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The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary
and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean
off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of
the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve
this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet
process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a
blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a
rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise.
We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller
and locally stationary components.

DOI: 10.1103/PhysRevD.92.064011 PACS numbers: 04.30.-w, 02.50.-r, 05.45.Tp, 97.60.Bw

I. INTRODUCTION

Astronomy is entering a new and exciting era, with the
second generation of ground-based gravitational wave
(GW) interferometers (Advanced LIGO [1], Advanced
Virgo [2], and KAGRA [3]) expected to reach design
sensitivity in the next few years. Throughout history,
developments in astronomy have led to a deeper under-
standing of the Universe. Each time we probe the Universe
with new sensors, we discover exciting and unexpected
phenomena that challenge our current beliefs in astrophysics
and cosmology. GW astronomy promises to do the same,
providing a new set of ears to listen to (potentially
unanticipated) cataclysmic events in the cosmos.
Apart from the first direct observation of GWs,

extracting astrophysical information encoded in GW
signals is one of the primary goals in GW data analysis.
Since observations are subject to noise, accurate astro-
physical predictions rely on an honest characterization of
these noise sources. At its design sensitivity, Advanced
LIGO will be sensitive to GWs in the frequency band from
10 Hz to 8 kHz. The main noise sources for ground-based
interferometers include seismic noise, thermal noise, and
photon shot (quantum) noise [1]. Seismic noise limits the
low frequency sensitivity of the detectors. Thermal noise is
the predominate noise source in the most sensitive fre-
quency band of Advanced LIGO (around 100 Hz), and it
arises from the test mass mirror suspensions and the
Brownian motion of the mirror coatings. Photon shot noise
is due to quantum uncertainties in the detected photon

arrival rate, and it dominates the high frequency sensitivity
of the detectors.
Standard assumptions about the noise model in the GW

data analysis community rely on detector noise being
stationary and Gaussian distributed, with a known power
spectral density (PSD) that is usually estimated using off-
source data (not on a candidate signal) [4]. Real GW data
often depart from these assumptions [5]. It was demon-
strated in [6] that fluctuations in the PSD can moderately
bias parameter estimates of compact binary coalescence
GW signals embedded in LIGO data from the sixth science
run (S6).
High amplitude non-Gaussian transients (or “glitches”)

in real detector data invalidate the Gaussian noise
assumption, and misspecifications of the parametric noise
model could result in misleading inferences and predic-
tions. A more sophisticated approach would be to make no
assumptions about the underlying noise distribution by
using nonparametric techniques. Unlike parametric statis-
tical models, which have a fixed and finite set of parameters
(e.g., the Gaussian distribution has two parameters: μ and
σ2 representing the mean and variance, respectively),
nonparametric models have a potentially infinite set of
parameters, allowing for much greater flexibility.
The theory of spectral density estimation requires a

time series to be a stationary process. If data are not
stationary (which is often the case for real LIGO data), it is
important to adjust for this by introducing a time-varying
PSD. It was demonstrated in [7] that the noise PSD in real
S6 LIGO data is in fact time varying. Variation in detector
sensitivity was also shown in [8]. Other GW literature that
discusses nonstationary noise include [9,10]. It would be
an oversimplification to assume the Advanced LIGO
PSD is constant over time, and to use off-source data
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in characterizing this. On-source estimation of the PSD
would therefore be preferable to mitigate the time-varying
nature of the PSD.
There have been attempts reported in the literature to

improve the modeling of noise present in GW data,
primarily concentrating on noise with embedded signals
from well-modeled GW sources, such as binary inspirals
[4,11–14], and more recently from GW bursts (unmodeled
and typically short duration events) [7,15].
Under the Bayesian framework, Röver et al. [11] used a

Student-t likelihood as a generalization to the commonly
used Whittle (approximate Gaussian) likelihood [16]. The
benefit of the Student-t setup is twofold: uncertainty in the
noise spectrum can be accounted for via marginalization of
nuisance parameters, and outliers can be accommodated
due to the heavy-tail nature of the Student-t probability
density. A drawback of this method is that the choice of
hyperparameters can unduly influence posterior inferences.
Using the maximum likelihood approach, Röver [12]

later demonstrated that the Student-t likelihood could be
used as a generalization to the matched-filtering detection
method commonly used in the analysis of GW signals from
well-modeled sources. This approach would not be appro-
priate for GW bursts, since matched-filtering requires
accurate signal models with well-defined parameter spaces.
Littenberg and Cornish [13] used Bayesian model

selection to determine the best noise likelihood function
in non-Gaussian noise. They considered Gaussian noise
with a time-varying mean, noise from a weighted sum of
two Gaussian distributions (non-Gaussian tails), and a
combination of Gaussian noise and glitches (modeled as
a linear combination of wavelets).
Littenberg et al. [4] demonstrated how one can incor-

porate additional scale parameters in the Gaussian like-
lihood and marginalize over the uncertainty in the PSD to
reduce systematic biases in parameter estimates of compact
binary mergers in S5 LIGO data. This method requires an
initial estimate of the PSD. On a related note, Vitale et al.
[14] highlighted a Bayesian method, similar to iteratively
reweighted least squares, that analytically marginalizes out
background noise and requires no a priori knowledge of
the PSD. They applied this to simulated data from LISA
Pathfinder.
More recently, Littenberg and Cornish [7] introduced

the BayesLine algorithm in conjunction with BayesWave
[15] to estimate the underlying PSD of GW detector noise.
BayesLine is used to model the Gaussian noise compo-
nent. They use a cubic spline to model the smooth
changing broadband noise and Lorentzians (Cauchy
densities) to model wandering spectral lines (due to AC
supply, violin modes, etc.). BayesWave, on the other
hand, models the non-Gaussian instrument “glitches” and
burst sources with a continuous wavelet basis. Both
methods make use of the transdimensional reversible
jump Markov chain Monte Carlo (RJMCMC) algorithm

of Green [17]. BayesLine is very pragmatic and works
remarkably well on real Advanced LIGO data. However,
the authors did not consider statistically important notions
such as the posterior consistency of the PSD [18].
Our approach to improving the GW noise model relies

on developments over the past decade in the area of
Bayesian nonparametrics. Since parametric modeling can
lead to biased estimates when the underlying parametric
assumptions are invalid, we prefer nonparametric tech-
niques to estimate the PSD of a stationary noise time series.
A common nonparametric estimate of the spectral

density of a stationary time series is the periodogram,
calculated using the (normalized) squared modulus of
Fourier coefficients. That is,

