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There is a forbidden region in the parameter space of quasinormal modes of black holes in general
relativity. Using both inspiral and ringdown phases of gravitational waves from binary black holes, we
propose two methods to test general relativity. We also evaluate how our methods will work when we apply
them to Pop III black-hole binaries with typical masses. Adopting the simple mean of the estimated range
of the event rate, we have the expected rate of 500 yr−1. Then, the rates of events with signal-to-noise ratios
greater than 20 and greater than 50 are 32 yr−1 and 2 yr−1, respectively. Therefore, there is a good chance
to confirm (or refute) the Einstein theory in the strong gravity region by observing the expected
quasinormal modes.
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I. INTRODUCTION

Black hole (BH) singularities appear unavoidably in
general relativity (GR). However, as a physics law, the
allowance of the presence of singularities will not be
acceptable even though they are hidden behind the event
horizon. Therefore, various possibilities of the singularity
avoidance have been discussed. Some replacement of
singularities is required as a complete theory which can
describe the BH evolution inside the horizon. Although it is
totally unknown how the singularities are to be regularized,
there are a lot of proposals motivated by the string theory
and/or the BH information paradox. Some of them, such as
gravastars [1], fuzzballs (see, e.g., Ref. [2] for the review),
and firewalls [3,4] change the structure of BH spacetime
even outside the horizon. Also, an interesting class of
singularity and ghost free theories of gravity has been
proposed by Ref. [5,6].
In this paper, we consider binary black hole (BBH)

systems and use gravitational wave (GW) observations as a
tool to test whether the newly formed black hole genuinely
behaves like the one predicted by GR or not. There are
various methods proposed for testing GR by means of
quasinormal mode (QNM) GWs (see an extensive review
[7]), for example, tests of the no-hair theorem combining
two or more modes [8]. QNMs dominate the GWs at the
ringdown phase of BBH mergers (see also Ref. [9]). In
Ref. [10], testing Hawking’s area theorem [11] has been
discussed, which is possible if we can determine the masses
and spins of BHs before and after merger independently
with a sufficiently high accuracy.
One of the methods that we propose in this paper is the

following simple one. First, we extract the binary param-
eters of BBHs by taking correlation with the post-
Newtonian (PN) templates [12,13]. We assume that we
know sufficiently high PN-order terms to describe the
inspiral phase well. Thanks to the development in numeri-
cal relativity (NR) [14–16], now we can use simulation

results to describe the BBHmerger phase, deriving accurate
gravitational waveforms. Next, if GR is correct, after the
merger phase, we will observe ringdown (QNM) GWs from
the remnant BHs (see e.g., Ref. [9] for a review of the
QNMs). If we do not detect the QNMs as expected, it is
possible to distinguish the remnant object from the BHs
that are predicted by GR within the assumptions mentioned
above. It should be noted that our approach is similar to
Ref. [17], in which the authors discussed the improvement
in parameter estimation by combining inspiral and ring-
down GWs from compact binaries. By contrast, the focus
of our work is on the test of GR.
The other method shown in this paper is even simpler.

When we focus on the dominant QNM, there is a forbidden
parameter region in GR. Just using the ringdown GWs, we
can directly discuss whether the QNM from the remnant
compact object is consistent with the one from a BH
predicted by GR or not.
This paper is organized as follows. In Sec. II, we

summarize our tools, the inspiral and ringdown waveforms
from BBHs, the fitting formulas for the remnant mass and
spin, and the matched filtering and parameter estimation
in the GW data analysis. In Sec. III, two simple tests of
GR are presented. One is to use only the ringdown
GWs, and the other is the combination of inspiral and
ringdown phases. Finally, we summarize and discuss our
approach in Sec. IV. In this paper, we use the geometric unit
system, where G ¼ c ¼ 1, and the characteristic scale is
1M⊙ ¼ 1.477 km ¼ 4.926 × 10−6 s.

