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The universal coupling of matter and gravity is one of the most important features of general relativity. In
quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual
dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to
the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting
these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing
connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple
two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to
so-called intertwiner models defined for SUð2Þk. The two systems are coupled by choosing the Ising
coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of
the discretization. We coarse grain this toy model via tensor network renormalization and uncover an
interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background
configurations and conversely, the Ising model can induce phase transitions in the background. Moreover,
we observe a strong coupling of both systems if close to both phase transitions.
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I. INTRODUCTION

The universal coupling to all types of (known) matter is
one of the most profound features of general relativity. This
property has proven to be invaluable in testing the theory,
making progress in cosmology, and interpreting phenom-
ena such as black holes as originating from the gravitational
collapse of matter. However, general relativity as a classical
and thus deterministic theory of a dynamical spacetime is
at odds with the fundamental quantum nature of matter,
which is described by quantum field theories on a fixed, not
necessarily flat, background spacetime.
It is expected that this inconsistency can be cured by

quantizing gravity [1]. Inevitably this not only requires this
theory of quantum gravity to possess a classical limit
consistent with vacuum general relativity, but it must also
be possible to couple matter to it and obtain a dynamics for
the composite system. Most importantly, this should allow
us to study systems, for which gravity and matter are
strongly coupled, e.g. close to the big bang, where one can
expect to find new physics. However, these regions are
currently not accessible by experiments. On the other hand,
the theory must not conflict already well-tested physics.
Hence, it should also be possible to identify a regime, in
which the effective dynamics (of quantum matter and
gravity) behave like quantum field theory on an almost
fixed background spacetime, e.g. consistent with data
observed at accelerators. Moreover, the coupling of matter
might reveal new properties and deepen our understanding

of the theory of quantum gravity, as it has been demon-
strated e.g. in [2] in the context of asymptotic safety [3].
The status of coupling matter to candidate theories of

quantum gravity is as diverse as the theories themselves.
For approaches relying heavily on quantum field theory
methods, e.g. asymptotic safety [3], in particular choosing
(albeit not necessarily fixing) a background spacetime,
coupling matter to gravity is (at least conceptionally)
straightforward, whereas theories relying on (either aux-
iliary or fundamental) discretizations, such as spin foam
models [4,5], causal dynamical triangulations [6], or causal
sets [7], additionally face the issue of defining gravity and
matter on the same discrete structure.
A candidate theory of quantum gravity defined on a

discretization, so-called spin foam models [4,5], motivates
this paper. Spin foams are a path integral approach related
to loop quantum gravity [8,9] and are defined on a
2-complex, i.e. a collection of vertices, edges, and faces,
which is frequently chosen to be dual to a triangulation.
These elements of the foam carry representation theoretic
objects of the underlying symmetry group; for Euclidean
signature this is SO(4), whereas SLð2;CÞ is chosen for
Lorentzian signature. Irreducible representations can be
found on the faces, whereas on the edges projectors onto an
invariant subspace (in the tensor product of vector spaces of
representations meeting at this edge) are located. The spin
foam model assigns an amplitude to a configuration of the
foam, i.e. a coloring with representations and intertwiners,
where one obtains the full amplitude after summing over
all configurations. If the 2-complex has a boundary, the*sebastian.steinhaus@desy.de
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associated boundary Hilbert space is that of loop quantum
gravity on the boundary graph1; thus a spin foam assigns
an amplitude to one possible transition of loop quantum
gravity states.
Readers familiar with lattice gauge theories may recog-

nize that the data carried by a spin foam are very similar to
the strong coupling expansion of lattice gauge theories.
Indeed, spin foam models can be understood as generalized
lattice gauge theories, since they carry projectors onto a
smaller invariant subspace instead of the full Haar projec-
tors. In the usual holonomy representation, this requires the
introduction of additional group elements assigned to the
faces of the discretization [14,15]. In fact, these similarities
can already be noticed for the classical continuum action,
where Yang-Mills and gravity can be written as topological
BF theory [16] plus constraints, which break the too many
symmetries of the topological theory. The crucial difference
is, however, that the simplicity constraints2 in the Plebanski
formulation of general relativity [17] are manifestly back-
ground independent, whereas for BF–Yang-Mills [18] the
constraints explicitly depend on a background metric.
The before mentioned similar mathematical structure

makes pure lattice gauge theories a very natural choice for
(tentatively) examining matter couplings to spin foams,
where one can focus on the conceptual issues of the
coupling of matter and gravity, which is another motivation
for the present paper. In fact, several different ways to
couple Yang-Mills to spin foams have already been defined
in the literature: In [19–21] the system of gravity and matter
is described by a topological quantum field theory, in which
propagating degrees of freedom arise by symmetry break-
ing in a low energy phase or matter is represented by
defects in the geometry. Conversely, [22,23] define lattice
gauge theory on a triangulation (dual to the foam) by
modifying the Wilson action to depend on the geometric
data provided by the foam, which can be interpreted as a
geometry dependent coupling constant—an idea we will
revive and test in this work for a toy model. In contrast to
this, [24] derived a discrete action for (BF–)Yang-Mills
[18] coupled to topological three-dimensional (3D) gravity
from the classical action and pointed out that in order to
consistently make contact with boundary Hilbert spaces of
the canonical theory, both theories ought to be discretized
on the same discrete structure, here the 2-complex. In yet a
different approach [25], Yang-Mills and gravity are unified

in a larger symmetry group, which possesses SO(4) [or
SLð2;CÞ] as a subgroup and the remainder of the group is
associated with the Yang-Mills degrees of freedom. In the
context of coupling fermions to spin foams [26], the
introduction of U(1) Yang-Mills has been discussed in
[27]. However, despite this multitude of interesting ideas, it
has not been possible to thoroughly study the dynamics of
the coupled system or even establish a link to usual lattice
gauge theories defined on a flat background lattice.
Similar to the pure gravity case, this issue is rooted in the

introduction of the discretization: For both gravity and
matter, the theory is not uniquely defined; e.g. for Yang-
Mills one can choose the Wilson action or the heat kernel
action [28], but moreover the crucial diffeomorphism sym-
metry of general relativity is broken [29–33] and the theory
depends on the chosen discretization. In fact, this also
includes the chosen coupling (mechanism) of the two
theories. However, physical predictions, such as expectation
values of observables, should not depend on the chosen
regulator, which inevitably raises the question how to
remove it. In spin foams alone this is a topic of debate
[34], where two main options have been advertised: the first
considers a sum over all discretizations (and even topologies
as put forward by group field theories [35]), which
(at least formally) removes the cutoff, whereas the second
one proposes a refinement-/coarse-graining procedure that
relates theories, boundary states, and observables defined on
different discretizations and can be understood as a (gener-
alized) renormalization procedure [36–46], since a notion of
“scale” is absent.3 In this work we follow the latter idea,
which eventually requires us to renormalize the coupled
system, e.g. the Engle-Pereira-Rovelli-Livine model [48,49]
coupled to U(1)–or SU(3)–Yang-Mills theory, which clearly
is beyond the scope of this paper and beyond the possibilities
of current renormalization techniques, despite recent
progress in coarse graining algorithms for lattice gauge
theories [50] and analogue spin foam models [51–54].
Instead, the goal of this paper is to introduce a toy model,

in fact similar in spirit to the work [55,56] for two-
dimensional (2D) causal dynamical triangulations, that
shares several crucial properties with spin foams and lattice
gauge theories, but is considerably simpler such that we can
study its renormalization group flow here via tensor net-
work renormalization [57,58]. As the physical system we
are interested in, our toy model consists of two parts: a
“spin-foam inspired” background, given by “intertwiner
models” [59], which are based on the quantum group
SUð2Þk [60,61], and a Z2 Ising model chosen for the matter
part. Both systems can be understood as a dimensional
reduction of their four-dimensional (4D) counterparts, in

1As most spin foam models are defined for triangulations, this
does not contain all boundary graphs allowed in loop quantum
gravity. See [10] for a spin foam model resolving this issue and
also [11] on the challenge of linking loop quantum gravity
and spin foam models. On the other hand, in [12,13] a new
representation of loop quantum gravity based on graphs dual to
triangulations has been defined, which could be closer to spin
foam models.

2Implementing these constraints in spin foam models results
in the projectors onto smaller invariant subspaces, which is,
however, not uniquely defined.

3In contrast to standard lattice gauge theories, where the lattice
spacing a is inherited from the background spacetime, geometric
information has to be inferred from the geometric variables of the
spin foam. One already faces a similar issue if one considers
irregular lattices [47].
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which the local symmetry is replaced by a global symmetry.
Thus both systems pertain to a crucial ingredient, namely
intertwiners, which are located on the vertices of the
lattice.4 We choose this lattice to be a regular square lattice.
Then, these two systems are coupled by choosing the Ising
coupling constant β to be a function of background spin
labels j,5 similar to [22,23], based on the interpretation that
the background spins give the distance between two Ising
spins. This idea actually resonates with the idea of local
coupling constants for lattice gauge theories defined on
irregular lattices in [47], where the coupling constants are
assigned to parts of the discretization, e.g. edges or faces.
Therefore we study the dynamics of coupled intertwiner
degrees of freedom and are particularly interested in how
the two systems affect each other. To do so, we study the
Ising model on different backgrounds (including super-
positions) for two different ways of coupling the two
systems and extract phase diagrams of the model.
The paper is organized as follows: in Sec. II we introduce

both the background and the Ising model and two different
ways to couple the two theories. Section III describes
the coarse graining algorithm. We split the results into
two parts: Sec. IV concerns the Ising model (for different
temperatures) on a topological background, i.e. one fixed
point intertwiner for the background, and in Sec. V we
superpose several fixed point intertwiners. We close with a
summary and discussion in Sec. VI. In Appendix A we
have included some additional information on the quantum
group SUð2Þk and the graphical calculus developed in
[54,59] helpful to understand some calculations in this
article. Appendix B explains tensor network renormaliza-
tion in more detail and gives a more thorough derivation of
the formulas.

II. THE TOY MODEL—ISING SPINS ON A
DYNAMICAL BACKGROUND

In this section we introduce the toy model of interest: in
Sec. II A we first present the “gravitational” part followed
by the (uncoupled) Ising model in Sec. II B. In Sec. II C we
discuss the coupling of the two systems in more detail,
including assumptions and a brief discussion on choosing
the dual discretization related to [22] and [24]. More
importantly, we introduce two different couplings in
Secs. II C 1 and II C 2, for which we can already deduce
a very different qualitative behavior.

A. The gravitational part—Intertwiner models

On the “gravity” side, we pick the so-called intertwiner
models defined in [59] by Dittrich and Kamiński as our
dynamical background. These models are defined on a
graph with 3-valent vertices with an underlying symmetry
governed by the quantum group SUð2Þk at the root of
unity, i.e. the quantum deformation of the universal
enveloping algebra Uqðsuð2ÞÞ with deformation parameter
q ¼ exp iπ

kþ2
; see e.g. [60,61] and Appendix A for more

details. k ∈ N is also called the level of the quantum group
and defines a natural upper cutoff on the spins j with
jmax ¼ k

2
. Each 3-valent vertex is dual to a triangle, such that

each of its links pierces exactly one edge of a triangle. Each
of the links, and hence also the dual edges, carries a spin
j ∈ N

2
and a magnetic indexm ∈ N

2
with −j ≤ m ≤ j. To the

vertex itself, we assign an amplitude: The dependence
on the magnetic indices and triangle inequalities for the
spins fjeg are encoded in the Clebsch-Gordan coefficients

qCj1j2j3m1m2m3
of the quantum group SUð2Þk. Additionally,

we assign a factor aðj1; j2; j3Þ to the vertex, which only
depends on the representation labels. Thanks to the
imposed triangle inequalities, we will interpret the spin
labels je as the length of the edges of the triangulation.
To sum up, the basic building blocks of our model—

expressed in a graphical notation6—are

ð2:1Þ

ð2:2Þ

where q̄ denotes the complex conjugate of the deformation
parameter q.
In general, the factors aðfjegÞ and a0ðfjegÞ can be

chosen freely, but we are rather interested in the particular
case of triangulation independent, i.e. topological, models.
For a model to be triangulation independent, the predictions

4As an Abelian theory the Ising model only has trivial
intertwiner spaces, and an extension to non-Abelian (finite)
groups is possible; see e.g. [62]. Note also that the intertwiner
models [59] are also simpler than spin net models [51,53,54],
which are also called analogue spin foam models.

5This possibility has been pointed out to us by Bianca Dittrich,
who also raised the idea to examine a coupling βðjeÞ ∼ 1

je
.

6The peculiarities of the quantum group require us to specify a
preferred direction; here the edges of the graphs come with an
orientation pointing from the bottom up. This is not crucial for
most of this work, and thus we have included more details in
Appendix A. See also [54,59] for more thorough discussions of
this graphical notation.
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of the theory, e.g. expectation values of observables and
the partition function, must be independent on the chosen
triangulation of the manifold. As shown by Pachner
[63,64], two triangulations of the same manifold are related
to one another by a consecutive application of certain local
changes of the triangulation, known as Pachner moves.
There exist three Pachner moves in 2D: the 2-2 Pachner

move, the 3-1 Pachner move and its inverse, and the 1-3
Pachner move. These moves are illustrated e.g. in Eqs. (2.5)
and (2.8). The 2-2 move essentially exchanges the edge
shared between two triangles by an edge connecting the
“tips” of the original triangles. This gives two new triangles,
such that the total number of 2-simplices in the triangulation
is unchanged. For the 3-1 move on the other hand, one
considers three triangles, where all three triangles share a
common vertex. These three triangles are combined into
one triangle by removing this (interior) vertex resulting in a
coarser triangle; the inverse 1-3 move reverts the process by
placing a vertex in the center of the triangle and connecting it
to the vertices of the coarse triangle.
In the systems investigated in this work, invariance under

Pachner moves directly translates into conditions on the
amplitudes associated with the building blocks and/or
triangles, in particular aðfjegÞ. Using the notation intro-
duced above, we can write these conditions pictorially
(see [59] for more details):

(i) “Tilting” condition:

ð2:3Þ

which leads to the following relation for the factors
aðfjgÞ:

a0623a641 ¼ a362a0164: ð2:4Þ

(ii) 2-2 Pachner move:

ð2:5Þ

Together with the following identity on the Clebsch-
Gordan coefficients [59]:

ð2:6Þ

where the symbol in the square brackets is a modified
f6jg symbol and dj ¼ ½2jþ 1� denotes the quantum
dimension of spin j, which is the quantum number of
the classical dimension. Again, see Appendix A for
more details. One obtains the following condition on
the factors aðfjgÞ:
ffiffiffiffiffiffi
1

dj6

s
a0623a641 ¼

X
j5

�
j1 j2 j5
j3 j4 j6

� ffiffiffiffiffiffi
1

dj5

s
a0125a345:

ð2:7Þ

(iii) 3-1 Pachner move:

ð2:8Þ

which gives the following equation for the factors
aðfjgÞ:

ca0123 ¼
X

j4;j5;j6

�
j1 j2 j3
j4 j5 j6

�
ð−1Þj4þj5−j3

×
1ffiffiffiffiffiffiffiffiffiffiffiffi
dj3dj4

p a651a0624a
0
543; ð2:9Þ

and

ð2:10Þ

which gives the following equation for the factors
aðfjgÞ:
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ca123 ¼
X

j4;j5;j6

�
j1 j2 j3
j4 j5 j6

�
ð−1Þj4þj5−j3

×
1ffiffiffiffiffiffiffiffiffiffiffiffi
dj3dj4

p a0641a625a453: ð2:11Þ

Even if the factors aðfjegÞ [and a0ðfjegÞ] satisfy these
conditions, i.e. the theory is topological, these factors are
not uniquely determined. Further input is required, which
usually is a restriction on the allowed spins. In [59] a wide
variety of these models has been identified, and here we
briefly review the ones most interesting in this work. Note
that from now on, we restrict ourselves to integer spins,
j ∈ N, i.e. representations of SOð3Þk. Moreover, for all
these topological theories, aðfjegÞ ¼ a0ðfjegÞ, such that
we can simplify the notation:

(i) Maximal spin J ≤ jmax:
This is the class of topological models we will

mostly be interested in this work. They are labeled
by a spin J ∈ N, which indicates that all spins
j ≤ J are allowed and excited; that is, all cou-
plings, which are allowed by the quantum group,
involving these spins are allowed. J can be smaller
or equal to the maximal spin of the quantum group,
jmax ¼ k

2
. The corresponding factor aJðfjegÞ is

given by

aJðj1; j2; j3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞJ−j1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞJ−j2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞJ−j3

p

× ð−1Þ2J−j1−j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j1 þ 1�½2j2 þ 1�

½J þ 1�

s

×

�
j1 j2 j3
J
2

J
2

J
2

�
: ð2:12Þ

Hence, by choosing J, we have a direct handle on
the maximal spin allowed on the edges of the
lattice. Moreover, it is straightforward to consider
linear combinations of these theories as it has also
been studied in [54], albeit for more complex spin
net models.

