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We investigate the thermodynamic equilibrium states of a rotating thin shell, i.e., a ring, in a (2þ 1)-
dimensional spacetime with a negative cosmological constant. The inner and outer regions with respect to
the shell are given by the vacuum anti-de Sitter and the rotating Bañados-Teitelbom-Zanelli spacetimes,
respectively. The first law of thermodynamics on the thin shell, together with three equations of state for the
pressure, the local inverse temperature and the thermodynamic angular velocity of the shell, yields the
entropy of the shell, which is shown to depend only on its gravitational radii. When the shell is pushed to its
own gravitational radius and its temperature is taken to be the Hawking temperature of the corresponding
black hole, the entropy of the shell coincides with the Bekenstein-Hawking entropy. In addition, we
consider simple ansätze for the equations of state, as well as a power-law equation of state where the
entropy and the thermodynamic stability conditions can be examined analytically.
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I. INTRODUCTION

The origin of the Bekenstein-Hawking entropy of a black
hole [1–3] is one of the greatest mysteries in modern
gravitational physics. The Bekenstein-Hawking entropy is
a measure of how many Planck areas there are on the event
horizon, indicating that the black hole entropy has its roots
in quantum gravity. However, so far there has been no fully
satisfactory formulation of a quantum gravity theory and
the origin of black hole entropy still remains an open
question. An initial development explained the black hole
and its features as the Euclideanized version of its geometry
with quantum gravity making its appearance through the
Euclidean functional integral of the geometry identified
essentially as the partition function for hot gravity [4].
Further advancements of the path integral formalism for
black holes, now put in the canonical and grand canonical
ensemble formalism, for Schwarzchild and Reissner-
Nordström black holes, respectively, were made by York
and followers [5,6]. Schwarzchild and Reissner-Nordström
black holes in spacetimes with negative cosmological
constant, i.e., anti-de Sitter (AdS) spacetimes, can also
have a correlated treatment [7,8].
Since black holes are vacuum solutions of the gravita-

tional field, while our naive concepts of entropy are based
on quantum properties of matter, it would be useful to study
the thermodynamic properties of collapsing matter, namely
whether black hole thermodynamics could emerge, or not,
when we compress matter within its own gravitational
radius. By taking this approach, one expects to obtain
indications for how the Bekenstein-Hawking entropy
springs from the final state of gravitational collapse [9].
Time-dependent collapsing solutions are difficult to follow
analytically and instead one might try a sequence of static,
or quasistatic, solutions up to the gravitational radius of a

given configuration. As first shown in [10], by using such
an approach the black hole entropy can be recovered.
Therefore it is of great interest to analyze self-gravitating

matter systems, that possess both gravitational and matter
degrees of freedom, and study their thermodynamics.
One of the simplest such systems is an infinitesimally thin
shell where the self-gravitating matter is confined, placed
in an otherwise vacuum spacetime [11]. The distribution of
matter on the shell fixes the extrinsic curvature, and hence
the spacetime geometry outside the shell, via the junction
conditions. Once the setup is given, one can check under
which conditions the thin shell can be pushed quasistati-
cally to the horizon radius.
The simplest example of a thin shell spacetime assumes

staticity and spherical symmetry. Naturally, the first study on
structure and thermodynamics of thin shells considered the
inner spacetime to beMinkowski and the outer spacetime to
be Schwarzschild [12]. By fixing the surface energy density
and pressure through the junction conditions, imposing that
the shell has a given local temperature and using a canonical
ensemble, Martinez [12] determined the thermodynamic
properties of the shell, characterized by its rest mass and
radius. However, the gravitational radius, and thus the black
hole limit, was never taken. This approach draws in many
respects from York’s work [5] where the thermodynamic
properties of a pure Schwarzschild black hole were treated
using a canonical ensemble, i.e., imposing a fixed temper-
ature on some fictitious massless shell at a definite radius
outside the event horizon.
The ensuing nontrivial extension of [12] was performed

for an electrically charged shell [13]. In that context
the inner and outer regions are given by the (3þ 1)-
dimensional Minkowski and Reissner-Nortström space-
times, respectively. The thermodynamic properties of the
charged shell were characterized by the surface energy
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density, the pressure, the electric potential, the temperature,
and the entropy. By taking the shell to its own gravitational
radius, and requiring the temperature of the shell to be
given by the black hole Hawking temperature, the authors
of [13] found that the entropy reproduced the Bekenstein-
Hawking formula.
Now, these developments appeared in static (3þ 1)-

dimensional spacetimes. It is important to study other
dimensions, lower and higher, as well as rotating situations.
Rotating configurations with shells in 3þ 1 dimensions
are hopeless, as the Kerr metric defies being the metric of
any reasonable rotating matter source. For small rotation,
however, the matching problem has solution [14] (see
also [15]). In higher dimensions, it is possible to find shell
solutions in some rotating odd-dimensional spacetimes
[16,17], and thus one could try to perform a thermody-
namics analysis in them. On the other hand, in one lower
dimension, in 2þ 1 dimensions, the dynamics and thermo-
dynamics of a thin shell is ready for such an incursion.
Indeed, in (2þ 1)-dimensional spacetimes there is the

pure black hole solution, the Bañados-Teitelboim-Zanelli
(BTZ) spacetime [18] that inhabits an AdS background.
It is a solution that reflects in some way the rotating
properties of the rotating 3þ 1 Kerr solution in an AdS
background. Moreover, the BTZ black hole can be formed
via gravitational collapse of matter shells in a (2þ 1)-
dimensional spacetime reproducing anew what happens in
the 3þ 1 world. For instance, thin shell, i.e., thin ring,
collapse to a BTZ black hole has been studied in [19–21],
and spinning string dynamics in a (2þ 1)-dimensional AdS
background has also been shown to give rise to a rotating
BTZ black hole [22]. Mechanical properties of a stationary
shell in a BTZ background and its quasistatic collapse up
to its own gravitational radius were displayed in [23].
On the other hand, the termodynamics properties of the
BTZ black hole have been studied thoroughly in [24–26]
(see also [18]). Thus, in this context, it is of interest to study
the thermodynamics of self-gravitating thin shells. The
approach of [12,13] can be applied to AdS spacetimes in
2þ 1 dimensions [27,28]. In particular, the authors of [28]
studied a thin shell in a static BTZ spacetime, where the
inner and outer regions with respect to the shell were given
by the (2þ 1)-dimensional AdS and BTZ spacetimes,
respectively. The Bekenstein-Hawking entropy formula
was recovered in the limiting case when the shell sat at
its own gravitational radius, provided the shell’s temper-
ature coincided with the temperature of the corresponding
BTZ black hole.
Having these previous studies in mind, in the present

work we will investigate the thermodynamic properties of a
rotating thin shell in a (2þ 1)-dimensional AdS back-
ground. In the setup we will consider, the interior and
exterior of the shell are described by the static vacuum AdS
spacetime in (2þ 1) dimensions and the rotating BTZ
solution, respectively. It is known that the BTZ black hole