InðλÞ ¼
1

2πn

����
Xn
t¼1

Xt expð−itλÞ
����
2

; λ ∈ ð−π; π�; ð1Þ

where λ is the frequency, and fXtg is a stationary time
series, where t ¼ 1; 2;…; n represents discretized time.
The periodogram randomly fluctuates about the true
spectral density of a time series but is not a consistent
estimator, motivating methods such as periodogram
smoothing and averaging [19]. Averaging of off-source
periodograms from Tukey windowed simulated Advanced
LIGO noise has been used in GW literature relating to
reconstructing rotating core collapse GWs [20] and pre-
dicting the important astrophysical parameters from these
events [21].
In this paper, we implement the nonparametric Bayesian

spectral density estimation method and Metropolis-within-
Gibbs Markov chain Monte Carlo (MCMC) sampler
presented by Choudhuri et al. [22], which updates a
nonparametric Bernstein polynomial prior [23,24] on the
spectral density using the Whittle likelihood to make
posterior inferences. A Bernstein polynomial prior is
essentially a finite mixture of Beta probability densities
(see Sec. II C and Appendix A). It was proved that this
method yields a consistent estimator for the true spectral
density of a (short-term memory) stationary time
series [22]—an attractive feature, absent in the periodo-
gram. Posterior consistency in this context essentially
means that the posterior probability of an arbitrary neigh-
borhood around the true PSD goes to 1 as the length of the
time series increases to infinity. Thus, as the sample size
increases, the posterior distribution of the PSD will
eventually concentrate in a neighborhood of the true
PSD [18]. This is an important asymptotic robustness
quality of the posterior distribution in that the choice of
prior parameters should not influence the posterior distri-
bution too much. Especially in Bayesian nonparametrics,
because of the high dimension of the parameter space,
many posterior distributions do not automatically possess
this quality [18]. We refer the reader to Appendix C for a
visual demonstration of posterior consistency.
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Unlike Refs. [4,11,14], we do not treat noise as a nuisance
parameter to be analytically integrated out. Although the
signal parameters are our primary concern, we are also
interested in quantifying our uncertainty in the underlying
PSD of the noise in terms of posterior probabilities and
credible intervals. Knowledge of this uncertainty will allow
us to make honest astrophysical statements.
In this study, we assume that data are the sum of a

GW signal embedded in noise (from all noise sources),
such that

y ¼ sðβÞ þ ϵðθÞ; ð2Þ

where y is the (coincident) time-domain GW data vector,
s is a GW signal parametrized by β, and ϵ is noise
parametrized by θ. Notation with a tilde on top, such as
~y, refers to the frequency-domain equivalent of the same
quantity, obtained by the discrete Fourier transform (DFT).
Note that we are treating noise in this setup as the
conglomeration of detector noise (such as thermal noise
and photon shot noise), background noise (such as seismic
noise), and residual errors due to parametric statistical
modeling of GW signals. An important caveat is to ensure
the magnitude of the errors in the statistical model of the
signal is minimized, so as to not artificially dominate the
noise. Estimation of spectral lines (as done by the
BayesLine algorithm [7]) is out of the scope of this paper.
The GW signal could essentially come from any source,

but in this paper we will restrict our concentration to those
from rotating core collapse supernovae to simplify the
problem and demonstrate the power of the method. Using
the recent waveform catalogue of Abdikamalov et al. [25],
we conduct principal component analysis (PCA) and fit a
principal component regression (PCR) model of the most
important principal components (PCs) on an arbitrary
rotating core collapse GW signal [20,21,26]. The (para-
metric) signal component is easily embedded as an addi-
tional Gibbs step in the Metropolis-within-Gibbs MCMC
sampler of Choudhuri et al. [22]. That is, we utilize a blocked
Gibbs approach to sequentially sample the signal parameters
β given the noise parameters θ, and vice versa. As the model
now contains a parametric signal component as well as a
nonparametric noise component, it is “semiparametric.”
To accommodate for nonstationary noise, we adapt an

idea presented by Rosen et al. [27] and assume that a
nonstationary time series can be broken down into smaller
locally stationary segments. For each segment, we sepa-
rately estimate the PSD using the method of Choudhuri
et al. [22] and look at the time-varying spectrum.
We see this work as being a complement to existing

methods, with the following benefits:
(i) A Bayesian framework, allowing us to update prior

knowledge based on observed data, as well as
quantify uncertainty in terms of probabilistic
statements.

(ii) Posterior consistency of the PSD; i.e., the posterior
distribution will concentrate around the true PSD as
the sample size increases.

(iii) No parametric assumptions about the underlying
noise distribution (parametric models are very sen-
sitive to misspecifications), and high amplitude non-
Gaussian transients in the noise can be handled.

(iv) Nonstationarities can be taken into account by
splitting the data into smaller locally stationary
segments.

(v) Estimation of noise and signal parameters are done
simultaneously using Gibbs sampling.

(vi) Uncertainty in astrophysically meaningful parameter
estimates are honest, with less systematic bias
present.

(vii) Noninformative priors can be chosen, and the PSD
does not need to be known a priori.

(viii) Useful for any signal with a parametric statistical
model (including rotating core collapse supernova
GWs).

The paper is structured as follows: Section II outlines the
methods and models used to simultaneously estimate signal
and noise parameters in GW data; results for toy models
and simulated Advanced LIGO data are presented in
Sec. III; and in Sec. IV, we discuss the consequences of
this work, as well as future initiatives. Supplementary
material can be found in the three appendixes.

II. METHODS AND MODELS

A. Parametric, nonparametric,
and semiparametric models

Statistical models can be classified into two groups—
parametric and nonparametric. Parametric models have a
fixed and finite set of parameters, are relatively easy to
analyze, and are powerful when their underlying assump-
tions are correctly specified. However, if the model is
misspecified, inferences will be unreliable. Nonparametric
models have far fewer restrictions but are less efficient and
powerful than their parametric counterparts. No assumption
about the underlying distribution of the data is made in
nonparametric modeling, and the number of parameters is
not fixed (and potentially infinite dimensional). Instead, the
effective number of parameters increases with more data,
providing the model structure.
For example, parametric regression (including linear

models, nonlinear models, and generalized linear models)
uses the following equation:

y ¼ gðx1;x2;…;xkjβÞ þ ϵ; ð3Þ
where y is the response variable, gðx1;x2;…;xkjβÞ is a
function of k explanatory variables (that aim to explain the
variability in y) given some model parameters β, and ϵ is
the statistical error, usually assumed to be independent and
identically distributed (iid) Gaussian random variables,
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with 0 mean and constant variance σ2. Here, the functional
form of gð:Þ is known in advance, such as in linear
regression, where we have

gðx1;x2;…;xkjβÞ ¼ β0 þ β1x1 þ � � � þ βkxk: ð4Þ

Nonparametric regression has a similar setup but assumes
that the functional form of gð:Þ is unknown and to be
learned from the data. Function gð:Þ could be thought of as
an uncountably infinite-dimensional parameter in a non-
parametric setting.
Semiparametric models contain both parametric and

nonparametric components. The parametric regression
model presented in Eqs. (3) and (4) is essentially the same
parametric model used in this paper for GW signal
reconstruction, where ðx1;x2;…;xkÞ are principal com-
ponent (PC) basis functions. However, we model the noise
ϵ nonparametrically, rather than assuming iid Gaussian
noise. Since we have parametric and nonparametric com-
ponents, our model is semiparametric in nature.