(ii) Only j ¼ 0 and j ¼ jmax excited:
For even levels k of the quantum group, the

maximal spin jmax ¼ k
2
is an integer and is of

quantum dimension djmax
¼ 1. Hence jmax can cou-

ple only with itself to the trivial representation
j ¼ 0; jmax ⊗ jmax ¼ 0. One can construct a topo-
logical theory where only these two representations
are allowed by choosing aðfjgÞ as follows [59]:

að0; 0; 0Þ ¼ a0ð0; 0; 0Þ ¼ 1;

aðjmax; jmax; 0Þ ¼ a0ðjmax; jmax; 0Þ ¼ 1: ð2:13Þ

(ii) Only j ¼ 0, j ¼ jmax
2
, and j ¼ jmax excited:

For this model, we consider k to be a multiple of
four, k ¼ 4l. Then jmax ¼ 2l and jmax

2
¼ l. As in the

previous example, jmax ¼ 2l is of quantum dimen-
sion one; thus again all factors aðfjgÞ which just
contain j ¼ 0 and jmax are equal to one (unless the
coupling is forbidden) [see (2.13)]. Thus the only
remaining factors are those containing j ¼ l: Those
factors aðfjgÞ containing either j ¼ 0 or j ¼ 2l are
proportional to the quantum dimension of j ¼ l,

að0; l; lÞ ¼ aðl; 0; lÞ ¼ aðl; l; 0Þ ¼
ffiffiffiffi
dl

p
;

að2l; l; lÞ ¼ aðl; 2l; lÞ ¼ aðl; l; 2lÞ ¼
ffiffiffiffi
dl

p
: ð2:14Þ

Thus the only nontrivial amplitude remaining is
aðl; l; lÞ, which is given by

aðl; l; lÞ ¼ a0ðl; l; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dlðdl − 2Þ

p
: ð2:15Þ

Note that these types of fixed points cannot be
constructed for all k ¼ 4l, since in a few cases the
2-2 move cannot be solved, e.g. for k ¼ 12, k ¼ 24,
or k ¼ 32. See [59] for more details. Therefore
we restrict ourselves to the working cases, namely
k ¼ 4, which is identical (up to signs) to the model
J ¼ 2 discussed previously and k ¼ 8.

1. Intertwiner models for 4-valent vertices

The discussion so far concerned only 3-valent inter-
twiners. In order to define the background for a square
lattice, we have to define 4-valent intertwiners.
In general, one can construct N-valent intertwiners from

3-valent ones by choosing a 3-valent graph with N outer
edges and specifying additional N − 3 internal representa-
tions.7 In our case, the 3-valent vertices come with addi-
tional restrictions on the allowed irreps, which we have
encoded in the factors aðfjgÞ. These restrictions translate
into restrictions on the N-valent intertwiners, if only the
allowed representations for 3-valent intertwiners appear
in the graph. Thus the set of allowed representations for
3-valent vertices determine those for N-valent ones; this is
known as Reisenberger’s construction principle [65] (see
also [54]). Note that different recoupling schemes generi-
cally result in different N-valent intertwiners.
In the 4-valent case, there exist three different recoupling

schemes,

7The graph is also called a recoupling scheme. Additionally we
assume multiplicity free representation categories; i.e. in a tensor
product of two irreps, each irrep appears at most once.
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ð2:16Þ

Because of our choice of factors aðfjgÞ, we see that the
recoupling schemes A and B are related to one another by a
2-2 Pachner move and thus give the same set of allowed
representations and intertwiners. The case C, as it is also
discussed in [54], is not satisfied for all models, in
particular not the ones labeled by J, owing to braiding
in the quantum group, but still gives the same set of allowed
representations as cases A and B. Nevertheless, in this work
we will restrict ourselves to the planar case, i.e. cases A
and B.
Crucially, any choice of factors aðfjgÞ giving a triangu-

lation independent model specifies a fixed point of the
renormalization scheme (if only the background is con-
sidered) we will use in this work, and thus a special family
of intertwiners, jι4ai in the 4-valent case. Given this, we
define the projector on the 4-valent vertices, P4

v, as

P4
v ¼ jι4aihι4aj; ð2:17Þ

which satisfy the projector condition P · P ¼ P by defi-
nition. We can also define superpositions of intertwiners,
which will, however, generically not satisfy this projector
condition any more,

P4
v ¼

X
i

αijι4aiihι4ai j; ð2:18Þ

where fαig are the coefficients of the linear superposition.
To put this in context to the models under discussion here,
let us express P for any choice of triangulation independent
factors aðfjgÞ,

ð2:19Þ

To check the projector property for (2.19), the projectors
have to be concatenated vertically (owing to the special
direction of the quantum group); see also [40,59] for more
details. For the rest of the work, we drop the superscript,
since we always work on a square lattice. Eventually, we

have the following partition function for the quantum
gravity inspired background:

Z ¼
X

fjeg;fmeg
Pvðfjege⊃v; fmege⊃vÞ: ð2:20Þ

B. The “matter” part—Ising spins

The goal of this work is to couple a matter system to this
gravitationally inspired, possibly dynamical, background.
The simplest, nontrivial option “living” on a lattice is the
Ising model, a Z2 spin system. On a given lattice, here with
equidistant vertices, it is defined as follows.
On the vertices v of the lattice, one places group

elements gv ∈ Z2; their interactions, restricted to nearest
neighbors, are described by edge weights assigned to the
edges e,

ωeðgsðeÞg−1tðeÞ; βÞ ¼ expfβgsðeÞg−1tðeÞg; ð2:21Þ

where the inverse “temperature” β ∼ 1
kT is the coupling

constant of the theory. gv ∈ f−1; 1g and the group multi-
plication is simply given by scalar multiplication. Each
edge e comes with an orientation, where sðeÞ and tðeÞ
denote the source and target of the edge e, respectively.
Inverting the orientation of an edge results in inverting the
argument of the corresponding edge weight, ωe−1ðgÞ ¼
ωeðg−1Þ. Since g ¼ −1 is its own inverse, changes of
orientation do not affect the Ising model. The introduction
of an orientation is rather a choice of notational conven-
ience and is necessary for the quantum groups.
Given these ingredients, the Ising model is defined via its

partition function

Z ¼
X
fgvg

Y
e

expfβgsðeÞg−1tðeÞg; ð2:22Þ

where the sum is over all configurations fgvg of group
elements assigned to the vertices. This sum of configurations
is weighted with the edge weights, which assign a higher
weight to aligned spins, i.e. gsðeÞ ¼ gtðeÞ. Equation (2.22)
also has a global symmetry: if all spins are simultaneously
flipped, i.e. gv ¼ �1 → gv ¼ ∓1∀ v, the partition function
is unchanged.
As it is well known from Onsager’s solution [66], this

model exhibits two different phases, separated by a second
order phase transition at the critical inverse temperature
βcrit ≈ 0.4406…; in fact, two different effects are dominat-
ing in the two phases. For β > βcrit, i.e. low temperature, the
system is in the ordered phase, in which neighboring spins
are more likely to be aligned to minimize the energy of the
configuration. For β < βcrit, i.e. high temperature, the spins
essentially decouple and are not aligned any more. Still
energy minimization and hence spin alignment are

SEBASTIAN STEINHAUS PHYSICAL REVIEW D 92, 064007 (2015)

064007-6



preferable; yet the higher the temperature, the smaller the
energy gap becomes. Since there are many more configu-
rations for which the spins are not aligned, they dominate
the partition function.
For the purpose of this work, it will be useful to briefly

discuss the (group) Fourier transform of the Ising model;
see also [51,62]. Any function ωðgÞ on Z2 can be expanded
in characters χ,8

ωðgÞ ¼
X
k

~ωkχkðgÞ; ð2:23Þ

~ωk ¼
1

2

X
g

ωðgÞχkðgÞ: ð2:24Þ

k ∈ f0; 1g denote the irreducible representations of Z2,
and χkðgÞ is the character of the group element g in the
representation k. χ̄k denotes the complex conjugate char-
acter. This character is given by

χ0ðgÞ ¼ 1 ∀ g ∈ Z2; ð2:25Þ

χ1ðgÞ ¼
�
1 if g ¼ 1;

−1 if g ¼ −1:
ð2:26Þ

The Fourier transformed edge weights ~ωk are then
given by

~ωk ¼
�
coshðβÞ for k ¼ 0;

sinhðβÞ for k ¼ 1:
ð2:27Þ

Eventually, we can expand the partition function into
Fourier components,

Z ¼
X
fgvg

Y
e

expfβgsðeÞg−1tðeÞg ð2:28Þ

¼ 1

12E

X
fgvg

X
fkeg

Y
e

~ωkeχkeðgsðeÞg−1tðeÞÞ ð2:29Þ

¼ 1

12E

X
fkeg

Y
e

~ωke

X
fgvg

Y
v

Y
e⊃v

χkeðgoðe;vÞv Þ ð2:30Þ

¼
X
fkeg

Y
e

~ωke

Y
v

δð2Þ
�X

e⊃v
ð−1Þoðe;vÞke

�
; ð2:31Þ

where E denotes the number of edges in the lattice. We
have used the fact that χkðg · hÞ ¼ χkðgÞχkðhÞ, such that the
partition factorizes for all gv and the sum can be performed.
As a result one obtains the delta function on Z2, denoted

δð2ÞðkÞ, on the vertices of the lattice, which require that the
representations ke on the edges e meeting at the vertex v
sum to zero (modulo 2).
Following this transformation one can define the dual

theory to the Ising model [67] by introducing new variables
on the vertices of the dual lattice, which depend on the fkeg
in such a way that all constraints on the original vertices are
satisfied. Remarkably, the dual variables are again Ising
spins (elements of Z2), which like the original Ising model
only interact with their nearest neighbors. The new cou-
pling constant depends on the original β, yet is large if β is
small and vice versa. Hence, the Ising model is also called
a self-dual theory, which relates the low/high temperature
regime of the Ising model to the high/low temperature
regime of another Ising model, respectively.
This particular property of the Ising model will simplify

the discussion of the coupling to the gravitational back-
ground in the following section.

C. The coupled system—some basic observations

In the previous Secs. II A and II B we have introduced
two discrete systems, a quantum gravity inspired one and a
simple matter model. The goal of this work is to sensibly
couple these models and study their collective dynamics.
To be more precise, the gravitational part is intended to
be the background on which the Ising model “lives,”
providing a dynamical notion of lengths which should
influence the Ising spin interactions. To do so, we work
with the following assumptions:

(i) Both theories live on the “same” lattice,9 in the sense
that we do not build in a different scaling behavior
by hand, e.g. say that the gravitational degrees of
freedom should be “finer” than the Ising degrees of
freedom. This choice is motivated by interpreting the
lattice as a regulator for both theories, where addi-
tionally the lattice itself does not carry a notion of
length—this notion is supposed to be provided by
the gravitational theory.

(ii) The two theories will be coupled by modifying the
matter part, concretely by implementing a depend-
ence on the gravitational labels into the edge weights
of the Ising model. One can interpret this as a
coupling constant β depending on the spins of the
gravitational model, for which we will introduce
two schemes below. This choice is motivated from
the coupling of matter to general relativity: While
gravity is not affected by the matter part in the
action, the matter part is sensitive to gravity via the
dynamical metric gμν that enters in the volume
element, the contraction of spacetime indices, and
covariant derivatives.

8For non-Abelian groups this applies only to class functions,
which have the property ωðgÞ ¼ ωðhgh−1Þ for all h ∈ G. Clearly,
all functions on Abelian groups are class functions.

9This can in principle mean that one theory lives on the dual
lattice, a possibility we do not wish to exclude a priori.
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(iii) For the rest of this paper we will consider only
regular (with respect to the combinatorics) square
lattices; i.e. we consider 4-valent vertices where
every pair of vertices share at most one edge. The
main reason is that coarse graining via tensor net-
work renormalization [57,58] can be straightfor-
wardly implemented and will allow us to study
the phase structure of the model. Moreover the dual
lattice is also simply a shifted square lattice, and we
can compare the coupled system to the pure Ising
model on an equilateral square lattice, e.g. observe
changes in the phase transition temperature.

As we have emphasized before, wewill interpret the gravity
inspired theory as a dynamical background on which we
place the Ising model. This can in principle be done in
two ways.
One possibility is to place the Ising spins on the dual of

the original lattice, which is demonstrated in Fig. 1. Indeed,
a spin foam model coupled to a pure (Yang-Mills) lattice
gauge theory has been defined on a triangulation in [22].
While the 4D Barrett-Crane model [68] “lived” on the dual
2-complex, the lattice gauge theory has been placed on the
triangulation, where the spin foam model provided the
geometric data, i.e. areas of triangles and volumes of
4-simplices. These two theories have been coupled by
implementing the dependence on the geometric data into
the face weights of the lattice gauge theory: via scaling
arguments to obtain the proper continuum limit, the Wilson
action has to scale like the volume of the building block,
here the 4-simplex; however, the plaquette variables scale

like the area squared of the plaquette. This mismatch10 has
to be cured by a proper normalization, which could be
interpreted as a locally modified coupling constant of the
lattice gauge theory, dependent on the geometry arising
from the spin foam.
However, the definition of the two coupled theories on

dual lattices/complexes has a drawback that has been
pointed out in [24]: Since both theories live on related
but essentially different lattices, the states and Hilbert
spaces one defines in the canonical theory, which are
essentially product states [8] are not boundary states of the
spin foam model, such that this model cannot be used to
compute transition amplitudes between states of the
canonical theory. To avoid this, one should rather define
both theories on the same discretization. In the context of
our toy model, this version is illustrated in Fig. 2.
In our concrete case, the chosen discretization of the

Ising model (with respect to the background) is less
important, since the Ising model is self-dual; essentially
we explore the same system with inverted temperature.11

FIG. 1 (color online). The coupled model, with Ising spins on
the dual lattice. The gravitational model is solely placed on the
black lattice, with SUð2Þk projectors/intertwiners Pvðfjege⊃vÞ on
the vertices v and representations je on the edges. The blue dual
lattice carries the Ising model, with Ising spins gv� on the dual
vertices v� and edge weights ωe� on the dual edges e�. Note that
every edge e pierces its dual edge e� only once, such that we can
interpret the spin je as the length or distance between the two
Ising spins on e�. There we will implement the interaction
between the Ising and background degrees of freedom, indicated
by the blue-black dots.

FIG. 2 (color online). The coupled model, with Ising spins on
the same lattice, after the Fourier transform to irreducible
representations ke has been performed. The gravitational
model is represented by the black lattice, with SUð2Þk
projectors/intertwiners Pvðfjege⊃vÞ on the vertices v and
representations je on the edges. The blue lattice carries the
Ising model, with irreducible representation ke and (trans-
formed) edge weights ~ωke on the edges e and a “Gauss”

constraint δð2Þv ðkeÞ ≔ δð2ÞðPe⊃vð−1Þoðe;vÞkeÞ on the vertices.
Again, we interpret the SUð2Þk spin je as the distance
between two Ising spins on the vertices, which enters into
the edge weights ~ωke , such that the interaction of the two sets
of degrees of freedom is only via the edges. To underline this,
we have drawn both lattices distinctly, with blue-black dots
indicating the interaction on the edges.

10In ordinary 4D lattice gauge theory the underlying lattice
is hypercubic and equilateral, such that the area squared of
any plaquette scales as the volume of a 4D hypercube.

11This is also true for the Ising model coupled to the back-
ground via a j dependent coupling constant, as introduced below.
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Nevertheless, these two choices are still worth exploring
since the choice will impact the coarse graining procedure
explained in Sec. III, for which the partition function is
written as a contraction of (local) tensors assigned to the
vertices of the lattice. To achieve this in the two different
discretization schemes requires a different choice of
(equivalent) variables for the Ising spins. In the dual case,
we stick to the original Ising spins on the dual vertices,
whereas in the ordinary discretization it is preferable to use
the Fourier transformed ones.
After this extended discussion on the discretization

schemes, we have to focus now on the coupling of the
background and the Ising model, for which a priori many
choices are possible. As discussed above, we implement
this coupling by solely modifying the Ising model, i.e. by
implementing a dependence on the background variables in
the edge weights ωe (or conversely their Fourier transforms
~ωk), concretely by choosing β to be a function of the
underlying geometry, here of the spins je; hence βðjeÞ.
The reader might wonder why this is supposed to be a

reasonable choice. Again the reasons stem from analogies.
First of all, the toy model at hand is supposed to give
insights into quantum gravity coupled to lattice gauge
theory, since 2D spin systems share statistical similarities to
4D lattice gauge theories [28]. If we consider again the
classical continuum coupling of gravity to Yang-Mills
theory, we observe that the metric only couples to the
curvature of the Yang-Mills connections, not directly to the
connection. Thus, we rather avoid coupling the background
degrees of freedom directly to the Ising spins, but rather
their edgewise product. In such a way we also avoid
breaking the global Z2 symmetry of the Ising model, such
that it can still be Fourier transformed and remains self-
dual.12 Moreover, a background dependent coupling con-
stant is consistent with our intuition of the Ising model. In
both discretization schemes, we can interpret the spin je as
governing the distance between two spins on this (dual)
edge. If je is increased, the distance between the spins
should also increase and result in a weaker interaction,
hence a smaller effective β.13 Finally, the idea of local
coupling constants is a notion discussed for lattice gauge
theories on irregular lattices [47]. Here the irregularity of
the lattice arises from irregular colorings of background
spins je, which can serve as a guideline for the choice
of βðjeÞ.

In Secs. II C 1 and II C 2 we will present two different
scenarios on how to model the dependence of β on je.