also has the Bekenstein-Hawking entropy S ¼ Aþ
4G, where

Aþ ¼ 2πrþ is the circumference of the outer horizon (we
set the Planck constant, the Boltzmann constant, and the
velocity of light to unity). Our first goal is to see explicitly
how adding rotation can generalize the thermodynamics on
the thin shell obtained in the static case [27,28]. Our second
goal is to compare the thermodynamic properties of a
rotating thin shell to those obtained in [13] for the charged
(nonrotating) case. It is well known that there are similar-
ities between charged and rotating black holes, e.g., the
presence of two gravitational radii, the outer and inner
horizons. Our analysis will reveal substantial similarities
between charged and rotating thin shells, irrespective of the
dimensionality and asymptotic structure of the spacetime.
This paper is organized as follows. In Sec. II, we study

the mechanical properties of a rotating thin shell in a
(2þ 1)-dimensional spacetime with a BTZ exterior. In
Sec. III, taking the locally measured proper mass, the
circumference, and the angular momentum as the indepen-
dent thermodynamic variables on the shell, we consider the
first law of thermodynamics and determine the thermody-
namic equations of state, as well as the entropy. Section IV
is devoted to the study of the most meaningful equations of
state. This is where we consider the black hole limit for
rotating thin shells and show that the Bekenstein-Hawking
entropy is recovered if the intrinsic temperature of the shell
is equal to the Hawking temperature. In Sec. Vother simple
equations of state for the temperature and the electric
potential inspired in the black hole case are devised. In
Sec. VI, we study thermodynamic properties of the rotating
thin shell for power-law equations of state, for which exact
expressions for the entropy and stability conditions are
provided. Finally, we conclude in Sec. VII. In the Appendix
we give the BTZ black hole thermodynamic properties.

II. TIMELIKE THIN SHELLS IN THE
(2þ 1)-DIMENSIONAL SPACETIME

A. The outer and inner spacetimes

We consider Einstein gravity with a cosmological con-
stant in a (2þ 1)-dimensional spacetime. The Einstein
equations are given by (the velocity of light is set to one)

Gμν þ Λgμν ¼ 8πGTμν; ð1Þ
where Greek indices μ; ν ¼ 0; 1; 2 run over time and spatial
coordinates. Here, gμν denotes the metric tensor, Gμν

represents its corresponding Einstein tensor, and Tμν is
the energy-momentum tensor for matter in the (2þ 1)-
dimensional spacetime. G and Λ are the gravitational and
cosmological constants, respectively, and we assume that
Λ < 0, so that the spacetime is asymptotically AdS, with
curvature scale

l ¼
ffiffiffiffiffiffiffiffi
−
1

Λ

r
: ð2Þ
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Next we introduce a timelike shell, i.e., a ring in the
(2þ 1)-dimensional spacetime, with radius R, which
divides the spacetime into the outer and inner regions
denoted by MðoÞ and MðiÞ, respectively. We also assume
that off the shell the spacetime is vacuum and hence
Tμν ¼ 0 everywhere except at the location of the shell.
The spacetime outside the shell (r > R) is described by the
rotating BTZ solution, whose metric is given by [18]

ds2ðoÞ ¼ −
ðr2 − r2þÞðr2 − r2−Þ

l2r2
dt2ðoÞ þ

l2r2

ðr2 − r2þÞðr2 − r2−Þ
dr2

þ r2
�
dϕ−

rþr−
lr2

dtðoÞ
�
2
; r > R; ð3Þ

where tðoÞ is the outer time coordinate and ðr;ϕÞ are the
radial and azimuthal coordinates. The two gravitational
radii rþ and r− are related to the spacetime Arnowitt-Deser-
Misner (ADM) mass m and the angular momentum J ,
respectively, by

r2þ þ r2− ¼ 8Gl2m; ð4Þ

rþr− ¼ 4GlJ : ð5Þ

We assume

rþ ≥ r−; ð6Þ

which then means

m ≥
J
l
: ð7Þ

The two inequalities are saturated in the extremal case,
rþ ¼ r−, i.e., m ¼ J

l . We assume that the shell’s character
is always timelike and the shell is located outside the event
horizon,

R > rþ: ð8Þ

Therefore, the outer region does not contain neither of the
horizons r ¼ r� nor the singularity r ¼ 0. The spacetime
inside the shell (r < R) is pure AdS. It is the vacuum
solution (m ¼ 0 and J ¼ 0) of the outer metric, i.e.,

ds2ðiÞ ¼ −
r2

l2
dt2ðiÞ þ

l2

r2
dr2 þ r2dϕ2; r < R; ð9Þ

where tðiÞ is the inner time coordinate, which may differ
from the outer time coordinate tðoÞ. Concerning the spatial
coordinates ðr;ϕÞ, we have not distinguished them from
those in the outer region. But, as argued below, in order
to match these two metrics smoothly across the timelike
hypersurface, the shell must corotate with the outer
spacetime. Consequently, an angular coordinate ψ should
be introduced instead of ϕ, such that exterior spacetime in

the new coordinate system ðtðoÞ; r;ψÞ is corotating with
the shell. The entire spacetime is vacuum except at the thin
shell, i.e., we are in the presence of a codimension-one
distributional source at r ¼ R.
The metrics (3) and (9) can be collectively expressed by

ds2ðIÞ ¼−fðIÞðrÞ2dt2I þ gðIÞðrÞ2dr2þ r2ðdϕþhðIÞðrÞdtðIÞÞ2;
ð10Þ

where I ¼ o=i refers to either the outer or inner region with
respect to the shell, and from (3) and (9) the functions fðIÞ,
gðIÞ, and hðIÞ read

fðoÞðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2−r2þÞðr2−r2−Þ

p
lr

; gðoÞðrÞ¼
1

fðoÞðrÞ
;

hoðrÞ¼−
rþr−
lr2

;

fðiÞðrÞ¼
r
l
; gðiÞðrÞ¼

1

fðiÞðrÞ
; hðiÞðrÞ¼0: ð11Þ

B. Junction conditions and the shell spacetime

With the outer and inner regions separated by the shell,
the shell dynamics is determined by the Israel junction
conditions [11]. The induced metrics on the shell, from the
outer and inner regions, which we denote generically by
hðIÞab , are given by

hðIÞab ¼ eμðIÞae
ν
ðIÞbg

ðIÞ
μν ; ð12Þ

where eμðIÞa is the projection tensor to the shell, each viewed
from the ðIÞ side. Then the first junction condition requires

