
Buchdahl-Bondi limit in modified gravity: Packing extra effective mass
in relativistic compact stars

Rituparno Goswami,* Sunil D. Maharaj,† and Anne Marie Nzioki‡

Astrophysics and Cosmology Research Unit, School of Mathematics Statistics and Computer Science,
University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

(Received 19 June 2015; published 2 September 2015)

We generalize the Buchdahl–Bondi limit for the case of static, spherically symmetric, relativistic
compact stars immersed in Schwarzschild vacuum in the fðRÞ-theory of gravity, subject to very generic
regularity, thermodynamic stability, and matching conditions. Similar to the case of general relativity, our
result is model independent and remains true for any physically realistic equation of state of standard stellar
matter. We show that an extramassive stable star can exist in these theories, with a surface redshift larger
than 2, which is forbidden in general relativity. This result gives a novel and interesting observational test
for validity or otherwise of general relativity and also provides a possible solution to the dark matter
problem.

DOI: 10.1103/PhysRevD.92.064002 PACS numbers: 04.20.Cv, 04.40.Dg

I. INTRODUCTION

In general relativity (GR), differentiable properties and
regularity conditions of Einstein field equations lead to
certain interesting bounds on stellar structures [1]. One of
such fascinating upper bounds, is the Buchdahl–Bondi
bound [2–7] for the static, spherically symmetric compact
stars immersed in the Schwarzschild vacuum. This bound
states that the mass to radius ratio 2M=rb of any regular and
thermodynamically stable perfect fluid star must be less
than 8=9. We note that this is a stricter upper bound than
the Schwarzschild static limit 2M=rb ¼ 1. In other words,
even though the mass of the star lies within the untrapped
region, we cannot have a stable static stellar configuration
for ð8=9Þrb ≤ 2M < rb. The interesting points about this
general result can be summarized as follows:
(a) This bound can be proved using minimal technical

conditions, namely the regularity and smoothness of
metric functions in the stellar interior, matching
conditions at the boundary of the star where the
spacetime is smoothly matched to a Schwarzschild
exterior. Also for thermodynamic stability, we need to
impose the condition that the average density is a
nonincreasing function of the radial coordinate.

(b) This result is model independent. Hence, it is true for
any physically realistic equation of state for the stellar
matter.

(c) A direct consequence of this bound is that the
gravitational redshift z at the stellar surface is bounded
from above (z ≤ 2) [6,7].

Several variations/modifications of this limit have been
found since, by altering the conditions mentioned above

[8–11] or by considering anisotropic stars (see for example
Refs. [12–14] and the references therein).
Now the key question that arises here is, though this

result is quite generic within GR, how it changes if the
theory of gravity is modified. This question is important
because even though GR still remains the most successful
theory of gravity so far, alternative theories of gravity do
exist. These theories are motivated by the ambiguous nature
of dark energy in cosmology which is responsible for the
observed late time accelerated expansion of the Universe.
Another motivation, of course, is the unknown nature of
dark matter which dominates the matter budget of the
galaxies that can be gravitationally detected by the galaxy
rotation curves. Furthermore, all the astrophysical tests of
GR so far, like post Newtonian (PN), parameterized post
Newtonian (PPN), etc., are devised in sufficiently low
gravity regimes. Hence, any effects of modification of
gravity in a very strong field regime (such as the surface of
a neutron star) are worth investigating as that can pave the
way for next-generation tests for the validity or otherwise of
GR in these high curvature regimes [15].
To eliminate the need for the so-called exotic dark

sectors in the universe, an alternative possibility is to
conjecture that GR is an effective local theory of a more
general theory on universal scale. Among the numerous
modifications of GR that naturally provide a late time
cosmological accelerated expansion, without the need for
the presence of dark fluids, is fðRÞ-gravity. This theory is
based on a gravitational action that contains an arbitrary but
well-defined function of the Ricci scalar R [16–20]. By
expanding the function f around GR, we can easily see that
the higher-order curvature terms naturally admit a phase of
accelerated expansion both in the early universe as an
inflationary phase [21] and also in the late times after
passing through a matter dominated decelerating expansion
phase [22]. This theory of gravity essentially contains an
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additional scalar degree of freedom which is the Ricci
scalar. Hence, this class of theories can be considered as a
natural extension to GR, and contrary to other theories that
have the square of Ricci or Riemann tensors in the action,
the Ostrogradski instability can be eliminated, despite the
equations of motion being fourth order in the metric
components.

