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In this work nonperturbative aspects of quantum gravity are investigated using the lattice formulation,
and some new results are presented for critical exponents, amplitudes, and invariant correlation functions.
Values for the universal scaling dimensions are compared with other nonperturbative approaches to gravity
in four dimensions, and specifically to the conjectured value for the universal critical exponent ν ¼ 1=3.
The lattice results are generally consistent with gravitational antiscreening, which would imply a slow
increase in the strength of the gravitational coupling with distance, and presented herein are detailed
estimates for exponents and amplitudes characterizing this slow rise. Furthermore, it is shown that in the
lattice approach (as for gauge theories) the quantum theory is highly constrained, and eventually, by virtue
of scaling, depends on a rather small set of physical parameters. Arguments are given in support of the
statement that the fundamental reference scale for the growth of the gravitational coupling G with distance
is represented by the observed scaled cosmological constant λ, which in gravity acts as an effective
nonperturbative infrared cutoff. In this nonperturbative vacuum condensate picture a fundamental
relationship emerges among the scale characterizing the running of G at large distances, the macroscopic
scale for the curvature as described by the observed cosmological constant, and the behavior of invariant
gravitational correlation functions at large distances. Overall, the lattice results suggest that the slow
infrared growth of G with distance should become observable only on very large distance scales,
comparable to λ. One may hope that future high precision satellite experiments could possibly come within
reach of this small quantum correction, as suggested by the vacuum condensate picture of quantum gravity.
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I. INTRODUCTION

In this work nonperturbative aspects of the ground state
for quantum gravity will be discussed, based on the lattice
theory. So far the lattice formulation represents the only
known first-principle method for reproducing correctly the
low energy properties of non-Abelian gauge theories,
including confinement and chiral symmetry breaking. It
is hoped therefore that a lattice approach to quantum
gravity will shed useful light on the low energy properties
of quantum gravity as well. A key aspect of this method is a
recognition of the importance of Wilson’s modern inter-
pretation of the renormalization group [1,2] as it applies to
perturbatively nonrenormalizable theories [3,4], including
gravity. In previous work the elegant lattice formulation of
gravity of Regge and Wheeler [5,6] was used to compute a
number of observable quantities expected to be relevant for
the ground state properties of quantum gravity (for a
detailed discussion of the Feynman path integral approach
to quantum gravity the reader is referred to [7]). The lattice
formulation implies the existence of an ultraviolet cutoff,
and in the real world such a cutoff would presumably arise
from short distance details derived from an underlying
more fundamental theory, such as higher derivative gravity,
supergravity, or string theory. Nevertheless, it is expected
that a softer cutoff would lead to significant short distance

modifications of gravity, while leaving the quantum infra-
red behavior largely unchanged. It is these universal long
distance effects that form the subject of the present paper.
As in QED and QCD, it will turn out that these quantum
infrared modifications to gravity are intrinsically nonlocal.
In four dimensions (and for the Euclidean theory) it was

found that for gravity two phases are possible, a patho-
logical gravitational screening phase for G < Gc, and an
antiscreening phase for G > Gc. It has been known for
some time that the screening phase corresponds to a
branched polymer, with no physically acceptable con-
tinuum limit, and the lattice results were therefore inter-
preted as suggesting that ultimately the only physical
acceptable phase is the strong coupling phase for
G > Gc. Furthermore, it was found that in this phase the
average local curvature approaches zero toward the critical
point at Gc, indicating that in this phase the recovery of the
semiclassical limit for gravity appears to be possible. In
previous work detailed estimates were given for the
location of the critical point atGc, for the critical exponents
and scaling dimensions characterizing the growth of the
gravitational coupling with distance, and for the scaling
behavior of gravitational correlation functions. Of central
importance in these results is the value for the universal
critical exponent ν, related to the derivative of the beta
function for G at the fixed point. Here more refined
estimates for the critical point and scaling dimensions will
be provided; the analysis will later be extended to*HHamber@uci.edu
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correlation functions of invariant operators at fixed geo-
desic distances. In this context the present discussion
includes both local operators, as well as extended ones
such as the Wilson loop and the correlation between
gravitational Wilson loops. In previous work it was argued
that the gravitational Wilson loop provides information
about the macroscopic curvature, and therefore about the
hoped-for recovery of the semiclassical limit. This last
result is quite different from what is found in gauge
theories, since in gravity the gravitational Wilson loop
has no significance for the static potential. Also, it was
shown earlier that the area law for the gravitational Wilson
loop provides a connection between the nonperturbative
scale ξ that arises in nonperturbative gravity and the
macroscopic large-scale curvature, and thus the observed
effective cosmological constant λ. Here it will be argued
that the numerical results so far are consistent with many of
the previous answers, including the conjecture that the
exponent ν is exactly equal to one-third in four dimensions.
The latter part of the paper will therefore deal with a
detailed discussion of the possible physical significance of
having an exponent ν exactly equal to one-third in four
dimensions, as this relates to a number of physical
consequences, such as the scale dependence of G and
the behavior of invariant gravitational correlation functions
at large separation.
The structure of the paper is as follows. In Sec. II the

form of the discretized lattice gravitational Feynman path
integral will be recalled, and basic notation will be
established. Here the basic definitions for local averages
and their fluctuations will be laid out as well. Section III
will introduce basic diffeomorphism invariant correlation
functions, and show how these can be transcribed to the
lattice theory. Section IV will extend the previous dis-
cussion to correlation functions involving operators that are
not necessarily local, such as the correlation between
smeared operators, the definition of the gravitational
Wilson loop, and the form and basic expected properties
of correlations between these loop operators. Section V will
recall the basic fundamental scaling assumptions for the
gravitational path integral, and how those assumptions and
definitions affect the critical behavior of various averages,
fluctuations, and correlations defined in the previous
sections. Section 6 summarizes how the quantum con-
tinuum limit in lattice quantum gravity should be taken, in
accordance with the general principles of the renormaliza-
tion group. A discussion is provided to show how the
interplay among the bare coupling constants, the critical
point, and the correlation length ξ lead to a definite
expression for the running of Newton’s G. In addition, it
is shown how the prediction for a running of G can be
described in terms of universal quantities, to leading order
in the vicinity of that fixed point, and specifically in terms
of universal exponents and amplitudes. Sections VII, VIII,
IX, and X later provide details on how the numerical

calculations are performed, and on the methods by which
the universal critical exponents and amplitudes are
extracted from the numerical results. A discussion is given
to show the overall consistency of the results, based on a
variety of different observables and methods of analysis. At
the end of Sec. X the results obtained from a variety of
different observables are compared in a comprehensive
summary table. Two additional tables later provide a
comparison between the lattice results for the universal
exponents and the values obtained by other nonperturbative
methods. In Sec. X a separate comparison table is provided
for four dimensions, and a second table is added later for
the case of three dimensions. It is argued that the numerical
results so far are consistent with the expectation that the
universal critical exponent ν for quantum gravity in four
dimensions is equal to one-third. Section XI then discusses
the physical implications of having an exponent ν exactly
equal to one-third as it applies to various local averages,
fluctuations, and correlation functions introduced earlier in
the paper. It is shown that many lattice results become
particularly simple and perhaps more transparent for this
choice of exponent. The numerical calculations also supply
values for several critical amplitudes which appear in the
running of G in the vicinity of the fixed point at Gc.
Section XII at the end of the paper is devoted to a
discussion of the curvature correlation function, and how
this correlation can, in suitable cases via the field equations,
be related to the analogous correlation function for matter
density fluctuations. The final section presents some
conclusions, and elaborates further on a suggestive analogy
between the vacuum condensate picture derived from
lattice quantum gravity and the well understood nonper-
turbative properties of non-Abelian gauge theories, and
specifically the case of lattice QCD.

II. PATH INTEGRAL, INVARIANT
LOCAL GRAVITATIONAL AVERAGES,

AND THEIR FLUCTUATIONS

In this section the basic definitions for diffeomorphism
invariant gravitational averages and correlations will be
recalled briefly, in a form suitable for later discussions.
Here the starting point for a nonperturbative formulation of
quantum gravity is the discretized form for the Feynman
path integral for pure gravity [8], written originally as

ZC ¼
Z

dμ½gμν� exp f−I½gμν�g; ð1Þ

with invariant gravitational action

I½gμν� ¼
Z

d4x
ffiffiffi
g

p �
λ0 −

k
2
Rþ a0

4
RμνρσRμνρσ þ � � �

�
ð2Þ

and DeWitt invariant functional measure [9]
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Z
dμ½gμν� ¼

Z Y
x

ð
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
Þσ
Y
μ≥ν

dgμνðxÞ: ð3Þ

In the above expression k−1 ≡ 8πG with G the bare
Newton’s constant, λ0 the bare cosmological constant,
and a0 a possible higher derivative coupling [10]. In the
absence of matter fields the DeWitt invariant measure for
pure gravity in four dimensions corresponds to the simple
choice σ ¼ 0. In the following we will only consider the
case a0 ¼ 0, i.e. no higher derivative R2-type terms.1

The continuum Feynman path integral given above is
generally ill-defined, and has to be formulated more
precisely by introducing a suitable discretization [13].
The last step is particularly important for nonperturbative
calculations, where the nontrivial invariant measure over
the gμν’s plays a key role. Regge and Wheeler proposed an
elegant discretization of the classical gravitational action
[5,6], which forms the basis for the lattice formulation of
quantum gravity discussed in this paper. Once the measure
and the path integral have been discretized, the ultimate
goal then becomes to recover the original continuum theory
of Eq. (1) in the limit of a small lattice spacing (this limit is
rather subtle, and involves in a nontrivial way fundamental
aspects of the renormalization group). This approach then
leads, as a starting point, to the following discrete form for
the Euclidean Feynman path integral for pure gravity:

ZL ¼
Z

dμ½l2� exp f−I½l2�g; ð5Þ

with lattice gravitational action

I½l2� ¼
X
h

ðλ0Vh − kδhAh þ aδ2hA
2
h=Vh þ � � �Þ ð6Þ

and lattice functional measure

Z
dμ½l2� ¼

Z
∞

0

Y
s

ðVdðsÞÞσ
Y
ij

dl2ijΘ½l2ij�: ð7Þ

Here the sum over hinges h in four dimensions corresponds
to a sum over all lattice triangles with area Ah, with deficit
angles δh describing the curvature around them.2

In the discrete formulation a functional integration over
metric is replaced by an integration over squared edge
lengths, which are taken as fundamental variables in the
discrete theory. The basis for this step is a rather direct
correspondence between the squared edge lengths in a four-
simplex and the induced metric within that same simplex.
Within each n-simplex s one can define a metric in terms of
unit vectors ei pointing along the edges

gijðsÞ ¼ ei · ej; ð8Þ

with 1 ≤ i; j ≤ n, and a positive definite quantity in the
Euclidean case. In terms of the edge lengths lij ¼ jei − ejj,
or conversely

gijðsÞ ¼
1

2
ðl20i þ l20j − l2ijÞ ð9Þ

for a simplex based at 0. This last result then provides a key
connection between the metric gμνðxÞ in the continuum and
the lattice degrees of freedom l2i , which is essential in
establishing a fairly unambiguous relationship between
lattice and continuum operators, just as is the case in
ordinary lattice gauge theories. It is also known that the
lattice action in Eq. (5) generally reduces to the continuum
one of Eq. (1) for smooth enough field configurations [17],
and that it contains the correct physical degrees of freedom
for gravity in the weak field limit, namely transverse-
traceless (massless spin two) modes [18].
The general aim of the calculations presented later will

be to evaluate the lattice path integral exactly by numerical
means, by performing a (correctly weighted) sum over all
field configurations, without relying on the weak field
expansion, or an expansion around suitable saddle points or
some other approximate scheme, which generally tends to
involve a number of assumptions on what configurations
(smooth or otherwise) might or might not play a dominant
role in the path integral (indeed the general expectation for
such path integrals is that smooth field configurations tend
to have measure zero). Here the functional integration over
edge lengths is highly nontrivial, due to the constraint

1A well-known problem of the Euclidean path integral for-
mulation is the conformal instability of the classical gravitational
action [11,12]. The latter is seen by considering conformal
transformations ~gμν ¼ Ω2gμν with Ω a positive function. Then
the Einstein-Hilbert action transforms into

I½~g� ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p ðΩ2Rþ 6gμν∂μΩ∂νΩÞ; ð4Þ

which can be made arbitrarily negative by choosing a rapidly
varying conformal factor Ω. The wrong sign for the kinetic term
of the Ω fields then implies that the Euclidean gravitational
functional integral is possibly badly divergent, depending on the
detailed nature of the gravitational measure contribution dμ½gμν�
(the “entropy” or phase space part), and specifically its behavior
in the regime of strong fields and rapidly varying conformal
factors.

2In the following we will deal almost exclusively, as is
customary in lattice field theories, with dimensionless quantities.
Thus the couplings λ0 and G appearing in the continuum theory
will be expressed from the start in units of the fundamental lattice
ultraviolet cutoff Λ ¼ 1=a [14]. As is standard procedure in
ordinary lattice field theories and lattice gauge theories [15,16],
the latter is then later set equal to one, which means that from then
on all observable quantities, correlations, and couplings are
measured in units of this fundamental ultraviolet cutoff. The
actual value for the ultraviolet cutoff (in MeV or cm−1) is later
determined by comparing suitable physical quantities; see
Eqs. (104) and (105) toward the end of the paper.
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coming from the generalized triangle inequalities
[expressed in the function Θ½l2ij� in Eq. (7)], which is
placed there in the Euclidean formulation to insure that all
edge lengths, triangle areas, tetrahedra, and simplex vol-
umes are strictly positive. The discrete gravitational mea-
sure in ZL of Eq. (5) can then be regarded as a regularized
version of the DeWitt continuum functional measure [9].
Also, a bare cosmological constant term is essential for the
convergence of the path integral, while curvature squared
terms allow one to further control the fluctuations in the
curvature [14,19]. It is generally understood that these last
terms are generated by radiative corrections within a
perturbative diagrammatic treatment in the continuum. In
practice, and for obvious phenomenological reasons, one is
nevertheless only interested eventually in a limit where
effective higher derivative contributions are negligible
compared to the rest of the action, a0 → 0.
In this limit the theory depends, in the absence of matter

and after a suitable rescaling of the metric (in the con-
tinuum) or the edge lengths (on the lattice), only on one
bare parameter, the dimensionless coupling k=

ffiffiffiffiffi
λ0

p
. Indeed

already in the continuum one finds in d dimensions under a
rescaling of the metric

gμν ¼ ωg0μν; ð10Þ

with ω a constant that the cosmological constant term λ0
ffiffiffi
g

p
turns into λ0ω

d=2
ffiffiffiffi
g0

p
so that a subsequent rescaling

G → ω−d=2þ1G; λ0 → λ0ω
d=2 ð11Þ

leaves only the dimensionless combination Gdλd−20

unchanged. Clearly only the latter combination has physi-
cal meaning in pure gravity, and in particular one can
always choose the scale ω ¼ λ−2=d0 so as to adjust the
volume term to have a unit coefficient. Equivalently, this
shows that it seems physically meaningless to discuss
separately the renormalization properties of G and λ0.
Without any loss of generality one can therefore set the
bare cosmological constant λ0 ¼ 1 in units of the ultraviolet
cutoff [14]. The latter contribution controls the overall scale
for the edge lengths, contains (like a mass term) no
derivatives in the continuum, and does not affect the
construction of a suitable lattice continuum limit, which
is determined by the relative interplay between the curva-
ture and volume terms. It seems therefore redundant to vary
λ0, as this will only change the overall length scale, without
any discernible effect on the quantum lattice continuum
limit. In the continuum a similar result can be derived;
there one can show that the renormalization of λ0 is
gauge and scheme dependent and that only the renormal-
ization ofG is independent of the choice of gauge condition
[20–22].
Some partial information about the behavior of physical

correlations can be obtained indirectly from averages
of suitable local invariant operators. In [19] a set of

diffeomorphism invariant gravitational observables, such
as the average curvature and its fluctuation, were intro-
duced. Appropriate lattice analogs of these quantities are
easily written down, making use of the following well-
understood correspondences

ffiffiffi
g

p ðxÞ →
X

hingesh⊃x
Vh;

ffiffiffi
g

p
RðxÞ → 2

X
hingesh⊃x

δhAh;

ffiffiffi
g

p
RμνλσRμνλσðxÞ → 4

X
hingesh⊃x

ðδhAhÞ2=Vh: ð12Þ

An overall numerical normalization coefficient has been
omitted on the right-hand side (RHS), since it will depend
on how many hinges are actually included in the summa-
tion. In the following we will not consider any further
higher derivative terms, which means that the subsequent
discussion will be limited almost exclusively to the first and
second types of operators.
First consider the average local curvature, defined as