B. Bayesian nonparametrics

Bayesian nonparametrics contains the set of models on
the interface between the Bayesian framework and non-
parametric statistics, and is characterized by large param-
eter spaces and probability measures over these spaces [18].
The Bayesian statistical framework is useful for incorpo-
rating prior knowledge and is particularly powerful when
these priors accurately represent our beliefs. As mentioned
in the previous section, nonparametric methods are useful
for constructing flexible and robust alternatives to parametric
models. A benefit of Bayesian nonparametric models is that
they automatically infer model complexity from the data,
without explicitly conducting model comparison.
Bayesian nonparametrics is a relatively nascent field in

statistics and faces many challenges. The most obvious one
is the mathematical difficulty in specifying well-defined
probability distributions on infinite-dimensional function
spaces. Constructing a prior on these spaces can be
arduous, and in the case of noninformative priors, one
should ensure large topological support so as not to put too
much mass on a small region. Further, creating computa-
tionally convenient algorithms to sample from complicated
posterior distributions presents its own set of challenges. It
is also important to ensure that a Bayesian nonparametric
model is statistically consistent (the truth is uncovered
asymptotically), as some procedures do not automatically
possess this quality [18].
Bayesian nonparametric priors (and posteriors) are

stochastic processes rather than parametric distributions.
Ferguson [28] provided the seminal paper for the field of
Bayesian nonparametrics, introducing the Dirichlet proc-
ess, an infinite-dimensional generalization of the Dirichlet
distribution, now commonly used as a prior in infinite
mixture models. This is a popular model (often called the

Chinese Restaurant Process) for classification problems
where the number of classes is unknown and to be inferred
from the data. A formal definition of the Dirichlet dis-
tribution and Dirichlet process can be found in Appendix B.
Another popular prior in Bayesian nonparametrics is the

Gaussian process prior, which is often used in nonlinear
regression contexts. In fact, one could extend the regression
example in the previous section into the realm of Bayesian
nonparametrics by putting a Gaussian process prior on the
function g. Compare this to the Bayesian parametric
counterpart, which puts a prior on the model parameters β.
For further discussion on Bayesian nonparametrics, we

refer the reader to [18].

C. Spectral density estimation

Aweakly (or second-order) stationary time series fXtg is
a stochastic process that has constant and finite mean and
variance over time, and an autocovariance function γðhÞ
that depends only on the time lag h. That is, for a zero-mean
weakly stationary process, the autocovariance function has
the form

γðhÞ ¼ E½XtXtþh�; ∀ t; ð5Þ

where E½:� is the expected value operator, and t repre-
sents time.
Assuming an absolutely summable autocovariance

function (
P∞

h¼−∞ jγðhÞj < ∞), the (real-valued) spectral
density function fðλÞ of a zero-mean weakly stationary
time series is defined as

fðλÞ ¼ 1

2π

X∞
h¼−∞

γðhÞ expð−ihλÞ; λ ∈ ð−π; π�; ð6Þ

where λ is the angular frequency. Note that the spectral
density function and autocovariance function are a Fourier
transform pair. In this paper, we will also call this the power
spectral density (PSD) function, although this term is
sometimes reserved for the empirical spectrum (periodo-
gram) in the GW literature.
For a mean-centered weakly stationary time series fXtg

of length n, with spectral density fðλÞ, the Whittle
approximation to the Gaussian likelihood, or simply the
Whittle likelihood [16], is defined as

LnðxjfÞ ∝ exp

�
−
X⌊u⌋
l¼1

�
log fðλlÞ þ

InðλlÞ
fðλlÞ

��
; ð7Þ

where λl ¼ 2πl=n are the positive Fourier frequencies,
u ¼ ðn − 1Þ=2, ⌊u⌋ is the greatest integer value less than or
equal to u, and Inð:Þ is the periodogram defined in Eq. (1).
If the PSD is known, the log f term in Eq. (7) is a constant
and can be ignored. The Whittle likelihood has an advan-
tage over the true Gaussian likelihood as it has a direct
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dependence on the PSD rather than the autocovariance
function. The Whittle likelihood is only exact for Gaussian
white noise but works well under certain conditions, even
when the data are not Gaussian [29]. More information
about these concepts can be found in any good time series
analysis textbook, such as the one by Brockwell and
Davis [30].
We now need to specify a nonparametric prior for the

PSD. We will briefly introduce the spectral density esti-
mation technique of Choudhuri et al. [22], which is based
on the Bernstein polynomial prior of Petrone [23,24]. The
Bernstein polynomial prior is a nonparametric prior for a
probability density on [0, 1] and is based on the Weierstrass
approximation theorem that states that any continuous
function on [0, 1] can be uniformly approximated to any
desired degree by a Bernstein polynomial. If this function is
a density on [0, 1], this Bernstein polynomial is essentially
a finite mixture of Beta densities. We refer the reader to
Appendix A for a definition of the Bernstein polynomial
and Beta density. Instead of putting a Dirichlet prior on the
mixture weight vector, the weights are defined via a
probability distribution G on [0, 1], and a Dirichlet process
prior is put on the space of probability distributions on
[0, 1]. Appendix B contains supplementary material on the
Dirichlet process.
Since the spectral density is not defined on the unit

interval, we reparametrize fðλÞ, such that

fðπωÞ ¼ τqðωÞ; ω ∈ ½0; 1�; ð8Þ

where τ ¼ R
1
0 fðπωÞdω is the normalization constant. To

specify a prior on spectral density fðπωÞ, we put a
Bernstein polynomial prior on qðωÞ, using the following
hierarchical scheme:

(i) qðωÞ ¼ P
k
j¼1Gðj−1k ; jk�βðωjj; k − jþ 1Þ, where G

is a cumulative distribution function, and
βðωja; bÞ is a Beta probability density with param-
eters a and b.

(ii) G is a Dirichlet process with base measure G0 and
precision parameter M.

(iii) k has a discrete probability mass function such
that pðkÞ ∝ expð−θkk2Þ; k ¼ 1; 2;….

(iv) τ has an inverse-Gammaðατ; βτÞ distribution.
(v) G, k, and τ are a priori independent.
We use the stick-breaking construction of the Dirichlet

process by Sethuraman [31], which is an infinite-dimen-
sional mixture model (defined in Appendix B). For
computational purposes, we need to truncate the number
of mixture distributions to a large but finite number L. The
choice of a large L will provide a more accurate approxi-
mation but also increase the computation time. Here, we
choose L ¼ maxf20; n1=3g. We therefore reparametrize G
to ðZ0; Z1;…; ZL; V1;…; VLÞ such that

G ¼
�XL

l¼1

plδZl

�
þ
�
1 −

XL
l¼1

pl

�
δZ0

; ð9Þ

where p1 ¼ V1, pl ¼ ðQl−1
j¼1 ð1 − VjÞÞVl for l ≥ 2, Vl ∼

Betað1;MÞ for l ¼ 1;…; L, and Zl ∼G0 for l ¼ 0; 1;…; L.
Note that δa is a probability density, degenerate at a. That
is, δa ¼ 1 at a and 0 otherwise. This yields the prior
mixture of the PSD,

fðπωÞ ¼ τ
Xk
j¼1

wj;kβðωjj; k − jþ 1Þ; ð10Þ

with weights wj;k ¼
P

L
l¼0 plIfj−1k < Zl ≤

j
kg and p0 ¼

1 −
P

L
l¼1 pl.