A. Key question

If we assume the framework of fðRÞ-gravity as the
modification to GR on larger scales and strong gravity
regimes, then the natural question one would ask is:
Question: Is it possible to have more massive but stable
compact stars in fðRÞ-theories of gravity? In other words,
can the mass to radius ratio of a compact star lie in the
forbidden region in GR, thus making the surface redshift of
the star larger than 2?
The importance of this question is twofold. If we can

prove that the mass to radius ratio of a star can be within the
forbidden region in these theories, then this gives a direct
experimental test for the validity or otherwise of GR in the
strong gravity regime. Second, the extra effective mass
that can be packed in compact stars can account, to some
extent, for the dark matter in the galaxies, that only have
gravitational signatures.

B. In this paper

In this paper we discuss and try to answer the above
question, for stable static relativistic compact stars in
fðRÞ-gravity, immersed in the Schwarzschild vacuum.
The existence of such stellar solutions is already shown
in many earlier works (see for example Refs. [23–25] and
the references therein). Apart from the regularity, thermo-
dynamic stability, and matching conditions that are used to
prove the Buchdahl–Bondi limit in GR, we now have to
deal with other extra conditions:
(1) The existence of the Schwarzschild spacetime as a

solution to the field equations gives certain con-
ditions on the function f. Since Schwarzschild
spacetime is experimentally well verified around
stars (e.g. the solar system), we will only consider
those classes of the function f that admit a
Schwarzschild solution.

(2) For higher-order theories such as fðRÞ, we have
extra matching conditions on the surface of the
star [26–28], apart from the usual Israel–Darmois
[29,30] conditions in GR.

(3) Since the Ricci scalar is a dynamic degree of
freedom in this theory, we must impose certain
physically reasonable conditions on it in the interior
of the star (such as monotonicity) to get a physically
viable result.

Taking all these extra conditions into account, in this
paper we transparently demonstrate the modification of
Buchdahl–Bondi limit in fðRÞ-theories and show that a

stable star can exist in the otherwise forbidden region in GR,
with surface redshift larger than 2. This result is absolutely
genericsinceit ismodel independentas inGR.It is trueforany
equation of state for standard stellar matter and also for any
function f that satisfies the conditions stated above.
Unless otherwise specified, throughout this paper we use

units which fix the speed of light and the gravitational
constant via 8πG ¼ c4 ¼ 1, and the metric signature isþ2.

II. FIELD EQUATIONS FOR RELATIVISTIC
STATIC STARS IN f ðRÞ-GRAVITY

To obtain the field equations in fðRÞ-gravity, we begin
with the modification to the Einstein–Hilbert action by
generalizing the Lagrangian so that the Ricci scalar R is
replaced by a function fðRÞ. The modified action, there-
fore, is given by

S ¼ 1

2

Z
dV½ ffiffiffiffiffiffi

−g
p

fðRÞ þ 2LMðgab;ψÞ�; ð1Þ

whereLM is the Lagrangian density of the matter fields ψ , g
is the determinant of the metric tensor gabða; b ¼ 0; 1; 2; 3Þ,
R is the scalar curvature, and fðRÞ is the real valued and
well-behaved function defining the theory under consid-
eration. Varying the action (1) with respect to the metric
over a 4-volume yields the field equations

Gabf;R −
1

2
gabðf − Rf;RÞ −∇a∇bf;R þ gab□f;R ¼ TM

ab;