1. The “length” coupling

The first approach is a rather simple one, since it only
takes the distance between two spins into account, thus
called “length coupling.” The coupling looks as follows:

βðjeÞ ≔
β0

je þ 1
2

; ð2:32Þ

where β0 is the standard parameter of the Ising model.
je þ 1

2
is chosen to avoid an ill behavior for je ¼ 0.

Furthermore it is the edge length appearing in the asymp-
totics of the Ponzano-Regge model [69,70], a model for 3D
discrete Riemannian quantum gravity. This Ising coupling
βðjÞ is large for small spins, and actually the largest for
spin j ¼ 0. In order to have a direct comparison to the
Ising model on an equilateral lattice, we rescale β0, such
that β00 ¼ 1

2
β0. Then one obtains the standard Ising coupling

constant if all j ¼ 0.
From the definition of this coupling constant, we observe

already a few basic properties. For β0 ≪ 1, i.e. high
temperature, the Ising model is very insensitive to the size
of the edge lengths, since all configurations come with
(almost) the same strength. Hence, for β0 ¼ 0 we recover
the background without the Ising model on it. However,
for growing β0, we notice that the couplings fall off with
roughly 1

je
, such that we can expect two things: First, if

je > 0 are excited or allowed, the phase transition of
the Ising model might be pushed toward larger β0 in
comparison to the standard case, since the Ising spins
effectively see a weaker coupling. Second, for β0 ≫ 1,
βð0Þ ≫ βðjÞ∀ j ≠ 0, such that we expect the Ising model
to greatly favor j ¼ 0 configurations and thus might induce
a phase transition in the background from “j > 0 excited”
to “only j ¼ 0 excited.”

2. The “area-length” coupling

The second option we will investigate is far less obvious,
but also interesting. Instead of just assigning weaker and
weaker coupling constants β to larger spins, we rather
want to modify the coupling constant by a dimensionless
quantity. Therefore we have to compare the edge length of
the edge to another geometric quantity; the only other local
option is the (square root of the) area the edge is part of.
This idea is quite similar to the modification done in 4D
[22,23], where one considers the ratio of the area squared
of a triangle and the 4D volume of a 4-simplex. In 2D,
independent of the chosen discretization (or valency of the
vertices), every edge is shared by two faces, such that we
define

12Note that we are not implying that a direct coupling breaks
this symmetry necessarily, but a well-defined definition might not
be obvious. For example, a direct product of Yang-Mills and
gravitational holonomies might not exist for certain choices of
symmetry groups or just work in a common representation. A
direct coupling seems to be rather suited if a larger symmetry
group is used to describe the coupled degrees of freedom.

13Of course, the interpretation of this model is significantly
different from the standard idea of the Ising model, where the
spins sit in a rigid lattice (or rather crystal).
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βðfjegÞ ≔ β0

1
2

P
f⊃e

ffiffiffiffiffiffiffiffiffiffiffiffi
ArðfÞp

je þ 1
2

; ð2:33Þ

where ArðfÞ denotes the area of the face f.
First of all we note that, if we restrict our discussion to

square lattices, in which all edges have the same length, we
recover the standard Ising coupling constant. In the case of
a dynamical background, we are required to define the area
of the face f as a function of the edge lengths of the face.
Instead of constructing a suitable area operator, we will go
with a poor man’s version: we simply multiply the edge
lengths of two adjacent edges, i.e. spanning two orthogonal
directions, as if we had rectangular angles at each corner
of the tetragon. Of course, these will give very different
answers depending on which pair of edge lengths we pick,
but this can be improved e.g. by averaging over these four
choices.
Clearly, such an area coupling is more nonlocal than the

length coupling previously discussed, actually to a varying
degree. For example, the area averaging renders the edge
weight dependent on seven edge labels, which are also
subject to additional constraints on the bounding vertices of
the squares, in particular (generalized) triangle inequalities.
Therefore, to define this coupling information of six
vertices of the (background) lattice is required, which is
obviously at odds with the local coarse graining scheme.14

Instead we simplify this interaction by introducing a more
local coupling constant, defined for each pair of edge and
vertex,

βðfjegÞ ¼
1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jleft þ 1

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jright þ 1

2

q 	
ffiffiffiffiffiffiffiffiffiffiffiffi
je þ 1

2

q ; ð2:34Þ

where jleft and jright denote the edge labels “left” and
“right” of the edge e as seen from the vertex v. In short,
we simply define the area of the squares locally from the
edge lengths of the local vertex. Again, if all edge lengths
are equal, we recover the standard Ising coupling constant.
Moreover, note that this coupling constant is invariant
under a global rescaling of all edge lengths.
In comparison to the length coupling, general statements

on the possible behavior of the composite model are not as
obvious. Of course, for β0 ≪ 1, we recover the uncoupled
background, since the Ising model essentially assigns
constant weights to all background configurations.
However, for larger β0 no immediate consequences can
be read off, since the coupling on the edge is not only
determined by the local je, but also its neighboring ones.
For example, if the neighboring spins are larger than je the
coupling constant will be larger than β0 (and thus larger

than the configuration for all je ¼ 0). But that statement is
not sufficient to determine whether larger spins get sup-
pressed, since it concerns only one edge: A configuration
that increases the coupling constant for one edge generi-
cally assigns a lower coupling constant to the neighboring
ones. Hence the question of possible phases depends on the
weights and number of certain configurations, yet a general
mechanism for suppressing spins larger than j ¼ 0 for
β0 ≫ 1 does not seem to exist.
To make this statement more precise, let us consider a

configuration, which is allowed by the coupling rules and
deviates from the regular square case. For the time being,
we ignore the amplitude of the background and just
consider the influence of the Ising edge weights. A typical
configuration is e.g. twice spin j ¼ 0 and twice spin
j ¼ j0 > 0 on the four edges—all possible permutations
of these spins are allowed by the coupling rules of SUð2Þk.
If we then consider the product of all four edge weights,
e.g. for alternating spins and all ke ¼ 0 normalized by the
equilateral case, we obtain

Q
4
i¼1 ~ω0ðji; jiþ1; ji−1Þ
ð ~ω0ð0; 0; 0ÞÞ4

¼
cosh2

�
β0

ffiffiffiffiffiffiffi
1
2

j0þ1
2

r �
cosh2

�
β0

ffiffiffiffiffiffiffi
j0þ1

2
1
2

r �

cosh4ðβ0Þ
; ð2:35Þ

since the spins j0 are “surrounded” by spins j ¼ 0 and vice
versa. Thus we have a hyperbolic cosine squared with an
effectively larger coupling and one with an effectively
smaller one. Similarly this also occurs for more general
cases with nonequal spins fjig on the four edges of the
vertex.
Remarkably, it turns out that the product of four edge

weights (for the same ke configuration) for configurations
deviating from the all spins j equal case is larger in general
than for equilateral configurations. Thus, the Ising spins
effectively see a larger coupling if the lattice spacings are
not all equal. The explanation is the exponential growth of
the hyperbolic cosine (or sine for ke ¼ 1), where the shift to
larger β0 dominates over the shift to smaller (still positive)
β0. Therefore, this weight is particularly large if the four
spins j around a vertex are very different: The maximal
effective coupling occurs if the spins on the edges of the
vertex alternate between the smallest (j ¼ 0) and the largest
spins of the quantum group (j ¼ jmax)—the most
“nonequilateral” configuration [see (2.35) for j0 ¼ jmax].
If the deviation from the equilateral case is very small, e.g.
only spins j and jþ 1 are excited with j ≫ 1, then the
effective coupling quickly converges to the equilateral one.
Thus we can expect a very different behavior from the

area coupling than the length coupling: A mechanism to
suppress configurations with larger spins j appears to be
absent in the area coupling. Preferred configurations are

14To disentangle this dependence and write down an amplitude
for each vertex of the lattice is nonobvious.
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rather characterized nonlocally by their (ir)regularity,
where the lowest weight is assigned to the equilateral
configurations (independent of the spin j) and the highest
weights are assigned to the most irregular configurations
alternating between the smallest and the largest spins.
One implication is that configurations with spins j ≠ 0
will occur that are equipped with a larger weight than the
configuration with all j ¼ 0. Thus one can expect a shift of
the Ising phase transition toward smaller β0 if more spins j
are allowed, since the coupling is effectively larger. A
second implication concerns the background, which might
be affected by the preference of irregular configurations.15

In order to answer these questions and properly examine
the differences between the two couplings of the Ising
model to the background, it is imperative to study the
dynamics of the system beyond just a single vertex. To do
so, we will introduce a coarse graining algorithm, known
as tensor network renormalization, in the following section,
which will allow us to extract the phase structure of the
coupled system.

III. COARSE GRAINING ALGORITHM—TENSOR
NETWORK RENORMALIZATION

In Sec. II we have thoroughly motivated and introduced a
system of Ising spins coupled to a dynamical background
as a toy model for lattice gauge theory coupled to discrete
quantum gravity, where both theories are regularized by the
same (or the dual) lattice. The goal of the remainder of this
work is to study the composite dynamics of this novel
system. By this we particularly mean the composite phases
of the system, i.e. the regions in the parameter space of the
theory, in which the system shows the same qualitative
behavior. An example would be the Ising model in the
(dis)ordered phase on a specific background; e.g. all spins
j ≤ J are allowed. Moreover, we intend to investigate the
quantitative changes each of the models experiences, e.g.
whether the phase transition temperature of the Ising model
shifts due to the deviations of the background away from
equilateral lattices and whether the background is affected
by the Ising model.
In this context, the discretization plays a crucial role.

Unless we discuss topological theories, the results of the
theory will depend on the chosen discretization. In the
standard context, this discretization inherits a length scale
from the fixed background, and one describes how the
dynamics of the system changes as one considers a
different scale, which is the standard idea of renormaliza-
tion. Since a background scale is absent in our situation, we
have to relate theories defined on different discretizations
instead, e.g. the system on a finer discretization to a system

on a coarser discretization, via a transformation, here coarse
graining, which should not change the partition function
and expectation values of observables. We can understand
this transformation as a map from finer to coarser degrees
of freedom.
A coarse graining algorithm well suited for studying

systems without a direct reference to a length scale is tensor
network renormalization [57,58], originally developed in
condensedmatter physics.Note thatMonteCarlo simulations
are not applicable, since the intertwiner models [59] are
inherently complex; the same also holds for spin foam
models. The basic idea of this algorithm is to rewrite the
partition function as a contraction ofmultidimensional arrays,
the tensors,which encode all the dynamical information of the
system.16 Frequently the tensors have the same number of
indices as the original lattice and are pictorially representedby
a vertex with as many legs as indices. An index contracted
with another tensor is represented by connecting the two legs
of the tensors. Hence the partition function is represented by
many tensors connected to one another according to the
combinatorics of the lattice—a network.
The range of the index is frequently referred to as the

bond dimension χ. In our case, as we deal with finite groups
and quantum groups that come with a natural cutoff on the
representation labels, the bond dimension of the (initial)
tensor is finite. However, a straightforward definition for
systems with (compact) Lie groups, e.g. U(1) or SU(2), as
their underlying symmetry group is not obvious, unless one
can introduce an approximative cutoff as in the strong
coupling expansion or use a different scheme to write the
system with a finite bond dimension [72,73] or incorporate
Monte Carlo methods for the contraction of indices [74].
In our concrete example, we chop the partition function

into local amplitudes, which we can associate with the
vertices v of the lattice. Schematically, we show this in
Fig. 3. These local amplitudes are summarized as a tensor T
on the vertex v of the lattice,

TðdualÞðfjeg; fgv�gÞ
¼ Pvðfjege⊃vÞ

Y
e� dual to e⊃v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðgsðe�Þgtðe�Þ; fjegÞ

q
; ð3:1Þ

TðstdÞðfjeg; fkegÞ

¼ Pvðfjege⊃vÞδð2Þ
�X

e⊃v
ð−1Þoðe;vÞke

�Y
e⊃v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ωkeðfjegÞ

q
:

ð3:2Þ

15For β0 → ∞, this weight for irregular configurations diverges
with respect to all j ¼ 0. Since the background always couples to
the trivial representation and is normalized with respect to it, the
background probably will not stay unaffected.

16For lattice gauge theories, tensor network representations
exist as well (see e.g. [51,71]) but are very costly due to storing
redundant (gauge) information. In [50] an algorithm for 3D lattice
gauge theory has been implemented and tested, in which not all
information is stored in the tensor network. The data encoding
gauge symmetries are rather used to “decorate” the tensor
network, with the gauge conditions solved.
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Note that there is a slight difference in the definition of
the tensor if we have chosen either the lattice or its dual
for the Ising spins. In the former case, the standard
construction goes through, since the variables solely live
on the edges e and their mutual dependence is encoded on
the vertices v. In the latter case, the dual, this applies only
to the background; however, the Ising spins live on the
dual vertices v� with edge weights on the dual e�. In fact,
splitting of the edge weights is straightforward, but one
has to keep track of the Ising spins, a decoration to the
tensor network. How to coarse grain such decorated
tensor networks has been developed in [50] and turns
out to be as straightforward as the standard algorithm
[57,58]. Because of the self-duality of the Ising model,
we nevertheless drop this option and focus on the model,
in which both systems live on the same lattice; see also
Fig. 2. To simplify the notation, we will from now on drop
the superscript.
To obtain the whole partition function again, the tensors

are connected; i.e. the shared indices are summed over, and
the partition function is written as the tensor trace of the
tensor network,

Z ¼ Ttr
Y
v

ðTT � � �Þ: ð3:3Þ

So far, we have obviously only rewritten the problem into
a different form, which is more local than the original
one.17 The idea of the algorithm is then to locally transform
or coarse grain the tensor network, such that the original
partition function is approximated by a coarser, still local
tensor network. In short, the tensors themselves, and as
such the dynamical ingredients of the system, get
renormalized.
There exist a plethora of different tensor network

algorithms [57,58,75–77], which more or less differ only
in the scheme of how several fine tensors are transformed
into a coarse one. Such a transformation can be straight-
forward; e.g. on a square lattice, one can simply combine
four tensors on the corners of a square into one by
contracting the inner legs. One straightforwardly arrives
at a new tensor, however, with a squared index size,
pictorially represented by double edges. Continuing with
this endeavor, also with respect to inevitable numerical
simulations, is fruitless and requires a truncation for two
reasons: a practical one, since no computer possesses
infinite memory and infinite computational time to
contract the indices, and an interpretative one, in order
to compare the coarse to the fine tensor. Hence one is
required to define new coarse degrees of freedom arising
from the fine ones, such that one preserves an interpre-
tation and can simultaneously truncate the number of
degrees of freedom with a good control on the error
being made.
At this stage, we will not repeat the whole introduction

and derivation of tensor network renormalization and
instead briefly discuss the triangular algorithm, originally
introduced in [50]. The derivation of the formulas is
straightforward from the related 4-valent algorithm
[54,57,58], which we explain in more detail in
Appendix B.

A. The triangular algorithm

As the name suggests, the triangular algorithm shifts
the perspective from 4-valent tensors to 3-valent ones:
Instead of starting with one tensor T, we start with four
tensors Si. These tensors can be obtained e.g. from the
first step of the 4-valent algorithm, in which one splits
the 4-valent tensor across both diagonals into two pairs
of 3-valent ones; see Appendix B for a more detailed
explanation.
The triangular algorithm itself is shown in Fig. 4: To

compute a new 3-valent tensor, two of the Si are combined
pairwise, where the shared edge gets contracted, resulting
in a new 4-valent tensor. To arrive again at a 3-valent vertex,
the two “parallel” edges in Fig. 4 have to be combined into
one, since they represent the “finest” degrees of freedom of

FIG. 3 (color online). The initial amplitudes for the dual and the
standard discretizations. The partition function is chopped into
local amplitudes, tensors, along the edges. Since the same
variables are shared between the separated tensors, only the
edge weights, ωe� and ~ωke , respectively, are split. Then the
amplitudes are combined into tensors, a “decorated” tensor for
the dual theory, and a “standard” tensor for the normal one.

17Here “local” means that each tensor is connected only to a
nearest neighbor tensor.