Abbreviating the vector of noise parameters as θ ¼
ðv; z; k; τÞ, the joint prior is therefore

pðθÞ ∝
�YL

l¼1

Mð1 − vlÞM−1
��YL

l¼0

g0ðzlÞ
�
pðkÞpðτÞ; ð11Þ

and is updated using the Whittle likelihood to produce the
unnormalized joint posterior.
This method is implemented as a Metropolis-within-

Gibbs MCMC sampler. In Choudhuri et al. [22], param-
eters k and τ are readily sampled from their full conditional
posteriors, while V and Z require the Metropolis algorithm
with Uniform proposals. Our only variation on this imple-
mentation is our sampling of the smoothness parameter k.
We found that a Metropolis step is faster than sampling
from the full conditional. The original implementation
contains a forðÞ loop that evaluates the log posterior kmax
number of times, where kmax is chosen (during pilot runs) to
be large enough to cater to the roughness of the PSD.
For most well-behaved cases, kmax ¼ 50 will suffice, but the
Advanced LIGO PSD requires many more mixture distri-
butions (by 1 to 2 orders of magnitude) due to its steepness at
low frequencies. This is a significant computational burden,
and a well-tuned Metropolis step can therefore outperform
the original implementation.
A discussion of the Dirichlet process and stick-breaking

representation can be found in Appendix B.

D. Signal reconstruction

To reconstruct a rotating core collapse GW signal that is
embedded in noise, we use the (parametric) PCR method
described in [20,21,26]. That is, let

~y ¼ ~Xβþ ~ϵ; ð12Þ
where ~y is the frequency-domain GW data vector of length
n frequency-domain GW data vector, ~X is the n × d matrix
of the d frequency-domain principal component basis
vectors, β is the vector of signal reconstruction parameters
(PC coefficients), and ~ϵ is the frequency-domain noise
vector with a known PSD. We assume flat priors on β. It is
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important to highlight that useful astrophysical information
(such as the ratio of kinetic to gravitational potential energy
of the inner core at bounce, and precollapse differential
rotation) can be extracted by regressing the posterior means
of the PC coefficients β on the known astrophysical
parameters from the waveform catalogue, and sampling
from the posterior predictive distribution [21].
We include an additional Gibbs step in the MCMC

sampler described in the previous section to simultaneously
reconstruct a rotating core collapse GW signal, while also
estimating the noise power spectrum. Omitting the con-
ditioning on the data for clarity, we sequentially sample the
full set of conditional posterior densities pðθjβÞ and pðβjθÞ,
where θ ¼ ðv; z; k; τÞ are the noise parameters defined in
the previous section and β are the signal reconstruction
parameters. That is, we sample in a cycle from the full
conditional posterior distribution of the signal parameters,
given the PSD parameters, and the full conditionals of the
PSD parameters, given the signal parameters. This setup is
called a blocked Gibbs sampler.
To sample the signal parameters, we fix the most recent

MCMC sample of the PSD parameters. The conditional
posterior of β is

PðβjθÞ ¼ Nðμ;ΣÞ ð13Þ

where Σ ¼ ð ~X0D−1 ~XÞ−1 and μ ¼ Σ ~X0D−1 ~y. Here D ¼
2π × diagðfðλÞÞ is the noise covariance matrix, and fðλÞ
is the most recent estimate of the PSD. More explicitly, at
iteration iþ 1 in the blocked Gibbs sampling algorithm, we
perform the following steps:
(1) Create a time-domain noise vector: ϵðiþ1Þ ¼

y −XβðiÞ. Due to the linearity of the Fourier trans-
form, β will be the same whether we are in the time
domain or frequency domain.

(2) Sample the PSD parameters θðiþ1ÞjβðiÞ using the
method of Sec. II C.

(3) Sample the signal parameters βðiþ1Þjθðiþ1Þ using
Eq. (13) (since the PSD in iteration iþ 1 is
now known).

E. Nonstationary noise

As mentioned in Sec. II C, stationary noise has a constant
and finite mean and variance over time, and an autocovar-
iance function that depends only on the time lag.
Nonstationary noise does not meet these requirements
and has a time-varying spectrum. Stationarity of a time
series can be tested using classical hypothesis tests such as
the Augmented Dickey-Fuller test [32], the Phillips-Perron
unit root test [33], and the Kwiatwoski-Phillips-Schmidt-
Shin (KPSS) test [34].
To accommodate nonstationary noise, we adapt an idea

presented by Rosen et al. [27], which assumes a time series
can be broken down into locally stationary segments. In
their paper, they treat the number of stationary components

of a nonstationary time series as unknown and use
RJMCMC [17] to estimate the segment breaks.
In a similar fashion, we break a nonstationary time series

(or GW data stream) into J equal segments. We have two
requirements for the length of these segments: the segment
length is large enough for the Whittle approximation to be
valid, and the segments are locally stationary according to
heuristics or formal stationarity hypothesis tests. This
approach fits nicely into our current MCMC framework.
For each segment, we estimate the PSD using the non-
parametric method introduced in Sec. II C. A benefit of this
approach is that change-points in the PSD can be detected
without using RJMCMC.
The conditional posterior density for all noise model

parameters θ is the following product:

πðθjβ; ~yÞ ¼
YJ
j¼1

πjðθjjβ; ~yjÞ; ð14Þ

where πjðθjjβ; ~yjÞ is the conditional posterior density of the
model parameters θj in the jth segment given the signal
parameters β and the jth segment of data ~yj.
Note that under this setup, the PC coefficients β do not

depend on segments j ¼ 1; 2;…; J, since we require one
set of PC coefficients (not J sets) to reconstruct a rotating
core collapse GW signal.
To sample βjθ, we use the same approach presented in

Sec. II D. The only difference is in the construction of
the noise covariance matrix. This is constructed as
D ¼ 2π × diagðf1ðλÞ; f2ðλÞ;…; fJðλÞÞ, where fjðλÞ is
the PSD of the jth noise segment.

