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In this paper, we explore the interior dynamics of neutral and charged black holes. Scalar collapses in
flat, Schwarzschild, and Reissner-Nordström background geometries are simulated. We examine the
dynamics in the vicinities of the central singularity of a Schwarzschild black hole and of the inner horizon
of a Reissner-Nordström black hole. In simulating scalar collapses in Schwarzschild and Reissner-
Nordström geometries, Kruskal and Kruskal-like coordinates are used, respectively, with the presence of a
scalar field being taken into account. It is found that, besides near the inner horizons of Reissner-Nordström
and Kerr black holes, mass inflation also takes place near the central singularity in neutral scalar collapse.
Approximate analytic expressions for different types of mass inflation are partially obtained via a close
interplay between numerical and analytical approaches and an examination of the connections between
Schwarzschild black holes, Reissner-Nordström black holes, neutral collapse, and charge scattering. We
argue that the mass inflations near the central singularity and the inner horizon are related to the localness of
the dynamics in strong gravity regions. This is in accord with the Belinskii, Khalatnikov, and Lifshitz
conjecture.
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I. INTRODUCTION

The internal structure of black holes and spacetime
singularities have been intriguing and basic topics in
gravitation and cosmology, theoretical and realistic [1–5].
Exploring the internal structure of black holes and space-
time singularities inside black holes can lead to a better
understanding on black hole physics, gravitation, and
quantum physics. Because of similarities between the
singularities inside black holes and the singularity in the
early Universe, this study may also shed light on
cosmology.
It is widely believed that in reality, gravitational collap-

ses may produce rotating black holes. Price’s theorem
states that gravitational radiation, produced on the surface
of a collapsing star, carries away all the initial features of
the star’s gravitational field, except the mass, charge, and
angular momentum parameters [6]. As a next step, there is
naturally the question of what the final state of the internal
collapses might be. A simpler version of the question is
how, in reality, inside a rotating black hole, particles from
the accretion disk can affect the internal geometry of the
black hole.
On the spacelike singularity curve inside a

Schwarzschild black hole, the Kretschmann scalar curva-
ture diverges. Then the maximal globally hyperbolic region
defined by initial data is inextendible. However, inside

charged (Reissner-Nordström) and rotating (Kerr) black
holes, the central singularity is timelike. The globally
hyperbolic region is up to the Cauchy horizon, and the
spacetime is extendible beyond this horizon to a larger
manifold. The Reissner-Nordström inner (Cauchy) horizon
is a surface of infinite blueshift, which in turn may cause
the inner horizon unstable [7]. This motivated the strong
cosmic censorship conjecture, which states that for generic
asymptotically flat initial data, the maximal Cauchy devel-
opment is future inextendible. For mathematical explora-
tions of the internal structures of charge black holes, see
Refs. [8,9]. For reviews on the Cauchy problem in general
relativity and strong cosmic censorship, see Refs. [10]
and [11], respectively.
As the singularities are approached, the tidal force

diverges, and classical general relativity does not apply.
It is nevertheless important to explore the dynamics in
extremely strong-gravity regions in classical general rela-
tivity. Belinskii, Khalatnikov, and Lifshitz (BKL) inves-
tigated the asymptotic behaviors in the vicinity of a
spacelike singularity and found that the generic solution
has chaotic oscillations of the Kasner axes as the singularity
is approached [12–14]. When a massless scalar field is
present, the oscillations will be destroyed and “the collapse
is described by monotonic (but anisotropic) contraction of
space along all directions” [12–14]. Moreover, in the
vicinity of the singularity, “the variation of the gravitational
field from one location to the next can be neglected—what
is much more important is the way gravity changes over
time” [15]. The BKL conjecture was verified numerically
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in the singularity formation in a closed cosmology in
Refs. [16,17], and in the dynamics of a test scalar field
approaching the singularity of a black hole in Ref. [18]. In
Ref. [19], the BKL conjecture in the Hamiltonian frame-
work was examined under the concern of loop quantum
gravity. In Ref. [20], the BKL conjecture was tested in
spherical scalar collapse in dark energy fðRÞ gravity in the
Einstein frame. Note that in the Einstein frame, in the
vicinity of the central singularity, the scalar degree of
freedom ϕ½≡ð ffiffiffiffiffiffiffiffi

3=2
p

ln f0Þ= ffiffiffiffiffiffiffiffiffi
8πG

p � dominates the physical
scalar field and the potential term for ϕ, where f0 ≡ df=dR
and R is the Ricci scalar. Therefore, the dynamics in this
case is essentially the same as that in general relativity, and
it is expected that the BKL conjecture is also valid in
spherical scalar collapse in general relativity. (In fact, this is
also confirmed in the current paper.) Compared to such
efforts that have been made on verifying this conjecture
near spacelike singularities, little work has been done on
examining whether the BKL conjecture is valid in the
vicinities of the inner horizons of charged and rotating
black holes.

A. Mass inflation

The backreaction of the radiative tail from a gravitational
collapse on the inner horizon of a Reissner-Nordström
black hole was investigated by Poisson and Israel [21,22]. It
was shown that due to the divergence of the tail’s energy
density occurring on the inner horizon, the effective
internal gravitational-mass parameter becomes unbounded.
This phenomenon is usually called mass inflation. These
arguments were extended to the rotating black hole case
in Ref. [23].
In Refs. [21,22], approximate analytic expressions were

obtained by considering a simplified model in which the
perturbations were modeled by cross-flowing radial
streams of infalling and outgoing lightlike particles. To
get more information, some numerical simulations in more
realistic models have been performed. The dynamics of a
spherical charged black hole perturbed nonlinearly by a
self-gravitating massless scalar field was numerically
studied in Refs. [24–29]. Under the influence of the scalar
field, the inner horizon of a charged black hole contracts to
zero volume, and the central singularity is converted from
timelike into spacelike. The mass inflation phenomenon
was observed. In Refs. [30,31], with regular initial data,
spherical collapse of a charged scalar field was simulated.
An apparent horizon was formed. A null, weak, mass-
inflation singularity along the Cauchy horizon and a final,
spacelike, central singularity were obtained. The same
process was investigated rigorously in Ref. [32]. In
addition, gravitational collapses in some modified gravity
theories have been studied numerically. Spherical scalar
collapse in fðRÞ gravity was simulated in Ref. [20].
Asymptotic analysis was implemented in the vicinity of
the singularity of a formed black hole. Spherical collapse of

a neutral scalar field in a given spherical, charged black
hole in Brans-Dicke theory was investigated numerically
in Ref. [33]. Spherical collapses of a charged scalar field
in dilaton gravity and fðRÞ gravity were explored in
Refs. [34] and [35], respectively.
In numerical relativity, it is important to connect

approximate analytic candidate expressions with numerical
results. In Refs. [36,37], the features of the Cauchy horizon
singularity, inside a spherical charged black hole perturbed
by a scalar field, were studied. Analytic and numerical
results were compared at some steps.
Despite many efforts that have been spent on the mass

function near the inner horizons of charged and rotating
black holes, little work has been done in an even simpler
case: mass function in the vicinity of the central singularity
of a Schwarzschild black hole. So far this has remained an
unexplored area of work.
In this paper, we use the following notations:
(i) Neutral collapse: neutral scalar collapse toward a

black hole formation.
(ii) Neutral scattering: neutral scalar collapse in a

(neutral) Schwarzschild geometry.
(iii) Charge scattering: neutral scalar collapse in a

(charged) Reissner-Nordström geometry. In this
process, the scalar field is scattered by the inner
horizon of a Reissner-Nordström black hole.

B. New results

In this paper, we explore neutral collapse, neutral
scattering, dynamics in Schwarzschild and Reissner-
Nordström geometries, and charge scattering. The con-
nections between such processes will also be examined.
We simulate neutral collapse and investigate the asymp-

totic dynamics in the vicinity of the central singularity of
the formed black hole via mesh refinement. Approximate
analytic solutions near the central singularity are obtained.
We find that, because of the backreaction of the scalar field
on the geometry, mass inflation also takes place near the
central singularity. In neutral scattering, similar results are
obtained.
We explore the dynamics in the Reissner-Nordström

geometry and charge scattering. By comparing these two
processes, we investigate the causes of mass inflation. We
seek further approximate analytic solutions with the fol-
lowing improvements. Usually, double-null coordinates are
used in studies of mass inflation in spherical symmetry. In
the line element of double-null coordinates, the two null
coordinates u and v are present in the form of product
dudv. In the equations of motion, mixed derivatives of u
and v are present quite often. In this paper, we use a slightly
modified line element, in which one coordinate is timelike
and the rest are spacelike. In this case, in the equations of
motion, spatial and temporal derivatives are usually sep-
arated. This simplifies the numerical formalism and helps
to obtain approximate analytic solutions. In addition, we
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compare numerical results and approximate analytic sol-
utions closely at each step. We compare the dynamics for
Schwarzschild black holes, Reissner-Nordström black
holes, neutral collapse, neutral scattering, and charge
scattering. With the enlightenment of high-resolution
numerical results, we treat the system as a mathematical
dynamical system rather than a physical one, examining the
contributions from all the terms in the equations of motion.
According to the strength of the scalar field, charge

scattering can be classified into five types as follows:
(i) Type I: spacelike scattering. When the scalar field is

very strong, the inner horizon can contract to zero
volume rapidly, and the central singularity becomes
spacelike. The dynamics near the spacelike singu-
larity is similar to that in neutral collapse.

(ii) Type II: null scattering. When the scalar field is
intermediate, the inner horizon can contract to a
place close to the center or reach the center. In this
type of mass inflation, for each quantity, the spatial
and temporal derivatives are almost equal. In the
case of the center being reached, the center is null.
This type has two stages: early/slow and late/fast. In
the early stage, the inner horizon contracts slowly.
The scalar field also varies slowly. In the late stage,
the inner horizon contracts quickly and the dynamics
is similar to that in the spacelike scattering case.

(iii) Type III: critical scattering. This case is on the edge
between the above two cases. The center r ¼ 0
becomes null.

(iv) Type IV: weak scalar scattering. When the scalar field
is veryweak, the inner horizon contracts but notmuch.

(v) Type V: tiny scalar scattering. When the scalar field
is very tiny, the influence of the scalar field on the
internal geometry is negligible.

In this paper, we will explore the dynamics of the first four
types of mass inflations and obtain approximate analytic
solutions for the first two.
Some similarities between neutral and charged mass

inflations are obtained. The gravitational/electric field(s) is
(are) strong in the vicinities of the central spacelike
singularity of a Schwarzschild black hole and the inner
horizon of a Reissner-Nordström black hole. Therefore, as
verified by numerical results, the BKL conjecture applies at
both cases. It is found that the BKL conjecture can interpret
well how the mass inflation happens. The dynamics at
strong gravity regions is local. Then at such regions, the
Misner-Sharp mass function does not provide global
information on the black holes.
We explore scalar collapses in both general relativity and

fðRÞ gravity. The results are similar. For simplicity, we
focus on scalar collapses in general relativity in this paper,
and present the results in fðRÞ gravity in a separate
paper [38].
This paper is organized as follows. In Sec. II, we build the

framework for charge scattering in general relativity,

including action for charge scattering and the coordinate
system. In Sec. III, we set up the numerical formalism
for charge scattering. In Sec. IV, neutral collapse will be
studied. In Sec. V, we discuss neutral scalar scattering in a
Schwarzschild geometry. In Sec. VI, the dynamics in a
Reissner-Nordström geometry will be examined. In
Sec. VII, we explore charge scattering, obtaining approxi-
mate analytic solutions. In Sec. VIII, we consider charge
scatteringwith aweak scalar field. In Sec. IX, the results will
be summarized.
In this paper, we set G ¼ c ¼ 4πϵ0 ¼ 1.

II. FRAMEWORK FOR CHARGE SCATTERING

In this section, we build the framework for charge
scattering, in which a self-gravitating massless scalar field
collapses in a Reissner-Nordström geometry. For compari-
son and verification considerations, we use Kruskal-like
coordinates, and set up the initial conditions by modifying
those in the Reissner-Nordström geometry with a physical
scalar field.

