼
ΓððKþ þK−Þe−ξ0=2ÞΓð−iωÞeiωξ0

ΓððKþe−ξ0 − iωÞ=2ÞΓððK−e−ξ0 − iωÞ=2Þ ;

σðω;Kþ;K−; ξ0Þ ¼ 2F1ððKþe−ξ0 þ iωÞ=2; ðK−e−ξ0 þ iωÞ=2; iωþ 1; e2ξ0Þ; ð42Þ

and the boundary condition is rewritten as

ψðω;Kþ;K−; ξ0Þ ¼ arg ρðω;Kþ;K−; ξ0Þ
þ arg σðω;Kþ;K−; ξ0Þ

¼ −
�
n −

1

2

�
π: ð43Þ

Solution of this equation which we have carried out
numerically yields the de Sitter space am-f relations.

B. Near horizon approximation

For analytical studies, this equation serves as starting
point for the “near horizon approximation” which we

define as the expansion in terms of the distance eξ0 to
the horizon. To leading and next to leading order we obtain
from Eq. (42), by treating l as a continuous variable,

arg ρ0 ¼ argΓð−iωÞ þ ω lnðKdS=2Þ;

arg ρ1 ¼ −ω
Kþ þK−

2KþK−
eξ0 ¼ −ω

lþ 3=2
l2 þ 3lþm2

; ð44Þ

and after a tedious calculation,

argðσ0 þ σ1Þ ≈ arg σ0

−
Kþ þK−

2KdS
eξ0ImðIiωþ1ðKdSÞ=IiωðKdSÞÞ;

ð45Þ
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where

KdS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KþK−

p
¼ eξ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 3Þ þm2

q
: ð46Þ

For ω ≤ 3 the contribution of σ to ψ is negligible and the
am-f relations satisfy,

argΓð−iωÞ þ ω lnðKdS=2Þ ¼ −
�
n −

1

2

�
π:

These solutions coincide with the Rindler space am-f
relations obtained in the PD approximation (16), i.e., for
given n and ω the identity, KdSðn;ωÞ ¼ KnðωÞ, holds. As
in Rindler space, the appearance of Γð−iωÞ reflects the
presence of poles (in the complex ω plane) of the de Sitter
space propagator Fourier transformed in time.
To calculate σ0 we order the terms in the hypergeometric

function (42) according to powers of eξ0 and find to leading
order in this expansion cf. [15],

σ0ðω;Kþ;K−; ξ0Þ ¼
X∞
n¼0

1

n!

�
KdS

2

�
2n Γðiωþ 1Þ
Γðiωþ nþ 1Þ

¼ iωΓðiωÞðKdS=2Þ−iωIiωðKdSÞ:
ð47Þ

Combining with the leading order term ρ0 [Eq. (44)], the
approximate boundary condition [cf. Eq. (43)] reads,

ψ0ðω;Kþ;K−; ξ0Þ ¼ arg IiωðKdSÞ þ
π

2
¼ −nπ þ π

2
: ð48Þ

The relation [15],

KiωðKÞ ¼ π

sinhωπ
Im IiωðKÞ;

implies that the zeroes of KiωðKÞ coincide with the zeroes
of Im IiωðKÞ. Thus to leading order, the am-f relations and
therefore the thermodynamic quantities in de Sitter space
coincide with the corresponding quantities in Rindler space
with the identification of the “momenta” given in Eq. (46).

C. Validity and limitation of the de Sitter-Rindler
space connection

The origin as well as limitations of the connection
between de Sitter space am-f and Rindler space m-f
relations are easily identified by comparing the correspond-
ing wave equations. To this end we change the de Sitter
space coordinate r ¼ − tanhðξþ ln 2Þ; ξ ≤ − ln 2, which
yields the following wave equation:

�
−

d2

dξ2
þ Vlðξþ ln 2Þ − ω2

�
φlðξÞ ¼ 0; with

VlðξÞ ¼
lðlþ 1Þ
sinh2ξ

þm2 − 2

cosh2ξ
:

ð49Þ

Equation (49) can be replaced by the Rindler space
wave equation [Eq. (5)] provided φlðξÞ is localized
sufficiently close to the horizon. For this to happen the
centrifugal barrier has to be sufficiently large, ðlðlþ 1Þþ
m2 − 2Þe2ξ ≫ ω2. The tighter and tighter localization with
increasing angular momentum is illustrated in Fig. 4. Also
shown is the relative difference between de Sitter and
Rindler space “potentials”

