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In terms of the de Broglie-Bohm pilot-wave formulation of quantum theory, we develop field-theoretical
models of quantum nonequilibrium systems which could exist today as relics from the very early Universe.
We consider relic excited states generated by inflaton decay, as well as relic vacuum modes, for particle
species that decoupled close to the Planck temperature. Simple estimates suggest that, at least in principle,
quantum nonequilibrium could survive to the present day for some relic systems. The main focus of this
paper is to describe the behavior of such systems in terms of field theory, with the aim of understanding how
relic quantum nonequilibrium might manifest experimentally. We show by explicit calculation that simple
perturbative couplings will transfer quantum nonequilibrium from one field to another (for example
from the inflaton field to its decay products). We also show that fields in a state of quantum nonequilibrium
will generate anomalous spectra for standard energy measurements. Possible connections to current
astrophysical observations are briefly addressed.
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I. INTRODUCTION

In the de Broglie-Bohm pilot-wave formulation of
quantum theory [1–4], the Born probability rule has a
dynamical origin [5–11] and ordinary quantum physics is
recovered as a special equilibrium case of a wider non-
equilibrium physics [5–7,12–20]. On this view, we may
understand the Born rule as arising from a relaxation
process that took place in the remote past. Quantum
nonequilibrium—that is, violations of the Born rule—
may have existed in the very early universe before
relaxation took place [5,6,12,13]. Such effects could leave
observable traces today—in the cosmic microwave back-
ground (CMB) [15–18,21,22] or in relic systems that
decoupled at very early times [7,15,16]. The former
possibility has been developed in some detail and compar-
isons with data are beginning to be made [18,21–23]. The
latter possibility is the focus of this paper.
According to our current understanding, the observed

temperature anisotropy in the CMB was ultimately
seeded by quantum fluctuations during an inflationary
era [24–27]. Inflationary cosmology then provides us with
an empirical window onto quantum probabilities in the
very early Universe. On an expanding radiation-
dominated background, relaxation in pilot-wave theory
can be suppressed at long (super-Hubble) wavelengths
while proceeding efficiently at short (sub-Hubble) wave-
lengths [15,16,18,21,22,28]. Thus, in a cosmology with a
radiation-dominated preinflationary phase [29–33], one
may obtain a large-scale or long-wavelength power deficit

in the CMB [15,16,18,21,22]. For an appropriate choice of
cosmological parameters, the expected deficit is consistent
with the deficit found in data from the Planck satellite
[21,22,34]. Whether the observed deficit is in fact caused
by quantum relaxation suppression during a preinflationary
era or by some other more conventional effect remains to
be seen.
A pilot-wave or de Broglie-Bohm treatment of the early

Bunch-Davies vacuum shows that relaxation to quantum
equilibrium does not take place at all during inflation itself
[15,18]. Thus, if a residual nonequilibrium still existed at
the end of a preinflationary era, the inflaton field would
carry traces of that nonequilibrium forward to much later
times. Similarly, should nonequilibrium be generated
during the inflationary era by exotic gravitational effects
at the Planck scale [18], the resulting departures from
the Born rule will be preserved in the inflaton field and
carried forward into the future where they might have an
observable effect.
As we shall discuss in this paper, as well as imprinting a

power deficit onto the CMB sky, a nonequilibrium inflaton
field would also transfer nonequilibrium to the particles that
are created by inflaton decay. Since such particles make up
almost all of the matter present in our Universe, it seems
conceivable that today there could exist relic particles that
are still in a state of quantum nonequilibrium. We will also
consider relic vacuum modes for other fields (apart from the
inflaton) as potential carriers of nonequilibrium at late times.
These scenarios raise a number of immediate questions.

First of all, even if nonequilibrium relics were created in the
early Universe, could the nonequilibrium survive until late
times and be detected today? As we shall see, simple
estimates suggest that (at least in principle) relaxation
to equilibrium could be avoided for some relic systems.
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A second question that must be addressed is the demon-
stration, in pilot-wave field theory, that perturbative inter-
actions will in general transfer nonequilibrium from one
field to another. This will be shown for a simplified model
of quantum field theory involving just two energy levels for
each field. Finally, one must ask what kind of new
phenomena might be generated by relic nonequilibrium
systems in an astrophysical or cosmological context. This
opens up a potentially large domain of investigation.
General arguments have already shown that the quantum-
theoretical predictions for single-particle polarization prob-
abilities (specifically Malus’ law) would be broken for
nonequilibrium systems [35]. In this paper we focus on
measurements of energy as a simplified model of high-
energy processes. It will be shown that conventional energy
measurements performed on nonequilibrium systems
would generate anomalous spectra. We may take this as
a broad indication of the kinds of anomalies that would
be seen in particle-physics processes taking place in the
presence of quantum nonequilibrium.
In this paper we are not concerned with the question of