SEBASTIAN STEINHAUS PHYSICAL REVIEW D 92, 064007 (2015)

064007-12



the system; for this we have to introduce an embedding
map, which is computed via a singular value decomposi-
tion (SVD).
Let us discuss this for a more concrete example: Suppose

we want to construct the S01 in Fig. 4 from S2 and S4. We
define the intermediate tensor ~S1 as

ð ~S1Þab;jl ¼
X
k

ðS2Þa;klðS4Þb;jk: ð3:4Þ

We have to define an embedding map for the indices ðjlÞ
into a new effective index c0. Therefore we perform a SVD
on the following matrix:

ð ~S1ÞðabÞ;ðjlÞ ¼
X
i

UðabÞ;iλiV
†
ðjlÞ;i: ð3:5Þ

UðabÞ;i and VðjlÞ;i are the singular vectors, λðlÞi the singular

values of the matrix ð ~S1ÞðabÞ;ðjlÞ, where the indices ðadÞ and
ðjlÞ simply denote product indices. U and V are unitary
matrices, i.e. the singular vectors are orthonormal, while
the singular values are non-negative and ordered in
size, λ1 ≥ λ2 ≥ � � � ≥ λN ≥ 0.
U and V can be interpreted as mapping the indices ðabÞ

and ðjlÞ to i, respectively. The (relative) value of λi, e.g.
with respect to the largest singular value, determines how
important the index i is in reconstructing ~S1. Thus we use V
both as an embedding map, mapping the indices ðjlÞ into a
new effective index i, and as a truncation, cutting off the
index range of the new edge. To do so, we have to multiply
it from the right to the tensor ~S1 and sum over the indices
ðjlÞ. Then we obtain the new S01 as

ðS01Þc0;ab ¼ UðabÞ;c0λc0 ; ð3:6Þ

where we have used the fact that V is a unitary matrix.
However, in order to leave the partition function
unchanged, it is necessary to contract the new S01 on the
other side with V† obtained from ~S1, as it is also implied
in Fig. 4. Hence the formula for S02 contains the explicit
contraction.18 Also note that this algorithm is not as
“symmetric” as the 4-valent one: Every 3-valent tensor
has a special edge, namely the one obtained after applying
the latest embedding map.
Of course, similar to the 4-valent algorithms employed in

[51–54], it is beneficial to explicitly preserve the under-
lying symmetries of the tensors under coarse graining
because of saving computational resources and keeping
an interpretation of the new coarse degrees of freedom in
terms of the original variables. Thanks to representation
theory, we know that some couplings are forbidden, e.g. for
the Ising model if the Gauss constraints are not satisfied.
To exploit this as much as possible, one writes the matrices
that are to be split in a block diagonal form; we call this the
recoupling basis. In the non-Abelian or quantum group
case, this amounts to a precontraction of magnetic indices,
as the dependence on those is not changed under coarse
graining. Each block is then labeled by a set of

FIG. 4. The triangular algorithm. Instead of one 4-valent tensor,
forming a rectangular tensor network, we work with four 3-valent
tensors Si. We glue them pairwise into intermediate 4-valent
tensors, compute an embedding map from this tensor, here
called U and V, which maps two fine edges into one effective
coarse edge without affecting the partition function since
UU† ¼ VV† ¼ 1. Thus we obtain four new 3-valent tensors S0i
and iterate the procedure.

18In fact, it is necessary to compute the embedding maps from
both ~S1 and ~S2 and check which one of them leads to a smaller
overall error and thus a better approximation, similar to the higher
order SVD used in [76].
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representation labels, e.g. ðj; kÞ for our toy model, called
the “intertwiner channel.” Then instead of performing the
SVD on the entire matrix at once, one performs one SVD
per block matrix, such that one endows the block label onto
the new effective edge.
For the triangular algorithm, this symmetry protecting

algorithm can be straightforwardly derived from its
4-valent counterpart. Therefore, we here present only the
formulas, and the actual derivation of the 4-valent version is
put in Appendix B.
Let us start with the block diagonal form of the 3-valent

tensor, which is similar to Eqs. (B8) to (B11) of the 4-valent
algorithm,

ð3:7Þ

ð3:8Þ

ð3:9Þ

ð3:10Þ

where we have summarized the representation labels je, ke
as fIeg. The diagrams encode the dependence on the
magnetic indices, which remains unchanged under coarse
graining due to preserving the symmetries.
Analogous to the 4-valent algorithm, the next step is

the computation of the intermediate 4-valent tensor in its
block-diagonal form to which the SVD will be applied.
Remarkably, this expression can almost immediately be
read off Eqs. (B12) and (B13), together with the fact that
identity (B14) splits into two 6j symbols. This allows us to
essentially cut Eqs. (B12) and (B13) in half to obtain the

equations for ~̂S1 and ~̂S2,

~̂S
ðj5;k5Þ
1 ðI1; I2; Ic; IaÞ ¼

X
b

X
fmg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þjcþjaþj5

p
ffiffiffiffiffiffi
dj5

p ffiffiffiffiffiffi
djb

p ffiffiffiffiffiffiffiffiffiffiffiffi
dj1dj2

q �
jc ja j5
j1 j2 jb

�
δð2Þðk1 þ k2 − k5Þ

× ðŜ2Þðj1;k1ÞðfIgfb;agÞðŜ4Þðj2;k2ÞðfIgfc;bgÞ; ð3:11Þ

~̂S
ðj5;k5Þ
2 ðI3; I4; Ia; IcÞ ¼

X
d

X
fmg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þjcþjaþj5

p
ffiffiffiffiffiffi
dj5

p ffiffiffiffiffiffi
djd

p ffiffiffiffiffiffiffiffiffiffiffiffi
dj3dj4

q �
jc ja j5
j4 j3 jd

�
δð2Þðk3 þ k4 − k5Þ

× ðŜ1Þðj3;k3ÞðfIgfd;cgÞðŜ3Þðj4;k4ÞðfIgfa;dgÞ: ð3:12Þ

Analogously, one obtains the equations for ~̂S3 and ~̂S4 from
the equation of T̂2, but essentially it is merely a suitable
permutation of labels in the equation. Eventually, we can

compute the embedding maps by performing a SVD on ~̂Si,

e.g. on ~̂S1,

ð ~̂Sðj5;k5Þ1 ÞðI1;I2Þ;ðIc;IaÞ ¼
X
i1

Uðj5;k5Þ
ðI1;I2Þ;i1λ

ðj5;k5Þ
i1

ðV†Þðj5;k5ÞðIc;IaÞ;i1 ;

ð3:13Þ

where i1 denotes the multiplicity of the channel ðj5; k5Þ in
this particular example. If this is the proper embedding
map, i.e. the one with the least error approximating for both
~̂S1 and ~̂S2, then we eventually obtain for the new Ŝ01

19

19We assume that the embedding map obtained from ~̂S1 is the
one giving the smallest error; therefore we also suppress the
additional superscript (1).
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ðŜ01Þðj5;k5;i1ÞðfIgf1;2gÞ ¼ Uðj5;k5Þ
ðI1;I2Þ;i1λ

ðj5;k5Þ
i1

; ð3:14Þ

whereas we find for Ŝ2

ðŜ02Þðj5;k5;i1ÞðfIgf3;4gÞ¼
X
a;c

~̂S
ðj5;k5Þ
2 ðI3; I4;Ia;IcÞðV†Þðj5;k5ÞðIc;IaÞ;i1 :

ð3:15Þ

The derivation of Ŝ03 and Ŝ04 works analogously.
Fortunately, in the models under discussion here, all the

Ŝi turn out to be identical, also under coarse graining
because the same recurrence relation holds for all of them.20

As a result, it will be sufficient from now on to just work
with one 3-valent tensor instead of four, which simplifies
Eq. (3.11), but more importantly always allows us to use
(3.14). Thus we greatly reduce the amount of data neces-
sary to be stored during the numerical simulations and
additionally avoid the explicit contraction of (roughly)
2 × 2 × jmax indices. Here this might appear to be insig-
nificant, but as soon as more complicated systems are
examined, for example SUð2Þk × SUð2Þk spin nets, which
roughly require a quartic amount of resources in compari-
son to the background discussed here, these gains are
crucial.

1. Truncation scheme and identification of phases

For our study of the presented toy model, we will use
a very simple truncation scheme for the singular values.
Instead of comparing the singular values obtained from all
blocks and keeping the χ largest of these, we take only
one singular value for each block ðj; kÞ. This certainly is a
drastic simplification, but it seems sufficient to capture
many important features of the model: Taking one singular
value for each block is close to the initial definition of the
models; in particular we can capture the fixed points of both
the background and the Ising model and thus can quali-
tatively study the phase diagram of the model. Certainly, we
are aware that this approximation breaks down in certain
regimes of the model, e.g. close to the phase transition of
the Ising model, where more singular values have to be
taken into account, which results in shifts of the position of
the phase transitions. However, numerical precision is a
rather secondary concern, since we are dealing with a toy
model tailored to demonstrate the potentially rich dynamics
of matter coupled to spin foams. Moreover, as many other
tensor network renormalization methods, our scheme
requires an infinite bond dimension to study (second order)
phase transitions. A recently developed algorithm [77]

allows the study of phase transitions at a relatively low
bond dimension—we leave an adaptation of our current
algorithm for future research.
Fortunately, this truncation scheme allows for a straight-

forward identification of the phases of the model via the
singular values in the intertwiner channels ðj; kÞ, j for
the background, k for the Ising model. These can then be
summarized in a ðjmax þ 1Þ × 2 matrix. For example, the
topological background given by J (see again Sec. II A) is
given if all intertwiner channels j ≤ J have one non-
vanishing singular value equal to one and all channels
j > J have only vanishing singular values. Hence the
singular values directly indicate which spins j are allowed.
Similarly for the Ising model, the disordered phase is
given if only the channel k ¼ 0 has one nonvanishing
singular value equal to one, and the ordered phase if both
k ¼ 0 and k ¼ 1 have one nonvanishing singular value
equal to one. Let us conclude with an example for the
combined model: If only the channels ðj; kÞ ¼
ð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð0; 1Þ; ð1; 1Þ; ð2; 1Þ possess one singu-
lar value equal to one while all others vanish, this indicates
the background model J ¼ 2 and the ordered Ising phase.
In Secs. IV and V we will discuss the results obtained

from coarse graining the Ising model coupled to the
dynamical background. In Sec. IV we first focus on the
influence of the background on the Ising model by
choosing a topological fixed point for the background.

IV. THE ISING MODEL COUPLED TO A
TOPOLOGICAL BACKGROUND

In the remainder of this paper, we will present the results
of applying the coarse graining algorithm introduced in
Sec. III to the model of Ising spins coupled to a dynamical
background discussed in Sec. II C. As we have explained in
Sec. II A, there exist many different choices for the back-
ground, encoded in the factors aðfjgÞ modifying the
Clebsch-Gordan coefficients of the quantum group.
Recall that these factors are chosen such that the local
amplitudes are invariant under all 2D Pachner moves, such
that they describe topological systems. Additionally, one
can also consider linear combinations of the factors aðfjgÞ
to go beyond topological backgrounds.
To order the results pedagogically, we start by discussing

the cases in which the background is given by a topological
theory, that is only one aðfjgÞ is chosen instead of a
superposition, which will be addressed in Sec. V. Still, this
ansatz allows for an interesting interpretation. Since the
background by itself is topological, it is also a fixed point of
the coarse graining algorithm: usually for small deviations
around this fixed point, the system flows back to this fixed
point. Here, the Ising model at β0 > 0 serves as a deviation,
such that the composite system is not a fixed point and
actually flows under renormalization. Hence, it is foremost
interesting to discuss how this new background geometry
affects the Ising model, in particular the change of its phase

20This is due to the choice of splitting the signs in (B13)
symmetrically in (3.11) and (3.12). In principle, a different
splitting is possible, e.g. assigning the sign just to one of them.
However, we have found that our choice is numerically more
stable and consistent with results of the 4-valent algorithm.
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transition temperature, e.g. if larger edge lengths are
allowed. For larger β0 we can also expect changes in the
background.
Let us introduce the initial tensors for the start of the

coarse graining procedure. The 4-valent tensor T is of the
general form [see also Appendix B, e.g. (B6)]

ð4:1Þ

The block diagonal part T̂1 is given as follows:

T̂ðj5;k5
1 ðfjig;fkigÞ

¼aðj1;j2;j5Þaðj3;j4;j5Þ
dj5

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ωk1ðj1;fjegÞ ~ωk2ðj2;fjegÞ ~ωk3ðj3;fjegÞ ~ωk4ðj4;fjegÞ

q
;

ð4:2Þ

where the argument of ~ω indicates that the Ising edge
weights can also depend on neighboring spins je, e.g. in the
area coupling. To obtain from (4.2) the amplitudes for the
triangular algorithm is straightforward. In case the ~ωke is

only of function of je, (4.2) factorizes and can be trivially
split; if it is a more nonlocal function, one has to apply
a SVD on (4.2) completely analogous to the 4-valent
algorithm described in Appendix B. The 3-valent tensors
obtained from that give the initial amplitudes.
In the following, we will summarize the results first

for the length coupling, followed by the area coupling. We
discuss the choices of topological fixed points for the
background presented in Sec. II A for different levels k of
the quantum group SUð2Þk.

A. Length coupling—Results

Let us briefly recap the length coupling introduced in
Sec. II C 1. A dependence of the Ising edge weight ~ωke is

implemented by modifying the coupling constant β ∼ β0
je
;

that is the larger the distance between two spins, the weaker
their interaction.
From this coupling mechanism, we already conjectured

that for β0 > 1 spins j ≥ 0 will get suppressed by the Ising
edge weights and there should exist a phase for which the
Ising model is in its ordered phase (low temperature) on a
background with all j ¼ 0. Conversely, in the limit β0 → 0,
i.e. high temperature, we reobtain the pure background,
such that we conjecture that there exists a phase with the
disordered Ising model on the initially chosen topological
background.
All spins J ≤ jmax allowed:The largest class of topological

fixed points we are considering for the background are those
which allow all spins j ≤ J, where J ∈ N and J ≤ jmax ¼ k

2
.

That is for larger level k, we can consider more models. The
results are summarized in Tables I and II, since we find two
phase transitions for almost all backgrounds.

TABLE II. Interval for parameter β marking the phase transition of the background from je ≤ J to je ¼ 0 in the length coupling. The
Ising model stays in the ordered phase.

Transition in
β-interval k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7 k ¼ 8

J ¼ 1 [1.658,1.659] [1.693,1.694] [1.715,1.716] [1.731,1.732] [1.742,1.743]
J ¼ 2 [1.69,1.691] [1.761,1.762] [1.81,1.811] [1.845,1.846] [1.87,1.871]
J ¼ 3 N.a. N.a. [1.838,1.839] [1.898,1.899] [1.943,1.944]
J ¼ 4 N.a. N.a. N.a. N.a. [1.965,1.966]

TABLE I. Interval for parameter β marking the phase transition of the Ising model from the disordered to the ordered phase in the
length coupling. The background model, labeled by J, does not change.

Transition in
β-interval k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7 k ¼ 8

J ¼ 0 [0.388,0.389] [0.388,0.389] [0.388,0.389] [0.388,0.389] [0.388,0.389]
J ¼ 1 [0.694,0.695] [0.716,0.717] [0.729,0.73] [0.738,0.739] [0.744,0.745]
J ¼ 2 [0.821,0.822] [0.913,0.914] [0.969,0.97] [1.006,1.007] [1.032,1.033]
J ¼ 3 N.a. N.a. [1.061,1.062] [1.158,1.159] [1.224,1.225]
J ¼ 4 N.a. N.a. N.a. N.a. [1.295,1.296]
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First of all, we can verify both previously made con-
jectures: For β0 ≪ 1 there exists an extended phase, in
which the geometry is given by the chosen topological
background (all j ≤ J allowed) and the Ising model is
found in its disordered and/or high temperature phase.
For β ≫ 1 we find another extended phase, in which the
background is restricted to j ¼ 0 and the Ising model is in
its ordered phase. However, these two phases are not
directly separated by a phase transition (of geometric
and Ising degrees of freedom). In between there exists a
phase parametrized by the ordered Ising model on the
initially chosen topological background. Hence we observe
two phase transitions, the first (for rising β0) is a transition
purely of the Ising model on the topological background,
whereas the second is a transition purely of the geometry,
triggered by the particular coupling (via edge lengths alone)
of the Ising model to the background.
Besides the appearance of three different phases of the

composite system, it is interesting to study the influence
of the background system on the position of the phase
transitions. The case J ¼ 0, essentially the Ising model on a
regular square lattice, is our reference point. Because of the
approximation discussed in Sec. III A 1 of the used algo-
rithm, we find the critical temperature at 0.388 < β0 <
0.389 instead of βcrit ≈ 0.4406 � � �. This also implies that the
other phase transition locations are subject to change if the
accuracy is increased. Hence we consider a very precise
determination of the phase transition temperatures (in this
approximation) to be a fruitless endeavor and rather
interpret the findings more qualitatively.
Let us consider the phase transition of the Ising model