RðkÞ ∼ hR d4x
ffiffiffi
g

p
RðxÞi

hR d4x
ffiffiffi
g

p i : ð13Þ

The above quantity is relevant for parallel transports of
vectors around an elementary, infinitesimal parallel trans-
port loop, and is by construction manifestly diffeomor-
phism invariant. On the lattice one first notes that it is
preferable to define quantities in such a way that variations
in the average lattice spacing l0 ∼

ffiffiffiffiffiffiffiffi
hl2i

p
are compensated

by a suitable multiplicative factor, determined entirely from
dimensional considerations. It would be possible to adjust
λ0 in Eq. (5) to achieve l0 ¼ 1, but here we choose to have
simply λ0 ¼ 1 in units of the ultraviolet cutoff Λ ¼ 1=a. As
stated previously, in the following all quantities will be
expressed in units of this fundamental cutoff a, whose
value, as is customary in lattice gauge theories, is set
initially equal to one, a ¼ 1. In the case of the average local
curvature a useful lattice definition is therefore [14,19]

RðkÞ≡ hl2i h2
P

hδhAhi
hPhVhi

: ð14Þ

Note that by construction this quantity is dimensionless,
and consequently if all edge lengths are rescaled by a
common factor it remains unchanged. Again, this choice
factors out an entirely irrelevant overall length scale
(a phenomenon peculiar to gravity, which does not arise
in ordinary lattice gauge theories).
A second quantity of interest is the local curvature

fluctuation
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χRðkÞ ∼
hðR d4x

ffiffiffi
g

p
RÞ2i − hR d4x

ffiffiffi
g

p
Ri2

hR d4x
ffiffiffi
g

p i : ð15Þ

A suitable lattice transcription of this last quantity is

χRðkÞ≡ hðPh2δhAhÞ2i − hPh2δhAhi2
hPhVhi

: ð16Þ

Note that in the functional integral formulation of Eqs. (1)
and (5) both the average curvature RðkÞ and its fluctuation
χRðkÞ can be obtained by taking derivatives of the func-
tional ZL in Eq. (5) with respect to k. Therefore on the
lattice one has

RðkÞ ∼ 1

hVi
∂
∂k lnZL ð17Þ

and

χRðkÞ ∼
1

hVi
∂2

∂k2 lnZL; ð18Þ

just as the analogous continuum quantities in Eqs. (13) and
(15) can be obtained as derivatives of the expression in
Eq. (1). In a similar way, the average volume per site is
defined as

hVi≡ 1

N0

�X
h

Vh

�
; ð19Þ

and again one has

hVi ¼ −
∂
∂λ0

1

N0

lnZL: ð20Þ

Furthermore, its fluctuation χV can also be obtained
as a second derivative of ZL with respect to the bare
cosmological constant λ0. A simple scaling argument,
based on neglecting the effects of curvature terms entirely
(which vanish in the vicinity of the critical point), is found
to give a rather accurate estimate for the average volume
per edge

hVli ∼
2ð1þ σdÞ

λ0d
→

d¼4;σ¼0

1

2λ0
: ð21Þ

In four dimensions numerical simulations agree quite well
with this simple formula. Finally, a set of exact sum rules
can be derived from the scaling properties of the action and
measure in Eq. (5). As an example, for the case of the dl2

measure one finds the following exact lattice Ward identity:

2λ0

�X
h

Vh

�
− k

�X
h

δhAh

�
− N1 ¼ 0; ð22Þ

which is easily derived from Eq. (5) and the definitions in
Eqs. (17) and (20). Here N0 represents the number of sites
in the lattice, and the averages are defined per site. For the
hypercubic lattices used in this paper, N1 ¼ 15N0,
N2 ¼ 50N0, N3 ¼ 36N0, and N4 ¼ 24N0. The above exact
identity can be a useful tool in establishing the numerical
convergence of the integration method used for the lattice
path integral.3

III. DIFFEOMORPHISM INVARIANT
GRAVITATIONAL CORRELATION

FUNCTIONS

Generally in a quantum theory of gravity the physical
distance between any two points x and y in a fixed
background geometry is determined by the metric

dðx; yjgÞ ¼ min
ξ

Z
τðyÞ

τðxÞ
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðξÞ

dξμ

dτ
dξν

dτ

r
: ð23Þ

Because of quantum fluctuations the latter depends on the
metric or, equivalently, in the lattice case on the edge
length configuration considered. Correlation functions of
local operators need to account for this fluctuating
distance, and as a result these correlations have to be
computed at some fixed geodesic distance between a set
of given spacetime points [14,23]. In addition, in gravity
one generally requires that the local operators involved
should be coordinate scalars. In principle one could also
smear such operators over a small region of spacetime, an
option which will be discussed later. It is also possible to
compute nonlocal gravitational observables in analogy to
what is done in Yang-Mills theories, by defining objects
such as the gravitational Wilson loop (which carries
information about the parallel transport of vectors around
large loops, and therefore about large scale curvature)
[24–27], or the correlation between Wilson lines closed
by the lattice periodicity (which can be used for
extracting the static potential in quantum gravity)
[28,29]. One more different type of gravitational corre-
lation was studied in [30].
A fundamental correlation function in the quantum

theory of gravity is the one associated with the scalar
curvature, with physical points x and y separated by a fixed
geodesic distance d

GRðdÞ ∼ h ffiffiffi
g

p
RðxÞ ffiffiffi

g
p

RðyÞδðjx − yj − dÞic: ð24Þ

It is then straightforward to define the same type of object
on the lattice. If the lattice deficit angles are averaged over a
number of contiguous hinges which share a common

3As an example, in practice one can achieve that the left-hand
side (LHS) of Eq. (22) is zero to about one part in 105 for 200k
individual lattice edge length configurations containing around
25 million simplices.
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vertex, one is led to consider the connected lattice corre-
lation function at a fixed geodesic distance d

GRðdÞ≡
�X

h⊃x
2δhAh

X
h0⊃y

2δh0Ah0δðjx − yj − dÞ
�

c
: ð25Þ

The need to compute physical distances between points for
any given metric (or edge length) field configuration
complicates the problem considerably, as compared for
example to ordinary gauge theories, where the distance
between points is assigned a priori based on a fixed
immutable underlying lattice structure.4

For the curvature correlation at a fixed geodesic distance
one expects at short distances (i.e. distances much shorter
than the gravitational correlation length ξ) a power law
decay

h ffiffiffi
g

p
RðxÞ ffiffiffi

g
p

RðyÞδðjx − yj − dÞic ∼
d≪ξ

d−2n; ð26Þ

with the power characterized by a universal exponent
n; how n is related to another calculable universal
critical exponent (in particular ν) will be discussed further
below.
One notes on the other hand that for sufficiently strong

coupling (large G, or small k) fluctuations in different
spacetime regions largely decouple [the kinetic or deriva-
tive term in Eqs. (1) or (5) is responsible for coupling
fluctuations in different regions, and it comes with a
coefficient 1=G]. In this regime one then expects a
faster, exponential decay, controlled by the correlation
length ξ

h ffiffiffi
g

p
RðxÞ ffiffiffi

g
p

RðyÞδðjx − yj − dÞic ∼
d≫ξ

e−d=ξ: ð27Þ

This last result shows that the fundamental gravitational
correlation length ξ, if nonzero, can be defined through the
long-distance decay of the connected invariant correlations

at a fixed geodesic distance d.5 Note also that the behavior in
Eq. (26) is expected to hold at short distances, i.e. distances
much larger than the fundamental lattice spacing but
significantly shorter than the correlation length,
l0 ≪ d ≪ ξ, whereas the behavior in Eq. (27) is expected
to hold at much larger distances, d ≫ ξ ≫ l0. In either case,
in order to reach the lattice continuum limit the distances
considered need to be much larger than the fundamental
lattice spacing, d; ξ ≫ l0. This last constraint is referred to
as the scaling limit, where short distance lattice artifacts are
presumably washed out, and the true (and physically
relevant) continuum limit is expected to emerge. Later it
will be shown, from rather elementary scaling consider-
ations, that the exponent n in Eq. (26) is related to the so-
called correlation length exponent ν in four dimensions
by n ¼ 4 − 1=ν.
Another key result of relevance here lies in the fact that

the local curvature fluctuation defined in Eqs. (15) and (16)
is directly related to the connected curvature correlation of
Eqs. (24) and (25) at zero momentum

χR ∼

R
d4x

R
d4y

D ffiffiffiffiffiffiffiffiffi
gðxÞp

RðxÞ ffiffiffiffiffiffiffiffiffi
gðyÞp

RðyÞ
E
cDR

d4x
ffiffiffiffiffiffiffiffiffi
gðxÞp E ; ð28Þ

a well-known and rather useful result already in ordinary
field theories. This connection will be used extensively
further below, and its relevance will lie in the fact that it
allows one to relate the exponent ν, obtained for example
from the curvature fluctuation of Eq. (15), to the physical
correlation in Eqs. (24) and (26). The latter can in turn be
related to other physical correlations, such as the matter
density correlation, by the use for example of the effective,
long distance gravitational field equations.

IV. CORRELATIONS BETWEEN SMEARED AND
NONLOCAL OPERATORS

The discussion up to this point has dealt with local
operators and their correlations, i.e. operators defined at a
point x in spacetime, or on the lattice at a single lattice
point. Some rather mild nonlocality does in fact appear, due
to the circumstance that the gravitational action involves,

4Practical useful methods for calculating such diffeomor-
phism invariant correlations were described in detail in [23].
For each given metric configuration which, properly weighted,
contributes to the path integral one needs to compute both the
geodesic distance between any two points, as well as the
correlation between a set of given invariant operators centered
at those points. By far the most time consuming part of the
calculation is the determination of the actual physical distance
between any two given points for an assigned background metric
configuration. The latter part can be done by generating a large
number of random walks that start at one of the two points, and
then obtaining the physical distance from the shortest walk.
Alternatively, the geodesic distance can be determined directly
from the propagator, and specifically the exponential decay in
distance of a covariantly coupled lattice scalar field propagator
with a given mass. Either way, the calculation is then later
repeated for every metric configuration contributing to the
chosen ensemble, resulting eventually in the sought-after final
average.

5This rather general result can easily be proven by using the
same type of arguments used in ordinary field theories (and lattice
gauge theories) to show that Euclidean correlation functions
generally decay exponentially at strong coupling. There one
shows that it takes n actions of the kinetic (or hopping) term to
connect, via the shortest possible lattice path, two points that are
n lattice sites apart. A similar result holds for lattice gravity,
where the relevant kinetic or hopping term is the curvature (R)
contribution, proportional to 1=G [31]. Of course, in the extreme
limit of infinite G, due to the absence of a kinetic term,
fluctuations in the fields at different spacetime locations com-
pletely decouple, and in this limit the correlation length shrinks to
zero (or more precisely, to one lattice spacing).

HERBERT W. HAMBER PHYSICAL REVIEW D 92, 064017 (2015)

064017-6



via the affine connection and the Riemann tensor, the
parallel transport of a test vector around an infinitesimally
small loop. The latter is encoded on the lattice by the deficit
angles, which describe the parallel transport of a vector
around a loop whose size is comparable to the lattice
spacing, or in physical terms of size comparable to the
ultraviolet cutoff or the Planck length. It is nevertheless
possible to define smeared operators, which involve a new
length scale: the linear size of the smearing volume rs. On
the basis of rather general renormalization group arguments
one expects correlations for these operators to have milder
short distance divergences.
Consider first the average on an operator over a spheri-

cally shaped smearing regionΩðx; rsÞ, centered at the point
x and of linear size rs. In other words, all points within a
physical distance rs from the point in question are
considered; on a lattice, of course, the number of points
within a given physical neighborhood of the point x with
linear size rs will in general be finite. Then define the
smeared operator OSðxÞ by the spacetime average

OSðxÞ≡
Z
Ωðx;rsÞ

d4z
ffiffiffi
g

p
OðzÞ: ð29Þ

A natural candidate operator for smearing is, of course, the
scalar curvature, but various curvature squared terms would
also be viable, for example. A suitable invariant correlation
function is then defined as

GrsðdÞ ¼ hOSðxÞOSðyÞδðjx − yj − dÞic; ð30Þ

where again the correlation between the two operators
OSðxÞ is taken at a fixed geodesic distance d. The general
expectation is that the short distance (d ≳ rs) behavior for
this correlation function is less singular than for correla-
tions of operators defined at a single point. Nevertheless at
larger distances d ≫ rs the asymptotic decay of the
correlation function should be the same as for the one in
Eq. (26), provided the operators in question have the same
quantum numbers (see also Figs. 1–3).
A second class of invariant correlation functions for

smeared operators involves the correlation of parallel

transport loops [24,26]. First note that infinitesimal trans-
port loops appear already in the definition of the correlation
function for the local scalar curvature, as in Eqs. (24) and
(25). Next consider the parallel transport of a vector around
a loop C which is not infinitesimal; in the following this
loop will be assumed to be close to planar, a well-defined
geometric construction described in detail in [27]. First
define the total rotation matrix UðCÞ along the path C via a
path-ordered (P) exponential of the integral of the affine
connection Γλ

μν,

Uμ
νðCÞ ¼

�
P exp

�I
C
Γ·
λ·dx

λ

	

μ

ν

: ð31Þ

The lattice action itself already contains contributions from
infinitesimal loops, but more generally one might want to
consider near-planar, but noninfinitesimal, lattice closed
loops C. Along such a closed loop the overall rotation
matrix is given by a product of elementary rotations defined
along the lattice path

Uμ
νðCÞ ¼

�Y
s⊂C

Us;sþ1



μ

ν

: ð32Þ

In analogy with the infinitesimal loop case, one expects for
the overall rotation matrix

Uμ
νðCÞ ≈ ½eδðCÞωðCÞÞ�μν; ð33Þ

where ωμνðCÞ is an area bivector perpendicular to the loop
and δðCÞ the corresponding deficit angle. This will work if
the loop is close to planar, so that ωμν can be taken to be
approximately constant along the path C, or defined by
some suitable average over the loop. Here by a near-planar
loop around the point P what is meant is a loop that is
constructed by drawing outgoing geodesics on a plane
through P, so that this unit bivector plays the role of a
normal to the loop. A coordinate scalar can be defined by
contracting the above rotation matrix UðCÞ with the
appropriate unit length bivector, namely

WC ¼ ωμνðCÞUμνðCÞ; ð34Þ

where the bivector ωαβðCÞ is taken to be representative of
the overall geometric features of the loop. Now if the
parallel transport loop in question is centered at the point x,
then one can define the operator WCðxÞ by

WCðxÞ ¼ ωμνðC; xÞUμνðC; xÞ ð35Þ

with the near-planar loop centered at x and of linear size rC.
A suitable invariant correlation two-point function for these
operators is then defined as

GCðdÞ ¼ hWCðxÞWCðyÞδðjx − yj − dÞic; ð36Þ

O 

O’

d

rs

rs 

FIG. 1 (color online). Correlation function for two smeared
operators of size rs, separated by a geodesic distance d.
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where again the correlation between the loop operators
WCðxÞ is taken at some given fixed geodesic distance d. Of
course, for infinitesimal loops one recovers the expressions
given earlier in Eqs. (24) and (25).
In general one needs to specify the relative orientation of

the two loops. So, for example, one can take the first loop in
a plane perpendicular to the direction associated with the
geodesic connecting the two points, and the same for the
second loop; the parallel transport of a vector along this
geodesic will then be sufficient to establish the relative
orientation of the two loops. Nevertheless if one is
interested in the analog (for large loops) of the scalar
curvature, then it will be adequate to perform a weighted
sum over all possible loop orientations at both ends. This is
in fact precisely what is done for infinitesimal loops of size
rC ∼ a, if one looks carefully at the way the Regge lattice
action is originally defined. Again here the expectation is
that the short distance d≳ rC behavior of this correlation
function for extended loop objects is less singular than for
correlations of operators defined at a point; nevertheless at
larger distances d such that rC ≪ d ≪ ξ the decay of these
correlation functions should be the same as the local ones
in Eq. (26).
It is possible to give amore quantitative description for the

behavior of the loop-loop correlation function given in
Eq. (36), at least in the strong coupling limit. The following
estimate is based on the previous results and definitions, and
the important analogy and correspondence of lattice gravity
to non-Abelian gauge theories outlined in [27,31]. First itwill
be assumed here that the two (near planar) loops are of
comparable shape and size, with overall linear sizes rC ∼ L
and perimeter P≃ 2πL. In addition, the two loops will be
separated by a distance d ≫ L, and for both loops it will be
assumed that this separation is much larger than the lattice
spacing, d ≫ a and L ≫ a. Then to get a nonvanishing
correlation in the strong coupling, large G limit it will be
necessary to completely tile a tube connecting the two loops,
due to the area law arising from the use of the Haar measure
for the local rotation matrices at strong coupling, again as
discussed in detail in [27]. In this last paper extensive use is
made of amodified first order formalism for the Regge lattice
theory, based on the work of [32], which then allows the
separation of metric degrees of freedom into local Lorentz
rotations and tetrads, as is done in the continuum.
Consequently in this limit one obtains an area law

GCðdÞ≃ exp

�
−

2πL · d
ξ · ξ0ðLÞ

	
¼ exp

�
−

AðL; dÞ
ξ · ξ0ðLÞ

	
: ð37Þ

Consistency of the above expression with the result for small
(infinitesimal) loops given in Eqs. (26) and (27) and the area
law for large loops requires the following limits for the
quantity ξ0ðLÞ:

ξ0ðLÞ ∼L≃a a and ξ0ðLÞ ∼
L≫a

ξ: ð38Þ

From these results one concludes that the asymptotic decay
of correlations for large loops is fundamentally different in
form as compared to the decay of correlations for infinitesi-
mal loops, with an additional factor of ξ appearing for large
loops. In other words, the results of Eqs. (26) and (27) only
apply to infinitesimal loops which probe the parallel trans-
port on infinitesimal (cutoff) scales, and these results will
have to be suitably amended when much larger loops, of
semiclassical significance, are considered.

