
Critical behavior in black hole scalar field interaction

J. A. Crespo1 and H. P. de Oliveira1,2
1Departamento de Física Teórica—Instituto de Física A. D. Tavares,

Universidade do Estado do Rio de Janeiro, R. São Francisco Xavier, 524, Rio de Janeiro,
Rio de Janeiro 20550-013, Brazil

2Department of Physics and Astronomy, University of Pittsburgh, 100 Allen Hall, 3941, O’Hara Street,
Pittsburgh, Pennsylvania 15260, USA

(Received 20 July 2015; published 3 September 2015)

We study the critical behavior at the threshold of black hole formation in a model consisting of a scalar
field incident to a reflector barrier enclosing a Schwarzschild black hole. Weak incident scalar field waves
disturb slightly the black hole spacetime and are completely radiated by the reflector, like water waves
striking against the wall of a dam. Strong incident waves produce the formation of an apparent horizon
outside the barrier. In this case, a fraction of scalar field crosses the horizon together with the barrier,
whereas another fraction escapes to infinity. We have integrated the field equations using a Galerkin
collocation code that allowed the necessary accuracy to investigate the behavior of the black hole masses
for a broad range of scalar field initial amplitude. We have shown that a scaling law describes the black hole
masses for amplitudes very close to the critical value. In the limit of very strong scalar fields, the black hole
masses either scale linearly with the initial amplitude or saturate depending on the existence of the initial
monopole moment.
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I. INTRODUCTION

There is no doubt that critical phenomena in gravitational
collapse are one of the most important discoveries of
classical general relativity. In his seminal work, Choptuik
[1] has studied the numerical spherical collapse of a self-
gravitating massless scalar field, taking into account one-
parameter initial data families. Choptuik was able to identify
those data that form black holes (strong data) and those that
result in complete dispersion of the scalar field (weak data).
The numerical investigation towards the threshold of black
hole formation revealed unexpected features that constitute
the core of critical behavior in gravitational collapse.
Accordingly, black holes with infinitesimal masses are
formed and satisfy the following scaling relation:

MBH ≃ Kðp − p�Þγ: ð1Þ
Here p is the parameter that characterizes the strength of the
initial data, and p� is its corresponding critical value. Then,
p� separates those solutions that form black holes, p > p�
(supercritical), from those that do not form black holes,
p < p� (subcritical). The exponent γ ≃ 0.37 is universal in
the sense of not depending on the particular initial data
family. Choptuik has shown that the critical solution
(p ¼ p�) is universal and has an elusive property known
as discrete self-similarity (DSS). It means that the critical
solution, say φ�ðr; tÞ, has a scale invariance symmetry
expressed by φ�ðr; tÞ ¼ φ�ðeΔr; eΔtÞ, where Δ≃ 3.44.
Critical behavior has been noticed in a large variety of

collapsing fields in spherical symmetry [2], and in the
collapse of axisymmetric gravitational waves [3–5]. These

studies have shown two types of critical solution—namely,
the type II found originally by Choptuik and the type I that
can be static or periodic. The existence of critical configu-
rations located at the threshold of black hole formation is
one of the crucial ingredients for the establishment of critical
behavior in gravitational collapse. All critical solutions are
unstable, arising from the competition between the attractive
gravitational interaction and the repulsive effective interac-
tion present in all types of matter models.
Gomez et al. [6] devised a model that consists of a

spherically symmetric scalar field incident on a reflecting
barrier. This inner boundary corresponds to a spherical
surface of radius R that encloses a Schwarzschild black
hole with massM0 subject to the constraint R > 2M0. They
have set the scalar field to zero at the inner boundary so that
this boundary acts as a perfect reflecting barrier. They have
studied the decay of self-interacting scalar waves, confirm-
ing the previous results of Gundlach, Price, and Pullin [7]
under different boundary conditions and numerical algo-
rithm. Although their model is artificial, Gomez et al.
presented new features regarding the role of the non-
vanishing initial Newman-Penrose constant in the ampli-
tude decay of the radiation field. They have also mentioned
the presence of critical phenomena when a strong incident
scalar field might form an apparent horizon outside the
reflector, resulting in a new black hole with a mass greater
than R=2 [6].
We have studied here the threshold of black hole

formation in the model of Gomez et al. [6]. The inves-
tigation of critical phenomena when a scalar field collapse
towards the reflector barrier and interacts with an existing
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black hole seems to be attractive. We have divided the paper
as follows: Section II presents the basic equations of the
model. The numerical method to integrate the field equa-
tions belongs to Sec. III. We have assembled the results in
Sec. IV. The first of these is the mass scaling with a mass
gap at the threshold of black hole formation that confirms
the conjecture of Ref. [6]. We have found an oscillatory
component superposed on the scaling law indicating that
the critical solution has discrete self-similarity. The second
result is the mass scaling beyond the threshold of black hole
formation. Finally, in Sec. V we conclude.

