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In this work we deal with the presence of braneworld solutions in a five-dimensional space-time with a
single extra spatial dimension of infinite extent. The braneworld scenario is built under the presence of a
single real scalar field, and we modify the gravity sector to include generic function of the Gauss-Bonnet
term. We study several specific models, and we construct exact braneworld solutions, in particular for
including the Gauss-Bonnet term at first and second order power. As an interesting result, we show that
the brane tends to split for a specific modification in the gravity sector, in the presence of a nonconstant
Gauss-Bonnet term.
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The study of gravity is certainly one of the most
fundamental research lines in the modern theoretical high
energy physics. The problem of explaining the cosmic
acceleration discovered in [1], together with the search for a
consistent quantum gravity model, called a great deal of
attention to the study of modified theories of gravity. A
crucial role was played by the paper [2] where the idea
of noncompact extra dimensions, which gave rise to wide
application of the brane concepts in gravity and cosmology,
has been introduced.
Following the brane concept, our four-dimensional

space-time is treated as a brane embedded to some
higher-dimensional space-time, that is, the bulk where
the gravitational field can propagate, whereas the fields
of fundamental interactions are confined to the brane [3]. In
the standard scenario, the higher-dimensional gravity was
supposed to be described by the usual Einstein-Hilbert
action. However, a very natural development of the idea
consisted in modifying of the gravity Lagrangian imple-
mented through the replacement of the scalar curvature R
by some other scalar depending on the gravitational fields
and involving its higher derivatives. Within the quantum
field theory, the interest to such a modification of the
gravity has been arisen by the seminal paper [4] where the
higher derivative extensions of gravity were considered
as a way to achieve a renormalizable gravity theory. Within
the classical gravity, study of the fðRÞ models was
developed as an aim for a possible explanation of a cosmic
acceleration [5]. Many issues related to the different
aspects of the fðRÞ gravity, especially the exact solutions
in this theory, have been studied in [6]. Within the brane
context, the fðRÞ gravity has been applied for the first
time in [7].

However, the fðRÞ gravity does not include all possibil-
ities for extensions of gravity. One of the most studied
extensions is the Lovelock gravity, such that the gravity
action is now represented as a series, with its lowest (zero)
order being a cosmological term, the first order is the scalar
curvature, and the second one is the Gauss-Bonnet term [8].
As a result, the Gauss-Bonnet gravity naturally emerges, in
which the gravity Lagrangian is a sum of the usual Einstein-
Hilbert Lagrangian with the Gauss-Bonnet scalar or its
function. It is well known that in the four-dimensional
space-time, the Gauss-Bonnet term is topological. Some
aspects of the Gauss-Bonnet gravity have been considered
earlier in [9]. In [10], this theory has been applied within the
cosmic acceleration context. It should bementioned, that the
higher-order contractions of the Riemann curvature tensor,
and hence higher orders in the Gauss-Bonnet term, naturally
arise in the low-energy limit of the string theory [11].
Within this paper, we are going to study theGauss-Bonnet

gravity within the brane context. Some earlier studies in this
direction have been performed in [12,13], where, however,
only the simplest version of the Gauss-Bonnet gravity has
been considered, that is, only theGauss-Bonnet termG itself
is added to thegravity action.At the same time, actuallymore
sophisticated manners to include the Gauss-Bonnet term are
carried out, implying thus in the theories of fðGÞ gravity and
fðR;GÞ gravity which are intensively discussed within the
cosmic acceleration problem, for a review see e.g., [14] and
references therein. It is worth mentioning that fðGÞ gravity
has been testedwithin the cosmological observations in [15],
where the restrictions on the numerical parameters of the
action have been obtained. Besides the cosmological studies,
the stability issues also have been discussed for the Gauss-
Bonnet gravity [16], where, moreover, it was shown that just
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for the case fðGÞ ¼ G, the Gauss-Bonnet gravity displays
the instabilities, which certainly implies a suggestion that
namely a theory described by a more sophisticated function
fðGÞ can be free of instabilities. Therefore, it seems natural
to apply these more generalized models also within the
braneworld context.
Our aim will consist principally in applying the first-