½hab� ¼ 0; ð13Þ
where ½F� ¼ FðoÞ − FðiÞ represents the jump of a physical
quantity F across the shell. Equation (13) ensures the
uniqueness of the induced geometry on the shell

hðoÞab ¼ hðiÞab. Thus, on the shell one can define a metic
hab such that

hab ¼ hðoÞab ¼ hðiÞab: ð14Þ
The second junction condition is given by

½Kab� − hab½K� ¼ −8πGSab; ð15Þ
where

KðIÞ
ab ¼ eμðIÞae

ν
ðIÞb∇ðIÞ

ðμ n
ðIÞ
νÞ ð16Þ

is the extrinsic curvature tensor defined on the shell’s

hypersurface,∇ðIÞ
μ is the covariant derivative with respect to

the (2þ 1)-dimensional metric in region ðIÞ, and nðIÞμ is the
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unit normal vector viewed from the ðIÞ side. Moreover,
K ¼ habKab is the trace of the extrinsic curvature, and Sab
represents the energy-momentum tensor of matter on the
thin shell, i.e., on the (1þ 1)-dimensional spacetime
intrinsic to the shell. Equation (15) determines how the
jump to the geometry exterior to the shell is generated by
the matter on the shell.
We now apply these junction conditions to our problem.

As the outer spacetime is rotating while the inner spacetime
is static, in order to match these two regions, the shell at
r ¼ R must corotate with the outer BTZ region [23] (see
also [14]). For this purpose, we introduce a coordinate
system corotating with the shell by adopting a new angular
coordinate dψ such that

dψ ¼ dϕþ hðIÞðRÞdtðIÞ: ð17Þ

The line element given in Eq. (10) is then written as

ds2ðIÞ ¼−fðIÞðrÞ2dt2ðIÞ þgðIÞðrÞ2dr2þr2ðdψþ h̄ðIÞðrÞdtðIÞÞ2;
ð18Þ

where we have introduced

h̄ðIÞðrÞ ¼ hðIÞðrÞ − hðIÞðRÞ: ð19Þ

At the position of the shell h̄ðIÞðRÞ ¼ 0 and the effects of
the spacetime rotation are hidden at the level of the induced
geometry. The induced line element on the shell, which is
uniquely determined by (14), is given by

ds2Σ¼habdyadyb¼−dτ2þR2dψ2; R¼RðτÞ; ð20Þ

where Latin indices a; b ¼ 0; 1 run over the (1þ 1)-
dimensional shell’s coordinates, ya ¼ ðτ;ψÞ. The proper
time on the shell τ is defined by

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðoÞðRÞ2dt2ðoÞ − gðoÞðRÞ2dR2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðiÞðRÞ2dt2ðiÞ − gðiÞðRÞ2dR2

q
; ð21Þ

which also fixes the relation between the outer and inner
time coordinates, tðoÞ and tðiÞ. The nonvanishing compo-
nents of the projection tensor on the shell, eμðIÞa, viewed
from side ðIÞ, are given by

etðIÞτ¼ _tðIÞ ¼
1

fðIÞðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þgðIÞðRÞ2 _R2

q
; erðIÞτ¼ _R; eψðIÞψ ¼1;

ð22Þ

where an overdot represents a derivative with respect to
proper time τ. The unit normal vector to the shell viewed
from side ðIÞ, nðIÞμ , is

nðIÞμ ¼
�
− _RfðIÞðRÞgðIÞðRÞ; gðIÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gðIÞðRÞ2 _R2

q
; 0
�
; ð23Þ

and obeys nμðIÞn
ðIÞ
μ ¼ 1. Since we are interested in the

quasistatic process, in the rest of this paper we assume that
_R ¼ R̈ ¼ 0. In this case the components of the extrinsic
curvature tensor are given by

KðIÞττ ¼
f0ðIÞðRÞ

fðIÞðRÞgðIÞðRÞ
; KðIÞψψ ¼ 1

gðIÞðRÞR
;

KðIÞτψ ¼ −
R2h0ðIÞðRÞ

2fðIÞðRÞgðIÞðRÞ
; ð24Þ

where a prime means a derivative with respect to r.
For the spacetimes we consider in this work we can
use fðIÞgðIÞ ¼ 1 to simplify these expressions. The com-
ponents of the extrinsic curvature tensor for the outer
region ðoÞ are given by

KðoÞττ ¼
R4 − r2þr2−

lR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − r2þÞðR2 − r2−Þ

p ;

KðoÞψψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − r2þÞðR2 − r2−Þ

p
lR2

; KðoÞτψ ¼ −
rþr−
lR

:

ð25Þ

Similarly, those for the inner region ðiÞ are given by

KðiÞττ ¼
1

l
; KðiÞψψ ¼ 1

l
; KðiÞτψ ¼ 0: ð26Þ

At this point, we have computed all the quantities necessary
to obtain the energy-momentum tensor of matter on
the shell.

C. The energy-momentum tensor on the shell

We denote the nonzero components of the energy-
momentum tensor of matter on the shell by

Sττ ¼ −σ; Sψψ ¼ p; Sτψ ¼ j; ð27Þ

where σ, p, and j represent the energy density, the pressure,
and the angular momentum density of the shell,
respectively. The second junction condition (15) plus
Eqs. (25)–(26) determine the form of these components

σ ¼ 1

8πGl

�
1 −

1

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − r2þÞðR2 − r2−Þ

q �
; ð28Þ

p ¼ 1

8πGl

�
R4 − r2þr2−

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − r2þÞðR2 − r2−Þ

p − 1

�
; ð29Þ

j ¼ rþr−
8πGlR

: ð30Þ
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In the static, nonrotating, limit, j ¼ 0, and so r− ¼ 0,
we recover from Eqs. (28) and (29) the result of [28],

σ ¼ 1
8πGR ðRl −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l2 − 8Gm
q

Þ and p ¼ 1
8πG

R
l2 ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2

l2
−8Gm

q − 1
R
l
Þ,

where we made the replacement r2þ → 8Gl2m, arising from
Eq. (4). In the presence of generic rotation, the energy-
momentum tensor given by Eqs. (28)–(30) describes an
imperfect fluid; see [21,23] (see also [16]). The surface
energy density σ and pressurep are non-negative, and satisfy
p ≥ σ. Therefore, the matter shell generically obeys the
weak energy condition. However, the dominant energy
condition is violated, except in the extremal limit
rþ ¼ r−, in which case the inequality is saturated [23].
Defining the locally measured proper mass as

M ¼ 2πRσ and the angular momentum of the shell as
J ¼ 2πRj and using Eqs. (28)–(30) we obtain

M¼2πRσ¼ R
4Gl

�
1−

1

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2−r2þÞðR2−r2−Þ

q �
; ð31Þ

J ¼ 2πRj ¼ rþr−
4Gl

: ð32Þ

Thus, the angular momentum of the shell J is independent
of the position of the shell R. From Eq. (4) we see that it is
identical to that of the exterior BTZ spacetime,

J ¼ J: ð33Þ
This property is very similar to the case of the electrically
charged shell [13], where the charge Q does not depend on
the shell position R. The locally measured proper massM is
related to the ADM mass m defined in (4) by

m ¼ RM
l

− 2GM2 þ 2G
R2

J2; ð34Þ

where the first, second, and third terms correspond to the
local rest mass, the gravitational binding energy, and the
kinetic energy due to rotation, respectively.
We would like to emphasize that in our case the inner

region is pure ð2þ 1Þ-dimensional AdS spacetime and
hence it has locally zero ADM mass and zero angular
momentum. In the more complex case that the region inner
to the shell contains instead a BTZ black hole then the total
ADM mass and angular momentum of the outer spacetime
defined at infinity would include in addition the ADMmass
and angular momentum of the interior black hole.