II. A SIMPLE MODEL OF BLACK HOLE SCALAR
FIELD INTERACTION

We have followed Ref. [6] and set the line element in
Bondi coordinates,

ds2 ¼ −
V
r
e2βdu2 − 2e2βdudrþ r2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

where u is the retarded time, r is the radial coordinate, and
the metric functions V and β depend on u; r. The relevant
field equation is reduced to two hypersurface equations:

β;r ¼
r
4
φ2
;r; ð3Þ

V;r ¼ e2β; ð4Þ
and the scalar wave equation,

2ðrφÞ;ur −
1

r
ðrVφ;rÞ;r ¼ 0: ð5Þ

The Schwarzschild solution is given by φ ¼ 0, β ¼ 0, and
V ¼ r − 2M0, whereM0 is the mass of the black hole. Here
r ≥ R, where R is the radius of the spherical surface
identified as the reflector barrier. The scalar field vanishes
at the reflector, ϕðu; RÞ ¼ 0, together with the coordinate
conditions βðu; RÞ ¼ 0 and Vðu; RÞ ¼ R − 2M0 in which
R > 2M0.
The field equations are evolved starting from the initial

null data φ0ðrÞ ¼ φðu0 ¼ 0; rÞ for r ≥ R. We may interpret
this initial distribution as an inhomogeneous cloud of a
scalar field interacting with a black hole. To guarantee that
the metric and the scalar field have a unique solution, we
have fixed appropriate boundary conditions at the inner
boundary r ¼ R0 and at the spatial infinity r → ∞. We
follow the approach of Gomez et al. [6] in establishing
conditions at the boundary r ¼ R,

φðu; r0Þ ¼ OðδrÞ;
βðu; rÞ ¼ OðδrÞ;

Vðu; r0Þ ¼ R − 2M0 þOðδrÞ; ð6Þ
where δr ¼ r − R. The conditions at spatial infinity must
guarantee that the spacetime is asymptotically flat:

φðu; rÞ ¼ Oðr−1Þ;
βðu; rÞ ¼ HðuÞ þOðr−2Þ;
Vðu; rÞ ¼ re2HðuÞ − 2e2HðuÞMBðuÞ þOðr−1Þ: ð7Þ

Here HðuÞ and MBðuÞ are arbitrary functions arising from
the integration of the field equations. MBðuÞ is the Bondi
mass related to the mass function mðu; rÞ by MBðuÞ ¼
limr→∞mðu; rÞ, where

1 −
2mðu; rÞ

r
≡ gμνr;μr;ν ¼

Ve−2β

r
: ð8Þ

Another possibility of calculating the Bondi mass is
through the following integral:

MBðuÞ ¼ M0 þ
1

4

Z
∞

R0

e−2βrVφ2
;rdr: ð9Þ

The Bondi mass is not a conserved quantity, but a
monotonically decreasing function according to the Bondi
formula [8],

dMB

du
¼ −

1

2
e−2HN2ðuÞ; ð10Þ

where NðuÞ ¼ limr→∞ðrφ;uÞ is the news function.
Despite the apparent simple form of the field equa-

tions (3)–(5), no globally well-behaved exact solutions are
known. But similarly to the case without the barrier
(M0 ¼ 0), two main behaviors are recognizable [6]. If the
scalar field strength only produces small distortion on the
black hole spacetime, it will be completely radiated away to
infinity by the reflecting boundary, resulting in a black hole
of mass M0. On the other hand, above a critical value, the
scalar field collapses to form an apparent horizon outside the
reflector. In this case, a fraction of the scalar field crosses
the horizon while another fraction is radiated to infinity.
The reflector barrier falls into the horizon, and the mass of
the formed black hole must satisfy the condition

MBH >
R
2
: ð11Þ

Gomez et al. [6] have claimed that critical phenomena seem
to appear for black holes whose masses are close to R=2, but
unlike the case without the reflector [1], this system has a
mass gap.