order formalism which has manifested itself as a very
useful tool for solving the nonlinear equations of motion,
especially modified Einstein equations [7]. Using this
method, we will find some new exact solution for the
Gauss-Bonnet brane. The exact solutions are then used to
investigate the profile of the energy density, searching in
particular for the brane splitting feature, as it has appeared
before in [17,18] and more recently in [19]. In the recent
work [19], one noticed that the splitting appears due to
modification in the geometry, with the inclusion of the R2

term in the Einstein-Hilbert action. In the current work we
modify the geometry including the Gauss-Bonnet term, so
we believe that the splitting is not excluded, being an effect
unseen in previous investigations.
We start with the following action describing the Gauss-

Bonnet brane (cf. [13]):

S ¼
Z

d4xdy
ffiffiffiffiffiffi
−g

p �
1

2
Rþ 1

2
fðGÞ þ Ls

�
: ð1Þ

Here y is the extra coordinate, Ls is the source Lagrange
density. As usual, G stands for the Gauss-Bonnet term,
which is given by

G ¼ R2 − 4RμνRμν þ RμνλρRμνλρ: ð2Þ

In the present work, we take the line element in the form

ds2 ¼ e2AðyÞηabdxadxb − dy2; ð3Þ

with A representing the warp function. This stands for AdS5
geometry, and here we consider the source as a scalar field,
specified by

Ls ¼
1

2
gμν∂μϕ∂νϕ − VðϕÞ: ð4Þ

The modified Einstein equation looks like [13]

Gμν ¼ 2Tμν þ
1

2
gμνfðGÞ − 2FðGÞRRμν þ 4FðGÞRλ

μRνλ

− 2FðGÞRμλρσRν
λρσ − 4FðGÞRμρσνRρσ

þ 2R∇μ∇νFðGÞ − 2Rgμν∇2FðGÞ − 4Rρ
μ∇ν∇ρFðGÞ

− 4Rρ
ν∇μ∇ρFðGÞ þ 4Rμν∇2FðGÞ

þ 4gμνRλρ∇λ∇ρFðGÞ − 4Rμνλρ∇λ∇ρFðGÞ
≡ 2Tμν þHμν: ð5Þ

Here we are using FðGÞ ¼ dfðGÞ
dG , Tμν is the energy-

momentum tensor of the source field, and Gμν ¼
Rμν − 1

2
Rgμν is the usual Einstein tensor. Since G is a

scalar depending only on yð¼ x4Þ, by symmetry the last
term 4Rμνλρ∇λ∇ρFðGÞ ¼ 0; unfortunately, however, this
does not simplify the expression too much. For the sake of
simplicity we choose in this paper fðGÞ ¼ aGn, with
n ≥ 1. We use Latin indices a; b; c; d ¼ 0…3, and Greek
ones μν; λρ ¼ 0…4. Also, A0 ¼ dA

dy. It is clear that for
fðGÞ ¼ 0 the usual equations of motion [18] are restored.
Direct calculations show that for the braneworld metric

(3) one has

Rabcd ¼ e4AA02ðηacηbd − ηadηbcÞ;
R4b4d ¼ −e2AðA00 þ A02Þηbd;
Rbd ¼ e2AηbdðA00 þ 4A02Þ;
R44 ¼ −4ðA00 þ A02Þ;
R ¼ 8A00 þ 20A02;

RμνRμν ¼ 80A04 þ 20A002 þ 64A00A02;

RμνλρRμνλρ ¼ 40A04 þ 16A002 þ 32A00A02;

G ¼ 24½4A00A02 þ 5A04�;

Tab ¼ ηab

�
1

2
ϕ02 þ VðϕÞ

�
e2A;