V. RENORMALIZATION GROUP SCALING
RELATIONS FOR GRAVITY

In this section some of the basic scaling relations for
quantum gravity will be summarized. It is by now estab-
lished wisdom, at least in most field theories besides
gravity, that standard scaling arguments allow one to
determine the scaling behavior of local averages, correla-
tion functions, and even suitable nonlocal observables such
as the Wilson loop from the knowledge of the basic
renormalization group behavior, and specifically from
the universal critical exponents. The latter generally char-
acterize the singular behavior of local averages in the
vicinity of the critical point, a nontrivial fixed point of the
renormalization group (RG) in field theory language. For
extensive reviews on the subject see for example
[15,16,33–35]. There is by now a rather well established
body of knowledge in quantum field theory and statistical

W 

W’  

d

rc 

rc 

ωc 

ωc 

FIG. 3 (color online). Correlation function for two large parallel
transport loops of size rc and orientation ωc, separated by a
geodesic distance d.

w’ 

w 
d

FIG. 2 (color online). Correlation function of two infinitesimal
parallel transport loops, separated by a geodesic distance d.
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field theory on this subject, and there is no apparent reason
why its basic tenets should not apply to gravity as well,
with quantum gravity describing the unique theory of a
massless spin two particle coupled to a covariantly con-
served energy momentum tensor [8].
It is also understood that in the vicinity of a critical point

(seen as equivalent to a nontrivial fixed point of the
renormalization group) long range correlations arise due
to the appearance of a massless particle. In statistical field
theory language, the presence of a massless particle is
reflected in a divergent correlation length ξ ¼ 1=m, or
equivalently a power law in the relevant correlation
functions. Let us summarize here the basis for the scaling
assumptions for local averages, fluctuations, and their
correlations.6 In brief, since logZ in either Eq. (1) or (5)
is both dimensionless and extensive, for a volume V ∼ Ld it
has to have the form

logZðkÞ ¼ fa

�
L
l0

�
d
þ fs

�
L
ξ

�
d
; ð39Þ

where here fa and fs are nonsingular functions of
dimensionless parameters, ξ is the fundamental correlation
length (the distance over which quantum fluctuations are
strongly correlated), and l0 ∼ a the fundamental lattice
spacing or ultraviolet cutoff. Then the free energy or
generating function, defined as

FðkÞ ¼ −
1

V
logZðkÞ; ð40Þ

is expected, based on purely dimensional grounds, to
acquire a singular part FsingðkÞ such that [42]

FsingðkÞ ∼ ξ−d: ð41Þ
If one sets for the nonperturbative correlation length ξ

ξðkÞ ∼
k→kc

Aξðkc − kÞ−ν; ð42Þ

where Aξ is the correlation length amplitude, kc the critical
point, and ν the correlation length exponent characterizing
the divergence of ξ at the critical point, then one obtains for
the singular part of the free energy

Fsing ∼
k→kc

ðkc − kÞdν: ð43Þ

One concludes that a divergent correlation length signals
the presence of a phase transition, and this in turn leads to
the appearance of nonanalyticities in thermodynamic quan-
tities such as ZðkÞ and the free energy FðkÞ. The origin of
these nonanalyticities in ZðkÞ lies therefore in the diver-
gence of ξ in the vicinity of the critical point at kc, where
the theory becomes scale invariant.
The following results then follow more or less immedi-

ately from the definitions in Eqs. (1) or (5), and in Eq. (17).
Near the singularity the average curvature behaves as

RðkÞ ∼
k→kc

− ARðkc − kÞδ; ð44Þ

with a curvature exponent δ related to the exponent ν
introduced earlier in Eq. (42) by the scaling relation
δ ¼ dν − 1. Consequently the presence of a phase tran-
sition can already be inferred directly from the appearance
of nonanalytic terms in invariant local averages, such as the
average curvature.7 Similarly, one has for the curvature
fluctuation defined in Eq. (16), using Eqs. (18) and (42),

χRðkÞ ∼
k→kc

δARðkc − kÞ−ð1−δÞ: ð45Þ

Again, scaling [Eqs. (42) and (43)] relates the exponent δ
appearing in the curvature fluctuation to ν, so that the
exponent in Eq. (45) is simply 1 − δ ¼ 2 − dν. These
results show that from suitable averages one can extract
the correlation length exponent ν [defined in Eq. (42)],
without even a need to compute an invariant two-point
function, such as the ones in Eqs. (24), (25), (26), and (27),
provided scaling holds. Furthermore, in the vicinity of the
critical point kc one can trade the distance from the critical
point for the correlation length ξ, and obtain the following
equivalent result relating the quantum expectation value of
the local curvature to the physical correlation length ξ:

RðξÞ ∼
k→kc

ξ1=ν−d: ð46Þ

This last expression is obtained from Eqs. (42) and (44),
using δ ¼ dν − 1. Matching of dimensionalities here can
always be achieved by supplying appropriate powers of the
lattice spacing l0 ∼ a or, equivalently, the Planck length
lP ¼ ffiffiffiffi

G
p

.

6It is well established that for theories with a nontrivial
ultraviolet fixed point [1,2], the long distance (and thus infrared)
universal scaling properties are uniquely determined, up to
subleading corrections to exponents and scaling amplitudes,
by the (generally nontrivial) scaling dimensions obtained via
renormalization group methods in the vicinity of an ultraviolet
fixed point [15,16,33–35]. These sets of results form the basis of
universal predictions for, as an example, the (perturbatively
nonrenormalizable) nonlinear sigma model [36,37]. The latter
provides today one of the most accurate tests of quantum field
theory [38], after the g − 2 prediction for QED (for a compre-
hensive set of references, see [7,16], and the references therein). It
is also a well-established fact of modern renormalization group
theory that in lattice QCD the scaling behavior of the theory in the
vicinity of the asymptotic freedom ultraviolet fixed point un-
ambiguously determines the universal nonperturbative scaling
properties of the theory [39], as quantified by physical observ-
ables such as hadron masses, vacuum condensates, decay
amplitudes, and the QCD string tension [40,41].

7An additive constant could be present in Eq. (44), but the
evidence so far points to this constant being consistent with zero
for the Regge lattice gravity theory.
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In addition, the above results allow one to relate the
fundamental scaling exponent ν of Eq. (42) to the scaling
behavior of some correlation functions at large distances.
Thus, for example, the curvature fluctuation of Eq. (15) is
related to the connected scalar curvature correlation of
Eq. (26) evaluated at zero momentum

χRðkÞ ∼
R
d4x

R
d4yh ffiffiffi

g
p

RðxÞ ffiffiffi
g

p
RðyÞic

hR d4x
ffiffiffi
g

p i ∼
k→kc

Aχðkc − kÞδ−1:

ð47Þ

It follows that a divergence in the curvature fluctuation is
indicative of long range correlations, corresponding to the
presence of a massless particle, the graviton. Close to the
critical point one expects, in the scaling limit, i.e. for
physical distances much larger than the fundamental lattice
spacing, a power law decay in the geodesic distance d, as in
Eq. (26),

h ffiffiffi
g

p
RðxÞ ffiffiffi

g
p

RðyÞic ∼
jx−yj→∞

1

jx − yj2n : ð48Þ

After inserting the correlation function from Eq. (48) in the
expression of Eq. (47) and then integrating over a region of
size ξ one obtains immediately for the power in Eq. (48)8

n ¼ d − 1=ν: ð49Þ

Thus knowledge of the scaling exponent ν uniquely
determines the power in Eqs. (48) and (26).
So, the scaling theory for gravity just outlined implies a

universal relationship between various quantities and the
exponents that appear in them.Of course, the nonperturbative
scaling exponents can be determined, in principle, separately
for each individual observable. Nevertheless scaling theory,
basedon the assumptionof the existence of amassless particle
in the vicinity of an ultraviolet fixed point, immediately
implies a direct (and testable) relationship between the scaling
behavior of various quantities, such as the ones in Eqs. (13),
(15), (26), (27), and (42).Ultimately, thephysical relevance of
the above results is that Eq. (42) gives,when solved for k orG,
the runningofGwith the scale in thevicinity of the fixedpoint
at Gc. Thus, again, Eqs. (44) and (45) are useful for an
accurate determination of the universal scaling exponent ν,
and this quantity in turn determines the scaling behavior of
invariant curvature correlation functions in Eqs. (26) and (48)
as a function of geodesic distance.

VI. CONTINUUM LIMIT OF LATTICE
QUANTUM GRAVITY

The long distance behavior of quantum field theories is,
to a great extent, determined by the scaling behavior of the
relevant coupling constants under a change in momentum
scale. Asymptotically free theories such as QCD lead to
vanishing gauge couplings at short distances, while the
opposite is true for QED. In general the fixed point(s) of the
renormalization group need not be at zero coupling, but can
be located at some finite Gc, leading to nontrivial fixed
points or more complex limit cycles [2,4,16,39].
These general ideas are realized concretely in the

analytic 2þ ϵ expansion for gravity, and reappear later
in essentially the same form in lattice gravity in four
dimensions. In the 2þ ϵ perturbative expansion for gravity
[20,21,43,44] one analytically continues in the spacetime
dimension using dimensional regularization, and applies
perturbation theory about d ¼ 2, where Newton’s constant
becomes dimensionless. A similar method is quite suc-
cessful in determining the critical properties of the OðnÞ-
symmetric nonlinear sigma model above two dimensions
[45]. In the framework of this expansion the dimensionful
bare coupling is written as G0 ¼ Λ2−dG, where Λ is an
ultraviolet cutoff (corresponding on the lattice to a momen-
tum cutoff comparable to the inverse average lattice
spacing, Λ ∼ 1=l0 ∼ 1=a). There were originally some
known technical difficulties with this expansion due to
the presence of kinematic singularities for the graviton
propagator in two dimensions (the Einstein action is a
topological invariant in d ¼ 2), but these have been over-
come recently. In addition, one can show that a gauge-
choice dependent renormalization of the bare cosmological
constant λ0 can be completely reabsorbed into an overall
rescaling of the metric, with no physical consequences.
A double expansion in G and ϵ ¼ d − 2 then leads in
lowest order to a gauge-independent nontrivial fixed point
in G above two dimensions

βðGÞ≡ ∂G
∂ logΛ ¼ ðd − 2ÞG − β0G2 þ � � � ; ð50Þ

with β0 > 0 for pure gravity. To lowest order the ultraviolet
fixed point is then at Gc ¼ 1=β0ðd − 2Þ. Integrating
Eq. (50) close to the nontrivial fixed point one obtains
for G > Gc

m0 ¼ Λ exp

�
−
Z

G dG0

βðG0Þ
�

∼
G→Gc

ΛjG −Gcj−1=β0ðGcÞ;

ð51Þ
where m0 is an integration constant, with dimensions of a
mass or inverse length, expected to be associated with some
physical scale. It is rather natural here to identify this scale
with the inverse of the gravitational correlation length
(ξ ¼ m−1), or some equivalent scale associated with the
physical large-scale curvature [26,27]. Note that the

8Note that in weak field perturbation theory [24]
h ffiffiffi

g
p

RðxÞ ffiffiffi
g

p
RðyÞic ∼ h∂2hðxÞ∂2hðyÞi ∼ 1=jx − yjdþ2, which is

quite different from the result in Eq. (48) unless
ν ¼ 2=ðd − 2Þ, which is only correct for d close to two, where
Einstein gravity becomes perturbatively renormalizable and the
corrections to free field behavior become small.
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derivative of the beta function at the fixed point defines the
critical exponent ν, which to this order is independent of
β0, β0ðGcÞ ¼ −ðd − 2Þ ¼ −1=ν.
The previous results clearly illustrate how the lattice

continuum limit should be taken. It corresponds to Λ → ∞,
G → Gc with the physical scale ξ ¼ 1=m held constant;
thus for fixed lattice cutoff the continuum limit is
approached by tuning G to Gc. In four dimensions the
universal critical exponent ν is defined by [see Eq. (42)]

ξ−1ðGÞ≡mðGÞ ∼
G→Gc

AmΛjGðΛÞ −Gcjν; ð52Þ

where Λ ¼ 1=a is the inverse lattice spacing, and the
nonperturbative mass scale m ¼ 1=ξ is defined as the
inverse of the correlation length, with Am a nonperturbative
but calculable amplitude. The cutoff independence of the
nonperturbative mass scale m implies

Λ
d
dΛ

mðΛ; GðΛÞÞ ¼ 0: ð53Þ

Comparing results in Eqs. (51) and (52) one obtains

β0ðGcÞ ¼ −1=ν; ð54Þ
so that the universal exponent ν is directly related to the
derivative of the Callan-Symanzik β function for G in the
vicinity of the ultraviolet fixed point. Thus computing ν is
equivalent to computing the universal derivative of the beta
function at Gc.

9

It is easy to see here that the value of ν determines the
running of the effective coupling GðμÞ in the vicinity
of the fixed point, where μ is an arbitrary momentum scale.
The renormalization group tells us that in general the
effective coupling will grow or decrease with length scale
r ¼ 1=μ, depending on whether G > Gc or G < Gc,
respectively. This result follows from the fact that the
genuinely nonperturbative physical mass parameter m ¼
ξ−1 is itself scale independent and obeys therefore the
rather simple Callan-Symanzik renormalization group
equation

μ
d
dμ

mðμ; GðμÞÞ≡ μ
d
dμ

fAmμjGðμÞ − Gcjνg ¼ 0: ð55Þ

Here again, by virtue of Eq. (52), the second expression
on the RHS is appropriate in the vicinity of the ultraviolet
fixed point at Gc. Nevertheless the above discussion is not
necessarily limited to just a region in the immediate

vicinity of Gc; more generally, if one defines the function
FðGÞ via

ξ−1 ≡m ¼ ΛFðGðΛÞÞ; ð56Þ
then, from the usual definition of the Callan-Symanzik β
function βðGÞ ¼ ∂GðΛÞ=∂ logΛ, one obtains

βðGÞ ¼ −
FðGÞ
F0ðGÞ ; ð57Þ

which shows that the renormalization group β-function,
and thus the running ofGðμÞwith scale, can be defined also
some distance away from the nontrivial ultraviolet fixed
point [including therefore the higher order corrections in
Eq. (55)]. So, more generally, the running of GðμÞ is
obtained by solving the differential equation

μ
dGðμÞ
dμ

¼ βðGðμÞÞ; ð58Þ

with βðGÞ obtained from Eq. (57).10 It is then clear from the
previous discussion that the physical mass scale m ¼ ξ−1

determines the magnitude of the scaling corrections and
plays a role similar to the scaling violation parameter ΛMS
in QCD (as in gauge theories, this nonperturbative mass
scale emerges in spite of the fact that the fundamental
gauge boson remains strictly massless to all orders in
perturbation theory, and consequently does not violate local
gauge invariance). Furthermore, as in gauge theories, one
expects in gravity that the magnitude of ξ cannot be
determined perturbatively, and to pin down its value
requires a fully nonperturbative approach such as the lattice
formulation.
Solving explicitly Eq. (55) for Gðq2Þ, with q an arbitrary

wave vector scale, one obtains

Gðq2Þ ¼ Gc

�
1þ c0

�
m2

q2

�
1=2ν

þO

��
m2

q2

�
1=ν

�

: ð59Þ

Here the amplitude of the quantum correction c0 is directly
related to the constant Am in Eq. (52) by

c0 ≡ 1

GcA
1=ν
m

: ð60Þ

One important point is that the magnitude of the quantum
correction in Eq. (59) depends crucially on the magnitude
of the nonperturbative physical scale ξ. Also, the expres-
sion in Eq. (59) does not satisfy general covariance; this in

9As a concrete example, in the 2þ ϵ expansion for pure
gravity using the background field method one finds at two loop
order ν−1 ¼ ðd − 2Þ þ 3

5
ðd − 2Þ2 þOððd − 2Þ3Þ [21]. Consis-

tency of this expansion generally requires a smooth background
with a small λ0 in Eq. (2). Nevertheless a renormalization of λ0
there is later undone by the metric rescaling of Eq. (10), so that
the only physical (and gauge-choice independent) running is in
the gravitational coupling G.