II. PREPARATION

A. Target of gravitational waves

According to Kinugawa et al. [18,19], typical total and
chirp masses for Pop III BBHs are ∼60M⊙ and ∼30M⊙,
respectively. Here, the chirp mass of a binary is defined by
M ¼ Mη3=5 with the total mass M ¼ m1 þm2 and the
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symmetric mass ratio η ¼ m1m2=M2. This means that
η ∼ 1=4 for almost equal mass BBHs, which we think
typical ones. In the following discussion, we focus on equal
mass BBHs. Although spins of BBHs can be important, we
ignore them here for the following reason. If we take into
account the spins, one may think that the accuracy of the
parameter estimation might be significantly reduced due to
the degeneracy among the orbital parameters. However, in
that case, the orbital precession induced by the spin effects
modulates the gravitational waveform. Therefore, to a
certain extent, this additional information can compensate
the loss of accuracy due to the degeneracy. Hence, for
simplicity, we use only the nonspinning inspiral waveform.
The inspiral phase of GWs from BBHs has been

extensively studied using the PN approximation [12]. If
we adopt the stationary phase approximation (SPA) [20],
we can easily transform the waveform into the expression
in the frequency domain as ~Almeiψlm . Here, we discuss only
the ðl ¼ 2; m ¼ 2Þ mode, and the phase is written as

ψ22ðvÞ ¼ 2
tc
M

v3 − 2Φc −
π

4
þ 3

128ηv5
½1þOðv2Þ�; ð1Þ

where v ¼ ðMπfÞ1=3, tc and Φc are the time and the phase
of coalescence, and the higher-order PN terms are sum-
marized, e.g., in Eq. (A.21) of Ref. [21]. The appropriate
SPA amplitude in the frequency domain is deduced from
the time domain description A22 by

~A22 ¼ A22

ffiffiffiffiffiffiffiffiffiffi
πM
3v2 _v

r
; ð2Þ

where _v is given in Eq. (A.15) of Ref. [21].
After passing the innermost stable circular orbit (ISCO),

the BBHs swiftly plunge to merge. Therefore, we terminate
the inspiral GW analysis at the GW frequency for the
ðm ¼ 2Þ mode at ISCO, fISCO ¼ ð63=2πMÞ−1 [22]. For a
typical case with M ¼ 60M⊙, η ¼ 1=4, this ISCO fre-
quency is given by fISCO ¼ 73.28 Hz.
We can discuss the waveform from the merger phase

accurately using NR simulations [14–16]. The whole of
GW waveforms from BBH coalescence are also well
modeled in the effective-one-body approach (see, e.g.,
Ref. [23] for the latest development.) However, here, we
do not make use of the GWs from the merger phase. There
is much progress in the understanding of the mass, spin,
and recoil velocity of the remnants after BBH mergers,
which allows us to connect the observation of the inspiral
phase to the ringdown phase (see, e.g., Ref. [24] for the
latest formulas). Here, we use the formulas for initially
nonspinning cases. The phenomenological fitting formulas
for the remnant mass and spin are given by [24]

Mrem

M
¼ ð4ηÞ2ðM0 þ K2dδm2 þ K4fδm4Þ
þ ½1þ ηð ~EISCO þ 11Þ�δm6; ð3Þ

αrem ¼ Srem
M2

rem

¼ ð4ηÞ2ðL0 þ L2dδm2 þ L4fδm4Þ þ η ~JISCOδm6; ð4Þ

where δm ¼ ðm1 −m2Þ=M (¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
for m1 < m2)

and ~EISCO and ~JISCO are the specific energy and angular
momentum at ISCO in the test particle approximation
(see, e.g., Ref. [25]).M0, K2d, K4f, L0, L2d, and L4f are the
fitting parameters summarized in Table VI of Ref. [24].
α is a=M of the Kerr BH with the mass M and Kerr
parameter a. More specifically, for equal mass cases, i.e.,
η ¼ 1=4 and δm ¼ 0, we have

Mrem

M
¼ 0.951507� 0.000030;

αrem ¼ 0.686710� 0.000039; ð5Þ
including the magnitude of numerical errors. As we noted
before, the remnant mass becomesMrem ¼ 57.0904M⊙ for
a representative case with M ¼ 60M⊙, η ¼ 1=4.
The above formulas obtained by fitting the results of

BBH simulations in the case of nonprecessing BBHs have
1% relative error, which is mainly caused by the extraction
of the GW radiation at a finite radius and finite mesh
resolution in the NR simulations. The radial extrapolation
errors will be reduced by using a perturbative extraction
method [26,27]. Also for precessing BBHs, we may have
much larger errors. Although these errors are directly
related to the following analysis, we expect that the fitting
formulas will be improved by more NR simulations.
Therefore, we just ignore them in the following analysis.
Using the estimated remnant BH’s mass and spin, we

discuss the ringdown phase. The waveform is modeled as

hðfc; Q; t0;ϕ0; tÞ

¼
(
e−

πfcðt−t0Þ
Q cosð2πfcðt − t0Þ − ϕ0Þ for t ≥ t0;