practical detection of relic nonequilibrium. Rather, our
intention is to make a case that detection might be possible
at least in principle, and to begin the development of field-
theoretical models of the behavior of relic nonequilibrium
matter.
Generally speaking, even a lowest-order calculation of

perturbative processes in quantum field theory will involve
all of the field modes that are present in the system. While
such calculations are in principle possible in de Broglie-
Bohm theory, in practice it would involve integrating
trajectories for an unlimited number of field modes. In
this paper, we make a beginning by confining ourselves to
simplified or truncated models of quantum field theory
involving only a small number of field modes. Our models
are inspired by approximations commonly used in quantum
optics, where one is often interested in the dynamics of a
single (quantized) electromagnetic field mode inside a
cavity. Our main aim is to justify the assertions that
underpin our scenarios. In particular, we wish to show
by explicit calculation of examples that perturbative cou-
plings will in general transfer nonequilibrium from one
field to another, and that nonequilibrium will affect the
spectra for basic particle-physics processes involving
measurements of energy. We emphasize that the calcula-
tions presented in this paper are only intended to be broadly
illustrative. The development of more realistic models is
left for future work.
In Sec. II A we summarize the background to our

scenario, and in particular the justification for why the
inflaton field singles itself out as a natural carrier of
primordial quantum nonequilibrium. In Sec. II B we argue
that inflaton decay can generate particles in a state of
quantum nonequilibrium (induced by nonequilibrium infla-
ton perturbations and also by the other nonequilibrium

degrees of freedom that can exist in the vacuum), and that
such nonequilibrium could in principle survive to the
present day for those decay particles that were created at
times later than the relevant decoupling time. The gravitino
provides a suggestive, or at least illustrative, candidate. In
Sec. II C we consider a somewhat simpler scenario involv-
ing relic nonequilibrium field modes for the vacuum only.
For simplicity we restrict ourselves to conformally coupled
fields, as these will not be excited by the spatial expansion.
It is argued that super-Hubble vacuum modes that enter the
Hubble radius after the decoupling time for the correspond-
ing particle species will remain free of interactions and
could potentially carry traces of primordial nonequilibrium
to the present day (for sufficiently long comoving wave-
lengths). An illustrative example is provided by the mass-
less gravitino. In Sec. II D we indicate how particle-physics
processes would be affected by a nonequilibrium vacuum.
These preliminary considerations provide motivation for

the subsequent detailed calculations. In Sec. III we give an
example of the perturbative transfer of nonequilibrium from
one field to another, a process that could play a role in
inflaton decay as well as in the decay of relic nonequili-
brium particles generally. In Sec. IV we provide a field-
theoretical model of energy measurements, and we show by
detailed calculation of various examples that nonequili-
brium will entail corrections to the energy spectra generated
by high-energy physics processes. Finally, in Sec. V we
present our conclusions. We briefly address the possible
relevance of our scenarios to current searches for dark
matter. We also comment on some practical obstacles to
detecting relic nonequilibrium (even if it exists) and we
emphasize the gaps in our scenarios that need to be filled in
future work.

II. RELIC NONEQUILIBRIUM SYSTEMS

In this section we first summarize the background to
our scenario and in particular the role that quantum non-
equilibrium might play in the very early universe. We then
provide some simple arguments suggesting that primordial
violations of the Born rule might survive until much later
epochs and perhaps even to the present day [28]. These
arguments motivate the detailed analysis of nonequilibrium
systems provided later in the paper.

A. Nonequilibrium primordial perturbations

In de Broglie-Bohm pilot-wave theory [1–4], a system
has a configuration qðtÞ whose velocity _q≡ dq=dt is
determined by the wave function ψðq; tÞ. As usual, ψ
obeys the Schrödinger equation i∂ψ=∂t ¼ Ĥψ (with
ℏ ¼ 1). For standard Hamiltonians _q is proportional to
the phase gradient Imð∂qψ=ψÞ. Quite generally,

dq
dt

¼ j
jψ j2 ; ð1Þ
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where j ¼ j½ψ � ¼ jðq; tÞ is the Schrödinger current [36].
The configuration-space “pilot wave” ψ guides the motion
of an individual system and has no intrinsic connection
with probabilities. For an ensemble with the same wave
function we may consider an arbitrary distribution ρðq; tÞ
of configurations qðtÞ. By construction, ρðq; tÞ will satisfy
the continuity equation