10As an example, for βðGÞ ¼ − 1
ν ðG − GcÞ − bðG − GcÞ2,

where b is some numerical constant, one obtains for the
correlation length ξ−1≡m¼ aAmðG−GcÞνð1−bν2ðG−GcÞ2þ
OððG−GcÞ3ÞÞ, which relates a subleading correction to βðGÞ to
the subleading correction in mðGÞ.
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turn can be fixed by performing the replacement q2 → −□
where □ðgμνÞ is the covariant D’Alembertian for a given
background metric gμνðxÞ [46].11 This then leads, from
Eq. (59), to

Gð□Þ ¼ Gc

�
1þ c0

�
1

−ξ2□2

�
1=2ν

þ � � �


: ð61Þ

A set of manifestly covariant effective field equations with
a Gð□Þ takes the simple form [46]

Rμν −
1

2
gμνRþ λgμν ¼ 8πGð□ÞTμν ð62Þ

with the nonlocal contribution coming from the quantum
correction in the Gð□Þ of Eq. (61).12 These nonlocal
effective field equations can then be solved for a number
of physically relevant metrics. For the specific case of a
static isotropic metric it is possible to obtain an exact
expression for GðrÞ in the limit r ≫ 2MG [46]. The result,
for ν ¼ 1=3 exactly, reads13

G → GðrÞ ¼ G

�
1þ c0

3π
m3r3 ln

1

m2r2
þ � � �

�
ð63Þ

withm ¼ 1=ξ. This last result is vaguely reminiscent of the
Uehling (vacuum polarization) correction to the static
potential found in QED. Generally the expressions in
Eqs. (59), (61), and (63) are consistent with a gradual
slow increase in G with large distance r, and with a
modified Newtonian potential in the same limit.
The remainder of this paper will deal therefore with

establishing firm values for the nonperturbative amplitudes
and exponents defined in the previous sections, and later
determining both qualitatively and quantitatively their
effects on the running of Newton’s G and on the long
distance behavior of physical correlation functions, such as
the ones defined in the previous sections.

VII. AVERAGE LOCAL CURVATURE

Next we come to a discussion of the numerical methods
employed in this work and the analysis of the results. For
the reader who is not interested in such details, a separate
section later summarizes the most important results
obtained so far. As in previous work, the edge lengths
are updated by a Monte Carlo algorithm, generating
eventually an ensemble of configurations distributed
according to the action and measure of Eq. (5). Details
of the method as it applies to pure gravity are discussed in
[14,48] and will not be repeated here.
In this work lattices of size L4 with L ¼ 4 (256 sites,

3,840 edges, and 6,144 simplices), L ¼ 8 (4,096 sites,
61,440 edges, and 98,304 simplices), L ¼ 16 (65,536 sites,
983,040 edges, and 1,572,864 simplices), L ¼ 32
(1,048,576 sites, 15,728,640 edges, and 25,165,824 sim-
plices), and L ¼ 64 (16,777,216 sites, 251,658,240 edges,
and 402,653,184 simplices) have been considered. These
lattices are all constructed by conveniently dividing up
hypercubes into simplices by introducing suitable diago-
nals [18], and periodic boundary conditions are used
throughout. In general for a lattice with L4 sites one has
15 edges per vertex and 24 four-simplices per vertex. For
these lattices one should keep in mind that due to the
simplicial nature of the lattice there are many edges per
hypercube with many interaction terms; as a consequence
the statistical fluctuations already for one single hypercube
can be comparatively small, unless one is very close to a
critical point. The results presented here are still prelimi-
nary, and in the future it should be possible to repeat such
calculations with improved accuracy on even larger lattices.
Also, while the overall statistics on the 324 lattice seems
adequate, the overall statistics on the 644 lattices was yet far
too low to be usable in the present analysis.
On the 324 lattice up to 200,000 consecutive configu-

rations were generated for each value of k, and 9 different
values for the parameter k were chosen. On the 164 lattice
up to 800,000 consecutive configurations were generated
for each value of k, and 32 different values for k were
chosen. In addition, results for different values of k can be
considered as completely statistically uncorrelated, since
they originated from unrelated edge length configurations.
On the smaller 84 lattice 200,000 consecutive configura-
tions were generated for each value of k. On the 44 lattice
2 million consecutive configurations were generated for
each value of k. To accumulate enough statistics, runs were
performed around the clock on a 1200 core machine over a
period of roughly four months. As a result, the increase in
accuracy is significant compared to the results presented in
previous work done at the time on a dedicated 32-node
cluster [48].
In this work the topology is restricted to a four-torus

(periodic boundary conditions). One could perform similar
calculations with other lattices employing different boun-
dary conditions or topology, but one expects that the

11In the lattice theory of gravity only the smooth phase with
G > Gc exists (in the sense that an instability develops and
spacetime collapses onto itself for G < Gc). This then implies
that the gravitational coupling can only increase with distance
[19]. In other words, a gravitational screening phase does not
exist in the lattice theory of quantum gravity. This situation
appears to be true both for the Euclidean theory in four
dimensions and in the Lorentzian version in 3þ 1 dimensions
[47].

12If general covariance is to be maintained, then it is virtually
impossible here to have a running cosmological term in the field
equations with a λð□Þ, by virtue of the simple fact that covariant
derivatives of the metric vanish identically, ∇λgμν ¼ 0 [22].

13One can show that this exact solution only exists provided
ν ¼ 1=ðd − 1Þ for d ≥ 4; otherwise no consistent solution to the
effective nonlocal field equations with Gð□Þ can be found [46].
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universal long distance scaling properties of the theory to
be determined by short-distance renormalization effects,
which are generally independent of the boundary condi-
tions at infinity. A clear example of this is, of course, the
Feynman diagrammatic expansion for gravity in 2þ ϵ
dimensions, where boundary conditions play no role in
the renormalization of the couplings. In addition, it will be
necessary to impose, based on physical considerations, the
constraint that the correlation length in lattice units be much
larger than the average lattice spacing, and at the same time
much smaller than the overall linear size of the system,
l0 ≲ ξ≲ L0, where L0 ∼ V1=4 here is the linear size of the
system, and l0 ∼ a the (average) lattice spacing.
As stated earlier, the bare cosmological constant λ0

appearing in the gravitational action of Eq. (5) is set 1 since
its value just sets the overall length scale in the problem. The
higher derivative coupling a0 was also set to 0 (pure Regge-
Einstein action). It is possible to introduce R2-type terms in
the action; nevertheless in this work these terms were not
included in order not to “contaminate” the results with the
effects of such higher derivative terms. These terms were
studied extensively in [48], and their effects are generally to
stabilize the theory at the expense of nonunitary contribu-
tions, which cause a visible oscillatory behavior in curvature
correlations at short distances. The downsideof not including
any lattice higher derivative terms is that the theory even-
tually develops instabilities very close to the critical point in
G, which need to be handled properly by an extrapolation or
analytic continuation in G. Nevertheless, as has been
shown in [48] and in the discussion further below, such an
extrapolation or analytic continuation is fairly unambiguous,
given a large enough amount of high precision numerical
data. Indeed such an instability is in fact expected on the basis
of the well-known Euclidean conformal mode contribution,
arising from a kinetic energy contribution for the conformal
mode with the wrong sign [11,12]. Its appearance should
therefore be regarded as consistent with the full recovery of a
continuum behavior in the vicinity of the ultraviolet fixed
point at Gc.
For the measure in Eq. (5) the above choice of param-

eters then leads to a well-behaved ground state for k <
kc ≈ 0.052 for a ¼ 0 [48,49]. Given this choice of param-
eters the system then resides in the “smooth” phase, with a
fractal dimension close to four; on the other hand, for k >
kc the local curvature can become rather large (“rough”
phase), and lattice spacetime collapses into a degenerate
configuration with very long, elongated simplices and thus
more akin to a two-dimensional lattice [14,19,48,49].
The results obtained for the average curvatureR [defined

in Eq. (14)] as a function of the bare coupling k are shown
in Figs. 4–8, on lattices of increasing size with 44, 84, 164,
and 324 sites. Figures 5 and 7 show the 324 data by itself.
The errors there are quite small, of the order of a tenth of a
percent or less, and are therefore not visible in the graph. In
[48] it was found that as k is varied, the average local
curvature is negative for sufficiently small k (smooth

phase), and appears to go to zero continuously at some
finite value kc. For k ≥ kc the curvature becomes very
large, and the simplices tend to collapse into degenerate
configurations with very small volumes (hVi=hl2i2 ∼ 0).
This collapsed phase corresponds to the region of the usual
weak field expansion (G ∼ 0), characterized by unbounded
fluctuations in the conformal mode.
Accurate and reproducible curvature data can only be

obtained for k below the instability point ku since, as
already pointed out in [48], for k > ku ≈ 0.052 an insta-
bility develops, presumably associated with the unbounded
conformal mode. Its signature is typical of a sharp first
order transition, beyond which the system tunnels into the
rough, elongated phase which is two-dimensional in nature
with no physically acceptable continuum limit. This
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FIG. 4 (color online). Average local curvature RðkÞ as defined
in Eq. (14), computed on a lattice with 164 ¼ 65; 536 sites.
Statistical errors [∼Oð10−4Þ] are much smaller than the size of the
symbols. The continuous line represents a fit of the form Aðkc −
kÞδ for k ≥ 0.02, with exponent δ ¼ 4ν − 1.
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FIG. 5 (color online). Average local curvature RðkÞ as defined
in Eq. (14), computed on a large lattice with 324 ¼ 1; 048; 576
sites. Note the change in horizontal scale as compared to the
previous figure. Statistical errors [∼Oð10−4Þ] are much smaller
than the size of the symbols. The continuous line represents a fit
of the form Aðkc − kÞδ for k ≥ 0.04, with exponent δ ¼ 4ν − 1.
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instability is caused by the appearance of one or more
localized singular configurations, with a spikelike curva-
ture singularity, and is clearly driven by the Euclidean
Einstein term in the action, and in particular its unbounded
conformal mode contribution. Nevertheless an important
result that emerges from the lattice calculations is that for
sufficiently strong coupling such singular configurations
are suppressed by quantum fluctuations and thus by the
nature of the measure, which imposes nontrivial constraints
coming from the generalized triangle inequalities. The
lattice results suggest therefore that the conformal insta-
bility is entirely cured for sufficiently strong coupling. It is
characteristic of first order transitions that the free energy
develops an infinitely sharp delta-function singularity at ku,
with the metastable branch developing no nonanalytic
contribution at ku. Indeed it is well known from the theory
of first order transitions that tunneling effects will lead to a
purely imaginary contribution to the free energy, with an

essential singularity for k > ku [15]. In the following we
shall therefore clearly distinguish the instability point ku
from the true critical point at kc. Consequently the
nonanalytic behavior of the free energy (and its derivatives
which include, for example, the average curvature) has to
be obtained by analytic continuation of the Euclidean
theory into the metastable branch. This procedure is then
formally equivalent to the construction of the continuum
theory exclusively from its strong coupling (small k or large
G) expansion, for example starting from

ZLðkÞ ¼
X∞
n¼0

ankn; ð64Þ

RðkÞ ¼
X∞
n¼0

bnkn; ð65Þ

χRðkÞ ¼
X∞
n¼0

cnkn: ð66Þ

Given a large enough number of terms in this expansion,
the nonanalytic behavior in the vicinity of the true critical
point at kc can then be determined unambiguously, using
for example differential or Padé approximants [50,51] for
suitable combinations which are expected to be meromor-
phic in the vicinity of the true critical point. In the present
case, instead of the analytic strong coupling expansion, one
makes use of a set of (in principle, arbitrarily) accurate data
points to which the expected functional form can be fitted.
What is assumed here then is the kind of regularity which is
always assumed in extrapolating finite series to the boun-
dary of their radius of convergence. Ultimately it should be
kept in mind though that one is really interested in the
pseudo-Riemannian case, and not the Euclidean one for
which such an instability due to the conformal mode is, as
stated before, to be expected. Indeed had such an instability
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FIG. 6 (color online). Average local curvature RðkÞ on the 164
lattice, raised to the third power. If δ ¼ ν ¼ 1=3 exactly, then all
the data should fall on a straight line close to kc. The continuous
line here represents a linear fit of the form Aðkc − kÞ for k ≥ 0.02.
Deviations from linearity of the transformed data are rather small.
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FIG. 7 (color online). Average local curvatureRðkÞ on the larger
324 (1,048,576 sites) lattice, raised to the third power. Again if δ¼
ν¼ 1=3 exactly, then the points should all fall on a straight line. The
continuous line represents a linear fit of the form Aðkc−kÞ.
Deviations from linearity of the transformed data are rather small.
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FIG. 8 (color online). Volume dependence of the average local
curvature jRðkÞj3 on lattices with 44, 84, 164, and 324 sites. Again,
if δ ¼ ν ¼ 1=3 exactly, then the data should all fall on a straight line
close to kc. The continuous line represents a linear fit of the form
Aðkc − kÞ. The size dependence becomes rather small on the larger
lattices, unless one moves very close to the critical point.
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not occurred one might wonder if the resulting theory still
had any relationship to the original continuum theory: for
the lattice theory one expects such an instability to develop
at some point, since the continuum theory is known to be
unstable for weak enough coupling. In conclusion, in the
following only data for k ≤ ku will be considered; in fact to
add a margin of safety only k ≤ 0.051 will be considered
throughout the rest of the paper.
To extract the critical exponent δ, one fits the computed

values for the average curvature to the form of Eq. (44). It
would seem unreasonable to expect that the computed
values for R are accurately described by this function even
for small k, away from the critical point at kc. Instead, the
data are fitted to the above functional form for either k ≥
0.02 or k ≥ 0.03. Then the difference in the fit parameters
can be used as one more measure for the error. In addition,
it is possible to include a subleading correction of the form

RðkÞ ∼
k→kc

− AR½kc − kþ Bðkc − kÞ2�δ; ð67Þ

and use the results to further constrain the uncertainties in
the amplitude AR, kc and the exponent δ ¼ 4ν − 1. Using
this set of procedures forRðkÞ one obtains on a lattice with
L4 sites the following set of estimates:

L ¼ 4; kc ¼ 0.07025ð20Þ; ν ¼ 0.357ð8Þ; ð68Þ

L ¼ 8; kc ¼ 0.05811ð27Þ; ν ¼ 0.308ð16Þ; ð69Þ

L ¼ 16; kc ¼ 0.06134ð11Þ; ν ¼ 0.322ð6Þ; ð70Þ

L ¼ 32; kc ¼ 0.06094ð10Þ; ν ¼ 0.320ð6Þ: ð71Þ

Then using the same set of procedures for jRðkÞj3 (which
assumes ν ¼ 1=3 exactly) one obtains on the same L4

lattices

L ¼ 4; kc ¼ 0.06485ð20Þ; ð72Þ

L ¼ 8; kc ¼ 0.06337ð27Þ; ð73Þ

L ¼ 16; kc ¼ 0.06377ð11Þ; ð74Þ

L ¼ 32; kc ¼ 0.06387ð9Þ: ð75Þ

This last result is presumably the most accurate one, since it
is derived from the largest lattice, with the highest statistics
and the smallest errors on the individual data points. All of
these results are displayed in Figs. 4–8, and indicate that the
exponent ν (and therefore δ) is indeed very close to 1=3.
Specifically, Figs. 6, 7, and 8 show a graph of the average
curvatureRðkÞ raised to the third power; one would expect
to get a straight line close to the critical point if the
exponent for RðkÞ is exactly 1=3. The numerical results
indeed support such an assumption, and the linearity of the
results close to kc is quite striking. The computed data are

quite close to a straight line over a wide range of k values,
providing further support for the assumption of an algebraic
singularity for RðkÞ itself, with the exponent close to 1=3.
This last value can be compared to the old estimate
computed in [48], ν ≈ 0.33.