III. A DYNAMICAL SYSTEM APPROACH
THROUGH THE GALERKIN
COLLOCATION METHOD

We present here the confirmation of the critical behavior
conjectured in Ref. [6]. To this aim, we have integrated the
field equation using an improved code based on the
Galerkin collocation method [9]. It is convenient to
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introduce a new radial coordinate η such that r ¼ Rð1þ ηÞ,
where the spatial domain r ≥ R is equivalent to η ≥ 0.
We have also introduced an auxiliary scalar field Φ by

Φðu; ηÞ≡ ð1þ ηÞφðu; ηÞ: ð12Þ

The central idea of any spectral method is to approximate
the relevant fields Φ; V, and β as appropriate series with
respect to sets of basis functions according to

Φaðu; ηÞ ¼
XN
k¼0

akðuÞψkðηÞ; ð13Þ

βaðu; ηÞ ¼
XN̄
k¼0

bkðuÞχkðηÞ; ð14Þ

Vaðu; ηÞ ¼ R − 2M0 þ
XN̄
k¼0

ckðuÞηTLkðηÞ; ð15Þ

where N; N̄ are the truncation orders that dictate the
number of unknown modes akðuÞ; bkðuÞ; ckðuÞ. The basis
functions ψkðηÞ; χkðηÞ are constructed such that the boun-
dary conditions at η ¼ 0 and η → ∞ [cf. Eqs. (6) and (7),
respectively] are satisfied as prescribed in the Galerkin
method. Thus, it is necessary to express the basis functions
as proper linear combinations of the rational Chebyshev
polynomials TLkðηÞ defined by

TLkðηÞ ¼ Tk

�
x ¼ η − L0

ηþ L0

�
; ð16Þ

where TkðxÞ represents the standard Chebyshev polyno-
mials of k order and L0 is the map parameter.
We have assumed that the residual equations—obtained

when the spectral approximations (13)–(15) are inserted
into the field equations (3)–(5)—vanish at the collocation
or grid points. Due to the possibility of choosing distinct
truncation orders, we can have two distinct sets of collo-
cation points. Therefore, we approximate the field equa-
tions into a set of ordinary differential equations for the
unknown modes akðuÞ, and two sets of algebraic equations
for bkðuÞ; ckðuÞ. The spectral representation preserves the
hierarchy of the field equations. After establishing the
initial values akð0Þ, the corresponding initial values
bkð0Þ; ckð0Þ are calculated from the algebraic relations.
With these modes we can determine dak

du at u ¼ 0 and, as a
consequence, the unknown modes akðuÞ in the next instant.
The process repeats, providing the evolution of the modes
and allowing us to reconstruct the spacetime.
To evolve the self-gravitating cloud of the scalar field

incident towards the reflector, we need to specify the initial
data Φ0ðηÞ ¼ Φðu ¼ 0; ηÞ that fix the initial values akð0Þ.
We have chosen the following initial data families:

Φ0ðηÞ ¼
ϵη

ðηþ 1Þ ; ð17Þ

Φ0ðηÞ ¼
ϵη

1þ η
exp

�
−
ðη − η0Þ2

σ2

�
; ð18Þ

where ϵ is the amplitude of the initial scalar field distribution
about the black hole, and we have fixed σ ¼ 1, η0 ¼ 3.0.
We have used the Bondi formula (10) as a benchmark for

the convergence of the code. The numerical test consists in
verifying the global energy conservation expressed by the
quantityCðuÞ defined by integrating the Bondi formula [8,9]:

CðuÞ ¼
����MBðu0Þ −MBðuÞ

MBðu0Þ

−
1

2MBðu0Þ
Z

u

u0

e−2HðuÞN2ðuÞdu
����; ð19Þ

where MBðu0Þ is the initial Bondi mass and MBðu0Þ −
MBðuÞ is the mass loss evaluated at the instant u. The mass
loss must be equal to the integral of the news function that
determines the amount of radiated mass at each instant.
The exact evolution produces CðuÞ ¼ 0, while the