III. THERMODYNAMIC ENTROPY
OF THE SHELL

A. Thermodynamics on the shell

We now analyze the rotating thin shell system from a
thermodynamics point of view. We assume that the
shell is in thermal equilibrium, with a locally measured

temperature T and entropy S. In the entropy representation,
the entropy S of a system can be expressed as a function
of the state independent variables. One can take as state
independent thermodynamic variables for the thin shell, the
proper mass M, the area of the shell A, and the angular
momentum J. Then we can express the entropy as a
function of these quantities, S ¼ SðM;A; JÞ and the first
law of thermodynamics reads

TdS ¼ dM þ pdA −ΩdJ; ð35Þ
for TðM;A; JÞ, pðM;A; JÞ, and ΩðM;A; JÞ, representing
the temperature, the pressure, and the angular velocity of
the shell in terms of the state variables.
Now, since in this (2þ 1)-dimensional spacetime the

area of the shell A is mathematically equivalent to the
position R except for the trivial factor 2π, we make use of R
as the independent variable, instead of A, as it will facilitate
the calculations. Then we can express the entropy as a
function of these quantities,

S ¼ SðM;R; JÞ: ð36Þ
Defining further the inverse local temperature β of the
shell as

β ¼ 1

T
; ð37Þ

the first law of thermodynamics (35) now reads

dS ¼ βdM þ 2πpβdR − βΩdJ: ð38Þ
The integration of this equation to yield S ¼ SðM;R; JÞ
can then be performed once the equations of state,

p ¼ pðM;R; JÞ; ð39Þ

β ¼ βðM;R; JÞ; ð40Þ

Ω ¼ ΩðM;R; JÞ; ð41Þ

are specified. For M, p, and J we use expressions (29),
(31), and (32) obtained from the junction conditions. On
the other hand, β and Ω play the role of integration factors,
which must be specified in order to obtain an exact
expression for the entropy. However, the choice of these
functions is constrained by the necessity to satisfy the
integrability conditions that follow directly from the first
law (38),

�∂β
∂R

�
J;M

¼ 2π

�∂ðβpÞ
∂M

�
J;R

; ð42Þ

2π

�∂ðβpÞ
∂J

�
R;M

¼ −
�∂ðβΩÞ

∂R
�

J;M
; ð43Þ
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�∂β
∂J

�
R;M

¼ −
�∂ðβΩÞ

∂M
�

J;R
: ð44Þ

We should also require the local thermodynamic stability
conditions to be satisfied,

� ∂2S
∂M2

�
R;J

≤ 0; ð45Þ

�∂2S
∂R2

�
M;J

≤ 0; ð46Þ

�∂2S
∂J2

�
M;R

≤ 0; ð47Þ

� ∂2S
∂M2

�
J;R

�∂2S
∂R2

�
M;J

−
�� ∂2S

∂M∂R
�

J

�
2

≥ 0; ð48Þ

�∂2S
∂J2

�
M;R

�∂2S
∂R2

�
M;J

−
�� ∂2S

∂J∂R
�

M

�
2

≥ 0; ð49Þ

� ∂2S
∂M2

�
J;R

�∂2S
∂J2

�
M;R

−
�� ∂2S

∂M∂J
�

R

�
2

≥ 0: ð50Þ

For the derivation of the stability conditions with three
independent variables see Appendix B of [13].

B. The three equations of state

1. Useful relations

It is useful to define the redshift function k as

kðrþ; r−; RÞ ¼
R
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

r2þ
R2

��
1 −

r2−
R2

�s
: ð51Þ

Then we can write (31) as

Mðrþ; r−; RÞ ¼
1

4G

�
R
l
− kðrþ; r−; RÞ

�
; ð52Þ

and repeat (32)

Jðrþ; r−Þ ¼
rþr−
4Gl

; ð53Þ

so that in thermodynamic terms we see that with the use of
Eqs. (52) and (53), we can always change the independent
variables from ðrþ; r−; RÞ to ðM;R; JÞ and vice versa. We
now prescribe the three equations of state indicated in (39).

2. The pressure equation of state

In this manner, we can express the pressure obtained in
Eq. (29) as a function of ðM;R; JÞ,

pðM;R;JÞ¼ 1

8πGl

�
R4−r2þðM;R;JÞr2−ðM;R;JÞ

R3lkðrþðM;R;JÞ;r−ðM;R;JÞ;RÞ−1

�

¼ MR3−4GlJ2

2πR3ðR−4GlMÞ; ð54Þ

which determines the pressure equation of state of the shell.
We find it more convenient to work with the equations
expressed as functions of ðrþ; r−; RÞ but we always
keep in mind that they depend implicitly on M and J
through r�ðM;R; JÞ.

3. The temperature equation of state

Next we turn to the other equation of state,
β ¼ βðM;R; JÞ, which is constrained by the integrability
condition (42). First note that

p ¼ −
1

2π

�∂M
∂R

�
rþ;r−

; ð55Þ

which expresses the conservation of the shell’s stress-energy
tensor. Then 1

β ð∂β∂RÞrþ;r− ¼ 1
β fð∂β∂RÞM;J þ ð∂M∂RÞrþ;r−ð ∂β∂MÞR;Jg ¼

1
β f2πβð∂p∂MÞR;J þ ½2πpþ ð∂M∂RÞrþ;r− �ð ∂β∂MÞR;Jg ¼ 2πð∂p∂MÞJ;R ¼

R4−r2þr
2
−

RðR2−r2þÞðR2−r2−Þ ¼
1
k ð∂k∂RÞrþ;r− , where we used Eq. (55). Thus,

in brief

1

β

�∂β
∂R

�
rþ;r−

¼ 1

k

�∂k
∂R

�
rþ;r−

: ð56Þ

By integrating Eq. (56), we obtain the inverse local temper-
ature equation of state of the shell

βðrþ; r−; RÞ ¼ kðrþ; r−; RÞbðrþ; r−Þ; ð57Þ

where bðrþ; r−Þ is an arbitrary function of r�. The function
bðrþ; r−Þ is interpreted as the temperature of the shell
located at the radius R ¼ f1

2
ðl2 þ r2þ þ r2− þ

ffiffiffiffiffiffiffiffiffi
l4þ

p

ðr2þ − r2−Þ2 þ 2l2ðr2þ þ r2−ÞÞg1
2. Since k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðoÞtt ðRÞ

q
, the

formula (57) expresses the gravitational redshift of the
temperature of the shell and is nothing but the Tolman
relation for the temperature in the gravitational system. The
function bðrþ; r−Þ depends on ðM;R; JÞ only through r�.
The integrability condition does not yield a precise form
for bðrþ; r−Þ, which depends on the properties of matter
within the shell.