T44 ¼
1

2
ϕ02 − VðϕÞ: ð6Þ

For the usual Einstein tensor Gμν one finds in this metric

Gab ¼ −3ðA00 þ 2A02Þηabe2A;
G44 ¼ 6A02; Ga4 ¼ 0: ð7Þ

Let us now look for some possibilities to solve the
equations (5). The most complicated terms are the deriv-
atives of fðGÞ. As a first step, one can verify that the
expression for the Gauss-Bonnet term is correct. Indeed, let
us suggest that the metric in the D-dimensional bulk space-
time looks like (3), but with a; b ¼ 0…D − 2. Repeating
all calculations, one gets

G ¼ ðD − 1ÞðD − 2ÞðD − 3Þ½DA04 þ 4A00A02�: ð8Þ

At D ¼ 5, one indeed yields G ¼ 120A04 þ 96A00A02.
At D ¼ 4, one has G4 ¼ 24A04 þ 24A00A02; in this case,
the contribution to the action, that is,

ffiffiffiffiffijgjp
G4¼

24e3AðA04þA00A02Þ¼8ðe3AA03Þ0 (recall that
ffiffiffiffiffijgjp ¼

eðD−1ÞA) is a total derivative, thus confirming the known
fact that the Gauss-Bonnet Lagrangian is a total derivative
in four dimensions. Also, it vanishes in lower dimensions.
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The next step is to suggest that the Gauss-Bonnet term G
is constant, i.e.,

G
24

¼ 4A00A02 þ 5A04 ¼ 5B: ð9Þ

In this case, for the positive B ¼ b2, one gets

yþ C ¼ 4

5

Z
dA0A02

b2 − A04 ; ð10Þ

and for the negative B ¼ −b2, it gives

yþ C ¼ −
4

5

Z
dA0A02

b2 þ A04 : ð11Þ

In principle, the explicit forms of AðyÞ can be found for
both these factors, although it is ugly: for B ¼ b2, one has

yþ C ¼ −
4

5

�
1

4
ffiffiffi
b

p ln

����A0 þ ffiffiffi
b

p

A0 −
ffiffiffi
b

p
����þ 1

2
ffiffiffi
b

p arctan
A0ffiffiffi
b

p
�
; ð12Þ

and for B ¼ −b2, one has an even more complicated
expression. However, the result evidently exists. So, let
us write the equations of motion for this case:

Gμν ¼ 2Tμν þ
1

2
gμνfðGÞ − 2FðGÞRRμν þ 4FðGÞRλ

μRνλ

− 2FðGÞRμλρσRν
λρσ − 4FðGÞRμρσνRρσ: ð13Þ

Here fðGÞ and FðGÞ are constants. So, we have for the
cases μν ¼ ab and μν ¼ 44, respectively:

−3ðA00 þ 2A02Þ ¼ ðϕ02 þ 2VðϕÞÞ þ 1

2
fðGÞ

− FðGÞð48A04 þ 36A00A02Þ;

6A02 ¼ ϕ02 − 2VðϕÞ − 1

2
fðGÞ

þ FðGÞð48A04 þ 48A00A02Þ; ð14Þ

or, as is the same after replacement of the first equation by
the sum of the two equations,

−3A00 ¼ 2ϕ02 þ 12FðGÞA00A02;

6A02 ¼ ϕ02 − 2VðϕÞ − 1

2
fðGÞ

þ 48FðGÞðA04 þ A00A02Þ: ð15Þ

So, we can use some choice for the warp factor consistent
with the constantG and arrive at the system on ϕ and VðϕÞ.
We note that within this methodology, the potential VðϕÞ,
instead of being introduced as a basic characteristic of
the theory, turns out to be a variable to be determined.
However, the assumptions of this method, imposing

restrictions on the potential [7,18], are necessary to employ
the power of the first-order formalism allowing us to obtain
exact solutions for a certain class of potentials while, in a
generic case, the solutions can only be found numerically.
Therefore, within this approach, we solve a kind of inverse
problem, allowing us to find the potential for the known
warp factor. Moreover, we demonstrate how the explicit
form of the potential can be found.
Let us substitute G ¼ 120D, with D being a constant.