III. RESULTS

For the following examples, we set L ¼ maxf20; n1=3g
and use the noninformative prior setup of Choudhuri et al.
[22]. That is, let G0 ∼ Uniform½0; 1�;M ¼ 1;ατ ¼ βτ ¼
0.001, and θk ¼ 0.01. We use kmax ¼ 50 for most exam-
ples, and kmax ¼ 400 for the example with simulated
Advanced LIGO noise to cater to the steep drop in the
PSD at low frequencies.
For the examples with a signal embedded in noise, we

use a Uniformð−∞;∞Þ prior on the signal reconstruction
parameters β, and let d ¼ 25 PCs. For a discussion on the
optimal choice of PCs, we refer the reader to [21]. We also
scale the signals to a signal-to-noise ratio (SNR) of ϱ ¼ 50.
Here SNR (for n even) is defined as

ϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Xn=2þ1

j¼0

j~sðλjÞj2
j~ϵðλjÞj2

vuut ; ð15Þ

where λj are the positive Fourier frequencies, ~sð:Þ is the
Fourier transformed signal, and ~ϵð:Þ is the Fourier trans-
formed noise series. Note that for the zero and Nyquist
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frequencies, the factor of 2 in Eq. (15) becomes a factor
of 4.
The value of ϱ ¼ 50 is physically motivated, as we

would expect to see a SNR of approximately 50 to 170 for
rotating core collapse supernova GWs at a distance of
10 kpc. We therefore demonstrate how the method works
for the lower end of this range.
The units for frequency in most examples are radians

per second (rad=s). In the example using simulated
Advanced LIGO noise, we rescale to kilohertz (kHz).
PSD units are the inverse of the frequency units, and the
PSD figures are scaled logarithmically. GW strain ampli-
tude is unitless.
For all examples, we run the MCMC sampler for

150, 000 iterations, with a burn-in period of 50, 000 and
a thinning factor of 10. This results in 10, 000 samples
retained.

A. Estimating the PSD of non-Gaussian
colored noise

To demonstrate how our model is capable of dealing
with non-Gaussian transients in the data (or glitches as they
are sometimes called in GW data analysis), we provide an
illustrative toy example, using colored noise generated
from a first-order autoregressive process, abbreviated as
AR(1).
A mean-centered AR(1) process fXtg is defined as

Xt ¼ ρXt−1 þ ϵt; t ¼ 1; 2;…; n; ð16Þ

where ρ is the first-order autocorrelation, and ϵt is a white
noise process (not necessarily Gaussian), with zero mean
and constant variance σ2ϵ . With this formulation, we see
how the current observation at time t depends on the
previous observation at time t − 1 through ρ, as well as
some white noise ϵt, often referred to as innovations or the
innovation process in time series literature.
The AR(1) model is a useful example here since it has a

well-defined theoretical spectral density that we can com-
pare our results against. Assuming jρj < 1, the AR(1)
process is stationary and has spectral density

fðλÞ ¼ σ2ϵ
1þ ρ2 − 2ρ cos 2πλ

; λ ∈ ð−π; π�: ð17Þ

As seen in Eq. (17), the AR(1) process has a PSD that is
not flat, and the noise in our toy example is colored
(nonwhite), with correlations between frequencies—typical
of what we would expect with real Advanced LIGO noise.
As the AR(1) process has a colored spectrum, and white
noise has a flat spectrum, we will use the term innovations
to refer to the white noise component of the model to avoid
confusion.
For our example, rather than using Gaussian innovations,

which is the most common innovation process used in

autoregressive models, we use Student-t innovations with
ν ¼ 3 degrees of freedom. The choice of ν ¼ 3 degrees of
freedom is the smallest integer that results in a Student-t
model with finite variance [a requirement for the innovation
process fϵtg of an AR(1) model]. This model has wider
tails than that of the Gaussian model (and in fact the widest
tails possible while maintaining the finite variance require-
ment), meaning we can expect extreme values in the tails of
the distribution to occur more often. This will be our proxy
for glitches.
We refer the reader to a relevant time series analysis

textbook such as the one by Brockwell and Davis [30] for
further information on AR(1) processes.
For this example, we generate a length n ¼ 212 AR(1)

process with ρ ¼ −0.9 and Student-t innovations with ν ¼
3 degrees of freedom. Let this (stationary) time series have
a sampling interval Δt ¼ 1=214 (the same as Advanced
LIGO). The data setup can be seen in Fig. 1.
We can see the effect of using ν ¼ 3 degrees of freedom

in Fig. 1. Notice how there are transient high amplitude
non-Gaussian events. These are a result of the wide-tailed
nature of the Student-t density. It would be very unlikely to
see these high amplitude events if the innovation process
was Gaussian.
We now run the noise-only algorithm of Sec. II C to

demonstrate that we can accurately characterize a non-
Gaussian noise PSD.
The estimated pointwise posterior median log PSD in

Fig. 2 is very close to the true log PSD, and the 90%
credible region generally contains the true log PSD. This
demonstrates that even if there are non-Gaussian transi-
ents in the data (which is certainly the case for real LIGO
data), this PSD estimation method performs well. This is,
however, not surprising as the Whittle likelihood gives a
good approximation to Gaussian and some non-Gaussian
likelihoods [29].
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FIG. 1 (color online). Simulated stationary AR(1) process with
first-order autocorrelation ρ ¼ −0.9 and Student-t innovations
(ν ¼ 3 degrees of freedom).
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B. Extracting a rotating core collapse signal
in stationary colored noise

In this example, we aim to extract a rotating GW signal
from noisy data using the blocked Gibbs sampler described
in Sec. II D. We embed the A1O12.25 rotating core
collapse GW signal from the Abdikamalov et al. [25] test
catalogue (i.e., a signal not part of the base catalogue used
to create the PC basis functions) in AR(1) noise with
ρ ¼ 0.9. For clarity, let this process have a Gaussian white
noise innovation process with σ2ϵ ¼ 1. Let the time series be
length n ¼ 212, which corresponds to 1=4 s of data at the
Advanced LIGO sampling rate. The signal is scaled to have
a SNR of ϱ ¼ 50. The reconstructed signal can be seen
in Fig. 3.
The rotating core collapse GW signal in Fig. 3 is

reconstructed particularly well during the collapse and
bounce phases (the first few peaks or troughs). The

post-bounce ringdown oscillations are usually poorly
estimated due to stochastic dynamics [21,25], but are
acceptable for this particular example.
In this example, the signal parameters were simulta-

neously estimated with the noise PSD using the blocked
Gibbs sampler described in Sec. II D. We now compare the
performance of the estimated noise PSD with and without a
signal present. That is, we compare the noise PSD estimates
between the algorithms presented in Sec. II C (noise-only
model) and Sec. II D (signal-plus-noise model), using the
same noise series for both models.
We can see in Fig. 4 that both models (noise-only and

signal-plus-noise) perform similarly when estimating the
PSD of colored Gaussian noise. The posterior median log
PSDs are approximately equal and are very close to the true
log PSD of an AR(1) process with ρ ¼ 0.9. This is a useful
robustness check, and it demonstrates that we are success-
fully decoupling the signal from the noise.