ð2Þ

where f;R ¼ dfðRÞ=dR, □≡∇c∇c, Gab is the Einstein
tensor, and TM

ab is the matter energy-momentum tensor
defined by

TM
ab ¼ −

2ffiffiffiffiffiffi−gp δLM

δgab
: ð3Þ

We can easily see that in the special case of fðRÞ ¼ R, the
field equations (2) reduce to the standard Einstein field
equations. These theories are also known as fourth-order
gravity, since the term ðgab□ −∇a∇bÞf;R has fourth-order
derivatives of the components of the metric tensor.
We can map the fourth-order field equations (2) to the

effective Einstein equations by

Gab ¼
�
Rab −

1

2
gabR

�
¼ ~TM

ab þ TR
ab ¼ Tab; ð4Þ

where we define Tab as the total energy momentum tensor
that has an effective matter contribution

~TM
ab ¼

TM
ab

f;R
ð5Þ
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and the contribution from the scalar curvature of the
spacetime as

TR
ab ¼

1

f;R

�
1

2
gabðf − Rf;RÞ þ∇a∇bf;R − gab□f;R

�
: ð6Þ

Writing the field equations in the form (4) has an extra
advantage. We can consider the dynamics of the fourth-
order gravity on the same footing as that of general
relativity with two matter fields, the first is sourced by
the standard matter and second by the scalar curvature and
its derivatives. Hence, to analyze the properties of these
field equations, we can implement the well-understood
techniques from general relativity.

A. Spherical static star in f ðRÞ-gravity
To study a static spherically symmetric star, immersed in

the vacuum Schwarzschild exterior, we consider a spheri-
cally symmetric static metric in the stellar interior as

ds2 ¼ −c2ðrÞdt2 þ dr2�
1 − 2mðrÞ

r

�þ r2dΩ2; ð7Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2, cðrÞ and mðrÞ are well
defined (at least C2) functions of the radial coordinate. We
consider the standard matter to be a spherically symmetric
perfect fluid with no pressure anisotropy. However, we
cannot impose the same conditions on the “curvature”
fluid, as in general it is anisotropic. Hence, in the above
coordinate system, the total effective energy-momentum
tensor is of the following form:

Tab ¼ diag½−μðrÞ; prðrÞ; pθðrÞ; pθðrÞ�; ð8Þ

where we have set

μðrÞ ¼ μMðrÞ
f;R

þ μRðrÞ; ð9Þ

prðrÞ ¼
pMðrÞ
f;R

þ pR
r ðrÞ; ð10Þ

pθðrÞ ¼
pMðrÞ
f;R

þ pR
θ ðrÞ: ð11Þ

Using the definition (6) and the metric (7), we can easily
express the pressure anisotropy of the curvature fluid in the
form

pR
θ − pR

r ¼ 1

f;R

��
m0

r
−
m
r2

�
R0f;RR

−
�
1 −

2m
r

��
ðR0f;RRÞ0 þ f;RR

R0

r

��
; ð12Þ

where 0 denotes differentiation with respect to the coor-
dinate r.

B. Effective mass

The important question that arises here is what the mass
of the star would be, as measured by a faraway observer.
Since any realistic astrophysical stars are immersed in the
Schwarzschild vacuum exterior, the total effective mass of
the star will be equal to the Schwarzschild mass in the
exterior spacetime. Now from the G0

0 ¼ T0
0 field equation,

we get

μ ¼ 2m0

r2
⇒ 2mðrÞ ¼

Zr
0

μðxÞx2dx: ð13Þ

Hence, we can interpret the function mðrÞ as the effective
mass, which is generated by the standard matter and also
the curvature terms, enclosed within the shell of physical
radius r. If r ¼ rb denotes the boundary of the star, then
mðrbÞ ¼ M will denote the total effective mass of the star,
and in the exterior vacuum spacetime, this will be the
Schwarzschild mass. Thus, we immediately see that the
total effective mass of the star in a fourth-order theory is
different from the mass which is generated purely by the
standard matter inside the star. The other field equations are
then used to relate this effective mass with the pressure
terms. The G1