4. The angular velocity equation of state

Next, we consider Ω ¼ ΩðM;R; JÞ. Using the integra-
bility conditions (43) and (44), together with relation (55),
we find ð∂p∂JÞM;R þΩð∂p∂MÞJ;R ¼ pð∂Ω∂MÞJ;R − 1

2π ð∂Ω∂RÞM;J ¼
− 1

2π fð∂Ω∂RÞM;J þ ð∂M∂RÞrþ;r−ð∂Ω∂MÞJ;Rg ¼ − 1
2π ð∂Ω∂RÞrþ;r− . Then,

taking in consideration Eq. (56), Ω obeys
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ð∂ðΩβÞ∂R Þrþ;r− ¼ −2πβð∂p∂JÞM;R ¼ 2rþr−bðrþ;r−Þ
lR3 , where we used

Eq. (57) in the last step. So, in brief�∂ðΩβÞ
∂R

�
rþ;r−

¼ 2rþr−bðrþ; r−Þ
lR3

: ð58Þ

After integrating Eq. (58) we obtain the angular velocity
equation of state

Ωðrþ; r−; RÞ ¼
rþr−

lkðrþ; r−; RÞ
�
cðrþ; r−Þ −

1

R2

�
; ð59Þ

where cðrþ; r−Þ is an arbitrary function of r�.

5. In a nutshell

In this way, we have found the three equations of state
(54), (57), and (59), which are necessary to determine the
entropy of the shell, as we will argue below. Up to now, the
integration of the integrability conditions has introduced
two integration constants, bðrþ; r−Þ and cðrþ; r−Þ, which
are free functions of rþ and r−.

C. The entropy of the shell

By changing variables from ðM;R; JÞ to ðrþ; r−; RÞ and
substituting Eqs. (52), (54), (57), and (59) into the first law
of thermodynamics, Eq. (38), we obtain

dS¼ b
8Gl2

½ð1− r2−cðrþ; r−ÞÞdr2þ þ ð1− r2þcðrþ; r−ÞÞdr2−�:
ð60Þ

This expression implies that the two integration constants
must satisfy the integrability condition

∂b
∂r2− ð1 − r2−cÞ − br2−

∂c
∂r2− ¼ ∂b

∂r2þ ð1 − r2þcÞ − br2þ
∂c
∂r2þ :

ð61Þ
This condition can be equivalently expressed as

∂b
∂r2þ −

∂b
∂r2− ¼ ∂ðbcÞ

∂ logðr2þÞ −
∂ðbcÞ

∂ logðr2−Þ ; ð62Þ

which makes it manifest that any choice for which b is a
function of r2þ þ r2− only, and bc is a function of r2þr2− only,
will satisfy the integrability condition. In other words,
Eq. (61) is automatically obeyed whenever b and bc are
only functions of the ADM mass m and the angular
momentum J, respectively. This will be used below when
we search for equations of state. However, in generic cases,
in order to obtain a specific expression for the entropy we
need to choose either bðrþ; r−Þ or cðrþ; r−Þ, and then
obtain the remaining function by integrating Eq. (61).

Relation (60) also indicates that the entropy S is a
function of rþ and r− only,

S ¼ Sðrþ; r−Þ; ð63Þ

and hence a function of ðM;R; JÞ only through r�ðM:R; JÞ,

SðM;R; JÞ ¼ SðrþðM;R; JÞ; r−ðM;R; JÞÞ: ð64Þ

It is also worth mentioning that, from (64), shells with the
same rþ and r−, namely with the same ADM mass m and
angular momentum J but at a different position R, have the
same entropy. Thus, an observer measuringm and J cannot
distinguish shells with different radii by measuring the
entropy.

IV. THE THIN SHELL AND THE
BLACK HOLE LIMIT

A. A precisely chosen temperature
equation of state and the entropy

As the equation of state for the inverse temperature
bðrþ; r−Þ, let us take it to be of the form

bðrþ; r−Þ ¼ bþγ; ð65Þ
where bþ is the inverse Hawking temperature of the BTZ
black hole given by

bþ ¼ 2πl2
rþ

r2þ − r2−
ð66Þ

and γ is a parameter which will depend on the properties of
matter on the shell. We assume γ > 0, so that the temper-
ature is positive. This is one of the simplest possible
temperature equations of state, setting the shell’s fluid
temperature proportional to the black hole temperature.
We also have to specify cðrþ; r−Þ, so that it satisfies

the integrability condition (61). There is a family of
solutions for c, but here we choose the following particular
solution

cðrþ; r−Þ ¼
1

r2þ
; ð67Þ

which makes the angular velocity Ω vanish when R → rþ
[see Eq. (59)]. By substituting (65) and (67) into Eq. (60),
we obtain the differential for the entropy of the shell

dS ¼ γ

4G
dAþ; ð68Þ

where Aþ ¼ 2πrþ represents the circumference (area) of
the event horizon. By integrating (68), the entropy of the
shell is given by S ¼ S0 þ γ

4GAþ, where S0 is an integration
constant. Requiring that when the shell is absent—or
equivalently when M ¼ 0 and J ¼ 0 [rþ ¼ r− ¼ 0 from
(31)]—the entropy vanishes, we fix S0 ¼ 0 and obtain
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S ¼ γ

4G
Aþ; ð69Þ

which shows that the entropy of the rotating shell depends
on ðM;R; JÞ only through rþ. We note that for the entropy
(69) all the thermodynamic stability conditions (45)–(50)
are satisfied provided γ > 0. The parameter γ should be
determined by the properties of matter on the shell and
cannot be determined a priori.