C. Comparing input and reconstruction parameters

As there is no analytic form linking the astrophysical
parameters of a rotating core collapse stellar event to its
GW signal, we can only approximate the GW signal using
statistical methods. We do this using PCR, but this means
that there are no true input parameters that we can compare
with the estimated signal reconstruction parameters.
However, if one were to create a fictitious signal as a
known linear combination of PCs, we could demonstrate
the algorithm’s performance in estimating the signal
reconstruction parameters.
Consider the following fictitious rotating core collapse

GW signal:

y ¼
Xd
i¼1

αixi; ð18Þ
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FIG. 3 (color online). Reconstructed rotating core collapse GW
signal. The 90% credible region (shaded pink) and posterior
median signal (dashed blue) are superimposed with true
A1O12.25 GW signal from the Abdikamalov et al. [25] test
catalogue (solid black).
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FIG. 4 (color online). Comparison of the noise PSD estimates
for the noise-only and signal-plus-noise models. Plotted are the
pointwise posterior median log noise PSDs with and without a
GW signal. The true log PSD of the AR(1) noise series is
overlaid.
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FIG. 2 (color online). Estimated log PSD of the AR(1) time
series in Fig. 1. The 90% credible region (shaded pink) and
posterior median log PSD (dashed blue) are superimposed with
the true log PSD (solid black).
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where y is the signal of length n, ðx1;x2;…;xdÞ are the d
PC basis vectors of length n, and ðα1; α2;…; αdÞ are the
“true” weights, or PC coefficients. To randomize the
weights, we randomly sample each from the standard
normal distribution.
In this example, we embed the fictitious length n ¼ 212

GW signal in AR(1) noise with ρ ¼ 0.9 and Gaussian
innovations with σϵ ¼ 1. We set d ¼ 10. We rescale the
signal to have SNR ϱ ¼ 50, and after the algorithm has run,
we rescale our estimated PC coefficients back to the
original level for comparison.
It can be seen in Fig. 5 that the true PC coefficients are

generally contained within the 95% credible intervals,
demonstrating that the algorithm can estimate a signal’s
input parameters well in the presence of stationary colored
noise. Notice also that the credible intervals widen as the
principal component number increases. This is due to the
fact that higher numbered PCs explain lower amounts of
variation in the waveform catalogue, resulting in lower
amplitude waves. We would therefore be more uncertain
about these PCs embedded in noise.

D. Extracting a rotating core collapse signal
in time-varying colored noise

Nonstationary noise has a time-varying spectrum. To
illustrate how our method can handle nonstationarities (or
change-points in the spectral structure), we simulate a noise
series with J ¼ 2 locally stationary components of equal
length n1 ¼ n2 ¼ 212. The first segment of the noise series
is generated from an AR(1) process with ρ ¼ 0.5. The
second noise segment comes from an AR(1) process with
ρ ¼ −0.75. Both segments use a Gaussian innovation
process with variance σ2ϵ ¼ 1 for clarity. We embed part
of the A1O8.25 waveform from the Abdikamalov et al.
catalogue [25]. This waveform is in the test set, not
included in the construction of PC basis functions. The
data setup can be seen in Fig. 6.

The aim here is to simultaneously estimate both noise
PSDs, as well as reconstruct the embedded GW signal
using the method described in Sec. II E. Here we are
assuming the change-point between the two noise series is
known, though we will demonstrate in the next section that
our method can locate unknown change-points.
Notice the difference between the first half of the noise

series compared with the second half. Each segment has a
different dependence structure and is therefore colored
differently in the frequency domain. This results in a
different time-domain morphology. Estimates of the noise
PSDs can be seen in Figs. 7 and 8.
Figures 7 and 8 show the estimated log PSDs for the two

noise segments. The pointwise posterior median log PSDs
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FIG. 5 (color online). Posterior median PC coefficients (blue
square) and “true” PC coefficients (orange triangle) for the 10
PCs of a fictitious GW signal embedded in AR(1) noise. The error
bands are the 95% credible intervals.
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FIG. 6 (color online). Snapshot of the signal superimposed on
the signal-plus-noise model. The noise series has length n ¼
n1 þ n2 ¼ 213 and is segmented into two equal parts. The first
half of the noise is generated from an AR(1) with ρ ¼ 0.5, and
the second half is generated from an AR(1) with ρ ¼ −0.75.
Both segments use a Gaussian innovation process with variance
σ2ϵ ¼ 1. The A1O8.25 rotating core collapse GW signal from the
Abdikamalov et al. test catalogue [25] is embedded in this noise
with a SNR of ϱ ¼ 50.
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FIG. 7 (color online). Spectral density estimate of the first noise
segment (ρ ¼ 0.5) from Fig. 6. The 90% credible region (shaded
pink), posterior median log PSD (dashed blue), and theoretical
log PSD (solid black) are shown.
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are close to the true log PSDs, and the 90% credible regions
for both segments mostly contain the true log PSDs but veer
slightly off towards the low frequencies. Due to posterior
consistency of the PSD, these estimates will only get better
as the sample size increases. Slight imperfections in the
PSD estimates may not be such a problem if the embedded
GW signal is extracted well, which happens to be the case
in this example. The extracted signal can be seen in Fig. 9.
The 90% credible region for the reconstructed GW signal

in Fig. 9 generally contains the true signal and has
performed particularly well during collapse and bounce.
Again, the post-bounce ringdown oscillations usually have
the poorest reconstruction through the time series but have
performed remarkably well in this example, regardless of
the slight imperfections of the PSD estimates.

E. Detecting a spectral change-point

Consider a change-point problem similar to that of the
previous section, where a time series exhibits a change in its
spectral structure somewhere in the series. A valuable
consequence of the algorithm presented in Sec. II E is its
ability to detect change-points regardless of whether the
change-point occurs within a segment or on the boundary.
For the following examples, let n ¼ 212 and break this into
J ¼ 32 equal length segments. For clarity, assume the time
series does not contain an embedded GW signal.
First consider the case where the change-point occurs on

the boundary of two noise series. Let n1 ¼ n2 ¼ 211 be the
lengths of each noise series, and let the first half of the time
series be generated from an AR(1) with ρ ¼ 0.5, and the
second half from an AR(1) with ρ ¼ −0.75. Both AR(1)
processes have additive Gaussian innovations with σ2ϵ ¼ 1.
In this example, the change-point occurs exactly halfway
through the series. Figure 10 shows a time-frequency map
of the estimated log PSDs for each segment.
It is obvious that a change-point occurs halfway through

Fig. 10, as there is a sheer change in the spectral structure
at this point between segments 16 and 17. The first half of
the time-frequency map exhibits stronger low-frequency
behavior, whereas the second half has more power in the
higher frequencies.
Now consider the case where the change-point occurs

during a segment rather than on the boundary. Here, let
each segment have the same setup as before, but instead set
n1 ¼ 211 − 26 and n2 ¼ 211 þ 26 such that a change-point
occurs halfway through segment 16. A time-frequency map
of the estimated log PSDs can be seen in Fig. 11.
Figure 11 demonstrates that there is a noticeable change-

point roughly halfway through the series. There is a
smoother transition from one PSD structure to the other
than in the previous example since the true change-point
occurs in the middle of a segment rather than on the
boundary.
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FIG. 8 (color online). Spectral density estimate of the second
noise segment (ρ ¼ −0.75) from Fig. 6. The 90% credible region
(shaded pink), posterior median log PSD (dashed blue), and
theoretical log PSD (solid black) are shown.
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FIG. 9 (color online). Reconstructed rotating core collapse GW.
The 90% credible region (shaded pink) and posterior median
signal (dashed blue) are shown, superimposed with the true
A1O8.25 GW signal from the Abdikamalov et al. [25] test
catalogue (solid black). The first half of the signal was embedded
in AR(1) noise with ρ ¼ 0.5, and the second half had AR(1) noise
with ρ ¼ −0.75. Both noise segments had Gaussian white noise
with σ2ϵ ¼ 1.
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FIG. 10 (color online). Time-frequency map showing the
estimated posterior median log PSDs for 32 segments of 1=4 s
of AR(1) noise. The change-point in spectral structure occurs
exactly halfway through the series.
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These examples demonstrate that we can detect poten-
tially unknown change-points in a time series. It is
important to note that if more segments are used, the time
duration within each segment becomes smaller, and our
accuracy in detecting the change-point increases. That is,
the time at which the change-point occurs becomes more
resolved if the segment durations are smaller. However, one
must also ensure that the segment durations are long
enough for the Whittle approximation to be valid.