1 ¼ T1
1 field equation gives

pr ¼
2c0

rc

�
1 −

2m
r

�
−
2m
r3

; ð14Þ

while from the doubly contracted Bianchi identity
∇aGa

r ¼ 0 ¼ ∇aTa
r , we get

ðcprÞ0 þ c0μ ¼ 2c
r
ðpθ − prÞ: ð15Þ

Substituting equations (13) and (14) in the lhs of (15), we
have after simplification

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
d
dr

�
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
c0
�
¼ c

��
m
r3

�0
þ pθ − pr

r

�
:

ð16Þ

C. Problem of an anisotropic star? Not quite

Equation (16) is used extensively in the literature to
study variations of the Buchdahl–Bondi limit in the case
of stars having pressure anisotropy (see for example
Refs. [12–14] and the references therein). However, this
problem (as we shall see in this section), is not just another
problem of an anisotropic star, where the anisotropy
parameter is a free parameter. In this case, the pressure
anisotropy is a direct consequence of packaging all the
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higher derivative terms in the field equations as the energy-
momentum tensor of a “fictitious” curvature fluid. Hence,
the anisotropy parameter depends on the Ricci scalar and its
derivatives, which in turn depend on the metric function,
thereby creating a feedback loop.
To see this feedback effect more transparently, substitute

the curvature terms in (16). Since we have already
considered the standard matter to be a perfect fluid, we
can immediately see from Eqs. (10) and (11) that
pθ − pr ¼ pR

θ − pR
r . Then using Eq. (12) in the above

expression, we get after some simplification

cf;Rffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q d
dr

�
m
r3

�
¼ f;R

d
dr

�
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
c0
�

þ c
d
dr

�
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
ðf;RÞ0

�
: ð17Þ

The term m=r3 in the lhs of the above equation denotes
the average effective density of the star at a radius r. It is
interesting to note that the metric function cðrÞ (which
depends on the gravitational potential) and the function f;R
play a symmetric role in determining the gradient of the
effective average density. When f;R ¼ 1 the above relation
reduces to the well-known relation of general relativity [7],
which is used to calculate the Buchdahl–Bondi limit.

III. CONDITIONS ON THE FUNCTIONS

To have a stable and smooth stellar structure which can
be matched smoothly to the Schwarzschild vacuum exterior
at the stellar boundary, we have to impose a set of boundary
conditions on the interior metric functions as well as
placing restrictions on the thermodynamic quantities of
the star. Furthermore, to avoid the presence of ghosts or
tachyons and to have the Schwarzschild solution as a viable
solution of the theory, there are certain conditions on the
function fðRÞ. In this section we list all these conditions,
which will be used to calculate the bound on the star mass
as dictated by the thermodynamic stability.

A. Conditions of the function f ðRÞ
To ensure the attractive nature of gravity, that is the

absence of ghost modes and tachyonic fields, we must have
in the stellar interior

f;R > 0; f;RR ≥ 0: ð18Þ
Furthermore, as proved in Ref. [31], to have the
Schwarzschild spacetime as a solution of the theory, the
function fðRÞ must be at least of class C3 with

fð0Þ ¼ 0; f;Rð0Þ ≠ 0: ð19Þ

Once these conditions are fulfilled, we can have a star
with no ghost modes or tachyonic instabilities (which are

unphysical as they would destroy stable stellar structures),
and furthermore the star can be matched to a vacuum
Schwarzschild exterior.

B. Matching conditions

We know that all astrophysical objects are immersed in
vacuum or almost vacuum spacetime (like any star within
a stellar system), and hence the exterior spacetime around
a spherically symmetric star is well described by the
Schwarzschild geometry. We match two spacetimes
V� across the boundary surface Σ, which in this case will
be r ¼ rb. The junction surface must be the same in Vþ and
V−, which implies continuity of both the metric (the first
fundamental form) and the extrinsic curvature (the second
fundamental form) across Σ as in GR [29,30]. Moreover, in
fðRÞ-theories of gravity, the continuity of the Ricci scalar
across the boundary surface and the continuity of its normal
derivative are also required [26–28]. Matching of the first
fundamental form requires that