A. Action

The action for the charge scattering system in general
relativity is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ Lψ þ LF

�
; ð1Þ

with

Lψ ¼ −
1

2
gαβψ ;αψ ;β; ð2Þ

LF ¼ −
FμνFμν

4
: ð3Þ

R=ð16πGÞ, Lψ , and LF are the Lagrange densities for
gravity, a physical scalar field ψ , and the electric field for a
Reissner-Nordström black hole, respectively. R is the Ricci
scalar, andG is the Newtonian gravitational constant. Fμν is
the electromagnetic-field tensor for the electric field of a
Reissner-Nordström black hole.
The energy-momentum tensor for a massless scalar

field ψ is

TðψÞ
μν ≡ −

2ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp
Lψ Þ

δgμν
¼ ψ ;μψ ;ν −

1

2
gμνgαβψ ;αψ ;β:

ð4Þ

The dynamics for the scalar field ψ is described by the
Klein-Gordon equation,
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□ψ ¼ 0: ð5Þ

The electric field of a Reissner-Nordström black hole can
be treated as a static electric field of a point charge of
strength q sitting at the origin r ¼ 0. The only nonvanish-
ing components of Fμν are Ftr ¼ −Ftr ¼ −q=r2. The
corresponding energy-momentum tensor for the electric
field is [39]

TðFÞμ
ν ≡ −

2ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp
LFÞ

δgνμ

¼ 1

4π

�
FμρFνρ −

1

4
δμνFαβFαβ

�

¼ q2

8πr4
diagð−1;−1; 1; 1Þ: ð6Þ

Although Eq. (6) is obtained in the Reissner-Nordström
metric, it is valid in any coordinate system, since as seen by
static observers, the electromagnetic field should be purely
electric and radial [22,39]. We denote the total energy-
momentum tensor for the source fields as

TðtotalÞ
μν ¼ TðψÞ

μν þ TðFÞ
μν : ð7Þ

B. Coordinate system

In the studies of mass inflation, the double-null coor-
dinates described by Eq. (8) are usually used,

ds2 ¼ 4e−2σdudvþ r2dΩ2; ð8Þ
where σ and r are functions of the coordinates u and v. u
and v are outgoing and ingoing characteristics (trajectories
of photons), respectively. For convenience, in this paper,
we use a slightly modified form described by Eq. (9),
obtained by defining u ¼ ðt − xÞ=2 ¼ const and v ¼
ðtþ xÞ=2 ¼ const [40],

ds2 ¼ e−2σð−dt2 þ dx2Þ þ r2dΩ2: ð9Þ
This set of coordinates is illustrated in Fig. 1. Similar to the
Schwarzschild metric, the Reissner-Nordström metric can

be expressed in Kruskal-like coordinates [41] (also see
Refs. [21,22,39,42]). So for ease and intuitiveness, we set
the initial conditions close to those of the Reissner-
Nordström metric in Kruskal-like coordinates, taking into
account the presence of a physical scalar field ψ .
In the form of Ref. [42], the Reissner-Nordström metric

in Kruskal-like coordinates in the region of r > r− can be
expressed as

ds2 ¼ rþr−
k2þr2

e−2kþr
�
r
r−

− 1

�
1þ kþ

jk− jð−dt2 þ dx2Þ þ r2dΩ2;

ð10Þ

where r�ð¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
Þ and k�½¼ ðr� − r∓�=ð2r2�Þ�

are the locations and surface gravities for the outer and
inner horizons of a Reissner-Nordström black hole, respec-
tively. m and q are the mass and charge of the black hole,
respectively. rðt; xÞ is defined implicitly below [42],

4uv ¼ t2 − x2 ¼ e2kþr
�
1 −

r
rþ

��
r
r−

− 1

�
− kþ
jk− j
: ð11Þ

Some details for this set of coordinates are given in
Appendix A. In this set of coordinates, as implied by
Eq. (11), the exact inner horizon is at places where uv
and ðt2 − x2Þ are infinite; however, it is found that, even
when uv and ðt2 − x2Þ take moderate values, r still can be
very close to the inner horizon, e.g., r ¼ ð1þ 10−10Þr−. (See
Fig. 2.) Therefore, at such places, the interaction between the
scalar field and the inner horizon still can be very strong, and
then we can investigate mass inflation numerically.
This formalism has several advantages as follows:
(i) In the line element (9), one coordinate is timelike

and the rest are spacelike. This is a conventional
setup. It is more convenient and more intuitive to use
this set of coordinates. For the set of coordinates
described by Eq. (8), in the equations of motion,
many terms are mixed derivatives of u and v; while
for the set of coordinates described by Eq. (9), in the

FIG. 1 (color online). Initial and boundary conditions for
charge scattering. Initial slice is at t ¼ 0. Definition domain
for x is ½−xb xb�. u ¼ ðt − xÞ=2 and v ¼ ðtþ xÞ=2.

FIG. 2 (color online). Contour lines for r defined by Eq. (11) in
a Reissner-Nordström geometry with m ¼ 1 and q ¼ 0.7.
Although the exact inner horizon is at regions where uv and
ðt2 − x2Þ are infinite, r can be very close to the inner horizon
r ¼ r− even when uv and ðt2 − x2Þ take moderate values.

JUN-QI GUO AND PANKAJ S. JOSHI PHYSICAL REVIEW D 92, 064013 (2015)

064013-4



equations of motion, spatial and temporal derivatives
are usually separated.

(ii) We set initial conditions close to those in the
Reissner-Nordström metric. Consequently, with
the terms related to the scalar field being removed,
we can test our code by comparing the numerical
results to the analytic ones in the Reissner-
Nordström case conveniently. Moreover, comparing
dynamics for scalar collapse to that in the Reissner-
Nordström case helps us to obtain intuitions on how
the scalar field affects the geometry.

(iii) The interactions between a scalar field and the
geometry are local effects. In Refs. [24,25], the space
between the inner and outer horizons are compacti-
fied into finite space. This overcompactification, at
least to us, makes it a bit hard to understand the
dynamics. In the configuration that we choose, the
space is partially compactified, and the picture of
charge scattering turns out to be simpler.

III. NUMERICAL SETUP FOR CHARGE
SCATTERING

In this section, we set up the numerical formalisms for
charge scattering, including field equations, initial con-
ditions, boundary conditions, discretization scheme, and
tests of numerical codes.

A. Field equations

In this subsection, we list the field equations for charge
scattering. Details for the Einstein tensor and the energy-
momentum tensor of a scalar field are given in Appendix B.
In double-null coordinates (9), using

Gt
t þGx

x ¼ 8π½TðtotalÞt
t þ TðtotalÞx

x�;

one obtains the equation of motion for r,

rð−r;tt þ r;xxÞ − r2;t þ r2;x ¼ e−2σ
�
1 −

q2

r2

�
; ð12Þ

where r;t ≡ dr=dt and other quantities are defined analo-
gously. For simplicity, we define η≡ r2 and integrate the
equation of motion for η, instead. The equation of motion
for η can be obtained by rewriting Eq. (12) as [40]

−η;tt þ η;xx ¼ 2e−2σ
�
1 −

q2

r2

�
: ð13Þ

Gθ
θ ¼ 8πTðtotalÞθ

θ provides the equation of motion for σ,

−σ;tt þ σ;xx þ
r;tt − r;xx

r
þ 4πðψ2

;t − ψ2
;xÞ þ e−2σ

q2

r4
¼ 0:

ð14Þ

In double-null coordinates, the equation of motion for ψ (5)
becomes

−ψ ;tt þ ψ ;xx þ
2

r
ð−r;tψ ;t þ r;xψ ;xÞ ¼ 0: ð15Þ

The fuug and fvvg components of the Einstein equa-
tions yield the constraint equations,

r;uu þ 2r;uσ;u þ 4πrψ2
;u ¼ 0; ð16Þ

r;vv þ 2r;vσ;v þ 4πrψ2
;v ¼ 0: ð17Þ

Via the definitions of u ¼ ðt − xÞ=2 and v ¼ ðtþ xÞ=2, the
constraint equations can be expressed in ðt; xÞ coordinates.
Equations (17)−(16) and (17)þ(16) generate the constraint
equations for the ftxg and fttg þ fxxg components,
respectively,

r;tx þ r;tσ;x þ r;xσ;t þ 4πrψ ;tψ ;x ¼ 0; ð18Þ

r;tt þ r;xx þ 2ðr;tσ;t þ r;xσ;xÞ þ 4πrðψ2
;t þ ψ2

;xÞ ¼ 0: ð19Þ

B. Initial conditions

We set the initial data to be time symmetric,

r;t ¼ σ;t ¼ ψ ;t ¼ 0 at t ¼ 0: ð20Þ

Therefore, in this configuration, the constraint equation (18)
is satisfied identically. Note that, in this configuration, the
values of r;t and σ;t at t ¼ 0 are the same as those in the
Reissner-Nordström metric case.
We set the initial value for ψ as

ψ jt¼0 ¼ A exp

�
− ðx − x0Þ2

B

�
; ð21Þ

where A, B, and x0 are parameters. The initial value for σ is
defined to be the same as the corresponding one in the
Reissner-Nordström metric case (10),

e−2σjt¼0 ¼ e−2σjRNt¼0 ¼
rþr−
k2þr2

e−2kþr
�
r
r−

− 1

�
1þ kþ

jk− j
; ð22Þ

where r is defined by Eq. (11) with t ¼ 0. We obtain the
initial value for r in charge scattering at t ¼ 0 by combining
Eqs. (12) and (19),

r;xx ¼ − r;tσ;t − r;xσ;x þ
r2;t − r2;x

2r

− 2πrðψ2
;t þ ψ2

;xÞ þ
1

2r
e−2σ

�
1 −

q2

r2

�
: ð23Þ

We set r;x ¼ σ;x ¼ 0 at the origin ðx ¼ 0; t ¼ 0Þ as in the
Reissner-Nordström metric case. The definition domain for
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the spatial coordinate x is ½−xb xb�. Then rðx ¼ x; t ¼ 0Þ
can be obtained by integrating Eq. (23) via the fourth order
Runge-Kutta method from x ¼ 0 to x ¼ �xb, respectively.
In this paper, we implement a leapfrog scheme, which is a

three-level scheme and requires initial data on two different
time levels. With the initial data at t ¼ 0, we compute the
data at t ¼ Δt with a second-order Taylor series expansion
as done in Ref. [43]. Take ψ as an example,

ψ jt¼Δt ¼ ψ jt¼0 þ ψ ;tjt¼0Δtþ
1

2
ψ ;ttjt¼0ðΔtÞ2: ð24Þ

The values of ψ jt¼0 and ψ ;tjt¼0 are set up as discussed above,
and the value of ψ ;ttjt¼0 can be obtained from the equation of
motion for ψ (15).
Up to this point, the initial conditions are fixed with all

the field equations being taken into account. The first-order
time derivatives of r, σ, and ψ at t ¼ 0 described by
Eq. (20) ensure that the constraint equation (18) is satisfied.
The equation for r;xx at t ¼ 0 expressed by (23) implies that
the constraint equation (19) is satisfied. Computations of r,
σ, and ψ at t ¼ Δt via a second-order Taylor series
expansion, as expressed by Eq. (24) for the case of ψ ,
satisfy all the equations of motion.

C. Boundary conditions

The values of r, σ, and ψ at the boundaries of x ¼ �xb
are obtained via extrapolations. In fact, we are mainly
concerned with the dynamics around x ¼ 0. Therefore, as
long as xb is large enough, the boundary conditions will not
affect the dynamics that we are interested in.

D. Discretization scheme

In this paper, we implement the leapfrog integration
scheme, which is second-order accurate and nondissipative.

With the demonstration of Fig. 3 and using the quantity ψ
as an example, our discretization scheme is expressed
below,

ψ ;t ¼
ψup − ψdn

2Δt
; ψ ;x ¼

ψ rt − ψ lt

2Δx
;

ψ ;tt ¼
ψup − 2ψhr þ ψdn

ðΔtÞ2 ; ψ ;xx ¼
ψ lt − 2ψhr þ ψ rt

ðΔxÞ2 ;

ψ ;xt ¼
ψur − ψul − ψdr þ ψdl

4Δx · Δt
; ψ ;u ¼ ψ ;t − ψ ;x;

ψ ;v ¼ ψ ;t þ ψ ;x:

We let the temporal and spatial grid spacings be
equal, Δt ¼ Δx.

E. Tests of numerical code

It is necessary to test the numerical code before we
explore the results further. We compare the numerical
results obtained by the code with the analytic ones for
the dynamics in a Reissner-Nordström geometry, and
examine the convergence of the constraint equations and
dynamical equations in charge scattering.
For charge scattering, the dynamics in the Reissner-

Nordström geometry in Kruskal-like coordinates is a
special case, in which the contributions from the scalar
field are set to zero. This special case has analytic solutions
expressed by Eqs. (10) and (11). Therefore, we can test
our code by comparing the numerical and analytic results
in the Reissner-Nordström metric. Set m ¼ 1, q ¼ 0.7, and
Δx ¼ Δt ¼ 10−4. We plot the evolutions of r and σ along
the slice ðx ¼ 3 × 10−4; t ¼ tÞ in Fig. 4(a). As shown in
Fig. 4(a), numerical and analytic results match well at an
early stage, while at a late stage where gravity and electric
field become strong, the numerical evolutions have a time
delay compared to analytic solutions.
When the numerical results are obtained, we substitute the

numerical results into the disretized equations of motion and
constraint equations and find that they are well satisfied.
Moreover, the convergence of the constraint equations (18)
and (19) is examined. We assume one constraint equation is
nth-order convergent: residual ¼ OðhnÞ, where h is the grid
size. Therefore, the convergence rate of the discretized
constraint equations can be obtained from the ratio between
residuals with two different step sizes,

n ¼ log2

�
OðhnÞ
Oððh

2
ÞnÞ

�
: ð25Þ

Our numerical results show that both of the constraint
equations are about second-order convergent. As a repre-
sentative, we plot the results for the ftxg constraint
equation (18) in Fig. 4(b) for the slice ðx ¼ x; t ¼ 0.65Þ.
Convergence tests via simulations with different grid

sizes are also implemented [44,45]. If the numerical
solution converges, the relation between the numerical
solution and the real one can be expressed byFIG. 3 (color online). Numerical evolution scheme.
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Freal ¼ Fh þOðhnÞ;

where Fh is the numerical solution. Then for step sizes
equal to h=2 and h=4, we have

Freal ¼ F
h
2 þO

��
h
2

�
n
�
;

Freal ¼ F
h
4 þO

��
h
4

�
n
�
:

Defining c1 ≡ Fh − F
h
2 and c2 ≡ F

h
2 − F

h
4, one obtains the

convergence rate

n ¼ log2

�
c1
c2

�
: ð26Þ

The convergence tests for η≡ r2, σ, and ψ are investigated.
They are all second-order convergent. As a representative,
the results for σ are plotted in Fig. 4(b) for the slice
ðx ¼ x; t ¼ 0.65Þ. The values of the parameters in charge
scattering in this section are described at the beginning of
Sec. VII. We use the spatial range of x ∈ ½−10 10� and the
grid spacings of h ¼ Δx ¼ Δt ¼ 0.02.