δV ¼ ðVlðξþ ln 2Þ − 4ðlðlþ 1Þ þm2Þe2ξÞ=Vlðξþ ln 2Þ;
ð50Þ

for l ¼ 5; m ¼ 0. Already for values with angular momenta
as small as l ¼ 1, only a weak overlap between the
eigenfunction φ1 and the difference δV is found. On the
other hand, due to the absence of the centrifugal barrier
the wave-function for m ¼ 0 and l ¼ 0 is not dominated
by the near horizon region.
These considerations lead us to consider in detail the

am-f relation at small angular momenta l where significant
differences between de Sitter and Rindler space results
occur. On the right-hand side of Fig. 4 are shown the
discrete eigenvalues for n ¼ 1 and m ¼ 0; 1.5; 10 (first 3
curves) and n ¼ 8; m ¼ 0 together with the corresponding
Rindler space m-f relations. The energies ω of the second
and third am-f and m-f relations are shifted by 0.02 and
0.04, respectively, and KðωÞ is reduced by a factor of

15 10 5 0
ln 2

0.2

0.4

0.6

0.8

1.0
l

FIG. 4 (color online). Left: Absolute value of the de Sitter wave functions (40) as a function of ξ for m ¼ 0, and l ¼ 0; 1; 2; 10; 100
with the maxima normalized to 1. Dashed curve: δV, Eq. (50). Right: de Sitter space am-f relations (43) for ξ0 ¼ −20, (relevant for the
inflationary universe) l ≤ 26 (black dots) in comparison with the Rindler space m-f relations (solid lines) with KðωÞ, Eq. (46).
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6 for the n ¼ 8 am-f and m-f relations. Not included
in the figure are the eigenvalues for l ¼ 0 with exact
values 0.0798, 0.119, 0.176, 1.18 and approximate values
0, 0.147, 0.176, 0. As suggested by the behavior of the
wave functions, the de Sitter am-f relations approach fast
the Rindler space m-f relations with increasing l and/or m.
Already for l ¼ 1; m ¼ 0 Rindler and de Sitter space results
[cf. Eq. (46)] agree within 4%. The discrepancy can be
reduced to 1% by including the next to leading order
[cf. Eqs. (44) and (45)] in the near horizon approximation.

D. Analytical expression for the l ¼ 0 contribution
to the partition function

For l ¼ 0; m ¼ 0 (and ω ≠ 0), the near horizon approxi-
mation fails. The correspondence (46) assigns to l ¼ m ¼ 0
the Rindler space value ~K ¼ ω ¼ 0 [cf. Eq. (17)] inde-
pendent of the value of n and the next to leading order (44)
of the near horizon approximation diverges. However, a
closed expression for the am-f relation can be obtained
by applying the duplication formula for the Γ-functions
in (42),

ωðξ0 − ln 2Þ þ ð1 − δl¼0Þ
Xl−1
l0¼0

argðl0 þ iωÞ

þ argðlþ 1þ iωÞ ¼ ð−nþ 1=2Þπ: ð51Þ

For l ¼ 0 and not too large values of n, the approximate
am-f relations are given by

ωn ¼ −
n − 1=2

ξ0 þ 1 − ln 2
π; ð52Þ

which reproduces the exact values for n ≤ 8 with an
accuracy of 1% or better. On this basis also the l ¼ 0
contribution to the partition function can be calculated
analytically with the result

lnZl¼0 ¼ −
X∞
n¼1

ln

�
1 − exp

� ð2n − 1Þπ2
ξ0 þ 1 − ln 2

��
¼ 1.32;

which is larger than
P

nζn (first line of Table I) by a factor
of 4.1 × 105. The relevance of this contribution depends
on the density of states which is 1 for l ¼ 0 and A=4l2

[cf. Eq. (11)] for large l.