VIII. CURVATURE FLUCTUATIONS

Figures 9–12 show the average curvature fluctuation
χRðkÞ defined in Eq. (16). At the critical point the curvature
fluctuation is expected to diverge, by definition. As in the
case of the average local curvature RðkÞ analyzed pre-
viously, one can extract the critical exponent δ and kc by
fitting the computed values for the curvature fluctuation to
the form given in Eq. (45). And, as for the average
curvature itself, it would seem unreasonable to expect that
the computed values for χRðkÞ are accurately described by
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FIG. 9 (color online). Curvature fluctuation χRðkÞ on lattices
with 164 ¼ 65; 536 sites. The continuous line represents a fit of
the form χRðkÞ ¼ Aðkc − kÞ−ð1−δÞ for k ≥ 0.02.
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FIG. 10 (color online). Curvature fluctuation χRðkÞ on the 324

lattice with 1,048,576 sites. Note the change in scale from the
previous figure. The line shown is a best fit of the form χRðkÞ ¼
Aðkc − kÞ−ð1−δÞ for k ≥ 0.04.
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this function even for small k, away from the critical point.
Instead the data have been fitted to the above functional
form either for k ≥ 0.02 or for k ≥ 0.03, and the difference
in the fit parameters is then used as a measure for the error.
In addition one can include here a subleading correction as
well, of the form

χRðkÞ ∼
k→kc

− AχR ½kc − kþ Bðkc − kÞ2�−ð1−δÞ; ð76Þ

and use the results to further constrain the errors on the
amplitude AχR , kc and the exponent δ ¼ 4ν − 1.
One finds that the values for δ and kc obtained in this

fashion are consistent with the ones obtained from the
average curvature RðkÞ, but here with somewhat larger
errors, since fluctuations are notoriously more difficult to
compute accurately than local averages, and require therefore

significantly higher statistics. Using these procedures one
obtains on the largest lattices with 164 and 324 sites

kc ¼ 0.05383ð102Þ; ν ¼ 0.350ð56Þ: ð77Þ
Alternatively, one can use for χRðkÞ the best estimate for kc
obtained earlier from the average curvature. This then gives

ν ¼ 0.321ð12Þ; ð78Þ
which is closer to the value obtained from RðkÞ.
Figures 11 and 12 show the inverse curvature fluctuation

χRðkÞ on the 164 and 324-site lattices, raised to power 3=2.
One would expect to get a straight line close to the critical
point if the exponent for χRðkÞ is exactly−2=3. The computed
data are more or less consistent with a linear behavior for
k ≥ 0.03, providing further support for an algebraic singu-
larity for χRðkÞ itself, with the exponent close to−2=3. Using
this last procedure one finds on the largest (164 and 324)
lattices the improved estimate for the critical point

kc ¼ 0.06369ð84Þ; ð79Þ
which is consistent with the value obtained earlier from R3

(see Figs. 6–8 and related discussion), and suggests again that
the exponent ν must be rather close to 1=3.
In order to check the consistency of the results so far, it is

possible to analyze the previous calculations in a different
way. From the definition of the average curvature R and
curvature fluctuation [Eqs. (14) and (16)], and the fact that
they are both proportional to derivatives of the free energy
F with respect to k [Eqs. (17) and (18)], one notices that
their ratio is given by

2hl2iχRðkÞ
RðkÞ ∼

� ∂
∂k lnZL

�
=
� ∂2

∂k2 lnZL

�

∼
∂
∂k ln

� ∂
∂k lnZL

�
: ð80Þ

The assumption of an algebraic singularity in k for R and
χR [Eqs. (44) and (45)] then implies that the logarithmic
derivative as defined above has a simple pole at kc, with
residue δ ¼ 4ν − 1,

2hl2iχRðkÞ
RðkÞ ∼

k→kc

δ

k − kc
; ð81Þ

and the critical amplitudes dropping out entirely for this
particular ratio. Figures 13 and 14 show the results for the
logarithmic derivative of the average curvature RðkÞ,
obtained from the data shown earlier in Figs. 4–12. Using
this method on the largest 164 and 324 lattices one finds

kc ¼ 0.06338ð55Þ; ν ¼ 0.3356ð84Þ: ð82Þ
Note that for the quantity in Eq. (81) only two parameters are
fitted, as opposed to three earlier, which leads to a slightly
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FIG. 11 (color online). Inverse curvature fluctuation raised to
the power 3=2, on the 164 lattice; note that the data are scaled by a
factor of ×100. The straight line represents a linear fit of the form
Aðkc − kÞ. The location of the critical point in k is consistent with
the estimate obtained from the average curvature, but with a
somewhat larger error.
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FIG. 12 (color online). Inverse curvature fluctuation raised to
the power 3=2, on the 324 lattice; note that the data are scaled by a
factor of ×100. The straight line represents a linear fit of the form
Aðkc − kÞ. The location of the critical point in k is consistent with
the estimate obtained from the average curvature on the same size
lattice, here with a larger uncertainty.
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improved accuracy. It is encouraging that the above estimates
are in good agreement with the values obtained previously
using the other methods.
As a further check, it is possible to look at the behavior

of quantities when compared directly to the average local
curvature. Figure 15 shows a plot of the curvature
fluctuation χRðkÞ versus the curvature RðkÞ (as opposed
to k). If the average local curvature approaches zero
at the critical point (where curvature fluctuation diverges),
then one would expect these curvature fluctuations
to diverge precisely at R ¼ 0. One has from Eqs. (44)
and (45)

χRðRÞ ∼
k→kc

AjRjð1−δÞ=δ ∼ AjRjð4ν−2Þ=ð4ν−1Þ: ð83Þ

An advantage of this particular combination is that it does
not require the knowledge of kc in order to estimate ν.
Consequently only two parameters are fitted, the overall
amplitude and the exponent in Eq. (83). Using this method
one finds, assuming that the fluctuations diverge at R ¼ 0,

ν ¼ 0.3322ð71Þ; ð84Þ

which is rather consistent with previous estimates. Again
the error on ν can be obtained, for example, by reverting to
more elaborate fits of the type

χRðRÞ ∼
R→0

AjRþ BR2jð4ν−2Þ=ð4ν−1Þ: ð85Þ

Note also that for ν ¼ 1=3 the exponent simplifies to −2,
and one obtains the simple result (see also Fig. 15)

χRðRÞ ∼
R→0

AjRj−2: ð86Þ

One concludes that the evidence so far supports a vanishing
average local curvature at the critical point, where the
curvature fluctuation χR and thus the correlation length ξ
[in view of Eqs. (45) and (42)] diverge. These results also
show some degree of consistency in the values for kc
obtained independently fromRðkÞ and χRðkÞ (Figs. 4–15).

IX. FINITE SIZE SCALING ANALYSIS

A further consistency check on the values of the critical
exponents is provided by a systematic finite size scaling
(FSS) analysis.14 Indeed the numerical results presented in
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FIG. 13 (color online). Inverse of the logarithmic derivative of
the average curvatureRðkÞ [defined in Eq. (81)] on the 164 lattice
with 65,536 sites. The straight line represents a best fit of the form
Aðkc − kÞ for k ≥ 0.02. The location of the critical point in k is
consistent with the earlier estimate coming from the average
curvature RðkÞ and its fluctuation χRðkÞ. From the slope of the
line one then computes directly the exponent ν.
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FIG. 14 (color online). Inverse of the logarithmic derivative of
the average curvatureRðkÞ [defined in Eq. (81)] on the 324 lattice
with 1,048,576 sites. The straight line represents a best fit of the
form Aðkc − kÞ for k ≥ 0.04. The location of the critical point in k
is consistent with the estimate coming from the average curvature
RðkÞ and its fluctuation χRðkÞ. From the slope of the line one
computes directly the exponent ν.
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FIG. 15 (color online). Inverse curvature fluctuation, 1=
ffiffiffiffiffiffi
χR
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versus the average curvature R. Points shown here are for the
largest lattices. For ν ¼ 1=3 exactly, 1=
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is expected to be

linear in R for small R.

14A comprehensive review article can be found in the second
of [52,53]; the subject is also covered in numerous books on
statistical field theory [15,33]. A systematic field-theoretic
derivation of finite-size scaling based on the renormalization
group is given in [54].
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the previous sections have been obtained separately for
each lattice of different sizes. It would be highly desirable if
all those results could be combined into a single large data
set which then encompasses all the different lattice sizes,
with consequently a much higher statistical significance.
Quite in general, the FSS scaling form for a quantity O

diverging like t−xO in the infinite volume limit is

OðL; tÞ ¼ LxO=ν

�
~fO

�
L

ξð∞; tÞ
�
þOðξ−ω; L−ωÞ



; ð87Þ

with L the linear size of the system, t the reduced
temperature or distance from the critical point, ~fO a smooth
scaling function, ξð∞; tÞ the infinite volume correlation
length, and ω a correction to scaling exponent; but for
sufficiently large volumes the correction to the scaling term
involving ω can be safely neglected. In the gravity case one
has t ∼ jkc − kj, and OðL; tÞ is some physical average such
as the local curvature RðkÞ or its fluctuation χRðkÞ, with
the linear size of the system L ∼ hVi1=d. General properties
of the scaling function ~fOðyÞ include the fact that it is
expected to show a peak if the finite volume value for O is
peaked, it is analytic at x ¼ 0 since no singularity can
develop in a finite volume, and ~fOðyÞ ∼ ~y−xO for large y for
a quantity O which diverges as t−xO in the infinite
volume limit.
The expression in Eq. (87) is only useful when the

infinite-volume correlation length ξ is accurately known.
Nevertheless close to the critical point one can use ξ ∼ t−ν

and then deduce from it the equivalent scaling from

OðL; tÞ ¼ LxO=ν½ ~fOðLtνÞ þOðL−ωÞ�; ð88Þ

which relies on a knowledge of t, and thus of the critical
point, instead.
The finite size scaling behavior of the average local

curvature, as defined in Eqs. (13) and (14) will be discussed
next. If scaling involving k and L holds according to
Eq. (88), with xO ¼ 1 − 4ν the scaling dimension for the
curvature, then all points for different k’s and L’s should lie
on the same universal curve. From Eq. (88), with t ∼ kc − k
and xO ¼ −δ ¼ 1 − 4ν, one has

Rðk; LÞ ¼ L−ð4−1=νÞ½ ~Rððkc − kÞL1=νÞ þOðL−ωÞ�; ð89Þ

where again ω > 0 is a correction-to-scaling exponent. The
above argument then suggests that the quantities

Rðk; LÞ · L4−1=ν ∼
�
L
ξ

�
4−1=ν

ð90Þ

should all lie on a single universal curve when displayed as
a function of the scaling variable

x≡ ðkc − kÞL1=ν ∼
�
L
ξ

�
1=ν

: ð91Þ

Figure 16 shows a graph of the scaled curvature
RðkÞL4−1=ν for different values of L ¼ 4; 8; 16; 32 versus
the scaled coupling ðkc − kÞL1=ν. The data do indeed
support such scaling behavior, and one finds a best fit for

kc ¼ 0.06388ð32Þ; ν ¼ 0.3334ð4Þ: ð92Þ

Note that the value for kc found here is in good agreement
with the value given earlier in Eq. (75). Thus so far the
finite size scaling analysis leads to values for kc and ν
which are in good agreement with what was obtained
before, and provides one more stringent test on the value for
ν, which appears again to be consistent, within errors,
with ν ¼ 1=3.
The finite size scaling properties of the curvature

fluctuation, defined in Eqs. (15) and (16), will be discussed
next. Again, if scaling involving k and L holds according to
Eq. (88), with t ∼ kc − k and xO ¼ 1 − δ ¼ 2 − 4ν, then all
points should lie on the same universal curve. From the
general form in Eq. (88) one expects for this particular case

χRðk; LÞ ¼ L2=ν−4½ ~χRððkc − kÞL1=νÞ þOðL−ωÞ�; ð93Þ

where ω > 0 again a correction-to-scaling exponent. The
above arguments then suggest that the quantity

χRðk; LÞ · L4−2=ν ∼
�
L
ξ

�
4−2=ν

ð94Þ
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FIG. 16 (color online). Finite size scaling behavior of the scaled
curvature Rðk; LÞ · L4−1=ν versus the scaled coupling
ðkc − kÞ · L1=ν. Here L ¼ 4; 8; 16; 32 for the lattice with L4 sites.
Statistical errors are comparable to the size of the dots. The
continuous line represents a best fit to a scaling function of the
form aþ bxc, and finite size scaling predicts that all points
should lie on the same universal curve. The continuous line
corresponds to a critical point kc ¼ 0.06388ð32Þ and exponent
ν ¼ 0.3334ð4Þ.
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should give points all lying on a single universal curve
when displayed again as a function of the scaling variable x
in Eq. (91). Figure 17 shows a graph of the scaled curvature
fluctuation χRðkÞ=L2=ν−4 for different values of L ¼
4; 8; 16; 32 versus the scaled variable ðkc − kÞL1=ν. Using
this method one finds approximately

kc ¼ 0.06384ð40Þ; ν ¼ 0.3389ð56Þ: ð95Þ

Note that the errors in this case are much larger than for the
corresponding average curvature analysis. Nevertheless the
data support such scaling behavior and suggest again that ν
is close to 1=3.
The value of kc itself is expected to have a weak

dependence on the linear size of the system L0 ∼ V1=d.
For a finite system of linear size L0 one anticipates [52,53]
that close to the critical point

kcðL0Þ ∼
L0→∞

kcð∞Þ þ cL−1=ν
0 : ð96Þ

This is essentially the expression in Eq. (42), with ξ ∼ L0,
and then solved for the finite volume critical point kcðL0Þ.
Indeed such a weak size dependence is found when
comparing kc (as obtained from the algebraic singularity
fits discussed previously) on different lattice sizes.
Figure 18 shows the size dependence of the critical
coupling kc as obtained on different size lattices. In all
three cases kcðL0Þ is first obtained from a fit to the average
curvature of the form RðkÞ ¼ Aðkc − kÞδ as in Eq. (44).
Because of the few values of L it is not possible at this point
to extract an estimate for ν from this particular set of data.
But since ν is close to 1=3, it makes sense to use this value

in Eq. (96), at least as a first approximation. So if one
assumes ν ¼ 1=3 exactly and extracts kc from a linear fit to
jRj3, then the variations in kc for different size lattices are
substantially reduced (points labeled by small circles in
Fig. 18). This then gives one additional independent
estimate (which now combines all available lattice sizes,
namely L ¼ 4; 8; 16; 32)

kcð∞Þ≃ 0.063862; ð97Þ

which is in good agreement with the value from the finite
size analysis given in Eq. (92).
One physical quantity of significant interest is the

fundamental gravitational correlation length ξðkÞ itself. It
is defined via the exponential decay of physical correlations
[such as the ones given in Eqs. (24) and (25)] as a function
of the geodesic distance between points [see for example
Eq. (27)]. It also appears as the quantity of key significance
in the scaling argument for the free energy [see Eq. (41)]
and is expected to diverge in accordance with Eq. (42) in
the vicinity of the critical point at kc. The discussion given
in the previous sections pointed to the fact that this quantity
is small and of the order of one average lattice spacing
(ξ ∼ l0) in the strong coupling limit (small k), and is
expected to increase monotonically toward the critical
point at kc in accordance with Eq. (42). Indeed all the
results presented in the previous two sections have been
analyzed in terms of universal scaling properties in accor-
dance with the basic assumption of Eq. (41), and all the
results that follow from it. From the results presented so far
one concludes that the correlation length exponent ν
defined in Eq. (42) is consistent with ν ¼ 1=3.
The next step is to fix the correlation length critical

amplitude Aξ as well, which is defined in Eq. (42). The
latter is not obtained in an obvious way from any of the
results presented so far and requires instead a direct and
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FIG. 17 (color online). Finite size scaling behavior of the scaled
curvature fluctuation χRðk; LÞ · L4−2=ν versus the scaled coupling
ðkc − kÞ · L1=ν. Here L ¼ 4; 8; 16; 32 for a lattice with L4 sites.
The continuous line represents a best fit to a scaling function of
the form 1=ðaþ bxcÞ, and finite size scaling predicts that all
points should lie on the same universal curve. The continuous line
corresponds to a critical point kc ¼ 0.06384ð40Þ and an exponent
ν ¼ 0.3389ð56Þ.
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FIG. 18 (color online). Size dependence of the critical point
kcðLÞ for different lattices, withN ¼ L4 sites andL ¼ 4; 8; 16; 32.
The line represents a fitkcðLÞ ¼ kcð∞Þ þ A=L3 þ B=L6 andgives
the limiting estimate kcð∞Þ ¼ 0.0638615.
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separate computation of physical correlations at fixed
geodesic distance, such as the one in Eq. (27). These
correlations were already computed in [23], and additional
estimates on the correlation length ξ can be obtained
separately from the size or volume dependence of local
averages, which is expected to behave, for fixed k ≠ kc but
close to the critical point, as