∂ρ
∂t þ ∂q · ðρ _qÞ ¼ 0: ð2Þ

Because jψ j2 obeys the same equation, an initial “quantum
equilibrium” distribution ρðq; tiÞ ¼ jψðq; tiÞj2 trivially
evolves into a final quantum equilibrium distribution
ρðq; tÞ ¼ jψðq; tÞj2. In equilibrium we obtain the Born
rule and the usual empirical predictions of quantum theory
[2,3]. Whereas, for a nonequilibrium ensemble (ρðq; tÞ ≠
jψðq; tÞj2), the statistical predictions will generally differ
from those of quantum theory [5–7,12–20].
If they existed, nonequilibrium distributions would

generate new phenomena that lie outside the domain of
conventional quantum theory. This new physics would
allow nonlocal signalling [12]—which is causally consis-
tent with an underlying preferred foliation of spacetime
[37]—and it would also allow “subquantum” measure-
ments that violate the uncertainty principle and other
standard quantum constraints [14,20].
The equilibrium state ρ ¼ jψ j2 arises from a dynamical

process of relaxation (roughly analogous to thermal relax-
ation). This may be quantified by an H-function H ¼R
dqρ lnðρ=jψ j2Þ [5–7]. Extensive numerical simulations

have shown that when ψ is a superposition of energy
eigenstates there is rapid relaxation ρ → jψ j2 (on a coarse-
grained level) [6–11,38], with an approximately exponential
decay of the coarse-grainedH-function with time [8,10,38].
In this way, the Born rule arises from a relaxation process
that presumably took place in the very early Universe
[5,6,12,13]. While ordinary laboratory systems—which
have a long and violent astrophysical history—are expected
to obey the equilibriumBorn rule to high accuracy, quantum
nonequilibrium in the early Universe can leave an imprint in
the CMB [15,18,21,22] and perhaps even survive in relic
particles that decoupled at sufficiently early times [7,15,16].
The latter possibility provides the subject matter of this
paper.
Much of the physics may be illustrated by the dynamics

of a massless, minimally coupled and real scalar field ϕ
evolving freely on an expanding background with line
element dτ2 ¼ dt2 − a2dx2 [where a ¼ aðtÞ is the scale
factor and we take c ¼ 1]. Beginning with the classical
Lagrangian density

L ¼ 1

2

ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ; ð3Þ

where gμν is the background metric, and working with

Fourier components ϕk ¼
ffiffiffi
V

p
ð2πÞ3=2 ðqk1 þ iqk2Þ—where

V is a normalization volume and qkr (r ¼ 1; 2) are real
variables—the field Hamiltonian becomes a sum H ¼P

kr Hkr where

Hkr ¼
1

2a3
π2kr þ

1

2
ak2q2kr ð4Þ

is formally the Hamiltonian of a harmonic oscillator
with mass m ¼ a3 and angular frequency ω ¼ k=a.
Straightforward quantization then yields the Schrödinger
equation

i
∂Ψ
∂t ¼

X
kr

�
−

1

2a3
∂2

∂q2kr þ
1

2
ak2q2kr

�
Ψ ð5Þ

for the wave functionalΨ ¼ Ψ½qkr; t�, from which one may
identify the de Broglie guidance equation

dqkr
dt

¼ 1

a3
Im

1

Ψ
∂Ψ
∂qkr ð6Þ

for the evolving degrees of freedom qkr [15,16,18]. (We
have assumed a preferred foliation of spacetime with time
function t. A similar construction may be given in any
globally hyperbolic spacetime [28,37,39].)
An unentangled mode k has an independent dynamics

with wave function ψkðqk1; qk2; tÞ. The equations are the
same as those for a nonrelativistic two-dimensional har-
monic oscillator with time-dependent mass m ¼ a3 and
time-dependent angular frequency ω ¼ k=a. Thus we may
discuss relaxation for a single field mode in terms of
relaxation for such an oscillator [15,16]. It has been shown
that the time evolution is mathematically equivalent to that
of a standard oscillator (with constant mass and constant
angular frequency) but with real time t replaced by a
“retarded time” tretðtÞ that depends on the wave number k
[21]. Thus, in effect, cosmological relaxation for a single
field mode may be discussed in terms of relaxation for a
standard oscillator.
Cosmological relaxation has been studied in detail for

the case of a radiation-dominated expansion, with a ∝ t1=2

[21,22]. In the short-wavelength or sub-Hubble limit, it is
found that tretðtÞ → t and so we obtain the time evolution of
a field mode on Minkowski spacetime, with rapid relax-
ation taking place for a superposition of excited states. On
the other hand, for long (super-Hubble) wavelengths it is
found that tretðtÞ ≪ t and so relaxation is retarded.1 Thus, in
a cosmology with a radiation-dominated preinflationary
era, at the onset of inflation we may reasonably expect to

1Such retardation may also be described in terms of the mean
displacement of the trajectories [16,28].
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find relic nonequilibrium at sufficiently large wavelengths
[18,21,22].
No further relaxation takes place during inflation itself.