IV. NEUTRAL SCALAR COLLAPSE

In Ref. [20], neutral scalar collapse in fðRÞ gravity was
explored. In this section, we consider a simpler case:
neutral scalar collapse in general relativity. We examine
the dynamics in the vicinity of the central singularity of the
formed black hole. Mass inflation in the vicinity of the
central singularity will be discussed.

A. Numerical setup

The numerical setup is a simpler version of the one in
neutral scalar collapse in fðRÞ gravity discussed in
Ref. [20]. The dynamical equations for r, η, σ, and ψ
can be obtained by setting the terms related to the electric
field in the corresponding equations in Sec. III A to zero,

rð−r;tt þ r;xxÞ − r2;t þ r2;x ¼ e−2σ; ð27Þ

−η;tt þ η;xx ¼ 2e−2σ; ð28Þ

−σ;tt þ σ;xx þ
r;tt − r;xx

r
þ 4πðψ2

;t − ψ2
;xÞ ¼ 0; ð29Þ

−ψ ;tt þ ψ ;xx þ
2

r
ð−r;tψ ;t þ r;xψ ;xÞ ¼ 0: ð30Þ

In the equation of motion for σ (29), the term ðr;tt−r;xxÞ=
r can create big errors near the center x ¼ r ¼ 0. To avoid
such a problem, we use the constraint equation (16)
alternatively [40]. Defining a new variable g

g ¼ −2σ − lnð−r;uÞ; ð31Þ

one can rewrite Eq. (16) as the equation of motion for g,

g;u ¼ 4π ·
r
r;u

· ψ2
;u: ð32Þ

In the numerical integration, once the value of r at the
advanced level is obtained, the value of σ at the current
level will be computed using Eq. (31).
We set the initial data as

r;tt ¼ r;t ¼ σ;t ¼ ψ ;t ¼ 0 at t ¼ 0: ð33Þ

(a) (b)

FIG. 4 (color online). Tests of numerical code for charge scattering. (a) Numerical vs analytic results for a Reissner-Nordström black
hole. m ¼ 1, q ¼ 0.7, and Δx ¼ Δt ¼ 10−4. The slice is for ðx ¼ 3Δx; t ¼ tÞ. This is a special case of charge scattering with the
contribution of the scalar field being set to zero. Numerical and analytic results match well at an early stage, while at a later stage where
the gravity and electric field become stronger, the numerical evolutions have a time delay, compared to analytic solutions. (b) Numerical
tests for the ftxg constraint equation (18) and the evolution of σ on the slice ðx ¼ x; t ¼ 0.65Þ. They are both second-order convergent.
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The initial value of ψðrÞ is defined as

ψðrÞjt¼0 ¼ A · tanh

�ðr − r0Þ2
B

�
; ð34Þ

with A ¼ 0.1, B ¼ 1, and r0 ¼ 5. The local Misner-Sharp
mass m is defined as [46]

gμνr;μr;ν ¼ e2σð−r2;t þ r2;xÞ≡ 1 −
2m
r

: ð35Þ

(See Ref. [47] for details on various properties of the
Misner-Sharp mass/energy in spherical symmetry.) Then
on the initial slice ðx ¼ x; t ¼ 0Þ, the equations for r, m,
and g are [20,40]

r;x ¼
�
1 −

2m
r

�
eg; ð36Þ

m;r ¼ 4πr2
�
V þ 1

2

�
1 −

2m
r

�
ψ2
;r

�
; ð37Þ

g;r ¼ 4πrψ2
;r: ð38Þ

Set r ¼ m ¼ g ¼ 0 at the origin ðx ¼ 0; t ¼ 0Þ. Then the
values of r, m, and g on the initial slice ðx ¼ x; t ¼ 0Þ can
be obtained by integrating Eqs. (36)–(38) from the center
x ¼ 0 to the outer boundary x ¼ xb via the fourth-order
Runge-Kutta method. The values of r, σ, and ψ at t ¼ Δt
can be obtained with a second-order Taylor series expan-
sion, as discussed in Sec. III B. The value of g at t ¼ Δt can
be obtained using Eq. (31).
The range for the spatial coordinate is defined to be

x ∈ ½0 10�. At the inner boundary x ¼ 0, r is always set to
zero. The term 2ð−r;tψ ;t þ r;xψ ;xÞ=r in Eq. (30) needs to be
regular atx ¼ r ¼ 0. Since r is always set to zero at the center,
so is r;t. Thenwe enforceψ to satisfy the following condition:

ψ ;x ¼ 0; at x ¼ 0:

The boundary condition for g at x ¼ 0 is obtained via
extrapolation. Regarding the outer boundary, since one
cannot include infinity on the grid, one needs to put a cutoff
at x ¼ xb, where the radius r is set to a constant. In this paper,
we are mainly interested in the dynamics inside the apparent
horizonof the formedblack hole.Dynamics in this regionwill
not be affected by the outer boundary conditions, as long as
the spatial range of x is large enough compared to the time
range needed for the black hole formation. In this paper, we
set up the outer boundary conditions via extrapolation. The
temporal and the spatial grid spacings areΔt ¼ Δx ¼ 0.005.
The numerical code used here is a simplified version of

the second-order convergent one for spherical scalar
collapse in fðRÞ gravity developed in Ref. [20].

B. Black hole formation

When the scalar field is weak enough, the scalar field
will collapse and then disperse. A flat space is left.
However, when the scalar field carries enough energy,
the scalar field can collapse into a black hole. In this paper,
we are interested in the latter case. In Fig. 5, we plot the
evolutions of r, σ, and ψ and the apparent horizon of the
formed black hole. On the apparent horizon of a black hole,
the expansion of the outgoing null geodesics orthogonal to
the apparent horizon is zero [48]. Then in double-null
coordinates, on the apparent horizon, there is [49]

gμνr;μr;ν ¼ e2σð−r2;t þ r2;xÞ≡ 1 −
2m
r

¼ 0: ð39Þ

Using such a property, the apparent horizon is found and
plotted in Figs. 5(d) and 5(e). As shown in Fig. 5(e), the
radius of the apparent horizon is rAH ≈ 1.8. Therefore, a
black hole is formed.
We plot the Misner-Sharp mass function (35) along the

slices ðx ¼ 1; t ¼ 1Þ and ðx ¼ 2.5; t ¼ tÞ in Fig. 5(f), from
which one can see that, near the central singularity, the
mass function diverges.

C. Asymptotic dynamics near the central singularity
of a Schwarzschild black hole

In this section, we are mainly interested in the dynamics
near the central singularity of the formed black hole. As a
preparation, in this subsection, we list some basic results on
the dynamics near the central singularity of a (stationary)
Schwarzschild black hole. We consider the Schwarzschild
metric in Kruskal coordinates,

ds2 ¼ 32m3

r
e−

r
2mð−dt2 þ dx2Þ þ r2dΩ2; ð40Þ

with

e−2σ ¼ 32m3

r
e−

r
2m; ð41Þ

t2 − x2 ¼
�
1 −

r
2m

�
e

r
2m: ð42Þ

As discussed in Appendix C, in the vicinity of the
singularity curve, the ratios between the spatial and
temporal derivatives of r can be expressed by the slope
of the contour line r ¼ 0, K,���� r;xr;t

���� ¼ jKj;
���� r;xxr;tt

���� ≈ jK2j: ð43Þ

In the vicinity of the singularity curve, we rewrite t as
t ¼ t0 − ξ, where t0 is the coordinate time on the singularity
curve and ξ ≪ t0. With the spatial coordinate x being fixed,
a perturbation expansion near the singularity curve directly
yields

r ≈ ð16m2t0ξÞ12: ð44Þ
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Moreover, combining Eqs. (41) and (44), one obtains

σ ≈ −
1

2
ln

�
32m3

r

�
≈
1

2
ln r ≈

1

4
ln ξ: ð45Þ

As shown in Appendix C, throughout the whole
spacetime of a Schwarzschild black hole, inside and
outside the horizon and also near the singularity,
there is

0 2 4 6 8
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(e) (f)

FIG. 5 (color online). Evolutions in neutral scalar collapse. In (a) and (b), the time interval between two consecutive slices is
10Δt ¼ 0.05. In (c), it is 5Δt ¼ 0.025. (d) and (e) are for the apparent horizon and the singularity curve of the formed black hole. (f) The
Misner-Sharp mass function along the slices ðx ¼ 1; t ¼ tÞ and ðx ¼ 2.5; t ¼ tÞ.
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gμνr;μr;ν ¼ e2σð−r2;t þ r2;xÞ≡ 1 −
2m
r

: ð46Þ

Namely, for a (stationary) Schwarzschild black hole, the
Misner-Sharp mass function is equal to the black hole mass
everywhere.

D. Asymptotic dynamics in the vicinity
of the central singularity

In this subsection, we discuss the asymptotic dynamics
in the vicinity of the central singularity of the formed black
hole in neutral collapse, by connecting the reduced field
equations to numerical results and comparing the dynamics
of neutral collapse to that in Schwarzschild black holes.
We first explain why near the singularity curve of the

formed black hole, the ratio between spatial and temporal
derivatives are defined by the slope of the contour lines
r ¼ const. We take the quantity r as an example. As
illustrated in Fig. 6, point A and point B are on one same
hypersurface r ¼ const, while point C is on another one. At
point C, in first-order accuracy, r;x ≈ ðrC − rAÞ=Δx and
r;t ≈ ðrB − rCÞ=Δt. Since the singularity curve is spacelike,
the absolute value of the slope of the singularity curve
K ≡ dt=dx is less than 1. Consequently, there is

���� r;xr;t
����≈
���� ΔtΔx

���� ≈ jKj < 1: ð47Þ

Similar arguments yield

���� r;xxr;tt

����≈
���� ΔtΔx

����
2

≈ K2: ð48Þ

This can also be interpreted in the following way. As shown
in Fig. 6, in double-null coordinates, the time vector t̂ is not
normal to the hypersurface of r ¼ const. Then the deriv-
atives in the radial direction have nonzero projections on
both hypersurfaces of x ¼ const and t ¼ const. Along an
arbitrary slice ðx ¼ const; t ¼ tÞ, near the singularity, the
ratios between first- and second-order spatial and temporal
derivatives are equal to jKj and K2, respectively.
The quantities σ and ψ have similar features as described

by Eqs. (47) and (48). This can be explained as follows.
Take the scalar field ψ as an example. With the illustration
of Fig. 6, as this scalar field moves toward the center r ¼ 0,
two neighboring points on this scalar wave ψ should take
close values when they respectively cross points C and D
(which are on one same hypersurface r ¼ const) at two
consecutive moments, because these two points on the
scalar wave are neighbors and the “distances” AD and BC
are more important for their values than the difference
between these two neighboring points. In other words, in
the vicinity of the singularity curve, gravity is more
important than the difference between neighboring points
on the scalar wave. Alternatively, to a large extent, later
evolutions in a strong gravitational field largely erase away
the initial information on the connections between neigh-
boring points. These arguments are supported by numerical
results. Near the singularity, the evolution of ψ is described
by ψ ≈ C ln ξ, where ξ ¼ t0 − t ≪ t0 and t0 is the coor-
dinate time on the singularity curve. In Fig. 6, ξ means AD
and BC. The parameter C changes slowly along the
singularity curve, compared to the dramatic running of
ln ξ [20]. In other words, ψA ≈ ψB and ψC ≈ ψD. Then as in
the case of r, there is

����ψ ;x

ψ ;t

����≈
���� ΔtΔx

���� < 1: ð49Þ

Taking the slice ðx ¼ 2; t ¼ tÞ as an example, we
examine the dynamics along this slice via mesh refinement
that was implemented in Refs. [20,50] and plot the results
in Fig. 9. As shown in Fig. 9(f), in the vicinity of the
singularity along this slice, the ratios between spatial and
temporal derivatives are

−
r;x
r;t

≈ −
σ;x
σ;t

≈ −
ψ ;x

ψ ;t
≈

ffiffiffiffiffi
r;x
r;t

r
≈

ffiffiffiffiffiffiffi
σ;xx
σ;tt

r
≈

ffiffiffiffiffiffiffiffi
ψ ;xx

ψ ;tt

r
≈ 0.26:

ð50Þ

As a comparison, the slope of the singularity curve, which
is plotted in Fig. 5(d), at x ¼ 2 is K ≈ 0.25.
Because of the fact that in the vicinity of the singularity,

the ratios between spatial and temporal derivatives for r, σ,
and ψ take similar values, and with the numerical results

FIG. 6 (color online). Spatial derivative vs temporal derivative
near the central spacelike singularity in neutral scalar collapse.
Point A and point B are on one same hypersurface r ¼ const,
while point C is on another one. At point C, in first-order
accuracy, r;x ≈ ðrC − rAÞ=Δx and r;t ≈ ðrB − rCÞ=Δt. Since rA ¼
rB and the absolute value of the slope of the singularity curve
dt=dx is less than 1, there is jr;x=r;tj ≈ jΔt=Δxj < 1. Δλ and
−jajr̂ are perpendicular to the lines of r ¼ r1 and r ¼ r2. a is a
certain number, such that the magnitude of −jajr̂ has the length as
shown in the figure.
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plotted in Figs. 7, 9, and 10, the field equations for r (27), σ
(29), and ψ (30) can be simplified as follows:

rr;tt ≈ −r2;t; ð51Þ

σ;tt −
r;tt
r

≈ 4πψ2
;t; ð52Þ

ψ ;tt ≈ −
2

r
r;tψ ;t: ð53Þ

The asymptotic solutions to Eqs. (51)–(53) are [20]

r ≈ Aξβ; ð54Þ

σ ≈ B ln ξþ σ0 ≈ ½βð1 − βÞ − 4πC2� ln ξþ σ0; ð55Þ

ψ ≈ C ln ξ: ð56Þ

Substituting Eq. (54) into Eq. (51) yields

ð1 − βÞξ2ðβ−1Þ ≈ βξ2ðβ−1Þ:

Then we have

β ≈
1

2
: ð57Þ

E. Causes of mass inflation in neutral scalar collapse

In neutral scalar collapse, the equation of motion for σ is

−σ;tt þ σ;xx þ
r;tt − r;xx

r
þ 4πðψ2

;t − ψ2
;xÞ ¼ 0: ð58Þ

Then as discussed in the above subsection, the term
4πðψ2

;t − ψ2
;xÞ is positive and can make σðx; tÞ greater than

the corresponding value in the Schwarzschild black hole
case. [See Eq. (55).] This makes the mass function
divergent near the singularity as will be discussed below.