RL0
ðkÞ ∼

L0≫ξ
R∞ðkÞ þ

Affiffiffi
ξ

p
L3=2
0

e−L0=ξ; ð98Þ

where here L0 ∼ V1=4 is a suitably defined linear size of the
system. Nevertheless, the overall errors for this analysis can
be reduced significantly if one assumes ν ¼ 1=3 exactly
[which from the previous results on RðkÞ and χRðkÞ is
known to be a very good approximation], and furthermore
if one assumes that the correlation length diverges at one
and the same critical kc [also determined to great accuracy
from the previous results for RðkÞ and χRðkÞ]. The latter
set of results was largely based on the scaling assumption in
Eq. (41). Given these simplifying choices one then obtains

RðkÞ ∼
k→kc

ðkc − kÞdν−1 ∼ ξ1=ν−d ∼ 1=ξ; ð99Þ

and also

χRðkÞ ∼
k→kc

ðkc − kÞdν−2 ∼ ξd=ν−4 ∼ ξ2: ð100Þ

Therefore the two combinations RðkÞ · ξðkÞ and
χRðkÞ=ξ2ðkÞ are expected to approach a constant as
k → kc. Computing these combinations is so far the most
accurate way of determining the dependence on k of ξðkÞ,
and in particular for establishing a numerical value for the
key amplitude Aξ in Eq. (42). Via this route one finds
close to kc that R · ξ ¼ Aξ · AR ≃ 19.57 and χR=ξ2 ¼
Aχ=A2

ξ ≃ 2.216, which then gives for the correlation

length amplitude in Eq. (42) the estimate Aξ ≃ 0.80ð3Þ.
A plot of the correlation length ξðkÞ obtained in this way is
shown in Fig. 19. Note that a knowledge of the amplitude
Aξ then gives immediately, by the renormalization group
equations in Eqs. (59), (61), and (63), the running of G in
the vicinity of the nontrivial fixed point at Gc.

X. SUMMARY OF RESULTS

Table I summarizes the results obtained for the
critical point kc ¼ 1=8πGc and for the universal critical
exponent ν obtained so far using a variety of observables
and methods. In view of the detailed discussion of the
previous section one finds from the best data so far (the one
with the smallest statistical uncertainties and the least
systematic effects)

kc ¼ 0.063862ð18Þ; ν ¼ 0.334ð4Þ; ð101Þ

which is consistent with the conjecture that ν ¼ 1=3
exactly for pure quantum gravity in four dimensions. In
turn this gives for the bare coupling G at the critical
point

Gc ¼
1

8πkc
¼ 0.623042ð25Þ: ð102Þ

In previous work [48] the following estimates were
given:
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FIG. 19 (color online). Estimate for the gravitational correlation
length ξðkÞ versus bare coupling k. For a correlation length
exponent ν ¼ 1=3 [see Eq. (42)], 1=ξðkÞ3 is expected to be linear
in k close to the critical point kc.

TABLE I. Summary of results for the critical point kc and the
universal gravitational critical exponent ν, as obtained from the
largest lattice studies so far.

Observables used to
compute kc and ν

Critical
point kc

Universal
exponent ν

Average curvature
R versus k

0.06336(28) 0.331(4)

Average curvature
R3 versus k

0.06367(29) 0.332(2)

Average curvature
R3 versus k

0.06407(24) � � �

Curvature fluctuation
χR versus k

0.05383(102) 0.350(56)

Curvature fluctutation
χR versus k

� � � 0.321(12)

Curvature fluctuation
χ−3=2R versus k

0.06369(84) � � �

Logarithmic derivative
2hl2iχR=R versus k

0.06338(56) 0.336(8)

Curvature fluctuation
χR versus R

� � � 0.332(7)

Rðk; LÞ finite size scaling 0.06388(11) 0.333(2)
χRðk; LÞ finite size scaling 0.06384(18) 0.339(6)
Size dependence of the
critical point kcðLÞ

0.063862(30) � � �
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kc ¼ 0.0636ð11Þ; ν ¼ 0.33ð1Þ; ð103Þ

which have been refined in view of the higher statistics and
larger lattices which are part of the current study.
Table II provides a comparison between the best lattice

estimate given in Eq. (101) and the value of the universal
exponent ν from other approaches. These include the
calculation of ν in the 2þ ϵ expansion for gravity [20]
carried out to two loop order [21], a calculation of the same
using a truncated renormalization group approach in four
dimensions [55,56], including some recent more refined
estimates [57]. Further references include a simple geo-
metric argument based on geometric features of the
graviton vacuum polarization cloud, which gives ν ¼
1=ðd − 1Þ for large d [31], and the rough estimate for ν
from the lowest nontrivial order strong coupling expansion
for the gravitational Wilson loop [27], which gives
ν ¼ 1=2. Finally the result of [46] is mentioned, where
it was found that a solution to the nonlocal effective
field equations of Eq. (62) for the static isotropic metric
can only be found provided ν ¼ 1=ðd − 1Þ exactly for
d ≥ 4. For a plot of the corresponding values for ν
see Fig. 20.

Table III then gives a similar table, where values for the
universal gravitational critical exponent ν are given
in three dimensions (for the Euclidean case) or 2þ 1
dimensions (for the Lorentzian case). Here again it is
possible to make a direct comparison between several
approaches, namely the lattice [47,58], the two-loop 2þ ϵ
expansion of [21] but with now ϵ ¼ 1, the Einstein-Hilbert
truncated renormalization group approach [55–57], and the
large d estimate of [31]. The corresponding values for ν are
shown in Fig. 20.
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expansion

Interpolation

Lattice

FIG. 20 (color online). Universal scaling exponent ν determin-
ing the running of G [see Eqs. (59) and (61)] as a function of
spacetime dimension d. Shown are the results in 2þ 1 dimen-
sions obtained from the exact solution of the lattice Wheeler-
DeWitt equation [47], the numerical result in four dimensions
(this work and [48]), the 2þ ϵ expansion result to one [20] and
two loops [21], and the large d result ν−1 ≃ d − 1 [31]. For actual
numerical values see Tables II and III.

TABLE II. A comparison of estimates for the fundamental
scaling exponent ν, based on a variety of different analytical and
numerical methods. These include the 2þ ϵ expansion for pure
gravity carried out at one and two loops [20], an estimate for the
leading exponent in a truncated renormalization group expansion
[56,57], a simple geometric argument based on the geometric
features of the quantum vacuum polarization cloud for gravity,
and finally the only value allowed by a consistent solution to the
nonlocal field equation with a Gð□Þ for the static isotropic
metric.

Method used to compute
ν in d ¼ 4

Universal
exponent ν

Euclidean lattice quantum
gravity (this work)

ν−1 ¼ 2.997ð9Þ

Perturbative 2þ ϵ expansion
to one loop [20]

ν−1 ¼ 2

Perturbative 2þ ϵ expansion
to two loops [21]

ν−1 ¼ 22=5 ¼ 4.40

Einstein-Hilbert RG
truncation [56]

ν−1 ≈ 2.80

Recent improved
Einstein-Hilbert RG
truncation [57]

ν−1 ≈ 3.0

Geometric argument [31]
ρvac polðrÞ ∼ rd−1

ν−1 ¼ d − 1 ¼ 3

Lowest order strong
coupling (large G)
expansion [27]

ν−1 ¼ 2

Nonlocal field equations
with Gð□Þ for the static
metric [46]

ν−1 ¼ d − 1 for d ≥ 4

TABLE III. A comparison of various estimates for the funda-
mental scaling exponent ν in 2þ 1 dimensions, based on a
variety of different analytical and numerical methods. Included
are the 2þ ϵ expansion for pure gravity carried out at one and two
loops [20,21], an estimate for the leading exponent in a truncated
renormalization group expansion [56], and a simple geometric
argument based on general features of the quantum vacuum
polarization cloud for gravity.

Method used to compute ν in d ¼ 3 Universal exponent ν

Euclidean lattice quantum gravity [58] ν−1 ¼ 1.72ð5Þ
Exact solution of Lorentzian gravity
(Wheeler-DeWitt equation)
in 2þ 1 dim. [47]

ν−1 ¼ 11=6 ¼ 1.8333

Perturbative 2þ ϵ expansion
to one loop [20]

ν−1 ¼ 1

Perturbative 2þ ϵ expansion
to two loops [21]

ν−1 ¼ 8=5 ¼ 1.6

Einstein-Hilbert RG truncation [56] ν−1 ≈ 1.33
Large d geometric argument [31]
ρvac polðrÞ ∼ rd−1

ν−1 ¼ d − 1 ¼ 2
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XI. IMPLICATIONS FROM A GRAVITATION
EXPONENT ν ¼ 1=3

In this section the consequences of having a definite
value for the critical point kc, as well as a value for the
universal critical exponent ν [see Eq. (101)], will be
discussed. One notes on the one hand that the value for
kc and thus Gc now fixes the value for the ultraviolet cutoff
a. At the same time, the specific value for ν≃ 1=3 gives
predictions for the scaling behavior of local averages,
gravitational correlations, and the running of G.
First note that the value for the critical point kc given in

Eqs. (101) and (102) fixes the lattice spacing a, and thus the
value for the ultraviolet cutoff

G ≈Gc ¼ 0.623041a2: ð104Þ

From the known laboratory value of Newton’s constant G,
lP ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏG=c3
p

¼ 1.616199ð97Þ × 10−33 cm, so that one
obtains for the fundamental lattice spacing a ¼
1.2669

ffiffiffiffiffiffi
Gc

p ≡ lP, or

a ¼ 2.0476 × 10−33 cm; ð105Þ

and from it a definite value for the ultraviolet cutoff
Λ≃ 1=a. For the average lattice spacing in units of a
one finds

hl2i≡ l20 ¼ ½2.398ð9Þa�2 ð106Þ

so that a and l0 are quite comparable in magnitude [this fact
can be traced back to the original overall scale choice λ0 ¼
1 in Eqs. (2) and (6), motivated by Eq. (10)].
For the average local curvature RðkÞ one has from

Eq. (44), using Eq. (42) and ν ¼ 1=3,

hR d4x
ffiffiffi
g

p
RðxÞi

hR d4x
ffiffiffi
g

p i ∼ ξ1=ν−d ∼
A0
R

aξ
: ð107Þ

The dimensionless amplitude A0
R is expected to be Oð1Þ in

lattice units and is given below in Eq. (111). This result is
based on the fact that the lattice calculations allow one to
also extract various amplitude coefficients. For the dimen-
sionless curvature amplitude defined in Eq. (44) one finds

AR ¼ 24.46ð9Þ; ð108Þ

and for the dimensionless curvature fluctuation amplitude
defined in Eq. (45)

Aχ ≡ 4ν − 1

hl2i AR ¼ 1.418ð6Þ: ð109Þ

Combined with the dimensionless correlation length ampli-
tude defined in Eq. (42),

Aξ ¼ 0.80ð3Þ; ð110Þ

one finds for the amplitude in Eq. (107)

A0
R ≡ ARAξ

hl2i ¼ 3.40ð13Þ: ð111Þ

For the curvature fluctuation χRðkÞ one has from Eqs. (15),
(45), and (100)

hðR d4x
ffiffiffi
g

p
RÞ2i − hR d4x

ffiffiffi
g

p
Ri2

hR d4x
ffiffiffi
g

p i ∼ ξ2=ν−d ∼ A0
χξ

2=a2

ð112Þ
with dimensionless amplitude

A0
χ ≡ Aχ

A2
ξ

¼ 4ν − 1

hl2i ·
AR

A2
ξ

¼ 2.22ð9Þ: ð113Þ

These results in turn provide useful information for the
curvature correlation function at a fixed geodesic distance
of Eqs. (24) and (25). From Eq. (48) one has for the power
appearing in Eq. (26) 2n ¼ 2ðd − 1=νÞ ¼ 2ð4 − 3Þ ¼ 2

15

One then obtains for the curvature-curvature correlation
function at “short distances” r ≪ ξ and for ν ¼ 1=3 the
remarkably simple result

h ffiffiffi
g

p
RðxÞ ffiffiffi

g
p

RðyÞδðjx − yj − dÞic ∼
d≪ξ

1

d2d−2=ν
∼

A0

a2d2
:

ð114Þ
Note that in the last term the correct dimensions have been
restored, by inserting suitable powers of the lattice spacing
a. It is instructive to compare the above result to the
expression for the local average curvature, Eq. (107); note
in particular that both expressions still contain explicitly the
size of the microscopic parallel transport loop ∼a ∼ lP.
Here the dimensionless amplitude A0 is related to the
amplitude in Eq. (113) because of Eq. (47), and one finds

A0 ≡ A0
χ

2π2
¼ 1

2π2
·
1

3
·
1

hl2i ·
AR

A2
ξ

¼ ½0.335ð20Þ�2 ð115Þ

so that the dimensionless correlation function normaliza-
tion constant is NR ≡ ffiffiffiffiffi

A0

p ¼ 0.335ð20Þ. As expected, all

15In weak field perturbation theory one finds [24]
h ffiffiffi

g
p

RðxÞ ffiffiffi
g

p
RðyÞic ∼ h∂2hðxÞ∂2hðyÞi ∼ 1=jx − yj6, so the result

here is quite different. If one defines an anomalous dimension η
for the graviton propagator in momentum space, hhhi ∼ 1=k2−η,
one finds η ¼ d − 2 − 2=ν or η ¼ −4 in four dimensions for
ν ¼ 1=3, which deviates significantly from the Gaussian or
perturbative value. Such a large deviation is already observed
in the 2þ ϵ expansion [see Eq. (54)] and is not peculiar to lattice
quantum gravity. In gravity such a possibility was already
discussed some time ago in [59].
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of these amplitudes are close to Oð1Þ in units of the
ultraviolet cutoff (fundamental lattice spacing) a.
The exponent ν ¼ 1=3 and the amplitude Aξ now

determine the running of G with scale [see Eq. (59)],
and one obtains

Gðq2Þ ¼ Gc

�
1þ c0

�
m2

q2

�
3=2

þO

��
m2

q2

�
3
�


; ð116Þ

with reference scale m≡ 1=ξ. The coefficient c0 [see
Eq. (60)] determines the amplitude of the quantum cor-
rection, and it is given by

c0 ¼ 8πGcA
1=ν
ξ ¼ A3

ξ=kc; ð117Þ

with Aξ ¼ 0.80ð3Þ from the numerical solution [see
Eq. (110); for the definition of the amplitude Aξ see
Eq. (42)], and also ν ¼ 1=3 and kc from Eq. (101). This
then gives for the dimensionless amplitude of the leading
quantum correction in Eq. (116) c0 ≈ 8.02. This last result
can then be translated directly into a covariant Gð□Þ [see
Eq. (61) with ν ¼ 1=3],

Gð□Þ ¼ Gc

�
1þ c0

�
1

−ξ2□2

�
3=2

þ � � �


: ð118Þ

The latter forms the basis for a set of nonlocal effective field
equations [see Eq. (62)] and gives the running of GðrÞ for
the specific choice of the static isotropic metric
[see Eq. (63)].
In principle it is also possible to estimate the next

(subleading) correction to the leading running of G in
Eq. (116), given the knowledge of the subleading correc-
tions to ξðkÞ or mðkÞ in Eqs. (42) or (116). If one has