(see Table I) first: We can study these data from two
perspectives. Either we consider a particular background J
and study the change of the phase transition if we increase
the level k of the quantum group (a row) or we examine
how the temperature changes for the same level k, while
increasing the maximum allowed spin J (a column).
In the former case, we observe that for a given J, the

phase transition parameter increases for growing k, yet this
increase is not uniform for increasing k. The increase is
generically largest between J ¼ jmax and the next largest
level k, and appears to decrease under increasing k further,
such that it might eventually converge. The interpretation of
this behavior is that, for the same underlying geometry, the
Ising model effectively has a weaker coupling β, such that
its phase transition occurs for larger β0, even though the
edge weights are not changed in different quantum groups.
Hence the origin of this behavior must lie in the back-
ground geometry: Take e.g. the model J ¼ 2 for k ¼ 4, i.e.
J ¼ jmax ¼ 2. From the coupling rules/Clebsch-Gordan
coefficients, one can determine that there exist only three
possible ways how two spins j1; j2 can couple to a third
spin j ¼ 2, namely (0,2), (1,1), and (2,0)—j ¼ 2 here is of
quantum dimension one. If we go to k ¼ 5, there are then
five ways, namely also (1,2) and (2,1) in addition to the

previous ones. As a result, there exist now more configu-
rations in the partition function with larger edge lengths and
hence an effectively lower temperature β of the Ising
model, pushing the phase transition toward higher β0. If
the quantum group level k is increased further, even more
couplings are allowed; however, these involve spins j > J,
which are disallowed by the geometry (or only excited
briefly under coarse graining), such that the phase transition
temperature is less affected.
On the other hand, if we keep k fixed and increase J, we

also observe an increase in the phase transition parameter
β0, where the gap between J and J þ 1 decreases as one
approaches J ¼ jmax of the quantum group, the jump from
J ¼ 0 to J ¼ 1 being the most significant. This is a very
much expected result considering that βðjÞ falls off with
1=j in the edge weights of the Ising model and the fact that
increasing J allows not only larger spins j but also more
configurations of the geometry with nonvanishing j on it.
The latter effect can be seen e.g. for k ¼ 8: even though
only for J ¼ 4 do the largest edge lengths get excited, the
increase in βcrit. is rather small. Since j ¼ 4 is of quantum
dimension one, only a few new couplings become allowed
with respect to the J ¼ 3 model. Thus we see that the
weakening of the Ising coupling is not solely determined by
the (larger) edge lengths but also the amount of configu-
rations, determined by the background, that allow these
edge lengths to occur.
For the second phase transition (see Table II), that is a

geometric phase transition from a topological fixed point to
a geometry with only j ¼ 0 allowed (with the Ising model
in its ordered phase in both cases), we perform a similar
analysis: If we keep J of the background fixed and increase
the level k of the quantum group, we again observe an
increase in the transition parameter β0. The reason is similar
to the previous case: If the level of the quantum group is
increased, more couplings (of nonvanishing spins j)
become allowed increasing the number of configurations
with nonvanishing spins. Thus β0 has to be increased
further for larger k to sufficiently suppress spins j > 0 such
that the system flows to a geometry with all j ¼ 0. A
similar argument is valid in case of keeping k fixed and
increasing J, where we also increase the number of
configurations with nonvanishing j.
This second phase transition is of course a very peculiar

example of how the matter system influences the back-
ground. If the coupling β0 of Ising spins becomes too
strong, it forces the background to allow only its shortest
possible distance between two vertices. This is a feature
one would rather like to avoid for 4D gravity plus matter,
such that one can see this geometric transition as an
indication that β0 should be restricted to smaller values
or that the coupling βðjÞ should be modified to favor
spins j > 0.
Only j ¼ 0 and j ¼ jmax allowed: The next class of

models we tested is the background in which only
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representations with quantum dimension dj ¼ 1 are
allowed, that is only j ¼ 0 and j ¼ jmax for even levels
k of the quantum group. Again, we observe two phase
transitions; their locations for various k are given in
Table III.
The phase transitions are identical in type as for the

previous background. On the one hand, we find one
transition at lower β0, which is a pure transition of the
Ising model on the background, from the disordered to
the ordered phase. On the other hand, we observe again
the background transition induced by the length coupling,
which forces the background to take its smallest edge
length possible at larger β0.
Concerning the Ising transition, the actual position of the

phase transition is quite different from the j ≤ J back-
grounds. In general, the phase transition can be found at
lower β0 (unless only j ¼ 0 is allowed) and increases
slowly only as k is increased. This is due to the peculiarity
of this model: for even k, both j ¼ 0 and j ¼ jmax have
quantum dimension dj ¼ 1; the only allowed nontrivial
coupling rule is ðjmax; jmaxÞ → 0. Thus, even though the
Ising model is added in a nontrivial way, the background
cannot flow away from this general configuration; i.e. no
other spins j can get excited during the renormalization
procedure. Therefore, there are many fewer configurations
of the background with nonvanishing spins, even in
contrast to the lowest j ≤ J models. Moreover, this remains
unchanged as k is increased, yet the interaction between
neighboring Ising spins on an edge carrying jmax is weaker
for larger k, pushing the transition to larger β0.
For the geometric transition to a background where only

j ¼ 0 is allowed, we find a different situation with respect
to the j ≤ J models. Instead of increasing β0 for growing J
or k, we observe a decrease. Again, this is due to this
peculiar model, in which no other spins except j ¼ 0 and
j ¼ jmax are (and stay) excited. Since jmax grows as k gets
increased, the edge weights for jmax fall off faster with
respect to j ¼ 0 for larger k, resulting in a transition to “just
j ¼ 0” at lower β0.
Only j ¼ 0, j ¼ jmax

2
, and j ¼ jmax allowed: The last

background model to investigate together with the length
coupling is the background with j ¼ 0, j ¼ jmax

2
, and

j ¼ jmax excited. Since such a background can exist only
if the level k of the quantum group is a multiple of four (this
is necessary, but not sufficient; see also Sec. II A), we study

it for only three cases. The results are summarized in
Table IV.
As we have also observed for the other backgrounds,

there are two phase transitions in the length coupling: the
first one of the Ising model from “disordered” to “ordered,”
the second one in the geometry from the background to the
background with only j ¼ 0. Across the different quantum
groups, we observe that the Ising transition occurs at larger
β0, since the spins j ¼ jmax

2
and j ¼ jmax increase for larger

k, while the couplings among the spins j (and thus the
background configurations) remain unchanged. This results
again in an effectively weaker interaction between the Ising
spins as k is increased. For the second transition, we see a
decrease in the critical β0 from k ¼ 4 → k ¼ 8, similar to
the ð0; jmaxÞ background.
More interesting is the direct comparison across the

backgrounds (for the same quantum group) because we can
directly study the changes that more excited spins have
on the positions of phase transitions. Note that we only
compare the results of k ¼ 4 and k ¼ 8.
Let us start with the pure Ising transition, while compar-

ing the models ð0; jmaxÞ and ð0; jmax
2
; jmaxÞ. For the latter,

we generically observe the transition at larger β0, which
is clear, since more configurations with weaker Ising
spin interactions (with respect to j ¼ 0) are allowed. The
relation to the j ≤ J models is less obvious: For k ¼ 4 and
J ¼ 1, jmax is not excited, such that edges with the weakest
Ising spin interactions are forbidden, yet the transition still
occurs for a larger β0 with respect to the ð0; jmaxÞ model.
This is the case because the J ¼ 1 model permits more
configurations with nonvanishing spins, giving less weight
to the “only j ¼ 0” case. The J ¼ 2 model is (up to signs)

TABLE IV. Results for the background with only j ¼ 0,
j ¼ jmax

2
, and j ¼ jmax allowed for k ¼ 4l, l ∈ N, together with

the Ising model in the length coupling. The first row is the first
transition we find, a pure transition in the Ising model from
disordered to ordered as β0 is increased. The second transition is
geometric, where for large β0 just j ¼ 0 is allowed.

Transition in β-interval k ¼ 4 k ¼ 8

Ising disordered → ordered [0.821,0.822] [1.093,1.094]
ðj ¼ 0; j ¼ jmax

2
;

j ¼ jmaxÞ → j ¼ 0

[1.69,1.691] [1.576,1.577]

TABLE III. Results for the background with only j ¼ 0 and j ¼ jmax allowed for even k together with the Ising
model in the length coupling. The first row is the first transition we find, a pure transition in the Ising model form
disordered to ordered as β0 is increased. The second transition is geometric, where for large β0 just j ¼ 0 is allowed.

Transition in β-interval k ¼ 4 k ¼ 6 k ¼ 8

Ising disordered → ordered [0.639,0.64] [0.666,0.667] [0.681,0.682]
ðj ¼ 0; j ¼ jmaxÞ → j ¼ 0 [1.25,1.251] [1.175,1.176] [1.139,1.14]
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identical to the ð0; jmax
2
; jmaxÞ model, and both show con-

sistent results. Since they allow all configurations of the
background allowed by the quantum group, they show the
largest phase transition parameters for k ¼ 4. For k ¼ 8 we
observe a similar behavior across the different back-
grounds: despite the small weight assigned to edges
carrying the maximal spin jmax, the transition occurs first
for the model ð0; jmaxÞ followed by the j ≤ J models for
J ¼ 1 and J ¼ 2. Remarkably, the latter is already very
close to the transition in the ð0; jmax

2
; jmaxÞ model, and β0

gets increased further for J > 2. Again we conclude that the
number of background configurations with nonvanishing
spins j quickly outweighs the weakening of Ising spin
interactions by large spins j.
The observation is even more striking for the second

transition toward background geometries, where only the
shortest edge length j ¼ 0 is allowed: For both k ¼ 4 and
k ¼ 8 this transition always occurs first for the ð0; jmaxÞ
model followed by the ð0; jmax

2
; jmaxÞ model, which coin-

cides for k ¼ 4 with the J ¼ 2 model. For k ¼ 8 even all
J > 0 models show transitions at larger β0 than the other
two models.
Before discussing the area coupling, let us briefly

summarize the results for the length coupling thus far:
For all topological backgrounds, we observe two phase
transitions, one purely for the Ising model, and the other in
the geometry toward configurations, which only allow for
j ¼ 0, induced by the suppression of spins j > 0 by this
particular coupling of the Ising model to the background.
The actual position of these phase transitions is primarily
determined by the number of configurations with non-
vanishing spins, not the background that allows for the
largest spins (owing to the coupling rules of the quantum
group). However, unless β0 is large enough such that spins
j > 0 are strongly suppressed, we observe that the system
quickly flows back to the topological fixed point and the
actual flow of the tensor only involves the Ising degrees of
freedom. In that sense, the Ising model is sensitive to the
background, yet both systems are not strongly coupled.

B. Area coupling—Results

In contrast to the length coupling, the area coupling
is more nonlocal in nature, as we have explained in
Sec. II C 2, as it rather prescribes a coupling with respect

to the geometry. Still it includes the idea that the interaction
between two spins is weakened if their distance is
increased, but it relates this distance to the areas of the
squares this edge is shared by. Roughly speaking

β ∼ β0

P
f⊃e

ffiffiffiffiffiffi
Arf

p
je

, where we simply give the area of a
square by multiplying its edge lengths.
As we have already stressed in Sec. II C 2, the mecha-

nism to relate the edge length to the area in the definition of
the modified coupling constant could prevent the suppres-
sion of spins j > 0 for large β0; however, because of the
nonlocal nature of this coupling, a statement for an edge
alone is not conclusive. Indeed, this coupling shifts the
perspective rather toward the “regularity” of the configu-
ration as it assigns generically largerweights to vertices for
which the four spins je do not agree—the largest weight is
assigned to spins alternating between j ¼ 0 and j ¼ jmax,
the smallest to equilateral configurations for any j.
All spins J ≤ jmax allowed:We start the discussion of the

results again for the background models labeled by a spin J,
i.e. those models that allow all spins j ≤ J. In Table V we
have summarized the results.
The results are qualitatively very different from the

length coupling case (compare to Tables I and II). Most
notably, we find the phase transition for the Ising model
only from the disordered phase to the ordered one; the
background model does not change.
There exist geometric transitions for much larger β0,

e.g. β0 > 3 for the J ¼ jmax models or even β0 > 10 for the
J ¼ 1 models. This is owing to the divergence of the edge
weights as β0 → ∞ (if compared to all j ¼ 0), greatly
shifting the model away from the topological background
fixed point. One can identify some patterns; however, the
interpretation is less clear than in the length coupling and

TABLE V. Interval for parameter β marking the phase transition from the disordered to the ordered phase (on the geometry with all
spins je ≤ J allowed) in the area coupling.

Transition in β-interval k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7 k ¼ 8

J ¼ 0 [0.388,0.389] [0.388,0.389] [0.388,0.389] [0.388,0.389] [0.388,0.389]
J ¼ 1 [0.377,0.378] [0.377,0.378] [0.378,0.379] [0.378,0.379] [0.378,0.379]
J ¼ 2 [0.373,0.374] [0.374,0.375] [0.375,0.376] [0.375,0.376] [0.376,0.377]
J ¼ 3 N.a. N.a. [0.373,0.374] [0.374,0.375] [0.374,0.375]
J ¼ 4 N.a. N.a. N.a. N.a. [0.373,0.374]

TABLE VI. Results for the background with only j ¼ 0 and
j ¼ jmax allowed for even k together with the Ising model in the
area coupling. We find only one transition, purely for the Ising
model from disordered to ordered as β0 is increased.

Transition in
β-interval k ¼ 4 k ¼ 6 k ¼ 8

Ising disordered
→ ordered

[0.36,0.361] [0.348,0.349] [0.338,0.339]

COUPLED INTERTWINER DYNAMICS: A TOY MODEL FOR … PHYSICAL REVIEW D 92, 064007 (2015)

064007-19



rather indicates that a modification of the coupling for large
β0 is necessary or β0 should be restricted to smaller values.
The second significant change to the length coupling is

the decrease of the phase transition temperature as the
parameter J is increased. Recall that increasing J allows for
more background configurations, in particular larger spins
and/or edge lengths get excited. Among the added con-
figurations are a few equilateral ones, but these are clearly
outnumbered by irregular configurations, i.e. configura-
tions in which not all edge lengths are equal. For example,
consider the case k ¼ 4 from J ¼ 1 to J ¼ 2: the latter adds
three allowed couplings of two spins to the spin j ¼ 2,
namely (2,0), (1,1), and (0,2). On the level of one 4-valent
tensor, this adds 3 nonequilateral coloring [(2,2,0,0),
(2,2,1,1), and (2,0,1,1)] plus perturbations in contrast
to just one new equilateral configuration.21 Since these
irregular configurations come with a larger weight than the
equilateral one, the Ising spins effectively see a stronger
coupling such that the transition occurs at smaller β0. Yet
this shift in the phase transition parameter is much smaller
than in the length coupling; the most significant jump is the
one from J ¼ 0 to J ¼ 1.
Also, if we keep J fixed and instead increase k, the phase

transition parameter changes only slightly; this is because
of two effects. One effect applies to the models J ¼ j0, if
j0 ¼ jmax ¼ k

2
as k is increased by 1. As k is increased, j0 is

no longer of quantum dimension one and (a few) new
couplings are allowed; e.g. from k ¼ 4 → k ¼ 5 the cou-
plings ð1; 2Þ; ð2; 1Þ → 2 become possible. Thus again more
background configurations are allowed; however, the added
ones are less “irregular” and thus average out the most
irregular ones further, such that the Ising coupling is
effectively slightly weaker. In the other cases, this mecha-
nism is not present; however, note that the amplitudes of the
background model also change as k gets increased.
Only j ¼ 0 and j ¼ jmax allowed: We continue our

presentation of the results for the background model, in
which only j ¼ 0 and jmax are excited for even k, i.e. only
representations with quantum dimension one. This is
particularly interesting for the area coupling, since this
background supports only the smallest and the largest
couplings, such that we can expect to see an emphasis on
very irregular background configurations. The results for
the phase transition of the Ising model are summarized
in Table VI.
As expected, only allowing configurations with j ¼ 0

and j ¼ jmax affects the phase transition parameter greatly:
The parameter always occurs for a smaller parameter than
for any of the j ≤ J models and decreases significantly as k,
and thus jmax are increased. This is straightforward to
understand, since the coupling rules and thus the allowed
geometric configurations do not change, but owing to the
growth of jmax these configurations are more irregular such

that the Ising spins experience a stronger coupling. Also
note that for this model no geometric transitions occur,
since the excited representations are of quantum dimension
dj ¼ 1 and cannot couple among themselves to any other
representation. Moreover, in contrast to the length cou-
pling, the area coupling does not suppress large spins j as
β0 is increased.
Only j ¼ 0, j ¼ jmax

2
, and j ¼ jmax allowed: Eventually

let us study the last background model, defined only if k is a
multiple of four, for which only j ¼ 0, j ¼ jmax

2
¼ k

4
, and

j ¼ jmax are excited. We can consider this model to lie
“in between” the extreme case of only allowing j ¼ 0 and
jmax and the j ≤ J models. Again note that the model
ð0; jmax

2
; jmaxÞ agrees up to signs with the model J ¼ 2 for

k ¼ 4. The results are summarized in Table VII.
The results agree with our expectations: for k ¼ 4 the

results are consistent with or identical to the J ¼ 2 model,
and for k ¼ 8 we find the transition at lower β0 than for any
j ≤ J model, but clearly higher than for the ð0; jmaxÞmodel.
We can interpret this as follows: The addition of one
intermediate spin, here jmax

2
, with respect to the ð0; jmaxÞ

model adds many configurations that are in between the
equilateral and the most irregular configurations (alternat-
ing between j ¼ 0 and j ¼ jmax). Yet there are only very
few of these extreme configurations, such that they get
averaged out by the majority of intermediate configura-
tions. This effect is enhanced once more representations
are allowed, as in the j ≤ J models. Again, no geometric
transitions occur: even though the excitation of other spins
is allowed, the model always flows back to the (j ¼ 0,
j ¼ jmax

2
, j ¼ jmax) background.

Before we continue with the discussion of the Ising
model coupled to a superposition of the background in
Sec. V, let us summarize the results for the area coupling:
As anticipated from our discussion in Sec. II C 2, this
coupling shifts the focus away from just the length of edges
to the (ir)regularity of the lattice, i.e. the relative size of
neighboring edges meeting at the same vertex, where the
Ising spins effectively see a stronger coupling for irregular
configurations than for equilateral ones. Considering the
dynamics, the most irregular configurations push the phase
transition of the Ising model significantly toward smaller
β0, as we see from a direct comparison of the ð0; jmaxÞ
model to the standard Ising model (J ¼ 0). However, both

TABLE VII. Results for the background with only j ¼ 0,
j ¼ jmax

2
, and j ¼ jmax allowed for k ¼ 4l, l ∈ N, together with

the Ising model in the area coupling. We find only one transition,
just for the Ising model from disordered to ordered as β0 is
increased.