Also, we suppose that if A0 ¼ A0ðyÞ, one can use y ¼ yðA0Þ
as well, therefore one has

ϕ0 ¼ 5

�
D − A04Þ
4A02

�
dϕ
dA0 : ð16Þ

We substitute A0 ≡ z. Thus, our system (15) implies

−15
�
D− z4

z2

�
¼ 50

�
dϕ
dz

�
2
�
D− z4

4z2

�
2

þ 60 ~FðDÞðD− z4Þ;

6z2 ¼ 25

�
D− z4

4z2

�
2
�
dϕ
dz

�
2

− 2VðϕÞ

−
1

2
~fðDÞþ 48 ~FðDÞð5D− z4Þ; ð17Þ

where ~FðDÞ¼FðGðDÞÞ¼Fð120DÞ, similarly, ~fðDÞ ¼
fð120DÞ. Resolving these equations, we find

�
dϕ
dz

�
2

¼ 15

50
ð1þ 4 ~FðDÞz2Þ 4z2

z4 −D
;

VðzðϕÞÞ ¼ 1

2

�
z4 −D
4z2

15

2
ð1þ 4FðDÞz2Þ − 6z2 −

1

2
~fðDÞ

þ 48 ~FðDÞð5D − z4Þ
�
: ð18Þ

So, in principle, the field and the potential are found in
terms of the auxiliary variable z.
At the same time, we can abandon the restriction of the

constant G. In this case, the Hab and H44 terms take the
form

Hab ¼ ηabe2A
�
1

2
fðGÞ − 12FðGÞA02ð4A02 þ 3A00Þ

þ 24F0ðGÞA0ðA02 þ A00Þ þ 4F00ðGÞð2A02 − A00Þ
�
;

H44 ¼ −
1

2
fðGÞ þ 48FðGÞA02ðA00 þ A02Þ

þ 16F0ðGÞA0ðA00 − 2A02Þ: ð19Þ

We consider these equations for the particular case
fðGÞ ¼ αGn which yields
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Hab ¼ ηabe2A
�
1

2
αGn−12αnA02ð4A02þ3A00ÞGn−1

þ4αnðn−1Þ½6G0A0ðA02þA00Þþð2A02−A00ÞG00�Gn−2

þ4αnðn−1Þðn−2ÞG02ð2A02−A00ÞGn−3
	
;

H44¼−
1

2
αGnþ48αnA02ðA00 þA02ÞGn−1

þ16αnðn−1ÞG0A0ðA00−2A02ÞGn−2: ð20Þ

Summing up the equations for T (the T is an object defined
from the relation Tab ¼ ηabe2AT) and T44, we find

ϕ02 ¼ −
3

2
A00 −

1

8
e−2AηabHab −

1

2
H44: ð21Þ

Therefore, one has

ϕ02 ¼−
3

2
A00−6αnA02A00Gn−1

−2αnðn−1Þ½ð2A02−A00ÞG00−2A0ðA02−5A00ÞG0�Gn−2

−2αnðn−1Þðn−2ÞG02ð2A02−A00ÞGn−3: ð22Þ

It is instructive to give here the explicit expressions for
the potential and energy density. To do it, we note that the
modified Einstein equations will look like

−3ðA00 þ 2A02Þ ¼ ðϕ02 þ 2VÞ þH;

6A02 ¼ ðϕ02 − 2VÞ þH44; ð23Þ

where H can be read off from Eq. (20). Subtracting the
second equation from the first one, we find the potential:

VðϕÞ ¼ 1

4
ð−3ðA00 þ 4A02Þ −H þH44Þ; ð24Þ

whose explicit form is

VðϕÞ¼−
3

4
A00−3A02−

1

4
αGnþ3αnA02ð8A02þ7A00ÞGn−1

−αnðn−1ÞðA0ð14A02þ2A00ÞG0þð2A02−A00ÞG00ÞGn−2

−αnðn−1Þðn−2ÞG02ð2A02−A00ÞGn−3: ð25Þ

The energy density in our case is given by the T00

component of the energy-momentum tensor of the matter

ρ ¼ −e2AL ¼ e2A
�
1

2
ϕ02 þ VðϕÞ

�
: ð26Þ

Let us now consider some specific cases.
(i) First example. For n ¼ 1 and α ¼ −1=4, we find

that

ϕ02 ¼ −
3

2
A00 þ 3

2
A02A00: ð27Þ

We choose a standard ansatz (which at large jyj
tends to AðyÞ ¼ −Bjyj):

AðyÞ ¼ B ln½sechðyÞ�; ð28Þ

where B > 0. We plot the warp function e2AðyÞ for
the above warp function in Fig. 1. We note that the
warp factor becomes more and more localized
around y ¼ 0, as B increases to larger and larger
values.
We use Eq. (27) to get

ϕ02 ¼ 3B
2
ð1 − B2Þsech2ðyÞ þ 3B3

2
sech4ðyÞ: ð29Þ

Moreover, in the case B ¼ 1, we find

ϕ0 ¼ �
ffiffiffi
3

2

r
sech2ðyÞ: ð30Þ

The solution of this equation is kinklike:

ϕðyÞ ¼ �
ffiffiffi
3

2

r
tanhðyÞ: ð31Þ

(ii) Second example. We use the same ansatz for the
warp function, as in Eq. (28), but now we consider
n ¼ 2. We get

ϕ02 ¼ −
3

2
A00 − 4αð3A02A00Gþ ð2A02 − A00ÞG00

− 2A0ðA02 − 5A00ÞG0Þ: ð32Þ

Using the expression for the Gauss-Bonnet term (9), we
arrive at

FIG. 1 (color online). The warp factor (28), depicted for
B ¼ 0.5 (red, solid line), B ¼ 3.0, (brown, dashed line) and
B ¼ 20.0 (blue, dotted-dashed line).
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ϕ02 ¼ −
3

2
A00 þ 96αð25A06A00 − 32A05A000 − 8A04A0000 þ 8A004

− 316A04A002 − 36A02A003 − 68A03A00A000 þ 4A02A00A0000

þ 24A0A002A000Þ: ð33Þ

Using the warp function (28), we find

ϕ02 ¼ 3

2
Bð1þ 64αB4ð32þ 64B − 25B2ÞÞsech2ðyÞ

þ 96αB4ð16 − 248B − 508B2 þ 75B3Þsech4ðyÞ
− 96αB4ð88 − 436B − 824B2 þ 75B3Þsech6ðyÞ
þ 480αB4ð16 − 44B − 76B2 þ 5B3Þsech8ðyÞ: ð34Þ