(a) (b)

(c) (d)

FIG. 7 (color online). Dynamics in the vicinity of the singularity in neutral collapse on the slice ðx ¼ 1; t ¼ tÞ. The numerical results
show that in the vicinity of the singularity, the field equations for r (27), η (28), σ (29), and ψ (30) can be reduced to the following
formats, respectively: (a) rr;tt ≈ −r2;t, (b) η;tt ≈ η;xx, (c) σ;tt − r;tt=r ≈ 4πψ2

;t, and (d) ψ ;tt ≈ −2r;tψ ;t=r. The big numerical errors near
r ¼ 0 in (a) come from converting Eq. (13) into Eq. (12).

INTERIOR DYNAMICS OF NEUTRAL AND CHARGED … PHYSICAL REVIEW D 92, 064013 (2015)

064013-11



Near the singularity, using Eqs. (54)–(57), there is

e2σð−r2;t þ r2;xÞ ≈ ðK2 − 1ÞA
2

4
ξ−

1
2
−8πC2

: ð59Þ

Then with Eq. (35), the mass function can be written as

m ¼ r
2
½1þ e2σðr2;t − r2;xÞ�

≈
�
1

8
ð1 − K2ÞA3e2σ0

�
ξ−8πC

2

≈
�
1

8
ð1 − K2ÞA3þ16πC2

e2σ0
�
r−16πC

2

: ð60Þ

In the Schwarzschild black hole case, C ¼ 0. As shown in
Appendix C, the mass function is always constant and
equal to the black hole mass. In neutral collapse, the
parameter β does not change much and remains about 1=2.
However, the parameter C is not zero. Then the metric

quantity σ is modified. As a result, the delicate balance
between r and e2σð−r2;t þ r2;xÞ is broken. Consequently, as
implied in Eq. (60), near the singularity, the mass function
diverges: mass inflation occurs. With numerical simula-
tions, the divergence of m near the central singularity was
also reported in Ref. [49], while further explorations were
absent.
As shown in Fig. 5(b), at large- and small-x regions, σ

approaches negative and positive infinities, respectively.
We interpret this difference using Eqs. (55)–(57), Fig. 5(c),
and three sample sets of results at x ¼ 1, x ¼ 2, and
x ¼ 2.5, which are obtained via mesh refinement and are
plotted in Figs. 7 and 8, 9, and 10, respectively. As shown
in Fig. 5(c), at large-x regions, the scalar field is very weak.
This is also illustrated in Figs. 9(c) and 10(b), which show
the contributions of all the terms in the equation of motion
for σ at the slices ðx ¼ 2; t ¼ tÞ and ðx ¼ 2.5; t ¼ tÞ,
respectively. From these two figures, one can see that at
large-x regions, in the vicinity of the singularity, in the
equation of motion for σ, the contribution of the scalar field

(a) (b)

(c) (d)

FIG. 8 (color online). Solutions in the vicinity of the central singularity in neutral scalar collapse on the slice ðx ¼ 1; t ¼ tÞ.
(a) ln r ¼ a ln ξþ b, a ¼ 0.49948� 0.00004, b ¼ 0.2172� 0.0005. (b) σ ¼ a ln ξþ b, a ¼ −0.1651� 0.0001, b ¼ −0.083� 0.001.
(c) ψ ¼ a ln ξþ b, a ¼ −0.18129� 0.00003, b ¼ 0.1322� 0.0003. (d) lnm ¼ a ln rþ b, a ¼ −1.670� 0.002, b ¼ −1.258� 0.009.
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ψ is much less than those from metric quantities,
4πψ2

;t ≪ jσ;ttj≈ jr;tt=rj. As shown in Figs. 9(d) and 10(c),
on the slices ðx ¼ 2; t ¼ tÞ and ðx ¼ 2.5; t ¼ tÞ, C ¼
−0.0606 and C ¼ −0.02786. Then 4πC2 < 1=4.

Consequently, as implied in Eq. (55) and as plotted in
Figs. 9(d) and 10(c), in such a case, σ is negative. We also
note that because of the negativeness of σ, the contribution
of the term 2e−2σ in the equation of motion for η (28) is

(a) (b)

(c) (d)

(e) (f)

FIG. 9 (color online). Dynamics and solutions in the vicinity of the central singularity in neutral scalar collapse on the slice
ðx ¼ 2; t ¼ tÞ. (a)–(c): dynamical equations for r, η, and σ. (d) σ ¼ a ln ξþ b, a ¼ 0.1980� 0.0004, b ¼ −0.112� 0.003.
ψ ¼ a ln ξþ b, a ¼ −0.0606� 0.0001, b ¼ 0.2899� 0.0008. (e) lnm ¼ a ln rþ b, a ¼ −0.1993� 0.0006, b ¼ 0.013� 0.002.
(f) Ratios between spatial and temporal derivatives for r, σ, and ψ .
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important. [See Figs. 9(b) and 10(a).] This is quite different
from the positive case, as plotted in Fig. 7(b). Because of
weakness of the scalar field at large-x regions, σ is not
modified very much, compared to the corresponding value
in the Schwarzschild black hole case. As a result, as implied
in Eq. (60), the mass function does not grow as fast as in the
strong scalar field case. [See Figs. 8(d), 9(e), and 10(d).]
At small-x regions, before the center x ¼ 0 converts from

timelike into spacelike, the scalar field is reflected at x ¼ 0.
In addition, new pulses of the scalar field from large-x
regions keep coming to the central region. Then some of the
energy of the scalar field is accumulated around the center.
Then the scalar field becomes very strong in this region.
[See Fig. 5(c).] In this case, the contribution from the scalar
field can be comparable to or even greater than those from
the metric quantities, 4πψ2

;t ≈ jσ;ttj ≈ jr;tt=rj. (See Fig. 7.)
As shown in Fig. 8(c), C ≈ −0.18 in the vicinity of the
singularity on the slice ðx ¼ 1; t ¼ tÞ. There is
4πC2 ≈ 0.41 > 1=4. Consequently, σ grows to be positive.
[See Fig. 8(b).] Because of the positiveness of σ, the

contribution from the term 2e−2σ in the equation of motion
for η (28) is small compared to those from η;tt and η;xx. [See
Fig. 7(b).] Because of strongness of the scalar field, σ is
significantly modified. As a result, the mass function grows
dramatically. [See Eq. (60) and Fig. 8(d).]

F. Differential form of the mass function near
the central singularity

As a further step of exploring mass inflation, we examine
the differential form of the mass function. Using Eq. (46)
and Einstein equations, one obtains the relation between the
mass function and the flux of the scalar field in the two
dimensional spacetime ðt; xÞ [21,22],

∂m
∂xa ¼ 4πr2½Tb

a − δbaTð2Þ� ∂r∂xb ; ð61Þ

where xa is a coordinate, t or x. Tð2Þð¼ Tt
t þ Tx

xÞ is zero for
the massless scalar field ψ with VðψÞ ¼ 0. [See Eqs. (B7)
and (B8).] We denote r̂, t̂, and x̂ as unit vectors along the

(a) (b)

(c) (d)

FIG. 10 (color online). Dynamics and solutions in the vicinity of the central singularity in neutral scalar collapse on the slice
ðx ¼ 2.5; t ¼ tÞ. (a) and (b): dynamical equations for η and σ. (c) σ ¼ a ln ξþ b, a ¼ 0.2476� 0.0002, b ¼ −0.337� 0.002.
ψ ¼ a ln ξþ b, a ¼ −0.02786� 0.00003, b ¼ 0.2732� 0.0003. (d) lnm ¼ a ln rþ b, a ¼ −0.046� 0.001, b ¼ 0.072� 0.003.
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radial, temporal, and spatial directions, respectively. As
illustrated in Fig. 6, r̂ is perpendicular to the contour lines
r ¼ const. Combining Eqs. (61), (B7), and (B8), one
obtains the gradient of m,

∇m ¼ ∂m
∂t t̂þ

∂m
∂x x̂

¼ −4πr2 ·
1

2
e2σðψ2

;t þ ψ2
;xÞ½r;tt̂þ r;xð−x̂Þ�

¼ −4πr2 ·
1

2
e2σðψ2

;t þ ψ2
;xÞr;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
ð−r̂Þ

≈
Δm
Δλ

ð−r̂Þ: ð62Þ

As implied in Fig. 6,

Δλ ¼ Δt · Δxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔtÞ2 þ ðΔxÞ2

p ≈
Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p : ð63Þ

Then using

Δr
Δλ

¼ Δr
Δt

·
Δt
Δλ

≈ r;t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
; ð64Þ

we have

m;r ≈
Δm
Δr

¼ Δm
Δλ

·
Δλ
Δr

≈ −4πr2 ·
1

2
e2σðψ2

;t þ ψ2
;xÞ: ð65Þ

Equation (65) implies that in the vicinity of the central
singularity, the effective density for the scalar field ψ is

ρef f ¼
1

2
e2σðψ2

;t þ ψ2
;xÞ ∼ r−3−16πC

2

; ð66Þ

which is consistent with the integration form of the mass
function (60).

G. Discussions

1. In which cases is the mass function equal to the black
hole mass?
For stationary black holes, the Misner-Sharp mass

function is always equal to the black hole mass. This is
verified for the Schwarzschild black hole case in
Appendix C and for the Reissner-Nordström black hole
case in Sec. VI.
In spherical symmetry, at spatial infinity, the mass

function describes the total energy/mass of an asymptoti-
cally flat spacetime [47]. In a gravitational collapse case, it
means the total mass of the collapsing system.
2. In which cases does the mass function not describe the

black hole mass?
In the vicinities of the central singularity of a

Schwarzschild black hole and the inner horizon of a
Reissner-Nordström or Kerr black hole, the dynamics
and some quantities are local. The mass function is just

a parameter which varies at each point, not giving global
information on the black hole mass.
3. How does one interpret the behaviors of the mass

function at different circumstances?
One may interpret this issue via an analog to Newtonian

gravity. In Newtonian gravity, suppose we want to measure
the massM of a source sphere with a pointlike test massm.
Denote the distance between the two masses by r. Without
perturbations, the gravitational force between the two
masses is simply F ¼ GMm=r2. However, if another mass
δM passes by the test mass, the gravitational field near the
test mass can become very strong and local, and it is not
able to provide accurate information on the source sphere.
When the perturbation mass is gone or sticks to the source
sphere, one can measure the mass of the source object
accurately again.
Similarly, in gravitational collapse in general relativity,

in the vicinity of the singularity of the formed black hole,
because of the strong interaction between the scalar field
and the geometry, the dynamics becomes local. Then the
computed mass function does not provide global informa-
tion on the mass of the black hole or of the collapsing
system. As discussed in Sec. IV E, at large-x regions, most
of the energy of the scalar field has been absorbed into the
black hole, and the tail of the scalar field is very weak. As a
result, although in this case the mass function does not
seem to approach a fixed value, it grows very slowly. [See
Fig. 10(d).]
4. Is there a suitable mass definition inside black holes?
Although quite several local definitions of mass have

been constructed for regular spacetime, little work has been
done to provide more alternatives for global conservation
laws. Considering the large amount of efforts that have
been spent on formulating proper quasi-local mass, it can
be even more challenging to develop the “ultimate” mass
definition inside black holes. The role of unavoidable
spacetime singularities has also an effect in all of these
definitions.