numerical integration of the field equations implies
CðuÞ ≠ 0. Thus, the decrease of CðuÞ due to the increase
of the truncation orders N; N̄ [see Eqs. (13)–(15)] con-
stitutes a robust diagnostic for the convergence of the
Galerkin collocation procedure. We have chosen the
parameters M0 ¼ 0.2, R ¼ 0.5 and evolved the initial data
(18) with ϵ ¼ 1.23 using a fourth-order Runge-Kutta
integrator with step size 5.0 × 10−4. Although generating
a subcritical solution, we have shown that ϵ ¼ 1.232
corresponds to a supercritical solution with the formation
of an apparent horizon. We have proceeded by selecting
truncation orders N ¼ 30; 40; 50;…; 90 and N̄ ¼ 1.5N, so
that after evolving the scalar field until being reflected
away, we have collected the maximum deviation of CðuÞ.
In Fig. 1 we have exhibited the exponential decay of these
maximum values, Cmax, as expected.

FIG. 1. Exponential decay of the maximum error in the global
energy conservation with the increase of the truncation orders N.
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IV. CRITICAL BEHAVIOR

We have confirmed the two main behaviors that depend
on the amplitude ϵ and the location of the reflector. For very
small amplitude, the field is continuously reflected until it
has been radiated away completely, leaving behind a black
hole of mass M0. For ϵ greater than a certain critical value,
ϵ�, an apparent horizon forms at η > 0 (r > R). It signalizes
the formation of a new black hole with mass MBH > R=2,
where part of the scalar field crosses the apparent horizon
together with the reflector. In the coordinate system we are
adopting, the formation of the apparent horizon occurs
when β diverges, meaning that the expansion of outgoing
null rays vanishes [10].
We have evolved the supercritical data and determined the

corresponding masses of the resulting black holes for a large
range of ϵ > ϵ�. To provide enough accuracy, we have set
N ¼ 400 and N̄ ¼ 2N and evolved the dynamical system
for the unknown modes akðuÞ using a Runge-Kutta-
Fehlberg integrator with adaptive step size. The spectrum
of black hole masses for the initial data (17) is shown in
Fig. 2. The approach of R=2 is clear as ϵ approaches ϵ�.
We have considered the formation of black holes whose

mass is close to R=2 or ϵ ∼ ϵ� and the following scaling law
with mass gap emerges:

δMBH ¼ MBH −
R
2
≃ k0δϵγ; ð20Þ

where k0 is a constant, δϵ ¼ ϵ − ϵ�, and γ is the critical
exponent. In Fig. 3 we have presented the above scaling law
that best fits the numerical points ðδMBHk; δϵkÞ obtained
from the initial data (17) and (18), where M0 ¼ 0.7;
R ¼ 2.0 and M0 ¼ 0.2; R ¼ 0.5, respectively. We have
found that γ ≈ 0.11 does not depend on the initial data,
the position of the reflector, or the mass M0 of the black
hole. Another interesting feature worth of mentioning is an
oscillatory component with period Δ ≈ 6.80 that super-
poses the scaling law (20).
The above features are typical of type-II critical behavior

that arises in systems without a characteristic scale. A
characteristic scale could be provided, for instance, by the

introduction of a potential term. In the present case, we
have a massless scalar field under specific conditions at
the reflecting boundary surface r ¼ R such that the field
equations (3)–(5) remain invariant under the change r → kr
and u → ku with k a constant. Therefore, critical phenom-
ena hold no matter if the scalar field is imploding in a
reflecting boundary at r ¼ R or imploding towards the
origin. With the reflecting boundary, the critical solution
has mass R=2 and is described by the following equations:

β;r ¼
r
4
φ2
;r; V;r ¼ e2β; φ;r ¼

A0

rV
; ð21Þ

where A0 is a constant of integration. It is possible to
derive the exact solution of these equations by reducing
them to dV

dϕ −
V2

A0
þ A0 − C1V ¼ 0, where C1 is a constant.

Equivalently, this solution belongs to the general solution
of Janis, Newmann, and Winicour [11] with the appropriate
boundary conditions at the reflector barrier.
We have proceeded further with the numerical experi-

ments exploring the regime of very strong self-gravitating
scalar fields characterized by ϵ ≫ ϵ�. The time within
which the apparent horizon forms decreases drastically
with the increase of the initial amplitude. For instance,
considering the initial data (17) with ϵ ¼ 8.0, the apparent

FIG. 2. Black holes mass as a function of the initial amplitude ϵ
for the initial data (17), where R=2 ¼ 1.0.