Transition in β-interval k ¼ 4 k ¼ 8

Ising disordered → ordered [0.373,0.374] [0.367,0.368]

21Note that the Ising weights are not equal for all perturbations.
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the equilateral and the most irregular configurations are
only a small subset of configurations as soon as more
representations je are allowed. Therefore, the averaging
over less irregular backgrounds, as in the (j ¼ 0, j ¼ jmax

2
,

j ¼ jmax) model and more profoundly in all j ≤ J models
(for J > 0), shifts the phase transition closer to the equi-
lateral case and appears to be rather stable as the quantum
group level k is increased. Again, as for the length
coupling, the background is very stable; i.e. the system
quickly flows back to the topological fixed point, and the
system mainly flows in the Ising degrees of freedom. Thus,
while the Ising model is sensitive to the different back-
ground configurations, both systems are not strongly
coupled. This will change in Sec. V, where we also
superimpose background fixed point intertwiners, allowing
these degrees of freedom to flow under renormalization
as well.

V. THE ISING MODEL COUPLED TO A
DYNAMICAL BACKGROUND

After the examination of the Ising model coupled to a
topological background, we generalize the background
model by superposing (two) intertwiner models, which
just amounts to superposing two different choices of

parameters aðfjegÞ discussed in Sec. II A. As a result,
the background model alone is no longer a topological
theory and will flow under renormalization. In this section,
we therefore address the following points: First, we are
interested to see how the presence of the Ising model affects
the flow of the background model, e.g. on the position of
the phase transition between the two topological fixed
points as β0 is changed or on the appearance of the
background model different from both initial ones.
Second, in Sec. IV we have observed significant effects
on the phase transition of the Ising model due to the
presence of the background, such that one may wonder how
it reacts to a superposition of backgrounds. As a last point,
the region in parameter space in which both the Ising model
and the background model are close to a transition is
interesting to investigate, yet it is very likely that an
algorithm keeping more singular values than the one
prescribed in Sec. III A 1 has to be used.
Let us briefly outline the changes to the initial tensor due

to the superposition of intertwiner models: The initial
tensor T̂ written in the recoupling basis [see Eq. (4.2)] is
simply modified by summing over the factors aðfjegÞ
associated with the topological background fixed point22; to
differentiate them we added a superscript,

T̂ðj5;k5
1 ðfjig; fkigÞ ¼

1

dj5
ðαað1Þðj1; j2; j5Það1Þðj3; j4; j5Þ þ ð1 − αÞað2Þðj1; j2; j5Það2Þðj3; j4; j5ÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ωk1ðj1; fjegÞ ~ωk2ðj2; fjegÞ ~ωk3ðj3; fjegÞ ~ωk4ðj4; fjegÞ

q
; ð5:1Þ

where α ∈ ½0; 1� is the superposition parameter. In principle
one can also discuss superpositions of more models, and we
restrict ourselves to two models to present the results in a
phase diagram for α and β0. Note that in order to obtain the
initial 3-valent tensor, one has to perform a singular value
decomposition on (5.1); the sum over factors aðfjegÞ does
not factorize over 3-valent vertices.
Recalling the background models introduced in

Sec. II A, there are many possibilities to choose from,
too many to cover in this article. Hence we will restrict the
discussion to the superposition of two models from the
j ≤ J class, namely J ¼ 1 and J ¼ 3 for k ¼ 4. This is an
interesting choice, in particular since the model J ¼ 3
allows the spins j ¼ 2 and j ¼ 3 in contrast to the J ¼ 1
model. One can expect a possible transition to the model
J ¼ 2 between them, even without the Ising model.
Moreover, the models J > 0 are preferable to e.g. the
ð0; jmaxÞ or the J ¼ 0 models, since the latter have very

restrictive coupling rules, strongly suppressing the excita-
tion of other spins. Of course, one can also enhance the
study by going to larger levels k of the quantum group;
however, this significantly increases the numerical effort.
Before discussing the results for the two different

couplings, let us briefly focus on the impact of the super-
position of the J ¼ 1 and the J ¼ 3 model at β0 ¼ 0, i.e.
without the Ising model, to get an idea of the geometries
preferred by these geometries. To do so, let us study the
singular values associated with the spins j ¼ 1; 2; 3 for
varying α obtained from the first singular value decom-
position splitting the 4-valent tensors [see Eq. (5.1)] into
3-valent ones for the triangular algorithm in Fig. 5. As
expected, we observe the quick decline of the singular
values associated with the spins j ¼ 2 and j ¼ 3 as the
system moves away from the J ¼ 3 to the J ¼ 1 model.
The fate of the spin j ¼ 1 is more interesting: even though
it is excited in both models, it goes through a minimum
close to α ¼ 0.6, which actually is very close to the phase
transition between these two models. In fact this transition
is not direct but rather interrupted by a tiny phase of the
J ¼ 2 model spanning the interval α ∈ ½0.60567; 0.60568�.

22All fixed point intertwiners have the same dependence on
magnetic indices. Thus the transformation to the recoupling basis
is unaffected by the superposition.
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The interpretation of this data is rather straightforward:
As α grows, geometries containing spins j ¼ 2 and j ¼ 3
become less probable and eventually vanish as α ¼ 1.
Configurations containing j ¼ 1, which is excited in both
superimposed models, become slightly disfavored for
intermediate values of α, which conversely means an
emphasis on the only other remaining spin j ¼ 0. Thus
close to the phase transition, we can expect that configu-
rations containing j ¼ 0 are favored over configurations
without j ¼ 0; however, this effect is too weak to cause the
model to flow to the phase, in which only j ¼ 0 is allowed.
We will see that the Ising model, more precisely its phase
transition parameter, is sensitive to these changes in the
background in both coupling schemes.
In Secs. VA and V B we present and qualitatively

discuss the phase diagrams for the length and the area
coupling, respectively.

A. Length coupling

The phase diagram for the length coupling can be found
in Fig. 6. Let us first start with some basic observations:
The vertical lines α ¼ 0 and α ¼ 1 are the pure intertwiner
models for J ¼ 3 and J ¼ 1, respectively, and the results
are consistent with Sec. IV. The horizontal line β0 ¼ 0
represents the pure background model, since the Ising
model assigns constant amplitudes to all background
configurations. There we also observe the two geometric
phase transitions mentioned above (which are difficult to
resolve).
In general we observe four “main” phase transitions: the

two horizontal lines indicate the transitions induced via the
Ising model (coupling), the lower one for the Ising model
indicates the transition from disordered to ordered, and the

upper one marks the transition to geometries, for which
only j ¼ 0 is allowed, induced by the suppression of j > 0
in the matter coupling. The two vertical lines, which are
mostly indistinguishable, mark the two geometric transi-
tions via the J ¼ 2 model. Let us discuss these transitions
separately.
Considering the Ising transition from the disordered to the

ordered phase, we generically observe a drop in the phase
transition parameter as we approach the geometric transition,
where the J ¼ 3 line appears to merge with the geometric
transitions before meeting the line from J ¼ 1. This drop in
phase transition temperature implies that the Ising spins
effectively see a stronger coupling as one moves away from
the topological fixed points, where this is far more striking
compared to the J ¼ 3 perspective. Considering the proper-
ties of the length coupling, the increase in the effective
coupling for the Ising spins implies an emphasis on smaller
spins in the background configurations. As we have con-
cluded above from Fig. 5, this is exactly what happens: Seen
from α ¼ 0, i.e. the J ¼ 3model, the spins j ¼ 2 and j ¼ 3,
which weaken the interaction between neighboring Ising
spins, are significantly suppressed as α is increased, explain-
ing the substantial drop in the phase transition parameter.
Moreover, even the spin j ¼ 1, which is excited in both
superimposed models, gets disfavored close to the phase
transition, such that the effective coupling is also weaker
than in the J ¼ 1 model.
The story is similar for the second transition induced by

the Ising model, namely the one to just j ¼ 0 geometries.
Again we observe a drop in the phase transition parameter

FIG. 6 (color online). Phase diagram for k ¼ 6, superimposing
the models J ¼ 1 (α ¼ 1) and J ¼ 3 (α ¼ 0) in the length
coupling. The black dots show the actual positions of the phase
transitions; the connecting lines only indicate to which phase
transition they belong. The white areas between the transitions
belong to the same phase and are named accordingly. The J ¼ 2
phases are located between the green and blue lines, which is
indicated by the arrows. The colors are chosen according to the
transition: red indicates the transition of the Ising model, blue
the geometric transitions in the ordered Ising phase, and green
in the disordered one. Orange indicates the transition to the
“just j ¼ 0” phase.

FIG. 5 (color online). Singular values for j ¼ 1; 2; 3 in the first
splitting of the 4-valent tensors, normalized with respect to the
one for j ¼ 0, for the superposition of the models J ¼ 1 (α ¼ 1)
and J ¼ 3 (α ¼ 0). The values for j ¼ 2 and j ¼ 3, which have
identical singular values, fall off quickly as α is increased, and
j ¼ 1 has a minimum around α ¼ 0.6, which is actually close to
the phase transition(s) from J ¼ 3 to J ¼ 2 to J ¼ 1 (for
growing α).
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from both sides close to the (significantly shifted) geo-
metric transition. Recalling that this transition occurs due to
the suppression of all spins j > 0 by the Ising edge weights,
it is clear that this suppression occurs for smaller β0 if
configurations allowing just j ¼ 0 become emphasized by
the geometric superposition.
Eventually, let us discuss the geometric transition: as

mentioned above, there are actually two geometric tran-
sitions, enclosing the emergent J ¼ 2 configuration. This
pair of transitions starts out vertically from the x axis;
however, it quickly bends toward smaller α, i.e. J ¼ 3,
where it also becomes broader after crossing the phase
transition line for the Ising model. Again this is straightfor-
ward to explain from the length coupling of the Ising
model: As βðjÞ falls off as β0

j , larger spins j get quickly
suppressed. The spin that is suppressed the most is j ¼ 3,
then j ¼ 2, etc. Thus close to the geometric phase transition
this suppression favors a flow toward the J ¼ 2 background
over the J ¼ 3 background and analogues for the J ¼ 1 and
J ¼ 2 backgrounds. If the system is then moved to smaller
α, j ¼ 3 in turn becomes emphasized by the background
such that the suppression from the Ising weights must
be stronger for the J ¼ 2=J ¼ 1 phase to appear, which
explains the advancing of both the J ¼ 2 and the J ¼ 1
phases to smaller α. At some point, the suppression is too
strong, such that all spins j > 0 are suppressed and the
geometric transition “merges” into the transition toward
geometries, for which only j ¼ 0 is allowed.
To conclude both the Ising and the background models

react very sensitively to one another. From the effective
coupling (and thus the position of the phase transition) seen
by the Ising model, one can deduce which geometric
configurations are preferred at a specific superposition of
background intertwiner models. Here the superposition
results in an emphasis toward edges carrying spin j ¼ 0,
such that the effective coupling for neighboring Ising spins
is stronger. Conversely, the geometry is greatly affected by
the matter coupling as well: if the Ising coupling is strong
enough, a geometric transition to a different background
model is induced. Admittedly this requires the background
to be in a superposition; otherwise the deviation away from
this fixed point caused by the Ising model is not sufficient.
Also note that we did not find any phases beyond the
“product phases” of the combined model. Whether more
phases exist, e.g. close to both phase transitions, can
probably only be answered by using a tensor network
algorithm keeping more singular values in each iteration,
yet close to the phase transition an infinite bond dimension
is required.
In Sec. V B we discuss the significantly different phase

diagram for the area coupling.

B. Area coupling

The phase diagram for the area coupling can be found in
Fig. 7. As expected, we observe a very different phase

diagram in comparison to the length coupling. First of all,
the Ising model transitions for α ¼ 0 (J ¼ 3) and α ¼ 1
(J ¼ 1) are consistent with the results in Sec. IV. Again we
observe two geometric phase transitions for β0 ¼ 0, in the
same small interval as for the length coupling.
The horizontal line marking the phase transition of the

Ising model from the disordered to the ordered phase (as β0
is increased) is indeed almost horizontal, it only slightly
decreases (from both sides) to roughly β0 ≈ 0.371 as the
geometric phase transition is approached. Thus the Ising
spins again see an effective coupling that is slightly
stronger as the geometric transition is approached; as the
phase transition occurs for larger β0 for α ¼ 1 (compared to
α ¼ 0), we can also conclude that this effect is stronger in
the regime where the J ¼ 1 background dominates. Let us
analyze this behavior in steps: Recalling the discussion for
the superposition of backgrounds we already know that the
superposition of intertwiners affects the amplitudes such
that the trivial representation j ¼ 0 is emphasized, while all
others get suppressed, albeit only slightly in the case of
j ¼ 1. As we have already discussed, the area coupling is
less sensitive to the excited edge lengths alone, but rather
how irregular the geometry is as seen from a single vertex.
Indeed, the strongest coupling of the Ising spins (for a
single vertex) occurs if the edges meeting at this vertex

FIG. 7 (color online). Phase diagram for k ¼ 6, superimposing
the models J ¼ 1 (α ¼ 1) and J ¼ 3 (α ¼ 0) in the area coupling.
The plot style, in particular the coloring of the transitions, is
similar to the one for the length coupling.
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alternate between minimal (j ¼ 0) and maximal (j ¼ jmax)
length. Aware of this mechanism, the emphasis of j ¼ 0
close to the geometric transition explains the slightly
stronger effective Ising coupling as follows: If j ¼ 0 is
slightly favored, while all spins j > 0 also remain excited,
this puts an emphasis on more irregular configurations.
Additionally, from the perspective of the J ¼ 1 model, the
superposition excites spins j > 1 as well, such that more
irregular configurations are possible, resulting in the
slightly larger decline as the geometric transition is
approached from α > 1.
Similar to the transition of the Ising model, the two

geometric transitions, i.e. from J ¼ 3 to J ¼ 2 to J ¼ 1 as
α is increased, is also less affected by the coupling to the
Ising model than in the length coupling. The most crucial
difference is the “bending” of the transition toward larger α
instead of smaller α. Again this is due to the different nature
of the area coupling as it is sensitive to the (ir)regularity of
geometries rather than just the excited edge lengths. As β0
is increased, the irregular geometries are given more weight
than the regular ones from which one can conclude a
favoring of larger spins, since these allow for more irregular
geometries, in particular with respect to j ¼ 0. Thus the
transition to models with J > 1 occurs at larger α, yet this
effect is much weaker than in the length coupling. Also, we
do not observe a broadening of the J ¼ 2 phase similar to
the situation in the length coupling.
Again, we would like to mention that additional geo-

metric transitions occur for very large β0 due to the
divergence of the Ising weights, which occur for J ¼ 3
at roughly β0 > 3 and for J ¼ 1 at roughly β0 > 10. We
will not cover these in detail in this work because of their
complicated structure and because they occur in a regime
far away from the interesting dynamics of the Ising model.
To us this rather indicates that further modifications to the
matter couplings must be done if these are to be avoided or
β0 should be restricted to smaller values.
Let us sum up the results for the area coupling. Again we

observe that both the Ising model and the geometric
background are sensitive to each other, however, to a much
smaller degree than for the length coupling. The effect on
the position of the Ising phase transition is comparatively
small and can be well explained by the changes in the
background geometry induced by the superposition of fixed
point intertwiners, namely the slight preference of irregular
geometries due to an emphasis of configurations containing
edges with spin j ¼ 0. In contrast to the length coupling,
the geometric transitions shift toward larger α, i.e. toward
the J ¼ 1 model, as β0 grows. This is caused because for
larger β0 more weight is assigned to irregular configura-
tions, which prefer the appearance of spins j > 1, even
though these are disfavored by the background model.
Again the coupling to the Ising model induces geometric
transitions, here from J ¼ 1 to J ¼ 2 and then J ¼ 3. As
already mentioned for the length coupling, a more thorough

study might be worthwhile at the intersection of both
transitions, yet this requires an algorithm capable of
efficiently studying systems at criticality, which means
obtaining good results, e.g. for critical exponents, at a finite
bond dimension.