V. NEUTRAL SCALAR SCATTERING

In this section, we consider neutral scattering, in which a
neutral scalar collapses in a Schwarzschild geometry. The
numerical formalism is a simpler version of the one in
charge scattering that has been constructed in Sec. III, and it
can be obtained by removing the electric terms in the field
equations presented in Sec. III A and replacing the Reissner-
Nordström geometry with a Schwarzschild one.
The parameters are set as follows:
(i) Schwarzschild geometry: m ¼ 1.
(ii) Physical scalar field:

ψðx; tÞjt¼0 ¼ A exp

�
− ðx − x0Þ2

B

�
;

A ¼ 0.2, B ¼ 1, and x0 ¼ 1.

INTERIOR DYNAMICS OF NEUTRAL AND CHARGED … PHYSICAL REVIEW D 92, 064013 (2015)

064013-15



(iii) Grid. Spatial range: x ∈ ½−10 10�. Grid spacings:
Δx ¼ Δt ¼ 0.005.

The numerical results for neutral scattering are plotted in
Fig. 11. As shown in Fig. 11(b), σ is always negative. Our
interpretations for this are the following. In neutral collapse,

before the center x ¼ 0 changes from timelike into space-
like, because of the reflection at x ¼ 0 and the consecutive
incoming of pulses of the scalar field from large x, some of
the energy of the scalar field is accumulated at the central
region. Then the scalar field becomes very strong, and its
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FIG. 11 (color online). Evolutions in neutral scattering. (a)–(c): evolutions of r, σ, and ψ . The time interval between two consecutive
slices is 20Δt ¼ 0.1. (d) and (e) are for the apparent horizon and the singularity curve of the formed black hole. (f) The Misner-Sharp
mass function along the slice ðx ¼ 2; t ¼ tÞ.
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(a) (b)

(c) (d)

(e) (f)

FIG. 12 (color online). Dynamics in a Reissner-Nordström geometry on the slice ðx ¼ 0.5; t ¼ tÞ. (a) and (b): dynamical equation for
r. (c) and (d): dynamical equation for σ. (e) and (f): evolutions of r, σ, and m. At the early stage, r and σ move toward zero and negative
infinity, respectively, as in the Schwarzschild metric. Later on, due to the repulsive force from 2e−2σq2=r2, r decelerates and asymptotes
to r−. [See Figs. (a) and (e).] Mainly because of e−2σq2=r4, σ switches the sign and approaches positive infinity. [See Figs. (c) and (e).]
As the inner horizon is approached, the term e2σð−r2;t þ r2;xÞ asymptotes to zero, and the mass function m remains equal to the mass of
the Reissner-Nordström black hole [See Fig. (f)].

INTERIOR DYNAMICS OF NEUTRAL AND CHARGED … PHYSICAL REVIEW D 92, 064013 (2015)

064013-17



contribution can be comparable to those from the metric
quantities, i.e., 4πψ2

;t ∼ jr;tt=rj ∼ jσ;ttj. As a result, σ can be
positive. However, in neutral scattering, there is a given
Schwarzschild geometry, and the center is a spacelike
singularity from the beginning. So the energy of the scalar
field simply moves to the central singularity rather than
being reflected. Then the energy of the scalar field has no
opportunity of accumulating at the central region.
Consequently, the scalar field is always weak compared
to the metric quantities, and σ remains negative.
We explore the dynamics in the vicinity of the central

singularity, including the behaviors of the field equations,
the metric quantities, the scalar field, and the mass function.
The results are similar to those in the weak scalar field case
in neutral collapse as plotted in Figs. 9 and 10. As a
representative, we plot the mass function along the slice
ðx ¼ 2; t ¼ tÞ in Fig. 11(f).

VI. DYNAMICS IN THE REISSNER-NORDSTRÖM
GEOMETRY

As one more preparation for charge scattering, we
discuss the dynamics in the Reissner-Nordström geometry
in the patch r > r− in Kruskal-like coordinates

ds2 ¼ rþr−
k2þr2

e−2kþr
�
r
r−

− 1

�
1þ kþ

jk− jð−dt2 þ dx2Þ þ r2dΩ2;

ð67Þ
where r and σ are defined by

t2 − x2 ¼ e2kþr
�
1 −

r
rþ

��
r
r−

− 1

�
− kþ
jk− j
; ð68Þ

e−2σ ¼ rþr−
k2þr2

e−2kþr
�
r
r−

− 1

�
1þ kþ

jk− j
: ð69Þ

The equations of motion for r and σ are

rð−r;tt þ r;xxÞ − r2;t þ r2;x ¼ e−2σ
�
1 −

q2

r2

�
; ð70Þ

−σ;tt þ σ;xx þ
r;tt − r;xx

r
þ e−2σ

q2

r4
¼ 0: ð71Þ

The mass and charge of the Reissner-Nordström black
hole are set asm ¼ 1 and q ¼ 0.7, respectively. We take the
slice ðx ¼ 0.5; t ¼ tÞ as a sample slice. The dynamics for r
and σ and the evolutions of r, σ, and m on this slice are
plotted in Fig. 12. As shown in Fig. 12, in Eqs. (70) and
(71), around the outer horizon, the charge terms are
negligible compared to other terms. The dynamics is close
to that in the Schwarzschild black hole case. σ is negative
and jσj keeps decreasing until r is close to the inner
horizon. Then jσj decelerates and turns around. σ
approaches positive infinity, r;x and r;t approach zero,

and r asymptotes to r−. The term e2σð−r2;t þ r2;xÞ asymp-
totes to zero, as plotted in Fig. 12(f). Note that the Minser-
Sharp mass function of a charged black hole is defined as

gμνr;μr;ν ¼ e2σð−r2;t þ r2;xÞ≡ 1 −
2m
r

þ q2

r2
: ð72Þ

Then as shown in Fig. 12(f), the mass function remains
equal to the mass of the Reissner-Nordström black hole as
the inner horizon is approached as expected.
In the next section, we will show that in charge

scattering, near the inner horizon, due to the additional
contribution from a scalar field, σ approaches positive
infinity faster than in the Reissner-Nordström black hole
case. Consequently, r decreases faster and then is able to
cross the inner horizon. As a result, the term e2σð−r2;t þ r2;xÞ
and the mass parameter diverge: mass inflation takes place.

VII. RESULTS FOR CHARGE SCATTERING

In this section, we explore charge scattering: scalar field
collapse in a Reissner-Nordström geometry. We study the
evolutions of the metric components and scalar field, and
obtain approximate analytic solutions. We closely compare
the dynamics in Schwarzschild black holes, Reissner-
Nordström black holes, neutral scalar collapse, and charge
scattering. In addition, at each step of obtaining the analytic
solutions, we compare the analytic candidate solutions to
the numerical results.
In this section, the parameters are set as follows:
(i) Reissner-Nordström geometry: m ¼ 1, and q ¼ 0.7.
(ii) Physical scalar field:

ψðx; tÞjt¼0 ¼ A exp

�
− ðx − x0Þ2

B

�
;

A ¼ 0.08, B ¼ 1, and x0 ¼ 4.
(iii) Grid. In Sec. VII A, we use the spatial range of x ∈

½−10 10� and grid spacings of Δx ¼ Δt ¼ 0.005. In
Secs. VII B–VII E, we use the spatial range of x ∈
½−5 5� and grid spacings of Δx ¼ Δt ¼ 0.0025.

A. Evolutions

1. Outline

In this subsection, we describe the evolutions of r, σ, and
ψ that are plotted in Fig. 13. Examining the equations of
motion (12)–(15), one can see that in the charge scattering
dynamical system, there are three types of quantities as
follows:

(i) Metric components: r and σ. They contribute as
gravity.

(ii) Scalar field: ψ . It contributes as a self-gravitating
field.

(iii) Electric field. It acts as a repulsive force.
See Eq. (12).
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FIG. 13 (color online). Evolutions in charge scattering. In (a), (b), and (d), the time interval between two neighboring slices is
30Δt ¼ 0.15. In (c), it is 15Δt ¼ 0.075. (e) and (f) are for the horizons. When the scalar field is strong enough (around x ¼ 2), the inner
horizon can be pushed to the center, and the central singularity becomes spacelike. When the scalar field is weak enough (e.g.,
−4 < x < −1), the inner horizon does not change much, and the central singularity remains timelike. At the intermediate state (e.g.,
0 < x < 1.5), the inner horizon contracts to zero, and the central singularity becomes null. The results for the inner horizon, especially
for x > 2, are not that accurate. We are aware that the inner horizon is actually at infinity, while r still can be very close to r− when x and
t take moderate values.
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Furthermore, these quantities can be separated into two
sides: the gravitating side (r, σ, and ψ) and the repulsive
side (electric field). The dynamics in charge scattering
consists mainly of how these quantities interact, including
how the gravitating and repulsive sides compete.
According to the strength of the scalar field, charge

scattering can be classified as follows:
(i) Type I: spacelike scattering. When the scalar field is

very strong, the inner horizon can contract to zero
volume rapidly, and the central singularity becomes
spacelike. Sample slice: ðx ¼ 1.67; t ¼ tÞ in Fig. 13.
See Sec. VII B.

(ii) Type II: null scattering. When the scalar field is
intermediate, the inner horizon can contract to a
place close to the center or reach the center. In this
type of mass inflation, for each quantity, the spatial
and temporal derivatives are almost equal. In the
case of the center being reached, the central singu-
larity becomes null. This type of scattering has two
stages: early/slow and late/fast. In the early stage, the
inner horizon contracts slowly; while in the late
stage, the inner horizon contracts rapidly. Sample
slice: ðx ¼ 0.5; t ¼ tÞ in Fig. 13. See Secs. VII C
and VII D.

(iii) Type III: critical scattering. This case is on the edge
between the above two cases. When the central
singularity is reached, it becomes null. Sample slice:
ðx ¼ 1.53; t ¼ tÞ in Fig. 13. See Sec. VII E.

(iv) Type IV: weak scalar scattering. When the scalar
field is very weak, the inner horizon does not
contract much. Sample case: Figs. 22 and 23. See
Sec. VIII.

(v) Type V: tiny scalar scattering. When the scalar
field is very tiny, the influence of the scalar
field on the geometry is negligible. Sample slice:
ðx ¼ −3; t ¼ tÞ in Fig. 13.

In this paper, we will discuss the first four types.

2. Causes of mass inflation and evolutions of r, σ, and ψ

In the Reissner-Nordström geometry, in Kruskal-like
coordinates expressed by Eq. (67), near the inner horizon,
although σ asymptotes to positive infinity, ðr2;t − r2;xÞ is
much less than e−2σ. Consequently, e2σðr2;t − r2;xÞ
approaches zero. Then as implied in Eq. (72), m takes a
finite value.
In charge scattering, the equations of motion for η≡ r2

and σ are

−η;tt þ η;xx ¼ 2e−2σ
�
1 −

q2

r2

�
; ð73Þ

−σ;tt þ σ;xx þ
r;tt − r;xx

r
þ 4πðψ2

;t − ψ2
;xÞ þ e−2σ

q2

r4
¼ 0:

ð74Þ

At the beginning, under our initial conditions, jψ ;tj is less
than jψ ;xj. However, as discussed in Sec. IV D, as r
decreases toward the central singularity, gravity becomes
stronger, and jψ ;tj becomes greater than jψ ;xj. (Also see
Figs. 14–17.) Then in this case, the repulsive “force,”
4πðψ2

;t − ψ2
;xÞ þ e−2σq2=r4, isgreater than thecorresponding

one, e−2σq2=r4, in the Reissner-Nordström geometry. This
makes σ accelerate faster than in the Reissner-Nordström
metric. Consequently, the repulsive force from
2e−2σðq2=r2 − 1Þ for η≡ r2 is much weaker than the corre-
sponding value in the Reissner-Nordström geometry. As a
result, near the inner horizon, jr;tj is much greater than the
corresponding one in the Reissner-Nordström case. Then
ðr2;t − r2;xÞmoves from extremely tiny values in the Reissner-
Nordströmmetric case to moderate values, and r crosses the
inner horizon r ¼ r− for the given Reissner-Nordström
geometry. [See Figs. 12(e) and 15(a).] This makes the mass
parameter diverge: mass inflation occurs. [See Eq. (72).] In
other words, regarding the causes ofmass inflation in charge
scattering, the scalar field’s backreaction on r is more
important than the one on σ. The evolutions of r, σ, and ψ
are plotted in Figs. 13(a)–13(d).

3. Locations of horizons

In charge scattering, on the horizon, there is

gμνr;μr;ν ¼ e2σð−r2;t þ r2;xÞ≡ 1 −
2m
r

þ q2

r2
¼ 0: ð75Þ

We locate the outer and inner horizons using this property.
The results are plotted in Figs. 13(e) and 13(f). Because of
the absorption of the physical scalar field ψ , the outer
horizon increases from the original value of 1.7 to 2.9. Note
that the results for the inner horizon, especially at regions
where x > 2, are not that accurate. We are aware that the
inner horizon is actually at infinity, while r still can be very
close to r− even when x and t take moderate values.

B. Spacelike scattering

In this configuration, the scalar field is very strong, such
that the inner horizon can contract to zero volume rapidly,
and the central singularity converts from timelike into
spacelike. Taking the slice ðx ¼ 1.67; t ¼ tÞ as a sample
slice, we plot the terms in the field equations for r, σ, and ψ
in Fig. 14, and also the evolutions of r, σ, ψ , and m in
Fig. 15. We investigate the dynamics in the vicinity of the
central singularity via mesh refinement, and plot the results
in Fig. 16.
The strongness of the scalar field causes several conse-

quences as below.
(i) The quantity r does not decelerate much when it

crosses the inner horizon of the given Reissner-
Nordström black hole, and it can approach the
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(a) (b)

(c) (d)

(e) (f)

FIG. 14 (color online). Dynamics along the slice ðx ¼ 1.67; t ¼ tÞ in spacelike charge scattering. (a) and (b), (c) and (d), (e) and (f):
dynamical equations for r, σ, and ψ . In this configuration, the scalar field is so strong, such that r does not decelerate much when it
crosses the inner horizon of the given Reissner-Nordström geometry.
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center. At the same time, the mass function grows
dramatically. [See Fig. 15.]