B. The black hole limit

Although γ should be determined by the properties of
matter on the shell, there is a case in which the properties
of the shell have to be adjusted to the environment.
Such a situation occurs when the shell is pushed to its
own gravitational radius, R → rþ. In fact, as the shell
approaches its gravitational radius, quantum effects would
be inevitably present and their backreaction would invali-
date the classical treatment we have adopted, unless we
choose the black hole Hawking temperature for the temper-
ature of the shell. Therefore, we must choose γ ¼ 1, or
equivalently b ¼ bþ, see Eq. (66), with cþ still being given
by Eq. (67). In this case, (69) becomes

S ¼ Aþ
4G

; ð70Þ

which is the same as the Bekenstein-Hawking entropy for
the corresponding black hole (see the Appendix). Thus,
when we push the shell to its gravitational radius the
entropy coincides with the Bekenstein-Hawking entropy. In
the limit R → rþ, the pressure given by (54) diverges as 1

k
(assuming the spacetime is not extremal, rþ ≠ r−), whereas
the angular velocity expressed in (59) vanishes, at least for
the particular choice of the function c made in Eq. (67).
Nevertheless, the local inverse temperature (57) is propor-
tional to k, so the local temperature of the shell also
diverges as 1

k. These divergences cancel out precisely, so
that they can reproduce the Bekenstein-Hawking entropy.
In fact, the first law (38), dS ¼ βdM þ 2πpβdR − βΩdJ,
reveals that in the black hole limit, the only term that
survives (and remains finite) in the right-hand side is the
pressure term, which neatly combines with the inverse
temperature to yield an area law for the entropy [10].
Our approach adds in a nontrivial manner to the results of

the static (2þ 1)-dimensional studies presented in [27,28],
having also affinities to the works [12,13]. This manner of
calculating the entropy of a black hole shares also certain
similarities with the work [9], in the sense that both studies
consider matter distributed on thin shells to determine the
entropy of black holes. Here, we used a radially static thin
shell that decreases its radius adiabatically toward its
gravitational radius, maintaining quasistaticity of the space-
time. On the other hand, [9] considered a reversible
contraction of a thin shell and found that the black hole
entropy can be defined as the thermodynamic entropy

stored in matter compressed into a thin layer at its own
gravitational radius.
We also note that the extremal limit rþ ¼ r− is well

defined. In this limit, we find that the temperature
1

bðrþ;r−Þ → 0, but the entropy of the extremal black hole

is still given by (70). It is well known that the entropy of an
extremal black hole requires special care. If we had started
our analysis directly using the metric for the extremal black
hole, we would have found a more complicated expression
for the entropy.

V. OTHER EQUATIONS OF STATE WITH
bðrþ; r−Þ AND cðrþ; r−Þ OF BLACK HOLE TYPE

In the previous subsections we imposed a temperature
equation of state of the Hawking type (65), as well as the
specific thermodynamic angular velocity (67), and obtained
that the entropy of the shell is proportional to Aþ.
Moreover, if we set the temperature of the shell exactly
equal to the Hawking temperature [see Eq. (66), or Eq. (65)
with γ ¼ 1], then the entropy of the shell precisely
reproduces the Bekenstein-Hawking entropy. The choices
made for the equations of state (65) and (67), although
mandatory for a shell reproducing the Bekenstein-Hawking
area law when approaching its gravitational radius rþ, are
just the simplest ones among a larger class of equations of
state allowed by the integrability condition (61).
Here, we briefly consider some other choices for the

equations of state.
Case 1. For the temperature equation of state (65), the

integrability condition (61) gives a general equation of state
for the thermodynamic angular velocity

cðrþ; r−Þ ¼
1

r2þ
ð1þ rþðr2þ − r2−Þ~cðr2þr2−ÞÞ; ð71Þ

where ~cðr2þr2−Þ is an arbitrary function of the product r2þr2−.
Substituting Eqs. (65) and (71) into (60) and integrating,
we obtain

Sðrþ; r−Þ ¼
γ

4G

�
Aþ − π

Z
r2þr

2
−

0

dx~cðxÞ
�
; ð72Þ

where we set the integration constant to zero, so that S
vanishes when rþ → 0. If we set ~cðr2þr2−Þ ¼ 0, we recover
expression (69) which reproduces the Bekenstein-Hawking
entropy for γ ¼ 1.
Case 2. On the other hand, if we start from the angular

velocity equation of state (67), then the integrability
condition (61) allows the quite general equation of state
for the inverse temperature given by

bðrþ; r−Þ ¼
2πl2hþðr2þÞ
r2þ − r2−

; ð73Þ

where hþðr2þÞ is an arbitrary function of r2þ. Substituting
(67) and (73) into (60) and integrating, we obtain
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SðrþÞ ¼
π

4G

Z
r2þ

0

dx
hþðxÞ
x

; ð74Þ

where once again we set the integration constant to zero. If
we set hþðr2þÞ ¼

ffiffiffiffiffi
r2þ

p
, we recover (69) which reproduces

the Bekenstein-Hawking entropy for γ ¼ 1.
Case 3. Similarly, if we start from the angular velocity

equation of state

cðrþ; r−Þ ¼
1

r2−
; ð75Þ

then the integrability condition (61) allows the more gene-
ral equation of state for the inverse temperature given by

bðrþ; r−Þ ¼
2πl2h−ðr2−Þ
r2− − r2þ

; ð76Þ

where h−ðr2−Þ is an arbitrary function of r2−. Substituting
(75) and (76) into (60) and integrating, we obtain

Sðr−Þ ¼
π

4G

Z
r2−

0

dx
h−ðxÞ
x

: ð77Þ

Case 4. Finally, if we start from the angular velocity
equation of state,

cðrþ; r−Þ ¼ ~cðr2þr2−Þ; ð78Þ
where ~cðr2þr2−Þ is an arbitrary function of the product r2þr2−,
then the integrability condition (61) allows

bðrþ; r−Þ ¼ b0l2; ð79Þ
where b0 is an arbitrary constant. Substituting (78) and (79)
into (60) and integrating, we obtain

Sðrþ; r−Þ ¼
b0
8G

�
r2þ þ r2− −

Z
r2þr

2
−

0

dx~cðxÞ
�
: ð80Þ

The above four cases are the counterparts of those
considered for the charged shell in [13]. As in [13], we
will not explore them further.

VI. POWER-LAW EQUATIONS OF STATE

A. The entropy

In this section we will focus on power-law equations of
state for both the inverse temperature and the thermody-
namic angular velocity, for which the stability conditions
can be studied explicitly. We start by specifying the
temperature equation of state bðrþ; r−Þ in Eq. (57). One
of the simple but reasonable choices for the temperature is a
power-law function of r2þ þ r2− which is related to the ADM
mass m via Eq. (4),

bðrþ; r−Þ ¼ 4Gl2aðr2þ þ r2−Þα2; ð81Þ

where a and α are free parameters which reflect the
properties of matter on the shell. For such a temperature
equation of state, the integrability condition (61) admits the
following general solution for the equation of state for the
thermodynamic angular velocity cðrþ; r−Þ in Eq. (59),

cðrþ; r−Þ ¼
~cðr2þr2−Þ

ðr2þ þ r2−Þα2
; ð82Þ

where ~cðr2þr2−Þ is an arbitrary function of the product r2þr2−.
Since the product r2þr2− is related to the angular momentum
J in Eq. (31), it is also reasonable that we introduce another
power-law form for ~cðr2þr2−Þ, such as

cðrþ; r−Þ ¼
σðr2þr2−Þδ2
ðr2þ þ r2−Þα2

; ð83Þ

where σ and δ are further free parameters which also reflect
the properties of matter on the shell. Substituting (81) and
(83) into (60) and integrating, we obtain