ξ−1ðGÞ
¼ a−1AmðG −GcÞν½1 − bν2ðG − GcÞ þOððG −GcÞ2Þ�;

ð119Þ

with a subleading correction of amplitude b, then for the
running of G one obtains to this order

Gðq2Þ
Gc

¼ 1þ c0

�
m2

q2

�
1=2ν

þ c1

�
m2

q2

�
1=ν

þ � � � ; ð120Þ

with c1 ¼ bν=ðA2=ν
m GcÞ ≈ 2.87, given that b ≈ 0.215 and

Am ¼ ðkc=GcÞν=Aξ, and Aξ given in Eq. (110). The domain
of validity for the above expression is q ≫ m≡ 1=ξ or
r ≪ ξ; the strong infrared divergence at q≃ 0 is largely an
artifact of the current expansion and can be regulated either
by cutting off the momentum integrations at q≃m ¼ 1=ξ
or by the replacement on the RHS q2 → q2 þm2.
Furthermore, the previous results show clearly that the

reference scale for the running of G is set by the correlation

length ξ, which by Eqs. (46), (99), and (107) appears to be
directly related to curvature. In particular the form of the
running of G with scale suggests that no detectable
corrections to classical gravity should arise either (a) until
the scale r approaches the very large (cosmological) scale ξ
or (b) until one reaches extremely short distances compa-
rable to the Planck length r ∼ lp, at which point higher
derivative terms, light matter corrections, and string con-
tributions come into play. In other words, the results of
Eqs. (63), (116), or (118) imply that classical gravity is
largely recovered on atomic, laboratory, solar, and even
galactic scales, as long as the relevant distances sat-
isfy r ≪ ξ.
Therefore one crucial ingredient needed in pinning down

the magnitude of the quantum correction for Gðq2Þ in
Eqs. (116) or (118) is the actual value of the nonperturba-
tive reference scale ξ. It was argued in [27] that, in analogy
to ordinary gauge theories, the gravitational Wilson loop
provides precisely such an insight. The main points of the
argument are rather simple and can be reproduced in a few
lines. In complete analogy to the gauge theory case, these
arguments basically rely on the concept of universality, the
existence of a universal correlation length at strong cou-
pling, and the use of the Haar invariant measure to integrate
over large fluctuations of the fundamental local parallel
transport matrices. Following [24,25], in [27] the vacuum
expectation value corresponding to the gravitational Wilson
loop was defined as

hWðCÞi ¼ htr½ωðCÞU1U2 � � �Un�i: ð121Þ

Here the U’s are elementary rotation matrices, whose form
is determined by the affine connection and which therefore
describe the parallel transport of vectors around a loop C;
see also Eq. (32). Here ωμνðCÞ is a constant unit bivector,
characteristic of the overall geometric orientation of the
loop, giving the normal to the loop. In the continuum the
combined rotation matrix UðCÞ is given by the path-
ordered (P) exponential of the integral of the affine
connection Γλ

μν, as in Eq. (31), so that the previous
expression represents a suitable regularized and discretized
lattice form. In [27] it was then shown that quite generally
in lattice gravity for sufficiently strong coupling one
obtains universally an area law for near planar loops,16

16A similar result is, of course, well established in non-Abelian
gauge theories, and by now is regarded as standard textbook
material [see for example, Peskin and Schroeder, An Introduction
to Quantum Field Theory, p. 783, Eq. (22.3) [60]]. There ξ
represents the gauge field correlation length, defined, for exam-
ple, from the exponential decay of connected Euclidean corre-
lations of two infinitesimal chromomagnetic loops separated by a
given distance jxj. Following [27], we choose to write here the
gravitational result in the same scaling form, involving the
invariant gravitational correlation length ξ; an overall, in principle
calculable, multiplicative constant Oð1Þ in the exponent has been
set equal to one here.
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hWðCÞi≃ expð−AC=ξ2Þ; ð122Þ

where AC is the geometric area of the loop. This last result
relies on a modified first order formalism for the Regge
lattice theory [32], in which the lattice metric degrees of
freedom are separated out into local Lorentz rotations and
tetrads. Moreover, the result of Eq. (121) appears to be
universal since and was shown to hold in all known lattice
formulations of quantum gravity in the strong coupling
regime. In [27] an expression for the correlation length ξ
appearing in Eq. (122) was given in the strong coupling
limit, where one finds ξ ¼ 4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcj logðk=kcÞj þOðk2Þ

p
.

For k close to kc this gives immediately ξ≃ 4jkc −
kj−1=2 and thus, to this order, ν ¼ 1

2
and also Aξ ¼ 4 in

Eq. (42). Nevertheless, the discussion of the previous
sections and the numerical solution of the full lattice theory
suggests that the correct expression for ξ to be used in
Eq. (122) should be the one in Eq. (42), with ν ¼ 1=3
[Eq. (101)], kc given in Eq. (101), and ampli-
tude Aξ ¼ 0.80ð3Þ.
The next step is to make contact between the above

results and a semiclassical description, which requires that
one connects the nonperturbative result of Eq. (122) to a
suitable semiclassical physical observable. Indeed, by the
use of Stokes’s theorem, semiclassically the parallel trans-
port of a vector round a very large loop depends on the
exponential of a suitably coarse-grained Riemann tensor
over the loop. In this semiclassical picture one has for the
combined rotation matrix U

Uμ
νðCÞ ∼

�
exp

�
1

2

Z
SðCÞ

R·
·λσAλσ

C

	

μ

ν

; ð123Þ

where Aλσ
C is an area bivector associated with the loop in

question,

Aλσ
C ¼ 1

2

I
C
dxλxσ: ð124Þ

Then the semiclassical procedure gives for the loop in
question

WðCÞ≃ tr

�
ωðCÞ exp

�
1

2

Z
SðCÞ

R·
·λσAλσ

C

	�
: ð125Þ

Here again ωμνðCÞ is a constant unit bivector, characteristic
of the overall geometric orientation of the parallel transport
loop. By carefully comparing coefficients for the two area
terms [27] one then concludes that the average large-scale
curvature is of order þ1=ξ2, at least in the strong coupling
limit considered in the cited references. Since the scaled
cosmological constant can be viewed as a measure of the
intrinsic curvature of the vacuum, the above argument then
gives a positive cosmological constant for this phase,
corresponding to a manifold which behaves as de Sitter

(λ > 0) on large scales [27]. These arguments then lead to
the suggestion that the macroscopic (semiclassical) average
curvature is related to ξ by

hRilarge scales ∼þ1=ξ2; ð126Þ

at least in the strong coupling (largeG) limit. It is important
to note here that the result of Eq. (126) applies to parallel
transport loops whose linear size rC is much larger than the
cutoff, rC ≫ lp; a; nevertheless in this limit the answer for
the macroscopic curvature in Eq. (126) becomes indepen-
dent of the loop size or its area [27]. Furthermore, these
arguments lead, via the classical field equations, to the
identification of 1=ξ2 with the observed (scaled) cosmo-
logical constant λobs,

17

1

3
λobs ≃þ 1

ξ2
: ð127Þ

In this picture the latter is then regarded as the quantum
gravitational condensate, a measure of the vacuum energy,
and thus of the intrinsic curvature of the vacuum.18 Then a
suitable effective action, describing the residual effects of
quantum gravity on very large distance scales, is of the
form

Ieff ½gμν� ¼ −
1

16πGðμÞ
Z

d4x
ffiffiffi
g

p �
R −

6

ξ2

�

þ Imatter½gμν;…�; ð128Þ

with GðμÞ a very slowly varying (on macroscopic scales)
Newton’s constant, in accordance with Eqs. (116) or (118).
Note that the above results in many ways parallel what is

found in non-Abelian gauge theories, where for example
one has for the color condensate hF2

μνi≃ 1=ξ4.
Furthermore, this last result can also be obtained largely
from purely dimensional grounds, once the existence of a
fundamental correlation length ξ, which for QCD is given
by the inverse of the mass of the lowest spin zero glueball,
is established. Accordingly, for gravity too one would
expect, again simply on the basis of dimensional argu-
ments, that the large scale curvature (the graviton con-
densate) should be related to the fundamental correlation
length by hRi≃ 1=ξ2, as in Eq. (46).
The considerations presented so far can to some extent

finally provide a quantitative handle on the physical

17Up to a constant of proportionality, expected to be of order
unity.

18Note that, quite generally and independent of the lattice
results, it seems rather difficult to implement a weakly running
cosmological constant, if general covariance is to be maintained
at the level of the effective field equations. If the running of λ is
formulated via a λð□Þ, then because of ∇λgμν ¼ 0 one also has
□

ngμν ¼ 0, which makes it nearly impossible to have a nontrivial
λð□Þ [22].
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magnitude of the nonperturbative scale ξ. From the
observed value of the cosmological constant one obtains
an estimate for the absolute magnitude of the scale ξ,

ξ≃ ffiffiffiffiffiffiffi
3=λ

p
≈ 4890 Mpc: ð129Þ

Irrespective of the specific value of ξ, this would indicate
that generally the recovery of classical GR results only
happens for distance scales much smaller than the corre-
lation length ξ. In particular, the Newtonian potential
acquires a tiny quantum correction from the running
of GðrÞ,

VðrÞ ¼ −GðrÞ ·m1m2

r
; ð130Þ

with GðrÞ given, for the static isotropic solution, in
Eq. (63), and for which quantum effects become quite
negligible on distance scales r ≪ ξ. Figure 21 shows the
expected qualitative behavior for the running GðkÞ over
scales slightly smaller or comparable to ξ, with the main
uncertainty arising from estimating the physical magnitude
of ξ itself [Eq. (129)]. Specifically, from Eq. (59) the lattice
prediction at this point is for roughly a 5% effect on scales
of 0.184 × 4890 Mpc ≈ 900 Mpc, and a 10% effect on
scales of 0.232 × 4890 Mpc ≈ 1130 Mpc.
The above results also suggest that the curvature on very

small scales behaves rather differently from the curvature
on very large scales, due to the quantum fluctuations
eventually averaging out. Indeed when comparing the
result of Eqs. (46) and (99) to the one in Eq. (126) one
is led to conclude that the following change has to take
place when going from small (linear size ∼lp) to large
(linear size ≫ lp) parallel transport loops

hRismall scales ∼
1

lpξ
→ hRilarge scales ∼

1

ξ2
: ð131Þ

An intuitive way of understanding the above result is that
on small scales the strong local fluctuations in the metric/
geometry lead to large values for the average rotation of a
parallel-transported vector. But then on larger scales these
short distance fluctuations tend to average out, and the
combined overall rotation is much smaller, by a factor of
Oðlp=ξÞ,

ZR ¼ lP
ξ
: ð132Þ

The above quantity should then be regarded as an essential
and necessary “renormalization constant” when comparing
curvature on different length scales, and specifically when
going from very small (size ∼lP) to large (size ≫ lP)
parallel transport loops. See also the earlier discussion
preceding Eq. (38), about the issue of comparing correla-
tions of large loops versus correlations of small (infinitesi-
mal) loops.
To conclude this section, one can raise the legitimate

concern of how these results are changed by quantum
fluctuations of various matter fields; so far all the results
presented here apply to pure gravity without any matter
fields. Therefore here and in the rest of the paper what has
been followed is the quenched approximation, wherein
gravitational loop effects (perturbative and nonperturba-
tive) are fully accounted for, but matter loop corrections are
entirely neglected. In the presence of matter fields coupled
to gravity (scalars, fermions, vector bosons, spin-3=2 fields,
etc.) one would expect, for example, the value for ν to
change due to vacuum polarization loops containing these
fields. A number of arguments can be given though for why
these effects should not be too dramatic, unless the number
of light matter fields is rather large. First, one notices that to
leading order in the 2þ ϵ expansion the exponent ν only
depends on the dimensionality of spacetime, irrespective of
the number of matter fields and of their type [20],
ν ∼ 1=ðd − 2Þ. Also, one can show that in the 2þ ϵ
expansion for gravity [20,21] matter loop corrections
appear later in the form of factors ∝ ð25 − cÞ in the
β-function, where c is the central charge corresponding
to those massless matter fields. In four dimensions the
correction is thought to be even smaller ∝ ð48 − cÞ [61].
Thus unless c is rather large, the matter contribution is quite
small even at next-to-leading order in the 2þ ϵ expansion
[20,21]. In addition, in the case of lattice gravity the effects
of a single light scalar field are so small that they are barely
detectable in the numerical evaluations of the path integral.
In general one would expect significant infrared modifi-
cations to gravity coming from particles that are either
massless or very nearly massless. The evidence so far
would therefore suggest that the approximation in which
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FIG. 21 (color online). Running gravitational coupling GðrÞ
versus r, obtained from the GðkÞ in Eq. (59) by setting q ∼ 1=r,
with exponent ν ¼ 1=3 and amplitude a0 ≃ 8.02ð55Þ. The lattice
quantum gravity calculations done so far suggest roughly a 5%
effect on scales of 0.187 × 4890 Mpc ≈ 910 Mpc, and a 10%
effect on scales of 0.238 × 4890 Mpc ≈ 1160 Mpc.
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vacuum polarization effects of light matter fields are
entirely neglected should still be useful, at least as a
first step.

XII. GRAVITATIONAL SCALING DIMENSIONS
AND PHENOMENOLOGY

The previous section dealt with the fact that one of the
main implications of quantum gravity is the running of the
gravitational constant with scale, in accordance with
Eq. (61). There are additional consequences which arise
from the fact that in general gravitational correlations do
not follow free field (Gaussian) predictions. One example is
the curvature correlation function of Eqs. (24), (26), and
(48), for which the final form at this stage is given in
Eq. (114). This section deals therefore with a discussion of
the implications of the result given in this last expression
for the curvature correlation function of Eq. (114), spe-
cifically with lattice spacing a from Eq. (105) and the
amplitude given in Eq. (115), NR ≈ 0.335.
There is clearly a rather substantial difference in scale

between the curvature appearing in Eq. (24) and therefore
in Eq. (114), and the curvature in Eq. (134). In the first case
the curvature involves the parallel transport of vectors
around infinitesimal loops, whose size is determined by the
ultraviolet cutoff [the lattice spacing, comparable to the
Planck length because ofG ≈Gc due to the slow running of
G, with Gc given in Eq. (102)]. In the second case the
curvature in question refers instead to the semiclassical
domain, as described by a set of effective long distance
field equations, for which the curvature is obtained opera-
tionally from the parallel transport of vectors around
macroscopic loops, of linear size much larger than the
Planck length. Such a concern should be kept in mind when
transitioning from the microscopic result in Eq. (114) to the
semiclassical result written down below in Eq. (143).
First consider what can be stated purely at the classical

level. One can use the field equations to directly relate the
local curvature to the local matter mass density. From
Einstein’s field equations

Rμν −
1

2
gμνR ¼ 8πGTμν ð133Þ

for a perfect fluid one then obtains for the Ricci scalar, in
the limit of negligible pressure,

RðxÞ≃ 8πGρðxÞ: ð134Þ

This last result then allows one to relate local fluctuations in
the curvature δRðxÞ to local fluctuations in the matter
density δρðxÞ, which could potentially provide a useful
connection to the quantum result for the correlation
function in Eq. (26). Of course, in the Newtonian limit
the above result simplifies to Poisson’s equation

Δh00ðx; tÞ ¼ 8πGρðx; tÞ; ð135Þ

where h00 ¼ 2ϕ and ρ are the macroscopic gravitational
field and the macroscopic mass density, respectively.
In the cosmology literature it is customary to describe

matter density fluctuations in terms of the density contrast
correlation function19

GρðrÞ ¼ hδρðrÞδρð0Þi: ð136Þ

The latter is related to its Fourier transform PðqÞ by

GρðrÞ ¼
1

2π2

Z
Λ

μ
dqq2PðqÞ sin qr

qr
; ð137Þ

and the above expression has to contain both an infrared
regulator (μ) and an ultraviolet cutoff (Λ), to make sure the
integral converges. If the power spectrum PðqÞ is described
by a simple power law of the form

PðqÞ ¼ a0
qs

ð138Þ

(where n ¼ −s is commonly referred to as the spectral
index), then one finds in the scaling regime 1=μ ≫ r ≫
1=Λ for the density contrast correlation function in real
space

GρðrÞ ¼ csa0μΛ2−s
�
1

μr

�
3−s

; ð139Þ

with cs ≡ Γð2 − sÞ sinðπs=2Þ=2π2. Not unexpectedly, the
answer appears to be quite sensitive to the choice for the
ultraviolet and infrared cutoffs. For the specific value s ¼ 1
one has PðqÞ ¼ a0=q, and this then gives

GρðrÞ ¼
a0Λ
2π2μ

·
1

r2
ðs ¼ 1Þ; ð140Þ

which would seem to reproduce the result in Eq. (114). In
practice the observational data for such matter density
correlations is often presented in the simple form [62]

GρðrÞ ¼
�
r0
r

�
γ

; ð141Þ

with exponent γ and scale r0 fitted to astrophysical
observations. For an exponent γ close to two, one has
by comparing Eq. (140) to Eq. (141) a0 ¼ 2π2μr20=Λ,
which still requires a choice of cutoffs μ and Λ; for the
most obvious choice here, namely μ≃ 1=ξ and Λ≃ 1=lP,
one obtains

19In the cosmology literature the (dimensionless) galaxy matter
density two-point function is usually referred to as ξðrÞ, but here
we want to avoid a possible confusion with the gravitational
correlation length ξ.