0 for t < t0;
ð6Þ

where t0 and ϕ0 are the initial ringdown time and phase,
respectively. The central frequency fc and the quality factor
Q are related to the real (fR) and imaginary (fI) parts of the
QNM frequency as

fR ¼ fc; fI ¼ −
fc
2Q

; ð7Þ

which depend on the harmonics index ðl; mÞ and the
overtone index n. Here, we focus on the dominant
ðl ¼ m ¼ 2Þ least-damped ðn ¼ 0Þ mode, and the fitting
formulas for fc and Q are given in Ref. [28] as
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fc¼
1

2πMrem
½1.5251−1.1568ð1−αremÞ0.1292�

¼538.4

�
M

60M⊙

�
−1
½1.5251−1.1568ð1−αremÞ0.1292�½Hz�;

ð8Þ

Q ¼ 0.7000þ 1.4187ð1 − αremÞ−0.4990: ð9Þ

For the fiducial values, M ¼ 60M⊙, η ¼ 1=4, we have
Mrem ¼ 57.0904M⊙ and αrem ¼ 0.686710, and the above
formulas derived based on GR predict fc ¼ 299.5 Hz and
Q ¼ 3.232 for the ringdown GW. Here, it is noted that the
fitting formulas in Eqs. (8) and (9) have 2% and 1% errors,
respectively. Therefore, although we use the fitting for-
mulas for simplicity in this paper, we should use the
original data in Ref. [29] for the strict analysis.

B. Matched filtering and parameter estimation

To analyze the GWs from the inspiral and ringdown
phases, we use the matched filtering method because the
waveforms are known well. Using the inner product,

hajbi ¼ 4ℜ
Z

∞

0

~aðfÞ ~b�ðfÞ
SnðfÞ

df; ð10Þ

where SnðfÞ denotes the power spectral density of GW
detector’s noise, the optimal signal-to-noise ratio (SNR) for
a waveform h is given by

SNR ¼ hhjhi1=2

¼ 2

�Z
∞

0

j ~hðfÞj2
SnðfÞ

df

�1=2
: ð11Þ

We assume a single GW detector, KAGRA [30,31],
here. In Fig. 1, we show the expected noise curve of

KAGRA [bKAGRA, VRSE(D) configuration] presented in
Ref. [32], which can be fit well by

SnðfÞ1=2 ¼ 10−26ð6.5 × 1010f−8 þ 6 × 106f−2.3

þ 1.5f1Þ½Hz−1=2�; ð12Þ

where the frequency f is in units of Hz. Of course, we
can discuss the other detectors (Advanced LIGO [33],
Advanced Virgo [34], GEO-HF [35], and so on) just by
changing SnðfÞ.
To calculate the parameter estimation errors for the

inspiral and ringdown GWs, we use the Fisher information
matrix,

Γij ¼
�∂h
∂θi

���� ∂h∂θj
	����

θ¼θtrue

; ð13Þ

where θi is the parameters of the waveforms and θtrue
denotes the true values of the parameters of the source.
Then, the rms errors in the estimated parameters and the
covariance between two parameters are derived by the
inverse matrix ðΓ−1Þij as

ðΔθiÞRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
;

cij ¼
ðΓ−1Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΓ−1ÞiiðΓ−1Þjj
p : ð14Þ

Here, we do not sum over i and j. ðΔθiÞRMS scales as
1=SNR.
For the inspiral phase, we calculate the parameter

estimation errors for fM; η; tc;Φcg, Here, we use the total
mass instead of the chirp mass for the parametrization of
the inspiral signal, simply because the fitting formulas for
the remnant mass and spin are written in terms of M and η.
To evaluate the inner product (10), we take the integration
range between 10 Hz and fISCO, For the ringdown phase,
we discuss the parameter estimation with respect to
ffc; Q; t0;ϕ0g, and the frequency interval for the integra-
tion is between 10 and 2500 Hz.
We should note that in practice the location of the GW

source in the sky and the GW polarization angle in a
detector frame are also the parameters to describe the GW
signals. For example, Ajith and Bose [36] estimated the
parameter errors of BBHs in a single detector or a detector
network for the case of the complete set of parameters. This
direction to discuss more precise parameter estimation is
one of our future studies.