Sðrþ; r−Þ ¼ a

�ðr2þ þ r2−Þα2þ1

αþ 2
−
σðr2þr2−Þδ2þ1

δþ 2

�
; ð84Þ

where we have set the integration constant S0 to zero,
so that the entropy S vanishes in the limit of m → 0 and
J → 0, namely rþ → 0 and r− → 0. This requirement
can be satisfied if we impose the following conditions
on the exponents:

α > −2; δ > −2: ð85Þ
As in the cases discussed in the previous sections, the entropy
of the rotating shell depends on ðM;R; JÞ only through
r�ðM;R; JÞ.We impose positivity of the temperature, which
gives the following constraint on the parameter a:

a > 0: ð86Þ

B. Thermodynamic stability conditions

We now address the thermodynamic stability of the
system. First, we consider the stability conditions that do
not involve σ and δ. Defining

ξ� ¼ r�
R

; ð87Þ
condition (45) gives

α ≤
ξ2þ þ ξ2−

κ2
; ð88Þ

where we have also defined

κðξþ; ξ−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2þÞð1 − ξ2−Þ

q
: ð89Þ

Note that 0 ≤ κ < 1, with the first inequality being satu-
rated only when the shell is taken to its gravitational radius,
R → rþ. Condition (46) gives
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α ≤ −3ξ2þξ2−
ξ2þ þ ξ2−

ð1 − κðξþ; ξ−Þ − ξ2þξ2−Þ2
≤ 0: ð90Þ

Finally, condition (48) yields

α ≤ α�ðξþ; ξ−Þ ¼ −
ð1þ 3ξ2þξ2−Þðξ2þ þ ξ2−Þ

ð1 − ξ2þξ2−Þ2 − ð1þ 3ξ2þξ2−Þκ2ðξþ; ξ−Þ
:

ð91Þ

We find that among the above conditions on α, condition
(91) is the most stringent. Noting that α�ðξþ; ξ−Þ ≤
α�ðξ−; ξ−Þ [assuming α�ðξ−; ξ−Þ > −2], where

α�ðξ−; ξ−Þ ¼ −
1þ 3ξ4−
ð1 − ξ2−Þ3

< −1; ð92Þ

we conclude that there can be a parameter region where
condition (85) is met. The corresponding value of ξ− is
given by

ξ− <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1þ 3

1
3 − 3

2
3Þ

r
¼ 0.4255: ð93Þ

Finally, we turn to the thermodynamic stability conditions
which involve σ and δ. Defining

~σ ¼ σð1þ δÞR2ð1þδÞ−α; ð94Þ

condition (47) gives

−ðξ2þ þ ξ2−Þα2ðξ2þ þ ξ2− þ αξ2þξ2−Þ þ ~σðξ2þξ2−Þδ2ðξ2þ þ ξ2−Þ ≥ 0:

ð95Þ
Condition (49) gives

−ðξ2þþξ2−Þα2½ξ2þξ2−ðξ2þþξ2−Þ
−αð1−κðξþ;ξ−ÞÞð1−κðξþ;ξ−Þþ2ξ2þξ2−Þ�

− ~σðξ2þξ2−Þδ2½3ξ2þξ2−ðξ2þþξ2−Þþαð1−κðξþ;ξ−Þ−ξ2þξ2−Þ2�≥0:

ð96Þ
Finally, condition (50) gives

− ðξ2þ þ ξ2−Þα2½ξ2þ þ ξ2− − αðκ2ðξþ; ξ−Þ − ξ2þξ2−Þ�
þ ~σðξ2þξ2−Þδ2ðξ2þ þ ξ2− − ακ2ðξþ; ξ−ÞÞ ≥ 0: ð97Þ

In the black hole limit, ξþ → 1, this condition is equivalent
to Eq. (95).
If one assumes that the parameter σ is dimensionless, so

as to not introduce any further length scales in the problem,
inspection of any of the above conditions, or of Eq. (83),
shows that the exponents α and δ must be related through

δ ¼ α

2
− 1; ð98Þ

for dimensional consistency. This reduces the number of
relevant dimensionless parameters down to four, namely
ðα; ~σ; ξþ; ξ−Þ.
The stability conditions (95), (96), and (97) are some-

what complicated. We find numerically that all the thermo-
dynamic stability requirements [(85), (86), (91), (95)–(97)]
can be met for a certain region of the parameter space, as
long as

~σ > 0: ð99Þ
If that is the case, then all stability conditions tend to be
satisfied for a small ξ−, i.e., for slowly rotating shells.
Thermodynamic stability can also be insured for shells
close to the black hole limit, ξþ → 1, but this happens
only if ξ− remains small, i.e., far from extremality.
Moreover, we observe that these conditions are weakly
dependent on α.

VII. CONCLUSIONS

In this work we have investigated the thermodynamic
properties of a rotating thin shell in a (2þ 1)-dimensional
asymptotically AdS spacetime, where the interior and
exterior of the shell were taken to be the vacuum AdS
spacetime and the BTZ black hole spacetime, respectively.
These two geometries were matched across the shell using
the Israel junction conditions, which in turn provide the
three quantities which characterize the properties of the
matter on the shell, namely, the surface energy density σ,
the pressure p, and the angular momentum density j.
Multiplying the surface energy density and the angular
momentum density by the circumference 2πR, we obtained
the locally measured proper mass M ¼ 2πRσ and the
angular momentum J ¼ 2πRj of the shell, thus completing
the study of its mechanical properties.
To address the thermodynamics of the system we

adopted the locally measured mass M, the volume of the
shell 2πR and the angular momentum J as the state
independent variables. Using the first law of thermody-
namics and the equations of state, we were able to obtain
the entropy of the shell S ¼ SðM;R; JÞ. Due to the addi-
tional variable J, the construction of the thermodynamics
is more complicated than in the nonrotating case [28].
In order to obtain an expression for the entropy of
the shell, one must specify equations of state for the
pressure p ¼ pðM;R; JÞ, the local inverse temperature
β ¼ βðM;R; JÞ, and the thermodynamic angular velocity
Ω ¼ ΩðM;R; JÞ. While the pressure equation of state is
automatically determined by the junction conditions, there
is a certain freedom to choose the equations of state for
the local inverse temperature and thermodynamic angular
velocity, which only have to satisfy an integrability con-
dition derived from the first law of thermodynamics.
One of our main results is that the entropy of the shell