Now, we choose

α ¼ −
1

64B4ð32þ 64B − 25B2Þ ; ð35Þ

which allows us to write Eq. (34) as

ϕ02 ¼ a1sech4ðyÞ − a2sech6ðyÞ þ a3sech8ðyÞ; ð36Þ

where

a1 ¼ −
3ð16 − 248B − 508B2 þ 75B3Þ

2ð32þ 64B − 25B2Þ ; ð37Þ

a2 ¼ −
3ð88 − 436B − 824B2 þ 75B3Þ

2ð32þ 64B − 25B2Þ ; ð38Þ

a3 ¼ −
15ð16 − 44B − 76B2 þ 5B3Þ

2ð32þ 64B − 25B2Þ : ð39Þ

Let us rewrite Eq. (36) as

ϕ02 ¼ a3sech4ðyÞ
�
a1
a3

−
a2
a3

sech2ðyÞ þ sech4ðyÞ
�
: ð40Þ

Now, we define the constants

a1
a3

¼ r2;
a2
a3

¼ 2r; ð41Þ

with the restriction

�
ffiffiffiffiffi
a1
a3

r
¼ a2

2a3
; ð42Þ

that is,

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 248B − 508B2 þ 75B3

5ð16 − 44B − 76B2 þ 5B3Þ

s

¼ 88 − 436B − 824B2 þ 75B3

10ð16 − 44B − 76B2 þ 5B3Þ : ð43Þ

One can show that the possible solutions correspond
only to the negative sign in this equation which possesses
six solutions, with two of them being essentially complex.
From the remaining four solutions, only three satisfy
ϕ02 > 0, they are: B1 ¼ 0.4524, B2 ¼ 2.9561, and B3 ¼
20.0107. Therefore, if Eq. (43) is satisfied, from Eq. (40)
we have

ϕ0 ¼ � ffiffiffiffiffi
a3

p
sech2ðyÞ½r − sech2ðyÞ�; ð44Þ

which has the general solution

ϕðyÞ ¼ � 1

3

ffiffiffiffiffi
a3

p ½3r − 2 − sech2ðyÞ� tanhðyÞ: ð45Þ

From that, for permitted values of B, we obtain

ϕ1ðyÞ ¼ �ð0.5325tanh3ðyÞ− 3.8757 tanhðyÞÞ for B¼ B1;

ð46Þ

ϕ2ðyÞ¼�ð14.0826tanh3ðyÞ−84.3242tanhðyÞÞ forB¼B2;

ð47Þ

ϕ3ðyÞ¼�ð0.9165tanh3ðyÞ−10.9778tanhðyÞÞ forB¼B3;

ð48Þ

which are depicted in Fig. (2). We note that although the
solutions vary similarly, the amplitude of ϕ2ðyÞ is much
greater than it is in the other two cases.
In Fig. 3 we depict the energy density obtained from

(26), corresponding to each one of the above solutions. We
see that the brane has the standard behavior for B ¼ B3, but
it splits significantly for B ¼ B2. The splitting behavior of

FIG. 2 (color online). The solutions (46) (red, solid line),
1=10 × ð47Þ (brown, dashed line), and 1=2 × ð48Þ (blue, dotted-
dashed line).
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the brane was studied before in [17,18], as an effect driven
by the source Lagrange density. It was also identified in
[19], through modification of the geometry, shown to
appear from the inclusion of the R2 term, in the case of
nonconstant curvature. Here it also appears through modi-
fication of the geometry, with the inclusion of the G2 term
in the Einstein-Hilbert action, for a nonconstant Gauss-
Bonnet term. Although the splitting is similar to the case
found in Ref. [19], in the present case it is much more
evident, making the core of the brane behave as it is
asymptotically.
In these cases, the potential can be found explicitly. For

the case n ¼ 1 it is given by

VðϕðyÞÞ ¼ −
3

2
þ 3

4
sech2ðyÞ þ 9

4
sech4ðyÞ: ð49Þ

The solution for the field is

ϕ ¼
ffiffiffi
3

2

r
tanhðyÞ ⇒ y ¼ arctanh

� ffiffiffi
2

3

r
ϕ

�
: ð50Þ

Therefore, we can explicitly express the potential VðϕÞ as a
function of the field:

VðϕÞ ¼ 3

2
−
7

2
ϕ2 þ ϕ4: ð51Þ

For the case n ¼ 2 the potential looks like

VðϕðyÞÞ ¼ −3þ 2160αþ
�
9

2
þ 11664α

�
sech2ðyÞ

− 62736αsech4ðyÞ þ 77808αsech6ðyÞ
− 28512αsech8ðyÞ; ð52Þ

where α is given by Eq. (35). In this case we have

yðϕÞ ¼ arctanhðsðϕÞÞ; ð53Þ

where sðϕÞ satisfies the algebraic equation

as3ðϕÞ − bsðϕÞ − ϕ ¼ 0; ð54Þ

where a and b are the numerical paramters which can be
read off from Eqs. (46)–(48). Therefore, one has the
potential