(ii) The central singularity converts from timelike into
spacelike.

(iii) The dynamics in spacelike scattering is similar to
that in neutral, strong scalar collapse. The quantity σ
takes large positive values, such that in the vicinity
of the central singularity, the term e−2σq2=r2 in the
equation of motion for r (12) and the term e−2σq2=r4

in the equation of motion for σ (14) are negligible,
compared to other terms in the equations. As a
result, in the vicinity of the central singularity, the
equations of motion in charge scattering are similar
to those in neutral collapse and neutral scattering as
expressed byEqs. (51)–(53). [See Figs. 16(a)–16(d).]
Then thequantities r,σ,ψ , andm take similar formsas
those in neutral collapse and neutral scattering as
expressedbyEqs. (54)–(57) and (60). [SeeFigs. 16(e)
and 16(f).]

C. The late/fast stage of null scattering

When the scalar field is less strong, the inner horizon
may still contract to zero. However, in this case, the central
singularity becomes null rather than spacelike. The equa-
tions of motion remain null: they have similar forms as free
wave equations, e.g., ψ ;tt ≈ ψ ;xx.
In the Reissner-Nordström black hole case, near the

center, the repulsive (electric) force dominates gravity, and
the central singularity is timelike. In spacelike scattering as
discussed in the last subsection, gravity from the scalar
field and the background geometry dominates the repulsive
force. As a result, the central singularity is spacelike. At the
late stage of the null scattering that will be studied in this
subsection, the scalar field is less strong, and the central
singularity is null. Because of this, one may say that the null
scattering is a critical case of the competition between
repulsive and gravitational forces, in which case the two
types of forces have a balance.

(a)

(c)

(b)

FIG. 15 (color online). Evolutions along the slice ðx ¼ 1.67; t ¼ tÞ in spacelike charge scattering. (a) evolutions of r and σ. (b)
evolutions of ψ andm. The mass function remains equal to the mass of the original Reissner-Nordström black hole,m ¼ 1, until t ≈ 1.9,
and by then mass inflation takes place. (c) ratios between spatial and temporal derivatives for r, σ, and ψ . When t > 1.9, there is
jψ ;x=ψ ;tj ≈ jr;x=r;tj.
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(a) (b)

(c) (d)

(e) (f)

FIG. 16 (color online). Dynamics and solutions in the vicinity of the central, spacelike singularity on the slice ðx ¼ 1.67; t ¼ tÞ in
spacelike charge scattering. In the equations of motion, in the vicinity of the singularity, the terms related to the electric field are
negligible. Therefore, the equations of motion behave similarly to those in neutral scalar collapse that are plotted in Fig. 7. (a) dynamical
equation for r: rr;tt ≈ −r2;t, (b) for η: η;tt ≈ η;xx, (c) for σ: σ;tt ≈ 4πψ2

;t, (d) for ψ : ψ ;tt ≈ −2r;tψ ;t=r. (e) ln r ¼ a ln ξþ b,
a ¼ 0.5047� 0.0002, b ¼ −0.286� 0.001. σ ¼ a ln ξþ b, a ¼ −4.373� 0.002, b ¼ −11.50� 0.01. (f) ψ ¼ a ln ξþ b,
a ¼ −0.6087� 0.0002, b ¼ −1.131� 0.002. lnm ¼ a ln rþ b, a ¼ −18.307� 0.004, b ¼ −31.39� 0.01.
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(a) (b)

(c) (d)

(e) (f)

FIG. 17 (color online). Dynamics for null charge scattering on the slice ðx ¼ 0.5; t ¼ tÞ. When the mass inflation happens, the field
equations become null, in the sense that the temporal and spatial derivatives are approximately equal. For example, in (a), r;tt ≈ r;xx
and r2;t ≈ r2;x. Near the center, (a) −rr;tt ≈ −rr;xx ≈ r2;t ≈ r2;x. (b) η;tt ≈ η;xx. (c) and (d) σ;tt ≈ σ;xx ≈ 4πψ2

;t ≈ 4πψ2
;x.

(e) ψ ;tt ≈ ψ ;xx ≈ −2r;tψ ;t=r ≈ −2r;xψ ;x=r.
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Take the slice ðx ¼ 0.5; t ¼ tÞ as a sample slice, we plot
the terms in the field equations for r, σ, and ψ in Fig. 17,
and the evolutions of r, σ, ψ ,m, and j1 − K2j in Fig. 18. We
investigate the dynamics in the vicinity of the central

singularity via mesh refinement and plot the results
in Fig. 19.
The null scattering has two stages: early/slow and late/

fast. As shown in Figs. 17 and 18, right after the strong

(a) (b)

(c)

(e)

(d)

FIG. 18 (color online). Evolutions in null charge scattering on the slice ðx ¼ 0.5; t ¼ tÞ. (a)–(e): evolutions for r, σ, ψ ,m, and j1 − K2j.
At the early stage of mass inflation, 1.2 < t < 2, r varies slowly; while at the late stage, t > 2, r varies faster and faster toward a small
value close to zero.

INTERIOR DYNAMICS OF NEUTRAL AND CHARGED … PHYSICAL REVIEW D 92, 064013 (2015)

064013-25



collision between the scalar field and the inner horizon,
because of the repulsive force from the electric field and the
tension force from spatial derivatives, r, σ, and ψ change
slowly. As a result, the mass function m also grows slowly.
We call this stage the early/slow stage. Later on, as r
approaches zero, maybe because of strong gravity from the
central singularity as in the spacelike scattering case, these
quantities change faster. We call this stage the late/fast stage.
As shown in Fig. 17, when r is very small, the equations

of motion for r (12), η (13), σ (14), and ψ (15) can be
rewritten as

−rr;tt ≈ −rr;xx ≈ r2;t ≈ r2;x; ð76Þ

η;tt ≈ η;xx; ð77Þ

σ;tt ≈ σ;xx ≈ 4πψ2
;t ≈ 4πψ2

;x; ð78Þ

ψ ;tt ≈ ψ ;xx ≈ −
2

r
r;tψ ;t ≈ −

2

r
r;xψ ;x: ð79Þ

Since the above four equations have some similarities
to the corresponding ones in spacelike scattering, one
may guess that the quantities r, σ, ψ , and m may have
expressions similar to those in the spacelike scattering case.
In fact, this guess is verified by the numerical results plotted
in Fig. 19.
In the spacelike scattering case, near the central singu-

larity, the ratio jr;x=r;tj approaches a fixed value—the slope
of the singularity curve, which is different from 1.
Therefore, we can obtain the approximate analytic expres-
sion for ðr2;t − r2;xÞ and then for the mass function m.
However, in the null scattering case, j1 − K2j asymptotes
tozero.Weplot thenumerical resultsof j1 − K2j inFig.19(b),
while we do not derive the approximate analytic expression

for j1 − K2j. The good thing is that in the diverging mass
function, compared to the factor e2σ, the term j1 − K2j is a
minor one.

D. The early/slow stage of null scattering

As shown in Fig. 17, at the early/slow stage of null
scattering, the equations of motion for r (12), σ (14), and ψ
(15) can be rewritten as follows:

r;tt ≈ r;xx; r2;t ≈ r2;x; ð80Þ

σ;tt ≈ σ;xx; ψ2
;t ≈ ψ2

;x; r;tt ≈ r;xx; ð81Þ

ψ ;tt ≈ ψ ;xx; r;tψ ;t ≈ r;xψ ;x: ð82Þ

The above equations are like free scalar wave equations in
flat spacetime. The derivatives of one variable (r, σ, and ψ )
are independent from the derivatives of another. Arbitrary
functions of ðtþ xÞ or ðt − xÞ can satisfy the above
equations, and in principle, the initial conditions right after
the collision between the scalar field and the inner horizon
will decide which function each variable can take. On the
other hand, we find that, as shown in Figs. 20(a) and 20(b),
the constraint equations (18) and (19) provide some useful
information on the connections between r, σ, and ψ at the
early stage of charge scattering:

r;tσ;t ≈ 4πr−ψ2
;t: ð83Þ

As shown in Fig. 18, the quantities r, σ, ψ , j1 − K2j, and
m change dramatically at the beginning of charge scattering
where r ≈ r−. Moreover, note that, near the central singu-
larity, r, σ, and ψ have approximate analytic expressions in
terms of ξ ¼ t0 − t, where t0 is the time coordinate of the

(a) (b)

FIG. 19 (color online). Evolutions at the late/fast stage of null charge scattering on the slice ðx ¼ 0.5; t ¼ tÞ. (a) ln r ¼ a ln ξþ b,
a ¼ 0.4893� 0.0008, b ¼ −0.956� 0.002. σ ¼ a ln ξþ b, a ¼ −6.95� 0.05, b ¼ 28.5� 0.1. ψ ¼ a ln ξþ b, a ¼ −0.717� 0.004,
b ¼ −0.24� 0.01. (b) lnm ¼ a ln rþ b, a ¼ −29.5� 0.2, b ¼ 15.0� 0.4.
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(a) (b)

(c) (d)

(e) (f)

FIG. 20 (color online). Numerical results along the slice ðx ¼ 0.5; t ¼ tÞ in null charge scattering. (a) is for the ftxg constraint
Eq. (18), and (b) is for the fttg þ fxxg one (19). (a) and (b) provide some useful information on the connections between some
quantities at the early stage of charge scattering: r;tσ;t ≈ 4πr−ψ2

;t. (c)–(f): evolutions at the early/slow stage of null charge scattering.
(c) r;t ¼ aðtþ bÞc þ d, a ¼ ð−2.38� 0.02Þ × 10−3, b ¼ −0.786� 0.001, c ¼ 7.164� 0.007, d ¼ ð−2.395� 0.004Þ × 10−4.
(d) σ¼a×lnðtþbÞþc, a¼34.11�0.02, b ¼ −0.256� 0.001, c ¼ 3.38� 0.03. (e) ψ ¼ aðtþ bÞc þ d, a ¼ ð2.72� 0.06Þ × 10−3,
b ¼ −0.245� 0.004, c ¼ 5.82� 0.01, d ¼ ð9.3� 0.1Þ × 10−4. lnð1 − K2Þ ¼ atþ b, a ¼ −8.21� 0.02, b ¼ 12.29� 0.04.
(f) lnm ¼ a lnðtþ bÞ þ c, a ¼ 77.52� 0.05, b ¼ −0.201� 0.001, c ¼ −16.15� 0.08.
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singularity curve. So it is natural to guess that, at the early
stage of charge scattering, the above quantities may be also
expressed by function of ζ ¼ t − ts, where ts is a certain
time value related to the early stage of charge scattering. We
plot the evolutions of these quantities at the early stage of
charge scattering in Fig. 20, from which one can see that r,
r;t, and σ may have the following approximate analytic
expressions:

r ≈ r−; ð84Þ

r;t ≈ aζλ; ð85Þ

σ ≈ b ln ζ þ σ0: ð86Þ

In fact, a logarithmic expression for σ is supported by its
behavior near the inner horizon in the Reissner-Nordström
black hole case. From Eqs. (11) and (22), one obtains that
as r approaches the inner horizon r ¼ r−, in the case of
t ≫ x, σ can be approximated by a logarithmic function of

t. As shown in Fig. 17(c), describing the terms in the
equation of motion for σ in charge scattering, at the very
early stage (t ≈ 1) of the collision between the scalar field
and the inner horizon, compared to other terms, the
contributions from the terms related to ψ are tiny.
Therefore, at this stage, the evolution of σ should not be
much different from the corresponding one in the Reissner-
Nordström geometry.
As shown in Fig. 20(e), ψ can be well fitted by power law

functions of ζ,

ψ ≈ cζd þ ψ0: ð87Þ

We also plot ð1 − K2Þ in Fig. 20(e), and find that
lnð1 − K2Þ can be well fitted linearly with respect to ζ,

lnð1 − K2Þ ≈ fζ þ h: ð88Þ

Currently we do not have derivations for this linear relation.
The good thing is that, in the mass function, ð1 − K2Þ is a

(a) (b)

(c) (d)

FIG. 21 (color online). Dynamics and solutions in critical charge scattering on the slice ðx ¼ 1.53; t ¼ tÞ. (a) and (b): dynamical
equations for r and σ. (c): evolutions of r and σ. (d): evolutions of ψ and m.
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minor factor. Therefore, as verified in Fig. 20(f), the mass
function can be reduced to

m ¼ r
2

�
1þ q2

r2
þ e2σðr2;t − r2;xÞ

�

∼
r−
2
· e2σ · r2;t

∼
r−
2
e2σ0 · ζ2b · a2ζ2λ; ð89Þ

where a, b, λ, and σ0 are defined in Eqs. (85) and (86).
We list the fitting results below:
(1) r;t ≈ aðtþ bÞc þ d, a ¼ ð−2.38� 0.02Þ × 10−3,

b ¼ −0.711 � 0.001, c ¼ 7.164 � 0.007, d ¼
ð−2.395 � 0.004Þ × 10−4.