must be a function of the two gravitational radii r� alone. In
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particular, shells with the same r�, and thus the same ADM
mass m and angular momentum J, but at different radii R
share the same entropy. Thus, from the entropic properties
only, it is not possible to distinguish a shell near the
gravitational radius rþ from one asymptotically far. These
findings corroborate the results obtained recently for
charged thin shells in (3þ 1) dimensions [13], with the
analogy becomingmanifest if one replaces “electric charge”
and “Coulomb potential” with “angular momentum” and
“angular velocity,” respectively.
The integrability conditions allow a multitude of equa-

tions of state for the local inverse temperature βðM;R; JÞ
and angular velocity ΩðM;R; JÞ. Choosing a well-
motivated temperature equation of state, namely setting
the shell’s temperature equal to the BTZ black hole
Hawking temperature, and the simplest possible angular
velocity equation of state that is consistent with that choice,
the resulting entropy of the shell precisely agrees with the
Bekenstein-Hawking entropy of the BTZ black hole.
Nevertheless, many other equations of state that do not

yield a simple area law for the entropy are also consistent
with the integrability condition. We have presented a large
class of such examples, for which the inverse temperature
and angular velocity equations of state are described by
power laws. For this family of solutions the number of
parameters characterizing the system is quite large.
Excluding the AdS scale l and the radial location of the
shell R, we are still left with six parameters. Through a
thermodynamic stability analysis we have obtained several
constraints on the equations of state parameters.
There remains the possibility of the existence of further

classes of consistent choices for the equations of state,
which should require a dedicated study of their thermo-
dynamic stability properties.
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APPENDIX: THERMODYNAMICS
OF THE BTZ BLACK HOLE

Here we review the thermodynamic properties of the
rotating BTZ black hole following the Hawking-Page
formalism for the (3þ 1)-dimensional Schwarzschild
AdS black hole [7]; see also [24–26] who applied diverse
formalisms to the same BTZ black hole. The Euclidean
action SE in the (2þ 1)-dimensional Einstein gravity is
given by

SE ¼ −
1

16πG

Z
d3x

ffiffiffiffiffi
gE

p ðRE − 2ΛÞ; ðA1Þ

with
ffiffiffiffiffiffiffi
−Λ

p ¼ 1
l and where RE is the Euclidean Ricci scalar

given by RE ¼ − 6
l2. The vacuum BTZ Euclidean metric is

given by metric (3) with the time Euclideanized, i.e., t ¼ iτ,

ds2 ¼ f2ðrÞdτ2 þ 1

f2ðrÞ dr
2

þ r2
�
dϕ −

irþr−
lr2

dτ

�
2

; 0 < r < ∞; ðA2Þ

where

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2þÞðr2 − r2−Þ

p
lr

: ðA3Þ

The two radii rþ and r− are now the event horizon and the
Cauchy horizon radii, respectively, still related to the
spacetime Arnowitt-Deser-Misner (ADM) mass m and
the angular momentum J , respectively, by r2þ þ r2− ¼
8Gl2m and rþr− ¼ 4GlJ . To have a black hole one
should impose rþ ≥ r−, i.e., m ≥ J

l . The inequalities are
saturated in the extremal case, rþ ¼ r−, i.e., m ¼ J

l .
Without introducing a regulator boundary, the on-shell

Euclidean action (A1) diverges. By introducing the regu-
lator boundary at r ¼ r̄, the on-shell Euclidean action
reduces to

SEðr̄Þ ¼
bþ

4Gl2
ðr̄2 − r2þÞ; ðA4Þ

where bþ is the inverse Hawking temperature

bþ ¼ 2πl2rþ
r2þ − r2−

; ðA5Þ

given by the period of the Euclidean time. The divergent
part in the limit of r̄ → ∞ arises because of the asymp-
totically AdS structure in the (2þ 1)-dimensional space-
time, and hence from SEðr̄Þ we should subtract the vacuum
AdS counterpart

Sð0ÞE ðr̄Þ ¼ b0ðr̄Þ
4Gl2

r̄2; ðA6Þ

for some temperature b0. The periodicity of the vacuum
AdS is chosen by requiring that the periodicity of the
Euclidean time and the geometry at the section of r ¼ r̄ in
the BTZ and AdS backgrounds should be identical, namely,

b0ðr̄Þf0ðr̄Þ ¼ bþfðr̄Þ; ðA7Þ

where fðrÞ is given in Eq. (A3) and f0ðrÞ is given by the
vacuum case, i.e.,

THERMODYNAMICS OF ROTATING THIN SHELLS IN THE … PHYSICAL REVIEW D 92, 064012 (2015)

064012-11



f0ðrÞ ¼
r
l
: ðA8Þ

With (A7), defining the regularized Euclidean action by

Sregðr̄Þ ¼ SEðr̄Þ − Sð0ÞE ðr̄Þ ¼ bþ
4Gl2

�
r̄2 − r2þ −

b0ðr̄Þ
bþ

r̄2
�

¼ bþ
4Gl2

�
r̄2 − r2þ −

fðr̄Þ
f0ðr̄Þ

r̄2
�
;

ðA9Þ

and expanding it in terms of the inverse power of r̄, we find
that the divergent terms of Oðr̄2Þ are canceled out, and in
the limit of r̄ → ∞

Sreg ¼ −
πrþ
4G

: ðA10Þ

The Euclidean action Sreg is related to the free energy F by
Sreg ¼ bþF, hence

F ¼ Sreg
bþ

¼ −
r2þ − r2−
8Gl2

: ðA11Þ

Now, the first law of black hole thermodynamics is

dE ¼ TþdSþ ΩþdJ ; ðA12Þ

where E is the spacetime energy, Tþ the black hole
temperature [given by the inverse of Eq. (A5),
Tþ ¼ 1=bþ], S the entropy, Ωþ ¼ r−

lrþ
the black hole

angular velocity, and J the spacetime angular momentum.
With the definition of the free energy as

F ¼ E − TþS − JΩþ; ðA13Þ

the first law of the black hole thermodynamics (A12) can
be rewritten as

dF ¼ −SdTþ − J dΩþ: ðA14Þ

Thus, the entropy and angular momentum of the black hole,
conjugate to Tþ and Ωþ respectively, are obtained as

S ¼ −
� ∂F
∂Tþ

�
Ωþ

¼ l2π2Tþ
Gð1 − l2Ω2þÞ

¼ πrþ
2G

¼ Aþ
4G

;

J ¼ −
� ∂F
∂Ωþ

�
Tþ

¼ l4π2T2þΩþ
Gð1 − l2Ω2þÞ2

¼ rþr−
4Gl

; ðA15Þ

where Aþ ¼ 2πrþ is the area—or, in this context, the
circumference—of the event horizon. The entropy S is the
Bekenstein-Hawking entropy. The second relation con-
firms the expression for the spacetime angular momentum
J . Finally, the energy E is given by

E ¼ F þ TþSþ JΩþ ¼ r2þ þ r2−
8Gl2

¼ m; ðA16Þ

which means that the thermodynamic energy stored in the
gravitational system is given by the ADM mass m.
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