III. SIMPLE TEST OF GR

According to Ref. [37], individual SNRs for the inspiral
and ringdown phase signals are comparable for a gravita-
tional wave detector, KAGRA. when the total BBH mass
(∼ remnant BH mass) is ∼60M⊙. Since there is a difficulty
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FIG. 1 (color online). Fitting curve based on the sensitivity
curve of KAGRA [bKAGRA, VRSE(D) configuration] shown in
Ref. [32].
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in determining the initial ringdown amplitude due to the
ambiguity of the initial time, for simplicity, we set the SNRs
for the inspiral and ringdown phases to be equal for the
typical case (withM ¼ 60M⊙ and η ¼ 1=4 for inspiral and
Mrem ¼ 57.0904M⊙ and αrem ¼ 0.686710 for ringdown).
The assumption of the same SNR for the inspiral and
ringdown phases is just for simplicity, and we can apply
the following analysis for general SNR cases. The informa-
tion of SNRs is imprinted in the Fisher informationmatrix of
each phase. We briefly discuss the effect by setting different
SNRs for the inspiral and ringdown phases in Sec. IV.

A. Only ringdown

First, using only the ringdown GWs, we propose a
simple method to test whether the compact object emitting

the ringdown GWs is a BH predicted by GR or not.
Figure 2 shows the QNM frequencies for the dominant
ðl ¼ 2; m ¼ 2Þ least-damped ðn ¼ 0Þmode in the ðfR; fIÞ
plane. In GR, the top-left side of the thick black line is
prohibited. The boundary thick black line corresponds to
the Schwarzschild limit, which is obtained by setting
αrem ¼ 0, i.e.,

jfIj
fR

≈ 0.236; ð15Þ

in Eqs. (7), (8), and (9). In principle, if we obtain the
parameters in the forbidden region from GW observations,
we can conclude that the compact object is not the one
predicted by GR.
However, in practice, there are parameter estimation

errors in the GW data analysis. For our typical example
with fc ¼ 299.5 Hz, Q ¼ 3.232; t0 ¼ 0, and ϕ0 ¼ 0
[fR ¼ 299.5 Hz and fI ¼ −46.34 Hz from Eqs. (7)], we
show the contours of the parameter estimation errors in
Fig. 3. Here, since we do not discuss the errors of t0 and ϕ0,
we integrated the probability distribution over both t0 and
ϕ0 [39]. In our typical case, the expected errors are
sufficiently small to fit the ringdown GW with SNR ¼
50 within the QNM parameter region allowed in GR at the
5σ level. On the other hand, the error circle for the signal
with SNR ¼ 20 is not sufficiently small in this sense at that
level, while it is small enough for 3σ level arguments. Here,
5σð3σÞ denotes that for the bidimensional (Rayleigh)
distribution, which means that the probability falling into
the 5σð3σÞ circle is about 1 − 3.7 × 10−6ð1 − 1.1 × 10−2Þ
since the distribution has 2 degrees of freedom. [In the case
of the ordinary one-dimensional Gaussian distribution,
the probability falling in the 5σð3σÞ region is about
1 − 5.7 × 10−7ð1 − 2.7 × 10−3Þ.]
To discuss the region prohibited by GR, we present the

parameter estimation for the Schwarzschild (αrem ¼ 0) case
in Fig. 4. Here, we fixed SNR ¼ 50 and considered the
remnant masses, Mrem=M⊙ ¼ 45, 60, and 90. From the 5σ
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FIG. 2 (color online). Real (fR) and imaginary (fI) parts of
QNM frequencies for the dominant ðl ¼ 2; m ¼ 2Þ least-damped
ðn ¼ 0Þ mode. The (black) thick line shows the Schwarzschild
limit, and the (red) curves are for various mass cases terminated at
the spin α ¼ 0.998 [38]. From the top of the (red) curves, we are
considering BH masses,M=M⊙ ¼ 30; 60; 90; 120; 150, and 180,
respectively. The (red) circles for each line denote the spin
dependence α ¼ 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8, and 0.9
from the left.

FIG. 3 (color online). In the (fR; fI) plane, the left and right panels show the parameter estimation in the cases with SNR ¼ 20 and 50
for the typical case (withMrem ¼ 57.0904M⊙ and αrem ¼ 0.686710), respectively. The (black) thick line shows the Schwarzschild limit,
which is same as that in Fig. 2, and the ellipses are the contours of 1σ; 2σ; 3σ; 4σ, and 5σ. Here, the time and phase parameters (t0;ϕ0)
have been marginalized out.
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contours, there is an upper bound of the GR prediction for
jfIj=fR, and we find that the region of jfIj=fR > Fmax for
each mass case is rejected by GR. Here, Fmax, which
denotes the maximum of jfIj=fR allowed in GR, is 0.321
(for Mrem ¼ 45M⊙), 0.320 (60M⊙), and 0.316ð90M⊙Þ for
SNR ¼ 50. If NR simulations for the extreme spinning
BBH are available, we can also give the lower bound of the
GR prediction for jfIj=fR.
It is noted that a powerful method to find ringdown

signals in multiple GW detectors has been proposed by
Talukder, Bose, Caudill, and Baker [40]. Although we have
considered the above GW data analysis with a single
detector, we may expect a better parameter estimation in
a detector network.