VðϕÞ ¼ 3

2
þ 384α −

�
5568αþ 9

2

�
s2ðϕÞ − 384αs4ðϕÞ

þ 36240αs6ðϕÞ − 28512αs8ðϕÞ; ð55Þ

so we conclude that we succeeded to obtain the potential in
the form V ¼ VðϕÞ.
We can go on and use in (22) the ansatz A0 ¼ Cemϕ,

ϕ0 ¼ Demϕ, as in [7]. We take into account that the
equation of motion of the scalar field is the same as in
the usual fðRÞ brane case [7]

ϕ00 þ 4A0ϕ0 −
dV
dϕ

¼ 0; ð56Þ

whose solution is

VðϕÞ ¼ 1

2m
ðmD2 þ 4CDÞe2mϕ; ð57Þ

just as in [7]; so, we find the exponential potential. In this
case, the scalar field yields the Liouville-like form:

ϕ ¼ −
1

m
lnðmDðy − y0ÞÞ; A ¼ C

D
ϕ: ð58Þ

These ansatzes allow us to reduce the equation (22) to a
purely algebraic, although rather complicated, equation on
the parameter m which can be solved. Its explicit form is�
D2þ3

2
mCD

�
e2mϕ¼−e4nmϕ½24C3ð5Cþ4mDÞ�n−1

×α½6nmDC3þ2nðn−1Þ
× ½22m2C2D2−6m3CD3−2mC3D��:

ð59Þ

We see that here onemeets two situations: first, one can have
n ¼ 1=2 (which is rather exotic—it means that the Gauss-
Bonnet term enters the action with a fractional degree),
second, the right-hand side and the left-hand side of this

FIG. 3 (color online). The energy densities for the solutions (46) (red solid line), (47)(brown dashed line), and (48) (blue dotted-dashed
line).
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equation are separately equal to zero. In both cases one rests
with some algebraic equations for coefficients C and D,
arriving at the final expression D ¼ −3mC=2, with
97m2ðn−1Þ¼6; thus, for the given n, we get a fractionalm.
In summary, in this workwe considered theGauss-Bonnet

braneworld model. For this theory, we used the first-order
formalism which allowed us to find some exact solutions.
First, we succeeded in finding the scalar field and its potential
in an implicit form, in terms of some auxiliary variable, for
the case of the constant Gauss-Bonnet term. Second, we
abandoned the condition that the Gauss-Bonnet term is
constant, and in this case we found the solutions for the
specific forms of the function fðGÞ, that is, fðGÞ ¼ aGn

with n ¼ 1 and n ¼ 2. Also, we found the solution corre-
sponding to the exponential potential. All these solutions are
not compatible with the constant scalar curvature, therefore,
the anti-de Sitter space is ruled out, and the supersymmetric
extension of the theory seems to be impossible.
As a particularly interesting behavior, we noted the

splitting of the brane for a nonconstant Gauss-Bonnet term

in the case of n ¼ 2, that is, for fðGÞ ¼ aG2; see Fig. 2.
This behavior appears from modification of the geometry,
and it is similar to the splitting found before in [19], but
here it is much more evident for B ¼ B2 ¼ 2.9561, with the
core of the solution behaving as it is in the region far away
from the brane.
An interesting study concerns stability of the braneworld

scenarios that we investigated above. We can follow two
distinct approaches, one investigating how the tensorial
fluctuations in the metric behave, and the other, adding
small parameters to control the behavior of the extra terms
one has introduced in the current study. These and other
similar issues are presently under consideration, and we
hope to report on them in the near future.
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