VI. SUMMARY AND DISCUSSION

In this article we have studied a 2D toy model for
coupling pure lattice Yang-Mills theory to a spin foam
model, where the gravitational and the gauge theory are
replaced by simpler models, which do preserve parts of the
dynamical structure of the full theories. For the gravita-
tional part, we have chosen topological intertwiner models
defined in [59], which allow for a notion of intertwiner
degrees of freedom similar to the spin foam case, where
these occur due to the imposition of simplicity constraints.
These intertwiner models are defined for the quantum
group SUð2Þk, which comes with a natural cutoff on the
representation labels [60,61]. Moreover it is conjectured
that spin foam models defined for quantum groups incor-
porate a nonvanishing cosmological constant [78–90]. For
the matter system, we have considered spin systems, more
precisely the Z2 Ising model, for which the local gauge
symmetry of lattice Yang-Mills is replaced by a global
symmetry. Again it is expected [28] that these models
share statistical properties with their 4D lattice gauge
theory relatives.
Because of the structure of the two systems it is

straightforward to coarse grain them via tensor network
renormalization [57,58]. To do so the partition function of
the system is rewritten as a contraction of a tensor network.
By performing local manipulations of the tensors, in
particular defining and identifying the most relevant coarse
degrees of freedom via a singular value decomposition, the
partition function is evaluated or approximated in steps
until eventually the procedure reaches a fixed point. In
context of this coarse graining procedure, we have briefly
revisited the discussion in [24] whether the matter degrees
of freedom should be placed on the same lattice as the spin
foam or rather the dual lattice as it is done e.g. in [22]. For
the toy model under discussion, this choice has technical
rather than physical consequences: First, the Ising model is
self-dual [67]; i.e. both choices are related by a duality
transformation, which maps the strong coupling sector to
the weak coupling sector and vice versa. However, in order
to coarse grain these models, they have to be cast into
tensors, in essence local amplitudes that are associated
with the vertices of the lattice. As it turns out, if the Ising
model is placed on the dual lattice, it is more suitable to
keep the original Ising spin variables; in the process they
have to be coarse grained like decorated tensor networks
[50], where the Ising spins “decorate” the gravitational part.
Conversely, if the Ising model “lives” on the same lattice, it
is preferable to group Fourier transform the Ising variables.
These insights for coarse graining coupled systems might
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be helpful, e.g. to examine the influence of the choice of
discretization, once one tackles more complicated theories,
in particular if these theories are not self-dual or the dual
theories are not known. Nevertheless, we agree with [24]
that it is preferable to define both matter and gravitational
degrees of freedom on the same discretization, such that
one can establish contact to the states and Hilbert spaces of
the associated canonical theory.
Undoubtedly, the crucial part of this article is the matter

coupling between the background system and the Ising
model: The background intertwiner models endow a geo-
metric interpretation onto the lattice, and its SUð2Þk
representation labels je on the edges assign a length
je þ 1

2
to these edges. Intuitively, the interaction among

Ising spins should be sensitive to the distance between
them, and spins farther apart should have a weaker
interaction than close spins. Therefore we have introduced
a coupling between Ising spins and the background by
choosing the Ising coupling constant β to be a function of
the background spins j, actually similar to [22,23]. In fact,
it is also related to the idea expressed in [47] to assign local
coupling constants (to parts of the discretization) for lattice
gauge theories defined on irregular lattices. Interestingly,
the related construction of the Ising model on 2D causal
dynamical triangulations [55,56] is somewhat orthogonal
to our idea: Instead of fixing the discretization, in particular
the combinatorics, and varying the edge lengths, one rather
fixes the edge lengths and sums over all possible triangu-
lations. Thus, the distance between neighboring Ising spins
is always the same; thus no modification of the coupling
constant β but the number of neighboring Ising spins
can vary.
In this article, we have constructed two modifications of

the coupling constant, one for which βðjÞ ∼ 1
j and one for

which the distance is related to the (square root of the) area

that is partially spanned by this edge βðjÞ ∼
P

f⊃e

ffiffiffiffiffiffiffiffiffi
ArðfÞ

p
je

.
While the first is a local interaction, assigning the highest
weight to the shortest edge length, the latter is more
nonlocal by relating the edge length to the overall geometry
and is analogous to the modification introduced in [22]
for 4D Yang-Mills coupled to the Barrett-Crane spin foam
model [68]. There it was chosen such that the Wilson action
scales as the volume of the 4-simplex it is defined on.
Admittedly, these modifications are heuristic and appear
ad hoc; one can certainly construct more realistic cou-
plings, e.g. by considering Laplacians on discretizations,
and it would be preferable to derive such a coupling from
the classical theory in 4D. However, neither is this the main
purpose of this article, nor does this avoid choosing a
discretization, which eventually results in lattice imperfec-
tions. It is rather to explore whether a simple modification
in the matter part, which couples the two systems, can result
in an interesting and reasonable dynamics for the coupled
system or whether a different mechanism is necessary.

Indeed, the chosen couplings have a significant effect on
the dynamics as they also emphasize different geometries
of the background system. The straightforward length
coupling simply considers edge lengths; the longer an
edge the weaker the interaction between Ising spins is. As a
result, the Ising model sees effectively a (much) weaker
coupling the more edge lengths j > 0 (and thus also
configurations of the background with j > 0) are allowed,
such that the phase transition is clearly shifted toward
larger β0. However, this coupling has a direct effect on the
background geometry as for β0 ≫ 1 spins j > 0 get
strongly suppressed causing a phase transition to geom-
etries with just spins j ¼ 0 allowed. Moreover, the Ising
model is very sensitive, in terms of the position of its phase
transition, to changes in the background model. In par-
ticular the emphasis on the smallest possible edge length
suggests two possibilities: It can imply that the coupling β0
should be restricted to smaller values or one should
introduce a modification to the coupling.
In contrast to that the area coupling is not very sensitive

to edge lengths alone; it rather favors specific configura-
tions due to its nonlocal nature. Interestingly, it assigns
the weakest weights to regular, equilateral configurations
(independent of the edge lengths as it is invariant under a
global rescaling of all edge lengths) and the strongest to
very irregular configurations, e.g. if around one vertex the
edge lengths alternate between the minimal and maximal
edge lengths. As a consequence, the Ising spins effectively
see stronger couplings if spins j > 0 are allowed, thus
shifting the phase transition to smaller β0, yet this shift is
considerably smaller in comparison to the length coupling
and far less sensitive to changes of the background model.
For example, when considering a superposition of back-
ground models in Sec. V, the line marking the Ising phase
transition is almost horizontal with only slight deviations
consistent with the changes in the background geometry.
In fact this is encouraging, since we do observe that this
coupling allows for matter sensitive to the geometry it is
defined on, yet without resulting in significant deviations
away from the equilateral case.
Fortunately, also the gravitational background model is

sensitive to the matter defined on it, albeit only significantly
if it is not close to a topological fixed point. If the latter is
the case, the deviations away from it caused by the Ising
model are not strong enough, and the background quickly
flows back to the initial fixed point intertwiner and
decouples from the Ising model, which remains sensitive
to the background geometry. However, if we consider the
superposition of two background fixed points, the inter-
action with the Ising model can trigger phase transitions in
the geometry. In fact, depending on the geometries pre-
ferred by the coupling scheme, for growing β0 the geo-
metric transition is shifted away from its position in
parameter space without the Ising model. Again this effect
is far more profound in the length coupling than in the area
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coupling. Nevertheless, we have shown that by introducing
a simple modification of the Ising model coupling constant,
which couples it to a topological background, one can
implement a dynamics, which exhibits regions (in param-
eter space) of strong coupling between the two systems,
namely close to the phase transitions of both systems, and
regions in which they are only slightly coupled, e.g. on the
fixed points of the background model. Hence, it might be
worthwhile to study a similar coupling mechanism for spin
foams and lattice gauge theories in order to potentially
identify similar regions as well. A region in which both
systems are only weakly coupled might allow us to
establish contact to lattice gauge theories on a fixed (flat)
background, which could indirectly teach us more about
the geometry arising from spin foam models.
As these coupling mechanisms of the Ising model to the

background are the central piece of this article, let us also
discuss some of the choices made and their possible
consequences. In both cases, we have regularized the
j ¼ 0 case by defining the jþ 1

2
as the length of an edge.

We have motivated this choice with the asymptotics of (3D)
spin foam models [69,70], but admittedly this is ad hoc,
and one can straightforwardly generalize this to jþ ϵ
instead, where ϵ ≠ 0.
For the length coupling, ϵ > 0, i.e. essentially the case

studied here, implies that βðjÞ is always positive and the
largest coupling constant is assigned to j ¼ 0, and thus also
the largest Ising edge weight. The size of ϵ then determines
how much j ¼ 0 is favored, but the qualitative behavior is
more or less the same. However, if ϵ < 0, βðjÞ is negative
for all j < jϵj, such that for some edge lengths, the
interaction for j < jϵj is antiferromagnetic and ferromag-
netic for j > jϵj. One can expect significant changes for the
dynamics of such a model, if one tunes ϵ such that small
edge lengths give antiferromagnetic and large edge lengths
ferromagnetic interactions between the Ising spins. One can
also choose ϵ such that the interaction is antiferromagnetic
for all j, where jβðjÞj is then largest for jmax. Thus it might
be possible to study other interesting phenomena, possibly
a transition from antiferromagnetic to ferromagnetic or the
modified interaction could cure the unintended emphasis
on j ¼ 0 configurations. However one should not literally
interpret jþ ϵ as the length, but rather an effective
description, in which the system rather avoids shortest
distances, which one could associate with highly energetic
configurations.
Concerning the area coupling, a modification to ϵ < 0

can also have interesting effects, which are, however, not as
straightforward to predict, as βðjÞ can become complex
(due to the square root). Another option can be to invert the
modification, i.e. normalize the length by the square root of
the area instead. However, it is not obvious whether this
leads to a favoring of equilateral over irregular configura-
tions, as both the product of weights around a single vertex
remains unchanged for the equilateral and the alternating

cases. This has to be examined more thoroughly before one
can draw a conclusion.
Before we conclude, we would like to make a few

remarks on the coarse graining algorithm. Since we have
used a symmetry protecting version similar to those
introduced in [51] for Abelian and in [53,54] for non-
Abelian and quantum group symmetries, we have been able
to straightforwardly identify the phases of the model. The
main advantage of the triangular tensor network algorithm
that we have used in this work is its improved memory
and computational cost, as we only save 3-valent tensors
and contract one index less. This roughly reduces the
computation time from χ6 to χ5 compared to the 4-valent
algorithm in [58], where χ is the bond dimension (or index
range) of the tensor. However, the algorithm has a caveat:
Even though we have worked at rather low accuracy, the
fixed point tensors have shown so-called corner double line
(CDL) structure. This CDL structure means that part of the
tensor is of a corner double line form, its edges being
double indices, which are pairwise identified along the
vertex. This structure is a fixed point of many tensor
network renormalization schemes, and for fixed initial
parameters, the final fixed point tensor is cutoff dependent;
see also the appendix of [77] for an explanation. Thus it
obstructs a proper flow to the true fixed point of the system.
In condensed matter physics, this structure is interpreted as
short range entanglement, which is unintentionally pro-
moted to a larger scale by the coarse graining procedure and
can be cured by entanglement filtering [58,77,91,92].
Because of the absence of a (background) scale, the
interpretation in spin foam models is less clear.
Fortunately in the system under discussion here, the
different phases can still be clearly identified, such that
the results (in the approximation scheme) are consistent.
Furthermore, we would like to briefly comment on the

chosen cutoff scheme, namely one singular value per
intertwiner channel ðj; kÞ. Even though it appears to be
a strong simplification, our results suggest that this
approximation is good enough to capture many important
aspects of the system. Therefore, if we would work with a
higher accuracy, i.e. more singular values are taken into
account in each iteration, we expect that the actual position
of the phase transitions will change, however, not the
qualitative behavior, e.g. which phases the model has or
the qualitative reaction of the Ising spins interaction to the
background. Close to both the Ising and the geometric
transitions, i.e. where both systems are more strongly
coupled, this approximation breaks down and one has to
work with a larger bond dimension. There we also expect
interesting dynamics to occur, possibly with additional
phases beyond the product phases of the composite model.
Furthermore, it would be interesting to compute critical
exponents in this regime in order to learn more about the
phase transitions. However, many tensor network algo-
rithms, including the one used here, require an infinite bond
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dimension to study systems at criticality and are not well
suited for extracting critical exponents [93]. The algorithm
recently developed by [77] is more promising to fulfill this
task as it successfully deals with CDL structure, may allow
for good approximations close to criticality for finite bond
dimension, and is claimed to give good results for critical
exponents. Therefore, it is more promising to examine the
toy model at criticality with a properly adapted algorithm.
Additionally, one may want to supplement the numerical

analysis of the toy model by more analytical means, e.g.
examining whether one can define the toy model to be
discretization independent and thus possibly fix the cou-
pling of Ising spins and the background. Therefore one
could attempt to find a model independent under Pachner
moves, or at least perturb around the topological fixed
points of the background and determine the Ising weights,
such that the system is approximately discretization inde-
pendent. In fact we have examined these possibilities;
however, we did not find a straightforward solution to
either of them. One rather contrived option would be to
construct the whole amplitude, that is Ising plus back-
ground, to be a topological fixed point from [59], which,
however, requires the background to completely absorb the
dependence on the Ising degrees of freedom. For the other
option, the perturbation around a topological fixed point,
the equations essentially force the Ising model to assign
constant weights to all background configurations; the
Ising model is forced to be in either the ordered or the
disordered phase. This is also reflected in the numerical
simulations for the topological background in Sec. IV,
where the system quickly flows back to these and only the
Ising spins flow to either the ordered or the disordered
phase. In fact, this is already nontrivial to define the Ising
model itself in a discretization independent way (away
from either the ordered or the disordered phase), since one
can expect it to be nonlocal as one can already deduce from
a simple decimation scheme and as it is also well known
for other interacting systems, e.g. discrete gravity under
Pachner moves [94–97]. A possible way to overcome this is
to generalize the concept of discretization independence by
a means to relate theories defined on different discretiza-
tions. One way is to allow refining and coarse graining of
the boundary (data) in such a way that one can define
embedding maps that relate between configurations and
states defined on different boundaries. If these embedding
maps are designed such that one can unambiguously relate
different boundaries, one is able to identify states across
them, i.e. recognize the same (physical) situation repre-
sented on different boundaries. This condition is known as
cylindrical consistency, e.g. realized for the kinematical
Hilbert space of loop quantum gravity [9,98,99]. To realize
this for interacting theories or the physical Hilbert space
of loop quantum gravity, i.e. states annihilated by all
constraints of the theory, is nontrivial; however, see
[39,40,100] for how this problem can be tackled.

At last, we would like to raise a conceptual issue
concerning the coupling of matter to spin foams. The
Ising model, and also lattice Yang-Mills in the Wilson or
heat kernel action [28], are essentially Wick-rotated theo-
ries that appear as expð−SmatterÞ in the partition function
and/or path integral. However, spin foams, and also the
discussed intertwiner models, are complex assigning
∼ expðiSÞ to the path integral (for one orientation), also
for the Riemannian signature. Moreover, it is well known
from spin foam asymptotics [101–106] that both orienta-
tions of a 4-simplex have to be considered, such that one
rather finds ∼ cosðSReggeÞ, where SRegge is the Regge action
[107] associated with the 4-simplex. To the author’s best
knowledge, it is not known whether it is consistent to
couple a Wick-rotated matter theory to a nonrotated
gravitational theory and, moreover, in which way matter
should couple to different orientations. There exist attempts
to remove the other orientation from the asymptotics
[108–112], whereas it has been argued in [113] that
fermionic degrees of freedom might be sensitive to changes
in the orientation.
In this article we have introduced and tested a toy model

to demonstrate that coupling matter degrees of freedom to a
dynamical (discrete) background à la spin foams can be
straightforwardly achieved and can additionally result in
an interesting dynamics, where both systems are sensitive
to one another. Moreover, we have identified regions in
parameter space of strong and weak coupling between
matter and background degrees of freedom. Therefore we
suggest to generalize these ideas to the 4D theories, e.g.
Yang-Mills theory and spin foams, and attempt to extract
new insights for spin foam models. Of course these theories
are very complex and a renormalization algorithm is (at the
moment) not at hand. Therefore it will be necessary to
introduce approximations and simplifications, which might
still allow us to study interesting aspects, albeit with the
caveat of lacking a continuum limit. Nevertheless, this
may allow us to tentatively establish connections to other
approaches based on discretizations, such as lattice gauge
theories, or may give us hints on how to modify the matter
coupling, the spin foam model or both. An application,
which might be in reach, could be the identification of an
effective (matter) dynamics consistent with lattice gauge
theories on flat spacetime, which would massively support
spin foam models as viable quantum gravity candidates.
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APPENDIX A: QUANTUM GROUP BASICS

In this appendix, we briefly introduce some basics on the
quantum group SUð2Þk and the diagrammatical calculus,
which are necessary to understand the calculations, in
particular in Appendix B and partially in Sec. III, however
are not essential to understand the main results of the paper.
We use the notation and conventions introduced in [60],
where one can also find a more detailed introduction to
quantum groups (see also [61]). Many of the tools we
discuss and use in this work have been originally developed
in [54].
If we refer to the quantum group SUð2Þk, we are actually

referring to the q-deformation Uqðsuð2ÞÞ of the universal
enveloping algebraUðsuð2ÞÞ of the Lie algebra suð2Þ as in
[60]. The algebra Uqðsuð2ÞÞ is generated by three oper-
ators J�; Jz with commutation relations

½Jz; J�� ¼ �J�;

½Jþ; J−� ¼
qJz − q−Jz

q1=2 − q−1=2
: ðA1Þ

As mentioned in the main body of the paper, the finite
dimensional representations of SUð2Þk are labeled by j ∈ N

2

and can be defined on 2ðjþ 1Þ dimensional representation
spaces Vj as for SU(2). The quantum dimension dj of
representation j is defined as the quantum number of the
classical dimension,

dj ≔ ½2jþ 1�; ðA2Þ
where the brackets denote quantum numbers,

½n� ¼ q
n
2 − q−

n
2

q
1
2 − q−

1
2

: ðA3Þ

In this paper, the deformation parameter q is a root of unity,
with q ¼ expð 2π

ðkþ2Þ iÞ. k ∈ N is called the level of the

quantum group SUð2Þk. Quantum numbers are periodic

½n� ¼ sinð 2πn
2kþ4

Þ
sinð 2π

2kþ4
Þ ; ðA4Þ

with zeros at n ¼ 0 and n ¼ kþ 2. Thus j ¼ k
2
with

dk=2 ¼ 1 is the “last” representation with a strictly positive
quantum dimension. Representations j ¼ 0; 1

2
;…; k

2
are

called admissible, and representations j > k
2
are of so-

called quantum trace zero.
The tensor product of two representations Vj1 ; Vj2 is via

the coproduct Δ. The action of the SUð2Þk algebra on
Vj1 ⊗ Vj2 is defined as

ΔðJ�Þ ¼ q−Jz=2 ⊗ J� þ J� ⊗ qJz=2;

ΔðJzÞ ¼ I ⊗ Jz þ Jz ⊗ I: ðA5Þ

The tensor product Vj1 ⊗ Vj2 can be decomposed into a
direct sum of irreducible representations plus a part con-
sisting of trace zero representations (which are modded
out). With an orthogonal basis jj;mi in the representation
spaces, the decomposition is given by Clebsch-Gordan
coefficients

jj; mi ¼
X
m1;m2

qCj1j2j
m1m2m

jj1m1i ⊗ jj2; m2i: ðA6Þ

If one couples three admissible representations jI , jK ,
and jL in this way, several conditions have to be satisfied
for the Clebsch-Gordan coefficients to be nonvanishing,

jI þ jK ≥ jL for permutations fJ;K;Lgof f1;2;3g;
j1 þ j2 þ j3 ¼ 0 mod 1;

j1 þ j2 þ j3 ≤ k: ðA7Þ

The last condition in (A7) is special to the quantum
deformed case at the root of unity and indicates that
Vj1 ⊗ Vj2 can include trace zero parts, which can be
modded out [61]. However, some equations (for instance
the definition of the ½6j� symbol) are valid only up to trace
zero parts [61].
In particular we have the completeness relation

X
m3;j3admiss

qCj1j2j3
m1m2m3

qC
j1j2j3
m0

1
m0

2
m3

¼ Πj1j2
m1m2;m0

1
m0

2
; ðA8Þ

where Πj1j2
m1m2;m0

1
m0

2
projects out the trace zero part in

Vj1 ⊗ Vj2 . The orthogonality relation for the Clebsch-
Gordan coefficients is given as

X
m1;m2

qCj1j2j
m1m2mqC

j1j2j0
m1m2m0 ¼ δjj0δmm0θj1j2j; ðA9Þ

where θj1j2j ¼ 1 if the coupling conditions (A7) are
satisfied and vanishing otherwise.