B. Consistency analysis with inspiral and ringdown

Next, we propose a consistency test by combining the
data from inspiral and ringdown GWs. We use the PN
waveform for the inspiral phase to extract the binary
parameters, and the formulas in Eqs. (3) and (4) of
Sec. II are applied to obtain the GR prediction for the
parameters of the remnant black hole. Then, we can present
the QNM frequency expected in GR in the (fR; fI)
parameter space.
To take into account the observational errors in the

estimate of the expected QNM, we assume that the true
signal is given by the GR template with θ, and the
parameters estimated from the inspiral and ringdown
signals are θInsp and θRing, respectively. Here, θ consists
of the parameters ffc; Q; t0;ϕ0g, which are commonly
used for the ringdown GW data analysis. For the ringdown
phase, we treat the above parameters to calculate the
parameter estimation errors and assume the Gaussian
distribution for the parameters. In the inspiral-phase analy-
sis, we use another set of parameters ~θ ¼ fM; η; tc;Φcg.

Here, it is useful to have the relation between the inspiral
parameters ~θ and the ringdown parameters θ as fitting
functions. From Eq. (4), we have

αrem ¼ 0.830028

�
η

0.25

�
− 0.143761

�
η

0.25

�
2

þ 0.00180831

�
η

0.25

�
12

: ð16Þ

The above relation gives one-to-one mapping in the
parameter ranges, 0 ≤ η ≤ 0.35282872 and 0 ≤ αrem ≤
0.99800367. It is noted that, although η > 0.25 is an
unphysical value, we allow the values here. Combining
the above equation with Eq. (9), we find that η is fitted as a
function of Q to obtain

η ¼ 0.353039 −
0.208266

Q2
−
10.9583

Q4
−
21.4540

Q6
: ð17Þ

The restriction on the parameter space to keep the one-to-
one mapping becomes 2.11870 ≤ Q ≤ 32.2555. The decay
time is calculated as Q=ðπfcÞ. Using Eqs. (3) and (8) (and
also the above fitting functions for αrem and η), the total
mass M in the inspiral phase is written by fc and Q as

M ¼ 1

fc

�
−0.0434932 − 0.127430 ln

�
1

Q
þ 0.163772

�

þ 0.0646167ffiffiffiffi
Q

p
�
: ð18Þ

To find the expected parameter region of the QNM, we
use the following simple estimator (more detailed studies,
e.g., by using Markov chain Monte Carlo methods, will be
presented in future):

FðθÞ¼N exp

�
−
1

2
~ΓInsp
ij ð~θiðθÞ− ~θiðθInspÞÞð~θjðθÞ− ~θjðθInspÞÞ

−
1

2
ΓRing
ij ðθi−θiRingÞðθj−θjRingÞ

�
; ð19Þ

where N is a normalization constant which we do not take
care of and ~ΓInsp

ij and ΓRing
ij denote the respective Fisher

information matrices after integrating the probability dis-
tribution over ðtc;ΦcÞ and ðt0;ϕ0Þ.
The strategy to estimate the parameter region by using

Eq. (19) is as follows:
(1) For given ~θðθInspÞð≕ ~θInspÞ (in practice, we give

~θInsp ¼ fM ¼ 60M⊙; η ¼ 1=4g and derive θInsp),
we calculate ~ΓInsp

ij with the bKAGRA noise curve.
(2) Assuming the narrow ringdown signal in the fre-

quency domain, we prepare ΓRing
ij for the white noise

(analytically).
(3) For given θRing (and ΓRing

ij for it), we find the
maximum of Eq. (19) by

FIG. 4 (color online). In the (fR; fI) plane, this figure shows the
parameter estimation in the cases with SNR ¼ 50 for a Schwarzs-
child black hole with Mrem=M⊙ ¼ 45 (right), 60 (center), and 90
(left). The (black) thick line shows the Schwarzschild limit which
is same as that in Fig. 2, and the ellipses are the contours of
1σ; 2σ; 3σ; 4σ, and 5σ. Here, the time and phase parameters
(t0;ϕ0) have been marginalized out.
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∂FðθÞ
∂θi ¼ 0: ð20Þ

(4) Inserting the solution of the above equation
θ ¼ ffc;Qg back into Eq. (19), we check whether
the situation with the parameters ðθInsp; θRing; θÞ is
in the 5σ level of the detector noise realization
or not.