c2ðrbÞ ¼
�
1 −

2M
rb

�
; ð20Þ

while matching the second fundamental form dictates that
the total radial pressure at the surface of the star must
vanish (prðrbÞ ¼ 0). Therefore, using (14) we get

c0ðrbÞ ¼
1

r2b

Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rb

q : ð21Þ

The extra matching conditions for fðRÞ-gravity give

RðrbÞ ¼ 0 ¼ R0ðrbÞ: ð22Þ

C. Regularity conditions

The regularity conditions for the interior spacetime
dictate that all the metric and the thermodynamic functions
should be smooth (at least C2) in the interior of the star.
Hence, at the center of the star, the radial derivatives of all
the metric and the thermodynamic functions should vanish.
Therefore, we must have

c0ð0Þ ¼ p0ð0Þ ¼ μ0ð0Þ ¼ R0ð0Þ ¼ 0: ð23Þ
Also from Eq. (13) we see that near the center of the star

mðrÞ ≈ r3: ð24Þ

D. Conditions for thermodynamic stability

From the matching conditions and regularity conditions
given above, we see that c0ðrbÞ > 0 and c0ð0Þ ¼ 0. Since
the function cðrÞ depends on the gravitational potential,
there should be no local extremum of the potential at any
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noncentral shell, for the thermodynamic stability of the star.
Hence, we impose, in the interior spacetime,

c0ðrÞ ≥ 0; ð25Þ

where the equality is only achieved at the central shell.
Thus, the function cðrÞ will be a monotonically increasing
function of the coordinate r, ranging from c0 ≡ cð0Þ > 0 to
cðrbÞ [which is given by (20)]. Furthermore, for physical
stability of the stellar structure, we also require that the total
effective density of the star should be a nonincreasing
function of r. Therefore, we must have

d
dr

�
m
r3

�
≤ 0: ð26Þ

And finally, to avoid the pathologies of f;R ¼ 0 anywhere
inside the star (which may happen in the Starobinsky model
and other viable models for negative Ricci scalar), we
impose a further restriction on the Ricci scalar:

RðrÞ ≥ 0: ð27Þ

Now we can easily see that R0 ≡ Rð0Þ ≥ 0 while
RðrbÞ ¼ 0. For physically viable stellar models, we would
take the function RðrÞ to be monotonic, which implies

R0ðrÞ ≤ 0; ð28Þ

where the equality is only satisfied at the center and at the
surface of the star.

IV. MODIFICATION OF BUCHDAHL–BONDI
LIMIT

In this section, we calculate the bound on the mass to
radius ratio of a relativistic compact star, subject to the
stability and regularity conditions (18)–(28) of the previous
section. As in GR, we shall see that this bound is
independent of the equation of state of the standard matter.
Let us denote

ϕðrÞ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
: ð29Þ

Then we can immediately see that

ϕðrbÞ ¼
1

rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rb

s
: ð30Þ

We can now prove easily the following proposition:
Proposition 1. In the interior spacetime, for any shell

with the radial coordinate r, f;RðRðrÞÞc0ðrÞ is positive and
bounded from below.

Proof.—Using Eq. (26) in (17), we get

f;R
d
dr

½ϕðrÞc0ðrÞ� þ c
d
dr

½ϕðrÞðf;RÞ0� ≤ 0: ð31Þ

Integrating (by parts) the above equation from r to rb,
where rb is the boundary of the star, we obtain

½f;R½ϕðrÞc0��rbr þ ½c½ϕðrÞðf;RÞ0��rbr

− 2

Zrb
0

f;RRR0c0ϕðrÞ ≤ 0: ð32Þ

Since in the interior spacetime R0 ≤ 0, the third term in the
lhs of the above equation has a positive contribution, and
hence dropping that term does not change (but rather
strengthens) the inequality. Therefore, we have

f;RðRðrbÞÞ½ϕðrbÞc0ðrbÞ� − f;RðRðrÞÞ½ϕðrÞc0ðrÞ�
þ cðrbÞ½ϕðrbÞf;RRR0ðrbÞ� − cðrÞ½ϕðrÞf;RRR0� ≤ 0.