V. ANGULAR MOMENTUM-ENERGY
RELATIONS IN STATIC SPHERICALLY

SYMMETRIC SPACES CLOSE TO HORIZONS

The connection between the am-f and m-f relations of
scalar fields in de Sitter and in Rindler space, respectively,
can be generalized to a larger class of static spherically
symmetric spaces with a nonextremal horizon. Besides the

de Sitter space, the Schwarzschild, the Schwarzschild/AdS
or the Reissner-Nordström space belong to this class. The
common structure of the line element of this class of spaces
reads (cf. [6])

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2dΩ2; ð53Þ

with the function fðrÞ vanishing at r ¼ r0 and, close to the
horizon, is approximately given by

fðrÞ ≈ ðr − r0Þf0ðr0Þ; with jðr − r0Þf0ðr0Þj ¼ e2κξ;

and 2κ ¼ jf0ðr0Þj: ð54Þ

The approximate metric (53) reads

ds2 ≈ e2κξðdt2 − dξ2Þ − r20

�
1þ 1

2κr0
e2κξ

�
2

dΩ2

≈ e2κξðdt2 − dξ2Þ − r20dΩ2: ð55Þ

The last step of the approximation is valid only if the radial
eigenfunctions are concentrated in the region close to the
horizon which is never the case for vanishing angular
momentum l and mass m. The approximate metric (55) is
the metric of a product space of the 1þ 1 Rindler space and
the 2-sphere. Comparison of this metric with the Rindler
space metric (2) shows that (up to the normalization) the
eigenfunctions are given by the MacDonald functions
which vanish at the boundary [cf. Eq. (9)],

KiωðKspÞ ¼ 0;

Ksp ¼ eξ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ lðlþ 1Þ=r20

q
; ð56Þ

with ξ0; r0 and m given in units of 1=κ and κ, respectively.
At this point we can proceed as above in identifying the m-f
and am-f relations of Rindler and spherical Rindler space,
respectively.
To test the range of validity of this type of “near horizon

approximation,” we apply the above approximation to de
Sitter space where, according to Eq. (54),

r0 ¼ 1=κ; ð57Þ

and the near horizon metric and Ksp are given by

ds2 ¼ e2ξðdt2 − dξ2Þ − dΩ2;

Ksp ¼ eξ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ lðlþ 1Þ

q
¼

�
m2 þ lðlþ 1Þ
m2 þ lðlþ 3Þ

�
1=2

KdS:

ð58Þ

For vanishing m and l > 0, the two quantities KdS and Ksp
differ by up to 30% and approach each other with increasing

F. LENZ, K. OHTA, AND K. YAZAKI PHYSICAL REVIEW D 92, 064018 (2015)

064018-10



l. Trivially at large l, but also at small lwhere the slope of ω
as function of K is of the order of 10−3, the am-f relations
are only weakly affected, i.e., with the exception of the
l ¼ 0; m ¼ 0 case, the am-f relations are accurately
described by the near horizon approximation (58).
Other examples where this method for calculating the

am-f relations and the thermodynamic quantities can be
applied to are

(i) Schwarzschild metric

fðrÞ ¼ 1 − RS=r; RS ¼ 2GM;

κ ¼ 1=2RS; κr0 ¼
1

2
; ð59Þ

(ii) Schwarzschild/AdS metric

fðrÞ ¼ 1 −
RS

r
þ r2

R2
; κ ¼ 1

Rb2ðρÞ ðρþ b3ðρÞÞ;

κr0 ¼
1

bðρÞ ðρþ b3ðρÞÞ; with ρ ¼ RS

2R
;

bðρÞ ¼ ρ1=3
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=27ρ2
q

þ 1

�
1=3

−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=27ρ2
q

− 1

�
1=3

�
; ð60Þ

(iii) Reissner-Nordström metric

fðrÞ ¼ 1 −
RS

r
þ R2

r2
; R ¼ lPQ;

Planck length lP; charge Q;

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4R2=R2

S

q
; κ ¼ 2ρ

RSð1þ ρÞ2 ;

κr0 ¼
ρ

1þ ρ
: ð61Þ

In concluding this section we emphasize the universality of
the Rindler space m-f relations (9). Having determined
these quantities for a sufficiently large number of modes, as
shown in Fig. 1, the (discrete) eigenvalues ωðn; l; m; r0; ξ0Þ
for any static spherically symmetric space can be read off
from this figure by identifying K with Ksp [Eq. (56)] and
by taking into account that the scale of any dimensionful
quantity is given by the appropriate power of the surface
gravity. Evaluation of thermodynamic quantities requires
summation over the angular momenta l and the number of
zeroes n. If the distance to the horizon satisfies eξ0 ≪ 1
significant contributions to the sum over angular momenta
can be expected only if l ≫ 1 and the summation can be
replaced by integration over l, cf. Eq. (56), (the summation
over n is not replaced by an integration),

ð2lþ 1Þdl ¼ r20e
−2ξ0dðK2Þ:

Therefore the Eqs. (10)–(13) apply with the area given by

A ¼ 4πr20; ð62Þ

while the quantities ζnðβ;ω0
nÞ [Eq. (12)] are “universal,”

i.e., independent of the parameters of the static, spherically
symmetric metrics with a nonextremal horizon.
Qualitatively, this universality was shown in Ref. [10].
Since based on ’t Hooft’s approximation [1] [cf. also
Eq. (32)] the expressions for the thermodynamic quantities
however are incorrect.