Here, 5σ denotes that the value in the exponent in
Eq. (19) becomes −52=2, which means that the probability
falling in the 5σ circle is about 1 − 5 × 10−5 since the
distribution has 4 degrees of freedom. Employing our
fiducial values, M ¼ 60M⊙, η ¼ 1=4, the expected region
of the QNM frequency in the 5σ level is shown in Fig. 5.
Here, we have fixed SNR ¼ 50 for both the inspiral and
ringdown GWs. Compared with the right figure of Fig. 3,
the allowed region in this figure has a larger extension in
the horizontal direction. This is due to the parameter
estimation errors of the inspiral phase. We repeat the
meaning of this plot. Under the condition that we measure
the values of both ~θInsp and θRing, we choose the most
probable values for the parameters θ. Assuming that the
true values are the most probable values as used in the usual
Fisher-matrix analysis, we evaluate the probability that the
detector noise produces such a deviation in the measure-
ment of ~θInsp and θRing. The probability that the noise
realization falls outside the contour is 5 × 10−5. Therefore,
if we find that the parameter estimate from the ringdown
signal deviates from the prediction from the inspiral signal
exceeding the contour in Fig. 3, we can conclude that there
is something wrong with the GR prediction. Here, under an
assumption that the nonlinearity of GR is correct for the
inspiral and merger phases, it is possible to distinguish the
remnant object from the BHs that are predicted by GR.

IV. SUMMARY AND DISCUSSION

In this paper, we mainly focused on a specific BBH with
the total mass M ¼ 60M⊙ and the symmetric mass ratio
η ¼ 1=4, which would be the typical one for Pop III BBHs
[18,19]. It is found that we can perform meaningful tests of
GR, assuming that the GW signal has SNR ¼ 50. An easy
extension of the present study is to treat various total mass
cases. For total masses lower than M ¼ 60M⊙, we have
fewer SNRs for the ringdown phase than those for the
inspiral phase and expect that a larger elongation in the
vertical direction in the ðfR; fIÞ plane because of Fig. 3. On
the other hand, for total masses higher thanM ¼ 60M⊙, we
will have a larger elongation in the horizontal direction.
We also need to discuss various mass ratios and spins in
the inspiral phase. The statistical treatment will be also
improved in our future work.
In Fig. 5, we have observed that the expected region

shows a large elongation in the horizontal direction.
This is due to the parameter estimation errors for the
inspiral signal and, more specifically, originates from
marginalizing tc and Φc in the probability distribution.
The parameter estimation errors of tc and Φc arise from the
short frequency integration interval between 10 Hz and
fISCO ¼ 73.28 Hz. The number of GW cycles during this
frequency range is NGW ≈ 30. When we change the lower
integration bound to 20 Hz, the situation becomes much
worse, i.e., the number of GW cycles is just NGW ≈ 6.
Here, if we can also detect the inspiral phase by using a

space-based GW detector, such as DECIGO [41], the
situation will improve a lot (see, e.g., Ref. [42] for the
synergy in the parameter estimation of binary inspirals).
For example,NGW ≈ 5400 from 0.5 Hz in our specific case.
Therefore, even if we assume the same SNR for the inspiral
phase, the parameter estimation of M and η and the QNM
prediction will be very precise.
Kinugawa et al. [19] showed that the expected detection