HERBERT W. HAMBER PHYSICAL REVIEW D 92, 064017 (2015)

064017-26



a0 ¼
2π2lP
ξ

· r20: ð142Þ

It is rather tempting at this stage to try to connect the
observational result of Eq. (141) to the quantum correlation
function in Eq. (114). One then expects for the matter
density fluctuation correlation also a power law decay of
the form20

hδρðx; tÞδρðy; t0Þi ∼
jx−yj≪ξ

1

a2ðtÞ ·
1

a2ðt0Þ ·
1

jx − yj2 ;

ð143Þ

where aðtÞ here represents the scale factor. Also, this last
correlation function can be made dimensionless by suitably
dividing it by the square of some average matter density
ρ0 ≈ ρc ¼ 3H2

0=8πG. By comparing coefficients in
Eqs. (114) and (141) one finds γ ¼ 2, and for the length
scale in Eq. (141)

r0 ¼
1

8πGρ0
·

ffiffiffiffiffi
A0

p
a

; ð144Þ

with
ffiffiffiffiffi
A0

p ≃ 0.335 the dimensionless amplitude for the
curvature correlation function of Eq. (114), and a the lattice
spacing given in Eq. (105).
The preceding argument nevertheless still contains a

fundamental flaw, related to the use, at this stage in
unmodified form, of the curvature correlation function
result of Eq. (114). As discussed previously, that form
applies to the correlation of infinitesimal (Planck length or
cutoff size) loops, which would not seem to be appropriate
for the macroscopic (or semiclassical) parallel transport
loops, such as the ones that enter the field equations (133)
and (134), and which thus relate locally the macroscopic
δRðxÞ to the δρðxÞ. It would then seem desirable to be able
to correct for the fact that the parallel transport loops
sampled in Eq. (134) are much larger than the infinitesimal
ones sampled in the correlation function in Eq. (114). As in
Eqs. (38), (131), and (132), the transition to macroscopic
loops (linear size ≫ a) can be affected in Eq. (114) by the
replacement of a2 → ξ2. This then gives for large (macro-
scopic size ≫ a) parallel transport loops

h ffiffiffi
g

p
RðxÞ ffiffiffi

g
p

RðyÞδðjx − yj − dÞic ∼
d≪ξ

A1

ξ2d2
; ð145Þ

with the expectation of a comparable amplitude A1 ≈ A0.
This last result then leads to the following improved
estimate for the macroscopic matter density correlation
of Eq. (136),

GρðrÞ ¼
�

1

8πG

�
2 1

ρ20
·
A1

ξ2r2
; ð146Þ

so that comparing to Eq. (141) one finds for the exponent
γ ¼ 2 and for the length scale r0 the improved value

r0 ¼
1

8πGρ0
·

ffiffiffiffiffi
A1

p
ξ

≈ 0.380ξ; ð147Þ

which seems more in line with observational data. For the
Fourier amplitude a0 in Eq. (138) one has now

a0 ¼ 2π2 ·
lP
ξ
· r20 ≈ 2.85lPξ: ð148Þ

Observed galaxy density correlations give indeed for the
exponent in Eq. (141) a value close to two, namely γ ≈
1.8� 0.3 for distances in the 0.1 to 50 Mpc range [62,63],
and for the length scale r0 ≈ 10 Mpc. More recent esti-
mates for the exponent γ, going up to distance scales of
100 Mpc, range between 1.79 and 1.84 [64–69].
Nevertheless at this point the (perhaps rather naive)
identification given in Eqs. (147) and (148), while in-
triguing, is possibly entirely accidental since it bypasses
any concerns about the actual physical origin of the galaxy
correlation function in Eq. (144), including the form and
evolution of primordial density perturbation and the
detailed nature of linear relativistic density perturbation
theory for a given comoving background.

XIII. CONCLUSIONS

In this work a number of improved estimates have been
presented for gravitational scaling dimensions and ampli-
tudes, obtained from the lattice theory of gravity.
Numerical methods combined with modern renormaliza-
tion group arguments and finite size scaling have been
shown to provide detailed information about rather subtle
nonperturbative aspects of the theory. It has been known for
some time that the Euclidean lattice gravity theory has two
phases, only one of which, the gravitational antiscreening
phase for G > Gc, is physically acceptable. Here we have
described in some detail the properties of the latter smooth
phase, and provided quantitative estimates for the critical
point, scaling dimensions, and the behavior of physical
correlations for distances large compared to the lattice
cutoff. In many ways the present calculation is still
incomplete; in particular the gravitational Wilson loop
and the correlation between loops has not been studied
numerically, and only some general properties have been
inferred. Also, more heavy work is needed to accurately
determine the curvature correlation functions versus dis-
tance, and from it the fundamental nonperturbative corre-
lation length and various amplitudes connected to it.
Furthermore, the derivation of a number of results has
relied heavily on basic renormalization group scaling, with

20In weak field perturbation theory one finds hρðxÞρðyÞic∼h∂2hðxÞ∂2hðyÞi ∼ 1=jx − yj6, so again the result here is quite
different.
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only a handful of explicit checks. Nevertheless, it would
seem from the results presented so far that the feasibility of
these types of calculations should increase significantly in
the near term due to expected rapid advances in hardware
and software tools.
It is encouraging that four different approaches to quantum

gravity give rather comparable results for the scaling dimen-
sions (see the comparisonTables II and III, aswell as Fig. 20),
and therefore suggest a unique underlying renormalization
group universality class, associatedwith the quantumversion
of general relativity. It is characteristic of themodel described
here that the growth of G with scale is described by a
nonperturbative correlation length ξ, related to the gravita-
tional vacuum condensate, for which a specific quantitative
estimate was given earlier. More generally, the vacuum
condensate picture of quantum gravity presented in this
paper makes in principle a number of specific and testable
predictions,which could be either verified or disproved in the
near future, as new and increasingly accurate satellite
observations become available. The main aspects of this
picture can be summarized as follows:

(i) The vacuum condensate picture of quantum gravity
contains from the start a very limited number of
parameters and is therefore rather strongly con-
strained. While it does involve a new nonperturba-
tive scale (the gravitational vacuum condensate), it is
found that this scale simultaneously determines the
running of G with scale, the value of the scaled
cosmological constant, and the long distance behav-
ior of physical invariant correlations.

(ii) The current theory predicts a slow increase in
strength of the gravitational coupling when very
large, cosmological scales are approached [see
Eqs. (116) and (118)]. In this context, the observed
scaled cosmological constant λ acts as a dynamically
induced infrared cutoff, similar to what happens in
non-Abelian gauge theories. In principle, both the
universal power and amplitude for this infrared
growth are calculable with some accuracy from
the underlying lattice cutoff theory.

(iii) For a sufficiently large scale ξ (and therefore small λ)
no observable deviations from classical general
relativity are expected on laboratory, solar systems,
and even galactic scales [see Eqs. (63) and (130)].

(iv) The calculations presented here give a number of
predictions for the behavior of invariant curvature
correlations as a function of geodesic distance, and
specifically the powers and amplitudes involved [see
Eqs. (114) and (145)].

(v) The lattice theory appears to exclude at this point the
possibility of a physically acceptable phase with
gravitational screening; such a (weak coupling)
phase in the lattice theory appears to be inherently
unstable, presumably as a consequence of the
conformal mode, and cannot lead to a semiclassical
regime for gravity. It leads instead to a pathological

degenerate ground state describing some sort of
branched polymer. Nevertheless for large enough
quantum fluctuations (large G) the instability is
overcome and a new stable phase emerges.

(vi) In the strong coupling limit (for the Euclidean case)
of the lattice theory the effective, long distance
cosmological constant is positive [27]. In this same
regime it seems nearly impossible from the lattice
theory to get a negative value for this quantity,
irrespective of the choice of boundary conditions
(which in the lattice context play no role in the
argument). Also, a positive cosmological constant is
interpreted here as a genuinely nonperturbative
gravitational vacuum condensate [see Eqs. (126)
and (127)].

If the picture presented in this paper is indeed close to
correct, then it points to what appears to be a deep analogy
between the nonperturbative vacuum state of quantum
gravity and known properties of strongly coupled non-
Abelian gauge theories (or what could be called the QCD
analogy). Over time this analogy has been helpful in
illustrating properties of quantum gravity, many of which
are ultimately based on rather basic principles of the
renormalization group, connected with the scaling proper-
ties expected in the vicinity of a nontrivial fixed point.
Indeed in QCD there exists also a nonperturbative mass
parameterm ¼ 1=ξ (sometimes referred to as the mass gap)
which is known to be a renormalization group invariant;
that such a mass scale can be generated dynamically is
known to be a highly nontrivial outcome of the renorm-
alization group equations for QCD. Furthermore, there
seems to be a fundamental relationship between the non-
perturbative scale ξ (or inverse renormalized mass) and a
nonvanishing vacuum condensate for these theories, both
for gravity and QCD,

hRi≃ 1

ξ2
; hF2

μνi≃ 1

ξ4
: ð149Þ

An additional relevant example that comes to mind is the
fermion condensate in gauge theories,

hψ̄ψi≃ 1

ξ3
; ð150Þ

a consequence of confinement and chiral symmetry break-
ing. Current lattice and phenomenological estimates for
QCD cluster around hαSπ F2

μνi≃ ð440 MeVÞ4 and hψ̄ψi≃
ð290 MeVÞ3 [70–72].
Modifications to the static potential in gauge theories are

best expressed in terms of the running coupling constant
αSðμÞ, whose scale dependence is determined by the
celebrated beta function of QCD with coupling
αS ≡ g2=4π. On the one hand, a solution of the renorm-
alization group equations give for the running of αSðμÞ
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αSðμÞ ¼
4π

β0 ln μ2=Λ2

MS

þ � � � : ð151Þ

On the other hand, the nonperturbative scale ΛMS
appears as an integration constant of the renormalization
group equations, and is therefore—by construction—scale
independent,

ΛMS ¼ Λ exp

�
−
Z

αSðΛÞ dαS0

2βðαS0Þ
�
; ð152Þ

where here Λ represents the QCD ultraviolet cutoff. The
physical value of ΛMS cannot be fixed from perturbation
theory alone and has to be determined instead from
experiment, ΛMS ≃ 210 MeV. In quantum gravity the
corresponding statements are given in Eqs. (51) and (59).
Wilson loop correlations play an important role in QCD

as they do in quantum gravity. In non-Abelian gauge
theories a confining potential is found at strong coupling
by examining the behavior of the Wilson loop, defined for a
large closed loop C as

hWðCÞi ¼
�
trP exp

�
ig
I
C
AμðxÞdxμ

	�
; ð153Þ

with Aμ ≡ taAa
μ and the ta’s the group generators of SUðNÞ

in the fundamental representation. In the pure gauge theory
at strong coupling, the leading contribution to the Wilson
loop is known to follow an area law for sufficiently large
loops. The analogous quantity for gravity is the gravita-
tional Wilson loop described, for example, in Eqs. (31) and
(121). But in contrast to QCD, in gravity the Wilson loop
bears no relationship to the static potential [28] (the path
ordered line integral of the affine connection does not in
any way describe a gravitational interaction energy).
A central role in this view of quantum gravity is played

by the gravitational correlation length of Eqs. (27), (42),
and (52). Gauge theories also contain a nonperturbative,
dynamically generated quantity ξ, the gauge field correla-
tion length, and it is essentially the same [up to a factor of
Oð1Þ] as the inverse of ΛMS. The same universal quantity ξ
also appears in a number of other physical observables,
including the exponential decay of the Euclidean correla-
tion function for two infinitesimal loop operators separated
by a distance jxj,

Gloop-loopðxÞ ¼
�
trP exp

�
ig
I
Cϵ

Aμðx0Þdx0μ
	
ðxÞ

× trP exp

�
ig
I
Cϵ

Aμðx00Þdx00μ
	
ð0Þ

�
c
:

ð154Þ

Here the Cϵ’s are two infinitesimal loops centered around x
and 0, respectively, suitably defined on the lattice as, for

example, elementary square loops. The gravitational ana-
logue of such an (infinitesimal loop) correlation was given
earlier in Eqs. (24) and (25). It is also understood that in
gauge theories the inverse of the correlation length ξ
corresponds to the lowest mass excitation in the gauge
theory, the scalar glueball with mass m0 ¼ 1=ξ. If the
lightest scalar 0þþ glueball has a mass of approximately
m ¼ 1750 MeV (which then fixes ξ ¼ 1=m), then ΛMS in
QCD is about 8 times smaller, which gives rise to what has
been described in QCD as “precocious” scaling. So while
the two scales are quite close, they do not necessarily
coincide. And the same could be true in gravity.
Another important difference between gravity and QCD

is the fact that in the former the ultraviolet cutoff still
appears explicitly, hidden in the physical value of Newton’s
constant G. There exists then a second scale ξ whose
magnitude is not directly related to the value ofG; instead it
reflects how close the bareG is to the ultraviolet fixed point
at Gc, and is therefore fine-tuned in this approach (just like
a mass squared term in a scalar field theory). In QCD on the
other hand the scale ξ appears explicitly, whereas the
ultraviolet cutoff is deeply hidden in the renormalization
group relationship between ΛMS and the bare coupling at
the cutoff scale αSðΛÞ.
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APPENDIX: DETAILS ON THE
PARALLEL CODE

A few details will be given here regarding the perfor-
mance of the computer code used on the Datura
Supercomputer at AEI. The latter is a high performance
Infiniband cluster, primarily used for large scale numerical
calculations in classical general relativity. The cluster is
based on Intel Xeon X5650 2.66 GHz processor boards
which have two processors per board, each with six cores.
Thus there are 12 cores per board, 200 nodes, and 2400
cores total. The main communication and storage network
is based on an Infiniband QDR 324-port 40 Gbit=s low
latency and high bandwidth switch. In addition, the Datura
cluster is equipped with 4,800 GB of main memory,
corresponding to 2 GB per core.
There are presently two main versions of the lattice

quantum gravity code, a scalar (sequential) one and a
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parallel code. Both codes run exclusively in double
precision (64 bits). The scalar code takes about 1021 s
per iteration on a lattice with 324 ¼ 1; 048; 576 sites, which
includes updates with an action containing higher deriva-
tive terms. The scalar code performance on a single core is
measured (by counting raw floating point operations using
a hardware performance monitor) at 3.3 GFlops.
In the case of the parallel code, on a 164 lattice

(1,572,864 simplices) the edges emanating from 256 sites
can all be updated in parallel, with the work distributed on
256 cores. A whole lattice is therefore updated in 256
passes, and it takes about 0.26 s per iteration for a whole
lattice.
On the 324 lattice (25,165,824 simplices) the edges

emanating from 256 sites are all updated in parallel, with
the work distributed again on 256 cores. A whole lattice is
therefore updated here in 4096 passes, and it takes about

4.01 s per iteration for a whole lattice. Thus for this setup
the parallel codes are about 255 times faster than the single
core scalar code. The message passing interface commu-
nication overhead between nodes for this setup accounts for
only about 1%. Using 256 cores the overall code perfor-
mance on this machine is around 845 GFlops.
On the 644 lattice (402,653,184 simplices) the edges

emanating from 256 sites are all updated in parallel, with
the work distributed on 256 cores. A whole lattice is
therefore updated now in 65,536 passes. This then gives
about 64 s per iteration. When a full complement of 1024
cores are used instead of 256, the time for one full lattice
iteration goes down to about 16 s. With a full 1024 cores
used in parallel the overall code performance on this
machine is around 3.4 TFlops. If even more cores are
used, the code performance should further improve pro-
vided the network bandwidth is commensurate.
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