VI. CONCLUSIONS

Momentum- or angular momentum-frequency relations
have been shown to be the generic tools for calculating the
kinematics of scalar fields in static spacetimes with a
horizon. In particular, in a large range of the kinematics,
they exhibit properties which, after choosing appropriate
scales, are universal, i.e., independent of the details of
the spacetimes, as our explicit comparison of m-f and
am-f relations of Rindler and de Sitter space, respectively,
demonstrates. These relations provide a direct avenue to
approximate analytical and accurate numerical computa-
tion of the density of states, the essential ingredient for the
thermodynamics of fields in spaces with a horizon. The
central results for the thermodynamic quantities is sum-
marized in expression (26) and Table I which imply that up
to a correction of less than 1%, partition function and
entropy are generated by a single mode; i.e., black holes
are low-temperature systems. This property applies not
only for the scalar fields in Rindler spaces but also, as
we have seen explicitly, for fields in de Sitter space and
more generally in static, spherically symmetric spaces. Our
results are in conflict with most of the results obtained by
applying the brick wall method. In order to arrive at closed
expressions it has become common to replace the discrete
spectrum of eigenmodes by a continuous one. We have
shown in detail that this procedure cannot be justified and
gives rise to values of the thermodynamic quantities which
are too large by 2 orders of magnitude.
New insights into the dynamics of quantum fields of

higher spin, in particular of photons, cf. [21–23] and
gravitons via m-f or am-f relations can be expected. The
imaginary parts of the corresponding stationary propagators
[16], closely related to the m-f relations, indicate significant
differences between fields of different spin. Also the
application to fields in rotating black holes [24–26] promises
to introduce a new element in the role of the probably
complex m-f and am-f relations. With the one-mode
dominance of the thermodynamic quantities, a hidden
“parameter” specifying the boundary condition emerges
which, as we have seen [cf. Eq. (37)], influences severely
partition function and entropy and needs to be determined.
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APPENDIX: FAILURE OF THE MODIFIED
WKB APPROXIMATION

In order to identify in detail the large effect of replacing
the n sum with n ≥ 1 by an integral with 0 as lower limit,
we introduce the following two functions σðω; ν0Þ and ρðνÞ
[cf. Eq. (32)],

σðω; ν0Þ ¼
β

π
K̂2

1ðωÞ
Z

∞

ν0

dν
ν3

eβνω − 1
;

ρðνÞ ¼ β

π
ν3

Z
∞

0

dω
1

eβνω − 1
K̂2

1ðωÞ; ðA1Þ

which, if integrated,

ln Ẑapx ¼
A
4l2

Z
∞

0

dωσðω; ν0Þ ¼
A
4l2

Z
∞

ν0

dνρðνÞ; ðA2Þ

yield the approximate value of the partition function (34)
provided ν0 ¼ 0. The left-hand side of Fig. 5 demon-
strates the high sensitivity of the partition function Ẑapx
when varying the lower limit of the ω integration.
Replacing the lower limit ν0 ¼ 0 of the “standard”
approximation (32) by ν0 ¼ 1 reduces the value of the
maximum of σðω; νÞ by a factor of 67 and the corre-
sponding half-width by a factor of 5. As the right-hand
side of Fig. 5 shows, the dominant contribution to the
partition function actually arises from values of ν in the
interval 0 < ν ≤ 0.4 and the integration over the interval
0 ≤ ν ≤ 1 reproduces the analytically determined value
of the partition function (34) up to 0.1%.
In summary, it is not a large number of modes which

contribute and give rise to a large value of the partition
function which would justify the approximation (32).
Rather it is the contributions from the unphysical region,
ν < 1, which generate the large value of ln Ẑapx [Eq. (34)]
exceeding the correct value by a factor of 235.
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