1. Diagrammatic calculus

The introduction of a quantum group complicates some
definitions known in the classical case, e.g. the notion
of a dual, which is necessary to calculate the recoupling
basis of the tensor in Appendix B and Sec. III. To do so, a
convenient graphical representation has been introduced in
[54]. The quantum group requires one to specify a special
direction, which we will take as the vertical direction and
which can be interpreted as maps from a tensor product of
representation spaces of SUð2Þk, represented by incoming
lines from below, to a tensor product of representation
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spaces, drawn as outgoing lines on top. Each of these lines
carries a representation label j and a magnetic index m.
One basic example of such a map is the Clebsch-Gordan
coefficients, denoted by qCj1j2j3m1m2m3

.23 They are interpreted as
a map Vj1 ⊗ Vj2 → Vj3 , symbolizing how the spins j1 and
j2 (with their respective magnetic indices) couple to j3. We
have already introduced their graphical representation in
Eq. (2.1),

ðA10Þ

A particular version of this Clebsch-Gordan coefficient will
be important later on: If we choose j1 ¼ j2 ¼ j and take
j3 ¼ 0, we define the “cap” as a map: Vj ⊗ Vj → C,
namely

ðA11Þ

From this cap we can similarly define a “cup” by requiring
that they give the identity if we concatenate them,

ðA12Þ

which gives

ðA13Þ

Using these cups and caps, we can construct the Clebsch-
Gordan coefficients for the quantum group with inverse
(here: complex conjugate) deformation parameter q̄,
already given in (2.2), by “bending up” one of the lower
legs of the Clebsch-Gordan in (A10).

ðA14Þ

This map can hence be interpreted as mapping Vj3 →
Vj1 ⊗ Vj2 , and thus it is dual to (A10). With a cap we can
“pull down” one of the legs again and arrive back at (A10),

ðA15Þ

Concatenating these two maps, we obtain a map Vj3 → Vj3
proportional to the identity,

ðA16Þ

Given these graphical ingredients, several important
identities can be derived, which we append here.
We start with the expression giving the dependence of

the 4-valent intertwiner P4
v (2.19) on the magnetic indices,

ðA17Þ

Its dual is defined by placing cups on its bottom legs and
caps on its top ones (such that these do not cross). In terms
of Clebsch-Gordan coefficients this reads

ðA18Þ

In fact, if we connect the diagrams (A17) and (A18), we
obtain the following diagram:

ðA19Þ
23This is not the standard Clebsch-Gordan coefficient defined

in [60], but it is modified by the quantum dimension: qCj1j2j3m1m2m3
¼

qCj1j2j3
m1m2m3

ð ffiffiffiffiffiffi
dj3

p Þ−1.
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from which we can deduce that the map

ðA20Þ

can be used to project onto the basis (A17), from which also
follows that the components of a 4-valent tensor in that
basis, e.g. T̂ in Appendix B and Sec. III, can be computed
by contracting that tensor with (A18). Moreover, we
can also compute the change of basis related to a different
4-valent recoupling scheme.
We are looking for the relation

ðA21Þ

In order to find the coefficient cðj5; j6Þ we contract the
above expression with the diagram (A18),

ðA22Þ

The diagram on the left hand side is the 6j symbol of
SUð2Þk, given as a particular contraction of four Clebsch-
Gordan coefficients,

ðA23Þ

Calculating both sides of (A22), we find

ð−1Þj1þj2þj3þj4ðdj5dj6Þ−
1
2

�
j1 j2 j05
j3 j4 j6

�

¼ ð−1Þj1þj2þj3þj4
X
j5

cðj5; j6Þðdj5Þ−1δj5;j05 ; ðA24Þ

from which we deduce

ðA25Þ

As a last step, let us briefly explain how the diagram (B14)
enters into (B12) and (B13) and also why (B14) can be split
into two 6j symbols for the 3-valent algorithm in Sec. III.
If we consider just the magnetic indices of the inter-

mediate 3-valent tensors Si [Eqs. (B8) to (B11)] and
connect the 3-valent vertices according to (B12) or
Fig. 8, we find a diagram with two bottom legs and
two top legs connected by a square. To compute the

FIG. 8 (color online). Tensor network renormalization for a
regular square lattice. The tensor T is split into 3-valent tensors in
two different ways by grouping two exterior legs together and
performing an SVD. A truncation is performed on the new
indices i by only taking the largest χ singular values into account.
The new truncated tensors Si are combined into a new 4-valent
tensors by summing over the old indices.
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components of (B12) in the basis (A17), it has to be
contracted with (A18) resulting in (B13). The diagram that
we have to compute is thus

ðA26Þ

Instead of doing this directly we use the following two
identities to simplify it first:

ðA27Þ

ðA28Þ

Thus we can manipulate (A26) in the following way:

ðA29Þ

The diagrams on the right hand side are again 6j-symbols
defined in (A23). Eventually, we find

ðA30Þ

APPENDIX B: 4-VALENT TENSOR NETWORK
RENORMALIZATION: GENERAL IDEA
AND DERIVATION OF SYMMETRY

PROTECTING ALGORITHM

In this appendixwewill explain the 4-valent tensor network
algorithm inmore detail. As mentioned already in Sec. III, the
general idea is to encode the entire dynamics of a (discrete)
system, in particular the partition function, into a tensor
network, i.e. a local contraction of multidimensional arrays,
andevaluate it in stepsviacoarsegraining.The latter isdonevia
a local manipulation of the network, in which one defines new
coarse degrees of freedom from the finer ones and introduces
a truncation, which allows for a control on the error being
made. Therefore, it is necessary to know the relevance of the
coarse degrees of freedom (with respect to the other ones).
Such variable transformations are computed via a SVD. To

explain this let us discuss the concrete algorithmdeveloped in
[57,58]. Consider a tensor network on a 2D square latticewith
identical 4-valent tensors Tabcd on all vertices. Divide the
tensors into even and odd ones, and split them according to
Fig. 8, where the odd ones are green and the even ones are
blue. This splitting is performed via a singular value decom-
position acting on the following matrices:

TðabÞ;ðcdÞ ≕ Mð1Þ
ðabÞ;ðcdÞ

¼
X
i

Uð1Þ
ðabÞ;iλ

ð1Þ
i ðVð1ÞÞ†ðcdÞ;i; ðB1Þ

TðdaÞ;ðbcÞ ≕ Mð2Þ
ðdaÞ;ðbcÞ

¼
X
i

Uð2Þ
ðdaÞ;iλ

ð2Þ
i ðVð2ÞÞ†ðbcÞ;i; ðB2Þ

whereUðlÞ
ðabÞ;i and V

ðlÞ
ðcdÞ;i are the singular vectors, and λ

ðlÞ
i are

the singular values of the matrix MðlÞ
ðabÞ;ðcdÞ.

24 U and V are

24ðabÞ denotes that the indices a; b have been combined into
one index, such that the entries of the tensor are arranged as the
indices of a matrix.
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unitary matrices; i.e. the singular vectors are orthonormal,
while the singular values are non-negative and ordered in
size, λ1 ≥ λ2 ≥ � � � ≥ λN ≥ 0.
Such a singular value decomposition can be applied to

any matrix M, say of rank N, where the size of the N
nonvanishing singular values λi signifies the significance of
a singular vector. Conversely, given the decomposition of
the matrix, it can be approximated by a matrix of rank χ
by only keeping the χ largest singular values. Actually this
matrix is the best approximation ofM by a matrix of rank χ
with respect to the least squares error. Whether this is a
good approximation can be directly estimated from the size
of the discarded singular values with respect to the kept
ones, in particular the largest.
In the context of tensor network renormalization, the

matrices U and V are variable transformations, in fact
isometries. They map the fine degrees of freedom, encoded
in the indices a, b, etc., into coarse degrees of freedom that
are (for the moment) labeled by the number of the singular
value. They also give the intermediate 3-valent tensors,

ðS1;3ÞðabÞ;i ≔ Uð1;2Þ
ðabÞ;i

ffiffiffiffi
λi

p
; ðB3Þ

ðS2;4ÞðabÞ;i ≔ Vð1;2Þ
ðabÞ;i

ffiffiffiffi
λi

p
: ðB4Þ

Truncating the number of singular values results in a
truncation on the index range on the new edges of the
intermediate tensor network. As a final step, the fine edges,
labeled by the original indices a; b;…, are contracted and
one defines a new tensor T 0,

T 0
a0b0c0d0 ¼

X
a;b;c;d

ðS1Þdc;c0 ðS2Þba;a0 ðS3Þad;c0 ðS4Þcb;a0 : ðB5Þ

The new tensor network consisting of effective tensors T 0 is
coarser and tilted by 45 deg. From here on the procedure is
iterated; the system has reached a fixed point if the tensor
does not change under consecutive iterations, described by
a fixed point tensor T�.
While this truncation solves the practical problem of

exponentially growing index ranges, the interpretation of
the new degrees of freedom is unclear. In each iteration
of the algorithm, the fine variables get redefined and lose
their meaning (in terms of the original variables) if one
forgets these variable redefinitions, yet even keeping them is
not very feasible after many iterations. Moreover, if a system
possesses symmetries, e.g. from an underlying (quantum)
group, these symmetries will also be present in the tensor,
e.g. the Z2 delta function present on each vertex in the Ising
model. This symmetry will also survive the coarse graining
procedure, but may not be obvious to identify after several
variable redefinitions. Hence it is preferable to use an
algorithm that explicitly preserves the symmetries.
On the level of the matrix that is to be split one can

achieve this by considering representation theory of the

underlying group(s). Since we are considering intertwiners,
i.e. elements of the invariant subspace of a tensor product of
representation vector spaces, on the vertices, the irreducible
representations on the adjacent edges must couple to the
trivial representation, e.g. k ¼ 0 for Z2. This 4-valent
intertwiner space on the vertices can be split into 3-valent
intertwiner spaces, analogous to the splitting of the tensor
network. The new edge connecting the 3-valent vertices
carries a new representation, which for Z2 is uniquely
determined. If the 4-valent intertwiner space is not one
dimensional, as for SUð2Þk, the intermediate label can take
multiple values. Conversely, a specific intermediate label
can allow several pairs of representations on the fine edges.
Crucially, the splitted intertwiner admits the same configu-
rations of exterior edges as the original one, but allows
them to be arranged according to the intermediate label.
The same holds for the matrices M subject to the SVD.

Their entries can be rearranged according to the intermedi-
ate label, which turns them into a block diagonal form.
It is thus sufficient to only consider the blocks for each
intermediate label and neglect the forbidden configurations.
This not only has computational advantages, since we can
perform more SVDs on smaller matrices, but also has
interpretative ones. We call these blocks intertwiner chan-
nels (see also [53,54]): Their labels will be endowed onto
the new edge of the coarser tensor network, which is the
same label as the original model. Thus we also explicitly
preserve the intertwiner structure on the vertices. The
algorithm also slightly changes because we perform a
single SVD for each block. In order to obtain a correct
truncation of the χ largest singular values, it is necessary to
compare all values from all blocks and take the χ largest of
them. As a result, some intertwiner labels can appear with
a multiplicity larger than one and lead to a generalized
class of models with respect to the original one.
In the system at hand this block diagonal form depends

on two parameters, a SUð2Þk representation ji and a Z2

representation ki. For SUð2Þk this form is computed by
expanding it in a particular recoupling basis, essentially of
Clebsch-Gordan coefficients, which capture the depend-
ence on the magnetic indices which is unchanged during
the coarse graining procedure. This idea has been devel-
oped for (finite) non-Abelian groups in [53] and has been
derived in great detail for quantum groups in [54] and will
not be repeated here. We add a small section in Appendix A
to provide a short tour for the interested reader. For the
Ising model, it is straightforward and can be found in detail
in [51,52], which deals with finite Abelian groups Zq with
q ≥ 2. Here we will briefly present the idea.
As discussed above, the Z2 representations ke meeting at

an edge have to sum to zero (modulo 2), which is encoded
in the Z2 delta function on the vertex. If we split the
4-valent vertex into two 3-valent ones, we replace one delta
function by two and introduce an additional variable ki. The
delta functions enforce that k1 þ k2 ¼ ki ¼ k3 þ k4, such
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that solving one constraint for ki restores the original delta function. Conversely, if both δ-functions are solved for e.g. k2
and k4, the tensor is in block diagonal form with parameter ki.
To sum up this discussion, the tensors T that are meant to be split, can be written in the following form:

ðB6Þ

ðB7Þ

The two different bases correspond to the two different splittings of the tensors, where j5, k5 and j6, k6 label the
intermediate labels, respectively, and the graphs pictorially encode the dependence on magnetic indices. In principle, the
delta functions encoding the constraints of the Ising model can be implicitly included in the T̂i, yet we write them out to
underline the fact that this symmetry is preserved by the algorithm. In the next step, the SVD is applied to T̂ for each choice
of intermediate labels. One computes the following 3-valent tensors:

ðB8Þ

ðB9Þ

ðB10Þ

ðB11Þ

The I in the argument of Si, i ¼ 1;…; 4, summarizes both SUð2Þk and Z2 representations. Note that both the Clebsch-
Gordan coefficients and theZ2 delta functions split trivially due to our choice of basis. The single nontrivial step is the SVD
on the T̂i. As the final step, these four 3-valent tensors are combined according to Fig. 8 to form the new tensor T 0. To obtain
the recurrence relation for T̂ 0, we have to contract the magnetic indices and obtain (see also Appendix A)
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ðB12Þ

After substituting the equations for all Si and contracting all magnetic indices, we obtain the final recurrence relation,

T̂ðj5;k5Þ
1 ðI1; I2; I3; I4Þ ¼

X
a;b;c;d

X
fmg

ð−1Þjcþjaþj5

dj5
ffiffiffiffiffiffiffiffiffiffiffiffi
djbdjd

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dj1dj2dj3dj4

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1Þðj1;k1Þi1i1

ðλ2Þðj2;k2Þi2i2
ðλ1Þðj3;k3Þi3i3

ðλ2Þðj4;k4Þi4i4

q

× ðV1Þðj1;k1Þi1;fjb;kb;ja;kagðV2Þðj2;k2Þi2;fjb;kb;jc;kcgðU1Þðj3;k3Þfjd;kd;jc;kcg;i3ðU2Þðj4;k4Þfja;ka;jd;kdg;i4

�
jc ja j5
j1 j2 jb

��
jc ja j5
j4 j3 jd

�
;

ðB13Þ

where we have used the following identity of Clebsch-Gordan coefficients that is proven in [54] and Appendix A,

ðB14Þ

This concludes the discussion of this particular tensor network algorithm. Interestingly, it can be simplified further by
“cutting it in half” and using instead an algorithm based on 3-valent vertices, which is straightforward to derive from the 4-
valent one and the subject of Sec. III.
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