ð33Þ

Now using (22) in the above equation, the third term
vanishes, while by (28) the fourth term has a positive
contribution to the lhs and can be dropped without altering
the inequality. Substituting c0ðrbÞ from (21), we get

f;RðRðrÞÞ
dc
dr

≥
f;Rð0Þ
r3b

Mrffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q : ð34Þ

□

Since the above inequality is true ∀r ∈ ½0; rb�, we can
integrate the above from the center to the surface, without
changing the inequality. Integrating, we get

f;Rð0ÞcðrbÞ − f;RðR0Þc0 −
Zrb
0

f;RRR0cdr

≥
f;Rð0ÞM

r3b

Zrb
0

rffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q dr: ð35Þ

To get a bound on the integral term above, we state and
prove the following proposition:
Proposition 2. For any thermodynamically stable

stellar model, satisfying the conditions (18)–(28), the
integral of ð1=ϕðrÞÞ from the center to the surface is
bounded from below, and the bound is equal to
ðr3b=2MÞ½1 − rbϕðrbÞ�.
Proof.—To prove this, we follow the same steps as given

in Ref. [7]. Let us write the total effective density function
μðrÞ as a sum of the constant average density μ0 ≡ 6M=r3b
and ρðrÞ as the variation on the average, that is
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μðrÞ ¼ 6M
r3b

þ ρðrÞ: ð36Þ

This implies

2mðrÞ ¼ 2M
r3

r3b
þ
Zr
0

ρðrÞr2dr: ð37Þ

From the above equation, we can easily see that

Zrb
0

ρðrÞr2dr ¼ 0: ð38Þ

Also since the effective density is a monotonically non-
increasing function from the center to the surface of the
star, we must have the central density greater than the
average density. Therefore, we have ρð0Þ ≥ 0 and ρ0 ≤ 0.
The integral term in (37) is always positive and goes to zero
as r → rb. This implies, ∀r ∈ ½0; rb�, that

2M
r3

r3b
≤ 2m; ð39Þ

and therefore

Zrb
0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q ≥
Zrb
0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ≡ r3b
2M

½1 − rbϕðrbÞ�: ð40Þ

□

We can use the above equation in the rhs of ([3]), without
altering the inequality. Hence, we now get

f;Rð0ÞcðrbÞ − f;RðR0Þc0 −
Zrb
0

f;RRR0cdr

≥
f;Rð0Þ

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rb

s �
: ð41Þ

Now consider the integral term in the lhs of the above
equation. As R0 ≤ 0, we have

−
Zrb
0

f;RRR0cðrÞd ¼
				
Zrb
0

f;RRR0cðrÞdr
				: ð42Þ

Since this term has a positive contribution in the lhs of (41),
we cannot drop it. However, as we have seen, c0ðrÞ ≥ 0
throughout the interior of the star; therefore, cðrbÞ ≥
cðrÞ;∀ r ∈ ½0; rb�, and hence the inequality will not change
if we substitute

cðrbÞ
				
Zrb
0

f;RRR0dr
				≡ cðrbÞðf;RðR0Þ − f;Rð0ÞÞ; ð43Þ

for the integral term in (41). On substitution, and using
(20), we finally have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rb

s �
f;Rð0Þ

2
þ f;RðR0Þ

�
−
f;Rð0Þ

2
≥ f;RðR0Þc0:

ð44Þ

We are now in a position to state and prove the following
theorem:
Theorem 1. The regularity and thermodynamic sta-

bility conditions on a spherically symmetric and static star
of radius rb, immersed in the Schwarzschild vacuum in
fðRÞ-gravity, impose an upper bound on the total effective
mass of the star. This upper bound lies between the
Buchdahl–Bondi bound for general relativity and the
Schwarzschild static limit 2M ¼ rb.
Proof.—From the regularity conditions at the center of

the star, and also by the conditions on the function fðRÞ, we
can see that the rhs of Eq. (44) is strictly greater than zero.
Therefore, we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rb

s �
f;Rð0Þ

2
þ f;RðR0Þ

�
−
f;Rð0Þ

2
> 0; ð45Þ

which, by squaring the lhs, can be simplified to the
following expression:�

1þ 2
f;RðR0Þ
f;Rð0Þ

�
2
�
1 −

2M
rb

�
> 1: ð46Þ

Taking the quantity 2M to the rhs and simplifying, we
finally obtain the upper bound as