(2) σ ≈ a lnðtþ bÞ þ c, a ¼ 34.11 � 0.02, b ¼
−0.181� 0.001, c ¼ 3.38� 0.03.

(3) ψ ≈ aðtþ bÞc þ d, a ¼ ð2.72 � 0.06Þ × 10−3,
b ¼ −0.170 � 0.004, c ¼ 5.82 � 0.01, d ¼
ð9.3� 0.1Þ × 10−4.

(4) lnð1 − K2Þ ≈ at þ b, a ¼ −8.21 � 0.02, b ¼
11.67� 0.03.

(5) lnm ≈ a lnðtþ bÞ þ c, a ¼ 77.52 � 0.05, b ¼
−0.126� 0.001, c ¼ −16.16� 0.08.

It can be interesting to compare the dynamics at the early
stage of null scattering with (1) that near the central
singularity in spacelike scattering and (2) that at the late
stage of null scattering. At the early stage of null scattering,
r and ψ change slowly: r ≈ r−, r;t ≈ aζλ with λ > 1, and
ψ ≈ fζh þ ψ0. Near the center, r and ψ change fast: r ≈ 0,
r;t ≈ aξ−ð1−βÞ with 1 − β ≈ 1=2 < 1, and ψ ≈ C ln ξ. In
both cases, σ changes fast and has logarithmic expressions
with respect to ζ and ξ, respectively.

E. Critical scattering

In Secs. VII B–VII D, we studied spacelike and null
scattering. In this subsection, we discuss critical scattering,
which is on the edge between spacelike and null scattering.

(a) (b)

(c) (d)

FIG. 22 (color online). Evolutions in weak scalar charge scattering. The time interval between two consecutive slices is 30Δt ¼ 0.15.
(a) and (b): evolutions of r. In the current simulations, r does not approach zero. We expect this is also the case in later evolutions. (c) and
(d): evolutions of σ and ψ .
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In fact, the dynamics of this type of mass inflation is similar
to that at the late stage of null scattering.
The dynamics of r, σ and the evolutions of r, σ, ψ , andm

in critical scattering on the slice ðx ¼ 1.53; t ¼ tÞ are

plotted in Fig. 21. In spacelike scattering, the terms in
the field equations are grouped according to temporal and
spatial derivatives. Take the field equation for σ as an
example. As shown in Fig. 16(c), at small-r regions, there

(a) (b)

(c) (d)

(e) (f)

FIG. 23 (color online). Dynamics and solutions in weak scalar charge scattering on the slice ðx ¼ 3; t ¼ tÞ. (a)–(d): dynamical
equations for r, σ, and ψ . (e) and (f): evolutions of r and m.
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are σ;tt ≈ 4πψ2
;t and σ;xx ≈ 4πψ2

;x. At the early stage of the
null scattering, the terms in the field equations are grouped
according to the types of quantities. As shown in Fig. 17(c),
at the early stage of the null scattering, there are σ;tt ≈ σ;xx
and 4πψ2

;t ≈ 4πψ2
;x. In critical scattering, the dynamics has

features from both spacelike and early stage of null
scattering. As shown in Fig. 21(b), in this case, there are
σ;tt ≈ σ;xx ≈ 4πψ2

;t ≈ 4πψ2
;x. Further details are skipped.

VIII. WEAK SCALAR CHARGE SCATTERING

In this section, we consider charge scattering with a weak
scalar field. Parameter settings in this section are almost
the same as those in the last section with the following
exceptions:

(i) Physical scalar field:

ψðx; tÞjt¼0 ¼ A exp

�
− ðx − x0Þ2

B

�
;

A ¼ 0.04, B ¼ 1, and x0 ¼ 4.
(ii) Grid. Spatial range: x ∈ ½−10 10�. Grid spacings:

Δx ¼ Δt ¼ 0.005.
As discussed in the above section, at some spacetime

regions where the scalar field is strong, the inner horizon
can contract to zero volume, and the central singularity
becomes spacelike or null. However, this does not always
necessarily happen. After all, it takes energy for the inner
horizon to contract. When the scalar field carries less
energy, the inner horizon may only contract to a nonzero
value. This is confirmed by our numerical results plotted in
Fig. 22, which are in agreement with the numerical work in
Ref. [29] and the mathematical proof in Ref. [9]. Since in
this case the inner horizon is not totally destructed, one
needs to reconsider whether the strong cosmic censorship
conjecture is valid here. If it is not, more efforts need to be
spent on understanding the nature of this conjecture and the
internal structure of Reissner-Nordström and Kerr black
holes directly.
The dynamics for the quantities r, σ, and ψ are plotted in

Figs. 23(a)–23(d). The numerical results show that at the
later stage, the field equations for such quantities become
null, in the sense that the temporal and spatial derivatives
are almost equal, i.e., σ;tt ≈ σ;xx. Moreover, the derivatives
have oscillations. As shown in Figs. 23(e) and 23(f), the
mass function grows up continuously even when r
approaches a constant value. Further details are skipped.

IX. SUMMARY

In this paper, we studied neutral collapse, neutral
scattering, and charge scattering numerically. Mass infla-
tion in the vicinity of the central singularity is obtained.
Approximate analytic solutions were partially obtained. We
summarize our work on computational and physical issues
separately below.

A. Computational issues

(i) Numerical vs analytic approaches. Numerical and
analytic approaches are both indispensable in gravi-
tational physics. The results fromone of the two can be
enlightening for the other one; and one approach can
be used to check the results from the other one. Typical
examples include computations of gravitational wave-
forms in blackholebinary systems [51–53] and studies
of quantum evaporation of two-dimensional black
holes [53]. The power of combining the two ap-
proaches was displayed again in this paper.

(ii) Problems with known solutions vs a new problem. In
exploring charge scattering, we tried to closely
compare problems with known solutions (dynamics
in Schwarzschild and Reissner-Nordström geom-
etries and neutral scalar collapse) to a problem yet to
be solved (charge scattering).

(iii) dudv vs ð−dt2 þ dx2Þ in double-null coordinates. In
the studies of mass inflation, the dudv format
of the Kruskal-like coordinates, ds2 ¼ 4e−2σdudvþ
r2dΩ2, is usually used. In this paper, we used the
ð−dt2 þ dx2Þ format instead, ds2 ¼ e−2σð−dt2þ
dx2Þ þ r2dΩ2, with u ¼ ðt − xÞ=2 ¼ const and
v ¼ ðtþ xÞ=2 ¼ const. Moreover, we set the initial
conditions close to those in the Reissner-Nordström
geometry.

In the ðt; xÞ line element, one coordinate is
timelike, and the rest are spacelike. We are used
to this setup. It is more convenient and more intuitive
to use this set of coordinates. For the ðu; vÞ choice,
in the field equations, many terms are mixed
derivatives of u and v, e.g., r;uv. However, for the
ðt; xÞ choice, spatial and temporal derivatives are
usually separated, e.g., ðr;tt − r;xxÞ.

In the study of charge scattering, we set the initial
conditions close to those in the Reissner-Nordström
geometry. Consequently, removing the terms related
to the scalar field, we can test our code by comparing
the numerical results to the analytic ones in the
Reissner-Nordström geometry. Moreover, by com-
paring numerical results for charge scattering to the
dynamics in the Reissner-Nordström geometry, we
can obtain intuitions as to how the scalar field affects
the geometry.

(iv) Cauchy horizon: infinite or local regions? As
implied by Eq. (11), the exact inner horizon r ¼
r− is at the regions where uv and ðt2 − x2Þ are
infinite. However, r still can be very close to the
inner horizon even when uv and ðt2 − x2Þ take
moderate values. Consequently, at regions where
uv and ðt2 − x2Þ take some moderate values, the
scalar field and the inner horizon still can have
strong interactions, resulting in mass inflation.
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B. Physical issues

(i) Interpretations of mass inflation in charge scatter-
ing: analytic computations vs numerical simula-
tions. According to the original papers on mass
inflation [21,22], the mechanism of mass inflation
can be described below. Near the Cauchy horizon,
the influx is infinitely blueshifted, while the outflux
generates the crucial separation between the Cauchy
and inner horizons. Then the blueshift and redshift
do not cancel, and the mass parameter increase
dramatically. In this paper, we explored mass in-
flation numerically. We examined the contributions
of all the terms in the field equations and compared
the dynamics in the Reissner-Nordström geometry
and in charge scattering. In the Reissner-Nordström
geometry, in the coordinates (10), r;t asymptotes to
zero near the inner horizon, and the mass parameter
remains constant. In charge scattering, a scalar field
impacts the inner horizon. The scalar field makes the
metric quantity σ in the line element (9) grow faster
than in the Reissner-Nordström geometry, causing a
smaller repulsive force for r. Then r can cross the
original inner horizon r ¼ r−: mass inflation
takes place.

(ii) Contributions to mass inflation in charge scattering:
e2σ vs ðr2;t − r2;xÞ. In a Reissner-Nordström black hole
and charge scattering, the Misner-Sharp mass func-
tion can be written as

m ¼ r
2

�
1þ q2

r2
þ e2σðr2;t − r2;xÞ

�
: ð90Þ

Near the inner horizon of a Reissner-Nordström
black hole, e2σ ≫ 1. However, r2;t ≪ e−2σ. This
makes e2σðr2;t − r2;xÞ vanish. Then the mass function
remains constant. Now we consider the early/slow
stage of null scattering that was discussed in
Sec. VII D. We use the example plotted in Fig. 20.
At the slow stage, e2σ, r2;t, and ð1 − r2;t=r2;xÞ vary
roughly from 109 to 1019, 10−7 to 10−4, and 1 to
10−2, respectively. So e2σ seems to play a more
important role than r2;t and ð1 − r2;t=r2;xÞ. However,
comparing mass inflation and dynamics in the
Reissner-Nordström metric, one can see that the
mass function increases dramatically not because
e2σ is very large, but because r2;t moves from
extremely tiny values in the Reissner-Nordström
geometry to a small number in charge scattering.
Namely, r2;t is more important than e2σ in the
growth of the mass function.

(iii) Gravity vs repulsive (electric) force ⇔ Nature of
the central singularity (timelike, spacelike, or null).
In charge scattering, the quantities in the field
equations can be separated into two sides: the

gravitating side (r, σ, and ψ) and the repulsive side
(electric field). The dynamics in charge scattering
mainly describes how these quantities interact, in-
cluding how the gravitating and repulsive sides
compete.
In the Reissner-Nordström metric, at small-r

regions, the electric field dominates gravity. As a
result, the central singularity is timelike. In charge
scattering, when the scalar field is strong enough,
the total gravity from the black hole and the scalar
field dominates the electric field. The inner horizon
contracts to zero volume rapidly, and the central
singularity becomes spacelike. When the scalar
field is intermediate, the inner horizon contracts
to a small or zero value. The equations of motion
become null, in the sense that in the equations, the
temporal and spatial derivatives are almost equal,
e.g., σ;tt ≈ σ;xx. In the case of the inner horizon
contracting to zero, the central singularity be-
comes null.

(iv) Compare neutral collapse and different types of
charge scattering. In the late stages of strong and
intermediate scalar charge scattering, the dynamics
and hence the solutions in the vicinity of the central
singularity are similar to those in neutral scalar
collapse.
Regarding the early stage of intermediate scalar

charge scattering, we noticed that, in the mass
function, e2σ is the dominant factor, and hence the
mass function can be well fitted by a logarithmic
function of the coordinate time t.

(v) The innerhorizon inaReissner-Nordströmblackhole
vs the central singularity in a Schwarzschild black
hole. These two share some similarities as below.
(a) For Reissner-Nordström and Schwarzschild

black holes, throughout the whole spacetime,
the Misner-Sharp mass function is constant.
When a scalar field impacts the inner horizon
of a Reissner-Nordström black hole, the scalar
field can modify the geometry in the vicinity of
the inner horizon significantly, especially on r;t.
The inner horizon contracts and mass inflation
takes place. In neutral scalar collapse toward a
Schwarzschild black hole formation, the scalar
field can also modify the geometry in the vicinity
of the central singularity dramatically, especially
on the metric component σ [20]. Then mass
inflation also happens.

(b) The BKL conjecture is an important result on the
dynamics in the vicinity of a spacelike singu-
larity [12–15]. The first statement of this con-
jecture is that as the singularity is approached,
the dynamical terms dominate the spatial terms
in the field equations. In other words, the way
gravity changes over time is more important than
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the variation of the gravitational field from one
location to the next [15]. We would like to say
that, to a large extent, later evolutions in a strong
gravitational field largely erase away the initial
information on the connections between neigh-
boring points. As discussed in Ref. [20] and also
in this paper, in double-null coordinates, using
the above arguments, one can interpret the
following behaviors displayed in numerical sim-
ulations: near the spacelike singularity of a
Schwarzschild black hole and the inner horizon
of a Reissner-Nordström black hole, there is

����ψ ;x

ψ ;t

����∼
���� r;xr;t

���� < 1: ð91Þ

In this paper, it was found that Eq. (91) can
interpret how mass inflation takes place.
The second and third statements of the BKL

conjecture are that (i) the metric terms dominate
the matter field terms, while the matter field may
not be negligible if it is a scalar field; (ii) the
dynamicsof themetric components and thematter
fields is described by the Kasner solution. These
two statements were confirmed in numerical
simulations of neutral scalar collapse in fðRÞ
gravity in Ref. [20] and in general relativity in
this paper. The second statementwas also verified
in charge scattering in this paper. However, the
third statement on Kasner solution may not apply
to charge scattering.