F. Simulated Advanced LIGO noise

In this example, we simulate Advanced LIGO noise and
embed the A1O10.25 rotating core collapse GW signal
from the Abdikamalov et al. [25] catalogue in it, scaled to a
SNR of ϱ ¼ 50. We assume a one-detector setup, with a
linearly polarized GW signal (zero cross polarization).
The Advanced LIGO sampling rate is rs ¼ 214 Hz, with
a Nyquist frequency of r� ¼ 213 Hz. Let n ¼ 212, which
corresponds to quarter of a second of data.
The simulated noise is Gaussian and colored by the

Advanced LIGO design sensitivity PSD. Generating this
noise blindly results in a perfect matching of the end points
and their derivatives, due to the simplified frequency-
domain model. This is not realistic, since real data will
often not have matching end points. In order to make the
noise generation more realistic, we internally generated a
longer frequency-domain series (10 times longer), inverse
discrete Fourier transformed it, and returned a fraction
of it with a random starting point. This is referred to as
“padding” the data.
Figure 12 shows the estimated log PSD and the 90%

credible region, overlaid with the log periodogram. The
method performs remarkably well, particularly at higher
frequencies. Even though we will not be able to resolve
frequencies below ∼10–20 Hz at the Advanced LIGO
design sensitivity, it is still interesting to see how this

method performs at lower frequencies. Here, the low
frequency estimates are slightly off, but not by much.
We believe this to be due to two factors: 1=4 s of simulated
Advanced LIGO noise is actually a nonstationary series,
and we did not adjust for nonstationarities (simulated
Advanced LIGO data are not stationary for more than
1=16 s based on the Augmented Dickey-Fuller test,
Phillips-Perron unit root test, and KPSS test); and the
Bernstein polynomial basis functions are notoriously
slow to converge to a true function [35,36]. These factors
considered, the method still provides a reasonable
approximation.
The resultant reconstructed GW signal can be seen in

Fig. 13. The estimated signal here is very close to the true
signal during the collapse and bounce phases, as well as
during the ringdown oscillations. The 90% credible region
contains most of the true GW signal.
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FIG. 11 (color online). Time-frequency map showing the
estimated posterior median log PSDs for 32 segments of 1=4 s
of AR(1) noise. The change-point in spectral structure occurs in
the middle of segment 16 just before the halfway point.
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FIG. 12 (color online). Estimated log PSD for simulated
Advanced LIGO noise. The 90% credible region (shaded pink)
and posterior median (dashed blue) are shown, overlaid with log
periodogram (solid grey).
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FIG. 13 (color online). Reconstructed rotating core collapse
GW signal. The 90% credible interval (shaded pink) and posterior
mean (dashed blue) are shown, overlaid with the true A1O10.25
signal (solid black) from Abdikamalov et al. [25] test catalogue.
The signal is scaled to a SNR of ϱ ¼ 50.
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We chose d ¼ 25 PCs to reconstruct a rotating core
collapse GW signal, but this could be too many or too few
basis functions. Model selection methods similar to [21]
were not investigated in the current study, and even though
Figs. 3, 9, and 13 demonstrated good estimates during all
phases (including ringdown), there is a demand for
improved reconstruction methods.
We then accommodated for nonstationarities in detector

noise by breaking the series into smaller and locally
stationary components, and looked at the resulting time-
varying spectrum. This can be seen in Fig. 14. Rather than
choosing J ¼ 32 as in Sec. III E, nonstationarities in the
Advanced LIGO noise become more apparent if we slice
the noise series into fewer segments, each with longer
duration. Instead, consider splitting the data into J ¼ 8
equal length segments (nj ¼ 29). Here, the Whittle
approximation is valid, and the segments look locally
stationary.
Figure 14 illustrates that the Advanced LIGO PSD is

changing over time. Notice that lower frequencies are
gaining more power over time. Assuming that each seg-
ment is locally stationary (which should be the case since
the duration of each segment is less than 1=16 s), it is
important to accommodate for the changing nature of the
PSD since the Choudhuri et al. [22] PSD estimation
technique is based on the theory of stationary processes.
If we did not adjust for nonstationarities, estimates of
astrophysically meaningful parameters could become
biased.

IV. DISCUSSION AND OUTLOOK

This study was motivated by the need for an improved
model for PSD estimation in GW data analysis. The
assumptions of the standard GW noise model are too
restrictive for Advanced LIGO data. GW data are subject to
high amplitude non-Gaussian transients, meaning that the

Gaussian assumption is not valid. If the noise model is
incorrectly specified, we could make misleading infer-
ences. The stationarity assumption is also not valid, as
simulated Advanced LIGO noise is not stationary for much
longer than 1=16 s according to classical statistical hypoth-
esis tests. Using off-source data to estimate the PSD is
problematic since the PSD will naturally drift over time,
and is not necessarily the same as on the GW source.
The primary goal of this study was to develop a statistical

model that allows for on-source estimation of the PSD,
while making no assumptions about the underlying noise
distribution. We also wanted a method capable of account-
ing for nonstationary noise. Although we restricted our
attention to GWs from rotating core collapse stellar events
in this paper, our approach is perfectly valid for any GW
signal embedded in noise.
A secondary goal of this paper was to highlight to the