2M <
4
f;RðR0Þ
f;Rð0Þ ½1þ

f;RðR0Þ
f;Rð0Þ �

½1þ 2
f;RðR0Þ
f;Rð0Þ �

2
rb: ð47Þ

By our assumptions on the Ricci scalar and the function

fðRÞ, we can immediately see that f;RðR0Þ
f;Rð0Þ ≥ 1. When this

factor equals unity, we regain the usual Buchdahl–Bondi
upper bound 2M < ð8=9Þrb. When this term is much larger
than unity, this upper bound tends to the Schwarzschild
static limit 2M ¼ rb. □

The above theorem ensures that if we suitably modify
general relativity by a function fðRÞ ≠ R we can have a
thermodynamically stable, regular spherical star with an
effective mass M in the region ð8=9Þrb ≤ 2M ≤ rb, which
is the forbidden region in general relativity. Hence, in these
theories we can have more massive but stable compact
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stars, that may be one of the keys to the dark matter
problem. Also for these stars, the surface redshift z ≥ 2,
which can in principle be detected experimentally. To see
this effect more transparently, let us assume a small
modification from general relativity. In other words let

f;RðR0Þ
f;Rð0Þ

¼ 1þ α; 0 ≤ α ≪ 1: ð48Þ

Then the upper bound on the effective mass of the star
becomes

2M <
8

9

�
1þ α

6

�
rb: ð49Þ

Hence, the net fractional increase of the effective mass,
defined as δM ≡ ðMeff −MGRÞ=MGR (where MGR is the
upper bound in general relativity), can be written as

δM
MGR

¼ 4α

27
: ð50Þ

This may easily and naturally account for the extra massive
neutron stars in the sky. We can immediately calculate the
maximum surface redshift for such stars. We get

z < zmax ≡ 2ð1þ αÞ: ð51Þ
Hence, from our observational data from the compact stars,
we can in principle experimentally verify any deviation
from general relativity in the high curvature regime.

V. DISCUSSION

In this paper, we studied model independent bounds on
spherically symmetric stellar structures in fðRÞ-gravity. In
particular, our results are independent of the matter dis-
tribution and the equation of state. Subject to very generic
conditions of regularity and thermodynamic stability in the

interior of the star and the matching conditions at the stellar
surface to the vacuum Schwarzschild exterior, we trans-
parently demonstrated that the mass to radius ratio of the
star is bounded from above, and this is a stricter bound than
the Schwarzschild static limit. In other words, we gener-
alized the Buchdahl–Bondi bound on static stars in GR to
fðRÞ-theories.
We also showed that this upper bound is larger than the

Buchdahl–Bondi limit of GR, whenever fðRÞ ≠ R. Hence,
in principle, we can pack extra effective mass in a stable
compact star in these theories, which is forbidden in GR.
These extra massive stars may be one of the solutions to the
dark matter problem, that manifests through the rotation
curves of the galaxies.
Furthermore, as a direct consequence of this extra

effective mass, we proved that the surface redshift of an
extramassive compact star can be greater than 2, which is
the upper limit in the case of general relativity. This gives a
novel and interesting scenario, where we can observatio-
nally verify the validity or otherwise of general relativity in
the strong gravity/high curvature regime.
An interesting possibility of further study in this scenario

would be the violation of the Chandrasekhar limit. We
know it is possible that the Chandrasekhar limit may be
violated in the presence of strong magnetic fields. The
existence of super-Chandrasekhar white dwarfs has been
motivated on the grounds of a polytropic equation of state
in GR for an anisotropic matter distribution [32]. It would
be interesting to see how the curvature terms in fðRÞ-
gravity modify this limit.
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