(c) Near the central singularity in a Schwarzschild
black hole, the asymptotic solutions are r ≈ Aξ

1
2,

σ ≈ B ln ξþ σ0, and ψ ≈ C ln ξ, where ξ ≡
t0 − t, and t0 is the time coordinate on the
singularity curve rðx; tÞ ¼ 0. Near the inner
horizon of a Reissner-Nordström black hole,
the asymptotic solutions are r ≈ aζb þ c with
b > 1, σ ≈ d ln ζ þ f, and ψ ≈ hζj þ ψ0, where
ζ ≡ t − ts, and ts is the coordinate time t at the
beginning of charge scattering.

(vi) Strong cosmic censorship conjecture. On the
Cauchy horizon of a Reissner-Nordström black hole,
the predicability is violated. Based on first-order
calculation, the inner (Cauchy) horizon appears
unstable under perturbations [7]. Then it was con-
jectured that for generic asymptotically flat initial
data, the maximal Cauchy development is future
inextendible. In this paper, it was found that for
weak scalar field perturbation, the inner (Cauchy)
horizon only contracts to a nonzero value. This is
also in agreement with the numerical work in
Ref. [29] and the mathematical proof in Ref. [9].
Therefore, one needs to reconsider the validity of the
strong cosmic censorship.

(vii) Inside vs outside black holes: local vs global.
Throughout the whole spacetime for stationary
Schwarzschild and Reissner-Nordström black holes,
the Misner-Sharp mass function is equal to the black
hole mass. For a gravitational collapsing system, at
asymptotic flat regions, the mass function describes
the total mass of the dynamical system. However,
in this system, near the central singularity of a
Schwarzschild black hole or near the inner horizon
of a Reissner-Nordström black hole, the dynamics is
local. Then the mass function does not provide
global information on the mass of the collapsing
system.

In summary, in this paper, we studied neutral scalar
collapse, neutral scattering, and charge scattering.
Regarding charge scattering, for convenience and intuitive-
ness, Kruskal-like coordinates were used, and initial con-
ditions were set up to be close to those in the Reissner-
Nordström geometry. Mass inflation was also found
to happen near the central singularity in neutral scalar
collapse. Approximate analytic solutions for mass
inflation were partially obtained. Connections between
Schwarzschildblackholes,Reissner-Nordströmblackholes,
neutral collapse, neutral scattering, and charge scattering
were explored.
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APPENDIX A: REISSNER-NORDSTRÖM METRIC
IN KRUSKAL-LIKE COORDINATES

The Reissner-Nordström metric in Kruskal-like coordi-
nates was obtained in Ref. [41] (also see Ref. [42]). For
reference concern, we list the derivations here via analog to
the Schwarzschild black hole case in the form of Ref. [42].
We start from the Reissner-Nordström metric in the

conventional form,

ds2 ¼ −▵dt2 þ ▵
−1dr2 þ r2dΩ2; ðA1Þ

where

▵ ¼ 1 −
2m
r

þ q2

r2
¼ ðr − rþÞðr − r−Þ

r2
; ðA2Þ

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
: ðA3Þ

Considering the radial null curves along which
ds2 ¼ 0, we have

dt
dr

¼ �
�
1 −

2m
r

þ q2

r2

�
: ðA4Þ
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The solution to the above equation can be expressed as

t ¼ �r� þ const; ðA5Þ

where

r� ¼ rþ 1

2kþ
ln

����1 − r
rþ

����þ 1

2k−
ln

����1 − r
r−

����; ðA6Þ

k� ¼ r� − r∓
2r2�

: ðA7Þ

Define

u ¼ t − r�; v ¼ tþ r�; ðA8Þ

and then the line element (A1) becomes

ds2 ¼ ▵ð−dt2 þ dr�2Þ þ r2dΩ2

¼ −
1

2
▵ðdudvþ dvduÞ þ r2dΩ2: ðA9Þ

1. Patch I: r− < r < þ∞
(i) rþ < r < þ∞ of Patch I

As implied in Eq. (A6), the inner and outer
horizons in the metric (A9) are pushed to infinity.
To compact them into finite space, we define

Uþ ¼ −e−kþu; Vþ ¼ ekþv: for r > rþ:
ðA10Þ

Rewrite Eq. (A6) as

r� ¼ rþ 1

2kþ
ln

�����1 − r
rþ

����
�
r
r−

− 1

��

−
1

2kþ

�
1þ kþ

jk−j
�
ln

����1 − r
r−

����: ðA11Þ

Using Eqs. (A2), (A8), (A10), and (A11), the line
element (A9) can be converted into the following
format:

ds2 ¼ −
rþr−
k2þr2

e−2kþr
�
r
r−

− 1

�
1þ kþ

jk− j
dUþdVþ

þ r2dΩ2: ðA12Þ

Note that we get used to coordinate systems in which
onecoordinate is timelikeandtherestarespacelike.So
defining

T ¼ Vþ þ Uþ

2
¼ ekþr

�
sinhðkþtÞ; ðA13Þ

X ¼ Vþ −Uþ

2
¼ ekþr

�
coshðkþtÞ; ðA14Þ

one can rewrite the metric (A12) as

ds2 ¼ rþr−
k2þr2

e−2kþr
�
r
r−

− 1

�
1þ kþ

jk− j

× ð−dT2 þ dX2Þ þ r2dΩ2: ðA15Þ

Moreover, using Eqs. (A6), (A13), and (A14), r and t
can be expressed as

T2 − X2 ¼ e2kþr
�
1 −

r
rþ

��
r
r−

− 1

�
− kþ
jk− j
; ðA16Þ

T
X
¼ tanhðkþtÞ: ðA17Þ

(ii) r− < r < rþ of Patch I
Define

Uþ ¼ −e−kþu;

Vþ ¼ −ekþv: for r− < r < rþ:
ðA18Þ

Similar to the case of rþ < r < þ∞, one can obtain

T ¼ Vþ þUþ

2
¼ ekþr

�
coshðkþtÞ; ðA19Þ

X ¼ Vþ − Uþ

2
¼ ekþr

�
sinhðkþtÞ; ðA20Þ

T
X
¼ cothðkþtÞ: ðA21Þ

The line element is the same as Eq. (A15), and the
expression for r is the same as Eq. (A16).

2. Patch II: 0 < r < rþ
(i) r− < r < rþ of Patch II

Define

U− ¼ −e−k−u;

V− ¼ −ek−v: for r− < r < rþ: ðA22Þ

In a similar routine as in Patch I, the metric for the
spacetime of r− < r < rþ can be obtained as
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ds2 ¼ rþr−
k2−r2

e2jk−jr
�
1 −

r
rþ

�
1þjk− j

kþ

× ð−dT2 þ dX2Þ þ r2dΩ2; ðA23Þ

with

T2−X2¼e−2jk−jr
�
r
r−

−1

��
1−

r
rþ

�
−jk− j

kþ
; ðA24Þ

T
X
¼ cothðk−tÞ: ðA25Þ

(ii) 0 < r < r− of Patch II
Define

U− ¼ −e−k−u; V− ¼ ek−v: for 0 < r < r−:

ðA26Þ

Then we have

T
X
¼ tanhðk−tÞ: ðA27Þ

The line element is the same as Eq. (A23), and the
expression for r is the same as Eq. (A24).

APPENDIX B: EINSTEIN TENSOR
AND ENERGY-MOMENTUM TENSOR

OF A MASSIVE SCALAR FIELD

In this appendix, we give specific expressions of the
Einstein tensor and the energy-momentum tensor of a
massive scalar field. In double-null coordinates expressed
by Eqs. (8) and (9), some components of the Einstein tensor
can be expressed as follows:

Gt
t ¼

2e2σ

r2

�
rðr;tσ;t þ r;xσ;xÞ þ rrxx

þ 1

2
ð−r;t2 þ r;x2Þ −

1

2
e−2σ

�
; ðB1Þ

Gx
x ¼

2e2σ

r2

�
−rðr;tσ;t þ r;xσ;xÞ − rrtt

þ 1

2
ð−r;t2 þ r;x2Þ −

1

2
e−2σ

�
; ðB2Þ

Gθ
θ ¼ Gϕ

ϕ ¼ e2σ

r
½−r;tt þ r;xx − rð−σ;tt þ σ;xxÞ�;

ðB3Þ

Guu ¼ −
2

r
ðr;uu þ 2r;uσ;uÞ; ðB4Þ

Gvv ¼ −
2

r
ðr;vv þ 2r;vσ;vÞ: ðB5Þ

For a massive scalar field with energy-momentum tensor

Tμν ¼ ψ ;μψ ;ν −
�
1

2
gαβψ ;αψ ;β þ VðψÞ

�
gμν; ðB6Þ

there are

Tt
t ¼ −e2σ

�
1

2
ðψ2

;t þ ψ2
;xÞ þ e−2σVðψÞ

�
; ðB7Þ

Tx
x ¼ e2σ

�
1

2
ðψ2

;t þ ψ2
;xÞ − e−2σVðψÞ

�
; ðB8Þ

Tθ
θ ¼ Tϕ

ϕ ¼ −e2σ
�
1

2
ð−ψ2

;t þ ψ2
;xÞ þ e−2σVðψÞ

�
;

ðB9Þ

Tuu ¼ ψ2
;u; ðB10Þ

Tvv ¼ ψ2
;v; ðB11Þ

T ≡ Tα
α ¼ −e2σð−ψ2

;t þ ψ2
;xÞ − 4VðψÞ: ðB12Þ

The equations obtained in this appendix can be used to
derive the field equations as discussed in Sec. III. A.

APPENDIX C: SCHWARZSCHILD GEOMETRY
IN KRUSKAL COORDINATES

In this appendix, we derive the analytic expressions for
the spatial and temporal derivatives near the singularity
curve for a Schwarzschild black hole in Kruskal coordi-
nates, and verify the mass formula (46). The Schwarzschild
metric in Kruskal coordinates is

ds2 ¼ 32m3

r
e−

r
2mð−dt2 þ dx2Þ þ r2dΩ2; ðC1Þ

with

t2 − x2 ¼
�
1 −

r
2m

�
e

r
2m; ðC2Þ

e2σ ¼ r
32m3

e
r
2m: ðC3Þ
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The solution to Eq. (C2) is

r
2m

¼ 1þWðzÞ; ðC4Þ

where

z ¼ x2 − t2

e
;

and W is the Lambert W function defined by [54]

Y ¼ WðYÞeWðYÞ: ðC5Þ
Y can be a negative or a complex number.

The first- and second-order derivatives of W are

dW
dz

¼ W
zð1þWÞ ; for z ≠

�
0;−

1

e

	
; ðC6Þ

d2W
dz2

¼ −
W2ð2þWÞ
z2ð1þWÞ3 ; for z ≠

�
0;−

1

e

	
: ðC7Þ

Consequently, with Eqs. (C4), (C6), and (C7), one obtains
the first- and second-order derivatives of rwith respect to x,

1

2m
·
dr
dx

¼ dW
dz

·
2x
e
; ðC8Þ

1

2m
·
d2r
dx2

¼ d2W
dz2

�
2x
e

�
2

þ dW
dz

·
2

e
: ðC9Þ

Near the singularity curve, z½¼ ðx2 − t2Þ=e� approaches
−1=e, andW asymptotes to −1. Consequently, the second-
order derivative of r with respect to x can be approximated
as follows:

1

2m
·
d2r
dx2

≈ −
4x2

ð1þWÞ3 ≈
d2W
dz2

�
2x
e

�
2

: ðC10Þ

Similarly, one obtains the first- and second-order deriva-
tives of r with respect to t near the singularity curve,

1

2m
·
dr
dt

¼ −
dW
dz

·
2t
e
; ðC11Þ

1

2m
·
d2r
dt2

≈ −
4t2

ð1þWÞ3 ≈
d2W
dz2

�
2t
e

�
2

: ðC12Þ

Therefore, with Eqs. (C8) and (C10)–(C12), the ratios
between the spatial and temporal derivatives can be
expressed by the slope of the singularity curve, K,

r;x
r;t

¼ −
x
t
¼ −K; ðC13Þ

r;xx
r;tt

≈
�
x
t

�
2

¼ K2: ðC14Þ

As discussed in Sec. IV, in spherical scalar collapse in
double-null coordinates, in the vicinity of the singularity
curve of the formed black hole, for the metric components
and scalar field, the ratios between the spatial and temporal
derivatives are also defined by K.
Using Eqs. (C2), (C3), (C4), (C8), and (C11), one

obtains

r2;x − r2;t ¼ 64m4
ð r
2m − 1Þ2

ðx2 − t2Þr2

¼ 32m3

r
e−

r
2m

�
1 −

2m
r

�

¼ e−2σ
�
1 −

2m
r

�
: ðC15Þ

This implies that the definition of mass function (46) for a
Schwarzschild black hole is valid throughout the spacetime
of the black hole, inside and outside the horizon, and also in
the vicinity of the singularity r ¼ 0,

gμνr;μr;ν ¼ e2σð−r2;t þ r2;xÞ≡ 1 −
2m
r

:

In other words, the Misner-Sharp mass function is equal to
the black hole mass everywhere.
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