GW data analysis community the rich and active area of
Bayesian nonparametrics (and semiparametrics). We
believe this framework will be a very powerful toolbox
going forward, particularly in the analysis of GW bursts,
since accurate parametric models for these types of signals
are limited. Further, our future research efforts regarding
rotating core collapse events involves Bayesian nonpara-
metric regression models to construct GWs from their
initial conditions. Regularization methods, such as the
Bayesian LASSO [37], are also being considered.
In this paper, we have assumed linearly polarized GWs

to be detected by one interferometer. A relatively simple
extension of this work is to include a network of detectors,
as well as GWs with nonzero cross polarization. Another
extension would be to assume an unknown signal arrival
time, as done in [20,21]. These extensions can be expected
in the second generation of the algorithm.
The noise in our model was assumed to come from all

sources, including detector noise, environmental noise, and
statistical noise from parametric modeling of the signal.
The statistical noise is the residual difference between the
true and fitted signals. An important factor to consider was
whether statistical noise artificially dominated the noise.
We do not believe this to be a dominating contributor to the
overall noise.
Since the “theoretical” PSD of Advanced LIGO at its

design sensitivity has a very steep decrease at low frequen-
cies until it reaches a minimum at roughly 230 Hz, it is
difficult for our algorithm to perfectly characterize the
shape at low frequencies without increasing computation
significantly. This is due to the well-known slow conver-
gence of Bernstein basis functions to a true curve. That is,
many Bernstein polynomials (on order k ¼ 1000) are
required to accurately characterize the PSD of Advanced
LIGO. Compare this to more well-behaved noise sources,
such as those from autoregressive processes, which require
k < 50. We are currently developing a second generation
of this algorithm, using a mixture of B-spline densities
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FIG. 14 (color online). Time-frequency map of the estimated
time-varying noise spectrum for 8 segments of 1=4 s simulated
Advanced LIGO noise. The posterior median log PSDs for each
noise segment are used.
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(normalized to the unit interval), rather than Beta densities.
B-splines have much faster convergence rates than
Bernstein polynomials [35,36]. An additional benefit of
changing the basis functions to B-splines is that, like
BayesLine [7], we will be able to account for spectral
lines by peak-loading knots at a priori known frequencies
at which these occur. The estimation of spectral lines is
out of the scope of this paper, but we believe that a change
of basis functions from Bernstein polynomials to normal-
ized B-spline densities could work well. Another interest-
ing approach would be to model spectral lines with
informative priors using a similar approach to Macaro [38].
We used noninformative priors in this analysis. It may be

possible to translate the known shape of the Advanced
LIGO design sensitivity PSD into a prior. This may also aid
in improving PSD estimates at lower frequencies.
We discussed a simplified method for estimating the

time-varying PSD of nonstationary noise. Our approach
assumed that a time series is split into equal length
segments, and at known times. We demonstrated that it
is possible to identify change-points in a time series and its
spectrum using this method, and that there is no need to
estimate the locations of the segment splits. Thus, a fixed
grid of known segment placements suffices, and no
RJMCMC is required. RJMCMC would have slowed the
algorithm down significantly and created an entire new set
of complications.
There is much work to be done on PSD estimation. As

the Advanced LIGO and Advanced Virgo interferometers
swiftly approach design sensitivity, it is important that we
continue to focus not only on parameter estimation tech-
niques, but also on modeling detector noise. PSD estima-
tion is as important as parameter estimation, since we want
to make honest statements about our observations based on
rigorous statistical theory. It is hoped that in the near future,
we can converge on a PSD estimation method that is less
strict than the standard noise model, works well on real
detector data, and is based on good statistical theory. We
believe that the methods presented in this paper are
definitely a step in the right direction.
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APPENDIX A: BERNSTEIN POLYNOMIALS
AND THE BETA DENSITY

To define the Bernstein polynomial, we first need to
discuss the Bernstein basis polynomials. There are kþ 1
Bernstein basis polynomials of degree k, having the
following form:

bj;kðxÞ ¼
�
k
j

�
xjð1 − xÞk−j; j ¼ 0; 1;…; k: ðA1Þ

A Bernstein polynomial is the following linear combi-
nation of Bernstein basis polynomials:

BkðxÞ ¼
Xk
j¼0

βjbj;kðxÞ; ðA2Þ

where βj are called the Bernstein coefficients.
As mentioned in Sec. II C, the Bernstein polynomial

prior is a finite mixture of Beta probability densities. We
use the following parametrization for the Beta probability
density function:

fðxjα; βÞ ¼ Γðαþ βÞ
ΓðαÞΓðβÞ x

α−1ð1 − xÞβ−1; ðA3Þ

∝ xα−1ð1 − xÞβ−1; ðA4Þ

where x ∈ ð0; 1Þ, the shape parameters are positive real
numbers (i.e., α > 0 and β > 0), and Γð:Þ is the gamma
function defined as the following improper integral:

ΓðuÞ ¼
Z

∞

0

xu−1 expð−xÞdx: ðA5Þ

APPENDIX B: THE DIRICHLET DISTRIBUTION,
DIRICHLET PROCESS, AND STICK-BREAKING

CONSTRUCTION

The Dirichlet distribution is a multivariate generalization
of the Beta distribution (defined in Appendix A) with a
probability density function defined on the K-dimensional
simplex

ΔK ¼
�
ðx1;…; xKÞ∶ xi > 0;

XK
i¼1

xi ¼ 1

�
: ðB1Þ

The probability density function of the Dirichlet distri-
bution is defined as
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fðxjαÞ ¼ ΓðPK
i¼1 αiÞQ

K
i¼1 ΓðαiÞ

YK
i¼1

xαi−1i ; ðB2Þ

where αi > 0; i ¼ 1;…; K.
The Dirichlet process is an infinite-dimensional gener-

alization of the Dirichlet distribution. It is a probability
distribution on the space of probability distributions, and
is often used in Bayesian inference as a prior for infinite
mixture models. One of the many representations of the
Dirichlet process is Sethuraman’s stick-breaking construc-
tion [18,31]. This is useful for implementing MCMC
sampling algorithms.
LetG ∼ DPðM;G0Þ, whereG0 is the center measure, and

M is the precision parameter (larger M implies a more
precise prior). The Sethuraman representation is

G ¼
X∞
i¼1

piδZi
; ðB3Þ

pi ¼
�Yi−1

j¼1

ð1 − VjÞ
�
Vi; ðB4Þ

Zi ∼G0; ðB5Þ

Vi ∼ Betað1;MÞ: ðB6Þ

Consider a stick of unit length. The weights pi associated
with points Zi can be thought of as breaking this stick
randomly into infinite segments. Break the stick at location
V1 ∼ Betað1;MÞ, assigning the mass V1 to the random
point Z1 ∼G0. Break the remaining length of the stick
1 − V1 by the proportion V2 ∼ Betað1;MÞ, assigning the
mass ð1 − V1ÞV2 to the random point Z2 ∼G0. At the ith
step, break the remaining length of the stick

Q
i−1
j¼1ð1 − VjÞ

by the proportion Vi ∼ Betað1;MÞ, assigning the mass
ðQi−1

j¼1 ð1 − VjÞÞVi to the random point Zi ∼G0. This
process is repeated infinitely many times.

APPENDIX C: DEMONSTRATION
OF POSTERIOR CONSISTENCY

It was proved in [22] that under very general conditions
on the prior, the PSD estimation method used in this paper
has the property of posterior consistency. We provide an
illustrative example of this in Fig. 15.
We generated AR(1) processes (with ρ ¼ 0.9 and

Gaussian white noise) of varying sample sizes and com-
pared their performance. It can be seen in Fig. 15 that as the
sample size of the time series increases, the pointwise
posterior median log PSD gets closer to the true log PSD,
thus demonstrating posterior consistency.
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