rate of BH-BH mergers by KAGRAwith typical total mass
∼60M⊙ is given by

262 events yr−1ðSFRp=ð10−2.5 M⊙ yr−1 Mpc−3ÞÞ · Errsys;
ð21Þ

where SFRp and Errsys are the peak value of the Pop III star
formation rate and the systematic error with Errsys ¼ 1 for
their fiducial model, respectively. They have estimated that
Errsys ranges from 0.056 to 2.3 due to the unknown
parameters such as the common envelope parameter, the
kick velocity, and the loss fraction as well as the unknown
distribution functions such as the initial mass function and
the initial eccentricity function. The minimum value
corresponds to the worst model in which they adopt the
most pessimistic values of the parameters and distribution
functions within the ranges that are likely. The factor
ðSFRp=ð10−2.5 M⊙ yr−1 Mpc−3ÞÞ also depends on the
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FIG. 5 (color online). The QNM frequency expected in GR (5σ
level) from the inspiral phase with the total massM ¼ 60M⊙ and
symmetric mass ratio η ¼ 1=4 [the (red) filled region]. The
(black) thick line shows the Schwarzschild limit, which is same
as that in Fig. 2.
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models, and Kinugawa et al. [19] argued that it ranges from
0.019 to 16. Therefore, the event rate of Pop III BH-BH
mergers which will be detected by KAGRA ranges from
0.28 to 9641. The event rate for Advanced LIGO and
Advanced Virgo will be similar. Since no such event has
been found so far, the event rate should be smaller than
1000 yr−1. Adopting a simple geometric mean of this
allowed range, we have a rough estimate of the expected
rate of 500 yr−1. Then, the rates of events with SNR > 20

and SNR > 50 are 32 and 2 yr−1, respectively. Therefore,
there is a good chance to confirm (or refute) the Einstein
theory in the strong gravity regime by observing the
expected QNMs.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) Grant-
in-Aid for Scientific Research on Innovative Areas, “New
Developments in Astrophysics Through Multi-Messenger
Observations of Gravitational Wave Sources,” Grant
No. 24103006 (H. N., T. T., and T. N.) and by the Grant-
in-Aid from MEXT of Japan, Grant No. 15H02087 (T. T.
and T. N.). We gratefully acknowledge all participants in
“Gravitational Wave Physics and Astronomy Workshop
(GWPAW) 2015,” held June 17–20, 2015, in Osaka, Japan.
H. N. would like to thank Y. Nishino for useful suggestions.

[1] P. O. Mazur and E. Mottola, arXiv:gr-qc/0109035.
[2] S. D. Mathur, Fortschr. Phys. 53, 793 (2005).
[3] S. L. Braunstein, S. Pirandola, and K. Życzkowski, Phys.

Rev. Lett. 110, 101301 (2013).
[4] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, J. High

Energy Phys. 02 (2013) 062.
[5] L. Modesto, Phys. Rev. D 86, 044005 (2012).
[6] T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar,

Phys. Rev. Lett. 108, 031101 (2012).
[7] E. Berti et al., arXiv:1501.07274.
[8] O. Dreyer, B. J. Kelly, B. Krishnan, L. S. Finn, D. Garrison,

and R. Lopez-Aleman, Classical Quantum Gravity 21, 787
(2004).

[9] E. Berti, V. Cardoso, and A. O. Starinets, Classical Quantum
Gravity 26, 163001 (2009).

[10] S. A. Hughes and K. Menou, Astrophys. J. 623, 689 (2005).
[11] S. W. Hawking, Phys. Rev. Lett. 26, 1344 (1971).
[12] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[13] G. Schaefer, Mass and Motion in General Relativity,

Fundamental Theories of Physics Vol. 162 (Springer,
Netherlands, 2011), 167.

[14] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[15] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[16] J. G. Baker, J. Centrella, D. I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).
[17] M. Luna and A. M. Sintes, Classical Quantum Gravity 23,

3763 (2006).
[18] T. Kinugawa, K. Inayoshi, K. Hotokezaka, D. Nakauchi, and

T. Nakamura, Mon. Not. R. Astron. Soc. 442, 2963 (2014).
[19] T. Kinugawa, A. Miyamoto, N. Kanda, and T. Nakamura,

arXiv:1505.06962.
[20] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev.

D 63, 044023 (2001); 72, 029902(E) (2005).
[21] P. Ajith, M. Boyle, D. A. Brown, S. Fairhurst, M. Hannam,

I. Hinder, S. Husa, B. Krishnan, R. A. Mercer, F. Ohme,

C. D. Ott, J. S. Read, L. Santamaria, and J. T. Whelan,
arXiv:0709.0093.

[22] C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658 (1994).
[23] A. Taracchini et al., Phys. Rev. D 89, 061502 (2014).
[24] J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D 90,

104004 (2014).
[25] A. Ori and K. S. Thorne, Phys. Rev. D 62, 124022

(2000).
[26] H. Nakano, Classical Quantum Gravity 32, 177002

(2015).
[27] H. Nakano, J. Healy, C. O. Lousto, and Y. Zlochower, Phys.