FIG. 3. Scaling law (20) for black hole formation with masses
close to R=2. The numerical data can in this region can be fitted
with γ ≈ 0.113 and γ ≈ 0.115 for the initial data using Eqs. (17)
(upper plot) and (18) (lower plot). The critical parameters are,
respectively, ϵ� ≈ 4.4010758346450 and ϵ� ≈ 1.231345571457.
There is also an oscillatory-like component that superposes the
scaling law.
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horizon forms after Δu ≈ 0.047, which is much smaller
than Δu≃ 3–3.5 for cases near the critical solutions.
Nevertheless, the questions we have addressed are the
following: Is there a relation between the large black hole
masses and the initial amplitude ϵ? If yes, is this relation
universal?
The numerical experiments have indicated that for the

initial data (17) there exists a value of the amplitude, say ϵ̄,
such that δMBH ¼ MBH −MBHðϵ̄Þ ∝ δϵν, with δϵ ¼ ϵ − ϵ̄.
We have found ν ≈ 1.011, implying that the black hole
mass scales linearly with the amplitude ϵ in this regime. For
the initial data (18), the black hole mass tends to saturate for
higher amplitudes. The results are presented in Fig. 4.
Winicour et al. [8] have studied the formation of black

holes for very high amplitudes of the initial data in the
absence of the reflector barrier (R ¼ 0 and M0 ¼ 0). They
have shown the following features: First, the black hole
mass scales linearly with the amplitude if the initial data
have nonvanishing monopole moment Q ¼ limr→∞rφ ¼
limη→∞Φ. For those initial data of compact support as in
Eq. (18) (Q ¼ 0), they have argued that the black hole
masses saturate for higher amplitudes. Second, the high-
amplitude dynamics does not depend on the details of the
interior structure.
The results of Fig. 4 confirm the above features. Notice

that for the initial data (17) with Qð0Þ ≠ 0, the black hole

mass scales linearly with the amplitude. With the initial
data of compact support as in Eq. (18) [Qð0Þ ¼ 0], the
black hole mass saturates for higher amplitudes. Therefore,
in the regime of very high amplitudes it does not matter if
the scalar field is imploding towards the origin or against
the reflector.

V. DISCUSSION

We have studied the threshold of black hole formation in
a single model of a scalar field incident to a reflector barrier
enclosing a Schwarzschild black hole. Aweak initial scalar
field is completely radiated away, leaving behind a black
hole with mass M0. A strong initial scalar field signalized
by a strength above a certain critical value collapses and
forms an apparent horizon outside the reflector. In this case,
we have obtained the black hole masses for a large range
of the initial amplitude. A scaling law with a mass gap
describes the black hole masses correctly near R=2. The
critical exponent, γ ≈ 0.11, is independent of the initial data
family and the location of the reflector barrier.
The features of critical behavior are robust for the scalar

field collapse under different boundary conditions. In other
words, the scalar field can either implode against a reflector
like water waves in a dam or towards the origin that critical
behavior is present at the threshold of black hole formation.
In the region of black hole masses resulting from the

collapse of very strong self-gravitating scalar fields
(ϵ ≫ ϵ�), the initial data play a significant role, as pointed
out byWinicour et al. [8]. For those data with nonvanishing
initial monopole moment, the black hole mass scales
linearly with the amplitude ϵ. The black hole formation
turns out to be independent of the details of the interior
region. For those data with compact support, the monopole
moment vanishes initially, and the black hole masses tend
to saturate for higher initial amplitudes. The numerical
results have confirmed these two cases.
We intend to extend this investigation to the unstable

kink proposed by Barreto et al. [12]. In this case, the
incident scalar field does not vanish at the reflector that
surrounds Minkowski spacetime. However, a more com-
pelling scenario is the formation of black holes in axisym-
metric spacetimes; for instance, with the implosion of
gravitational waves. To date, there are few works on critical
phenomena in axisymmetry and no detailed study on the
dependence of the black hole masses for strong pulses of
gravitational waves.
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FIG. 4. Plots of the black hole masses δMBH ¼ MBH −MBHðϵ̄Þ
with respect to δϵ ¼ ϵ − ϵ̄, where ϵ̄ ¼ 4.670 and 1.2355 for the
initial data (17) and (18), respectively. In the first panel δMBH ∝
δϵν where ν ≈ 1.011, whereas in the second panel the black hole
mass saturates for higher amplitudes.
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