Rev. D 91, 104022 (2015).
[28] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,

064030 (2006).
[29] http://www.phy.olemiss.edu/ berti/qnms.html.
[30] K. Somiya (KAGRA Collaboration), Classical Quantum

Gravity 29, 124007 (2012).
[31] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,

T. Sekiguchi, D. Tatsumi, and H. Yamamoto (KAGRA
Collaboration), Phys. Rev. D 88, 043007 (2013).

[32] http://gwcenter.icrr.u‑tokyo.ac.jp/researcher/parameters.
[33] J. Aasi et al. (LIGO Scientific Collaboration), Classical

Quantum Gravity 32, 074001 (2015).
[34] F. Acernese et al. (VIRGO Collaboration), Classical

Quantum Gravity 32, 024001 (2015).
[35] C. Affeldt et al., Classical Quantum Gravity 31, 224002

(2014).
[36] P. Ajith and S. Bose, Phys. Rev. D 79, 084032 (2009).
[37] N. Kanda (LCGT Collaboration), arXiv:1112.3092.
[38] K. S. Thorne, Astrophys. J. 191, 507 (1974).
[39] L. S. Finn, Phys. Rev. D 46, 5236 (1992).
[40] D. Talukder, S. Bose, S. Caudill, and P. T. Baker, Phys. Rev.

D 88, 122002 (2013).
[41] N. Seto, S. Kawamura, and T. Nakamura, Phys. Rev. Lett.

87, 221103 (2001).
[42] R. Nair, S. Jhingan, and T. Tanaka, arXiv:1504.04108.

POSSIBLE GOLDEN EVENTS FOR RINGDOWN … PHYSICAL REVIEW D 92, 064003 (2015)

064003-7

http://arXiv.org/abs/gr-qc/0109035
http://dx.doi.org/10.1002/prop.200410203
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1103/PhysRevD.86.044005
http://dx.doi.org/10.1103/PhysRevLett.108.031101
http://arXiv.org/abs/1501.07274
http://dx.doi.org/10.1088/0264-9381/21/4/003
http://dx.doi.org/10.1088/0264-9381/21/4/003
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1086/428826
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.12942/lrr-2014-2
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1088/0264-9381/23/11/006
http://dx.doi.org/10.1088/0264-9381/23/11/006
http://dx.doi.org/10.1093/mnras/stu1022
http://arXiv.org/abs/1505.06962
http://dx.doi.org/10.1103/PhysRevD.63.044023
http://dx.doi.org/10.1103/PhysRevD.63.044023
http://dx.doi.org/10.1103/PhysRevD.72.029902
http://arXiv.org/abs/0709.0093
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://dx.doi.org/10.1103/PhysRevD.89.061502
http://dx.doi.org/10.1103/PhysRevD.90.104004
http://dx.doi.org/10.1103/PhysRevD.90.104004
http://dx.doi.org/10.1103/PhysRevD.62.124022
http://dx.doi.org/10.1103/PhysRevD.62.124022
http://dx.doi.org/10.1088/0264-9381/32/17/177002
http://dx.doi.org/10.1088/0264-9381/32/17/177002
http://dx.doi.org/10.1103/PhysRevD.91.104022
http://dx.doi.org/10.1103/PhysRevD.91.104022
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://www.phy.olemiss.edu/ berti/qnms.html
http://www.phy.olemiss.edu/ berti/qnms.html
http://www.phy.olemiss.edu/ berti/qnms.html
http://www.phy.olemiss.edu/ berti/qnms.html
http://www.phy.olemiss.edu/ berti/qnms.html
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1103/PhysRevD.88.043007
http://gwcenter.icrr.u-tokyo.ac.jp/researcher/parameters
http://gwcenter.icrr.u-tokyo.ac.jp/researcher/parameters
http://gwcenter.icrr.u-tokyo.ac.jp/researcher/parameters
http://gwcenter.icrr.u-tokyo.ac.jp/researcher/parameters
http://gwcenter.icrr.u-tokyo.ac.jp/researcher/parameters
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1088/0264-9381/31/22/224002
http://dx.doi.org/10.1088/0264-9381/31/22/224002
http://dx.doi.org/10.1103/PhysRevD.79.084032
http://arXiv.org/abs/1112.3092
http://dx.doi.org/10.1086/152991
http://dx.doi.org/10.1103/PhysRevD.46.5236
http://dx.doi.org/10.1103/PhysRevD.88.122002
http://dx.doi.org/10.1103/PhysRevD.88.122002
http://dx.doi.org/10.1103/PhysRevLett.87.221103
http://dx.doi.org/10.1103/PhysRevLett.87.221103
http://arXiv.org/abs/1504.04108