This has been shown by calculating the de Broglie-Bohm
trajectories of the inflaton field in the Bunch-Davies
vacuum [15,18]. In terms of conformal time
η ¼ −1=Ha, the wave functional is simply a product
Ψ½qkr; η� ¼

Q
krψkrðqkr; ηÞ of contracting Gaussian pack-

ets and the trajectories take the simple form
qkrðηÞ ¼ qkrð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2η2

p
. The time evolution of an

arbitrary nonequilibrium distribution ρkrðqkr; ηÞ then
amounts trivially to the same overall contraction that occurs
for the equilibrium distribution. It follows that the width of
the evolving nonequilibrium distribution remains in a
constant ratio with the width of the evolving equilibrium
distribution. Thus the ratio

ξðkÞ≡ hjϕkj2i
hjϕkj2iQT

ð7Þ

of the nonequilibrium variance hjϕkj2i to the quantum-
theoretical variance hjϕkj2iQT is preserved in time. Any
relic nonequilibrium (ξ ≠ 1) that exists at the beginning of
inflation is preserved during the inflationary era and is
simply transferred to larger length scales as physical
wavelengths λphys ¼ aλ ¼ að2π=kÞ grow with time.
It follows that incomplete relaxation at long wavelengths

during a preinflationary era can change the spectrum of
perturbations during inflation and thus affect the primordial
power spectrum for the curvature perturbations that seed
the temperature anisotropy in the CMB. An inflaton
perturbation ϕk generates a curvature perturbation Rk ∝
ϕk (where ϕk is evaluated at a time a few e-folds after the
mode exits the Hubble radius) [24]. This in turn generates
the observed angular power spectrum

Cl ¼
1

2π2

Z
∞

0

dk
k
T 2ðk; lÞPRðkÞ ð8Þ

for the CMB, where T ðk; lÞ is the transfer function and

PRðkÞ≡ 4πk3

V
hjRkj2i ð9Þ

is the primordial power spectrum. From (7) we have

PRðkÞ ¼ PQT
R ðkÞξðkÞ; ð10Þ

where PQT
R ðkÞ is the quantum-theoretical or equilibrium

power spectrum. Thus measurements of Cl may be used to
set experimental limits on ξðkÞ [18].
The function ξðkÞ quantifies the degree of nonequili-

brium as a function of k. In a model with a preinflationary
era, extensive numerical simulations show that ξðkÞ is
expected to take the form of an inverse-tangent—with

ξ < 1 for small k and ξ≃ 1 at large k [22]. The extent to
which this prediction is supported by the data is currently
under study [23].
Incomplete relaxation in the past is one means by which

nonequilibrium could exist in the inflationary era. Another
possibility is that nonequilibrium is generated during the
inflationary phase by exotic gravitational effects at the
Planck scale (Ref. [18], Sec. IV B). Trans-Planckian
modes—that is, modes that originally had sub-Planckian
physical wavelengths—may well contribute to the observ-
able part of the inflationary spectrum [40,41], in which case
inflation provides an empirical window onto physics at the
Planck scale [42]. It has been suggested that quantum
equilibrium might be gravitationally unstable [15,39]. In
quantum field theory the existence of an equilibrium state
arguably requires a background spacetime that is globally
hyperbolic, in which case nonequilibrium could be gen-
erated by the formation and evaporation of a black hole
(a proposal that is also motivated by the controversial
question of information loss) [15,39]. A heuristic picture of
the formation and evaporation of microscopic black holes
then suggests that quantum nonequilibrium will be gen-
erated at the Planck length lP. Such a process could be
modeled in terms of nonequilibrium field modes. Thus, a
mode that begins with a physical wavelength λphys < lP in
the early inflationary era may be assumed to be out of
equilibrium upon exiting the Planckian regime (that is,
when λphys > lP) [18]. If such processes exist, the inflaton
field will carry quantum nonequilibrium at short wave-
lengths (below some comoving cutoff).
For our present purpose, the main conclusion to draw is

that the inflaton field may act as a carrier of primordial
nonequilibrium—whether it is relic nonequilibrium from
incomplete relaxation during a preinflationary era, or
nonequilibrium that was generated by Planck-scale
effects during inflation itself. This brings us to the question:
in addition to leaving a macroscopic imprint on the
CMB, could primordial nonequilibrium survive all the
way up to the present and be found in microscopic relic
systems today?.

B. Inflaton decay

Postinflation, the density of any relic particles (non-
equilibrium or otherwise) from a preinflationary era will be
so diluted as to be completely undetectable today. However,
one may consider relic particles that were created at the end
of inflation by the decay of the inflaton field itself—where
in standard inflationary scenarios inflaton decay is in fact
the source of almost all the matter present in our Universe.
To discuss this, note that in pilot-wave theory it is

standard to describe bosonic fields in terms of evolving
field configurations (as in our treatment of the free scalar
field in Sec. II A) whereas there are different approaches for
fermionic fields. Arguably the most straightforward pilot-
wave theory of fermions utilizes a Dirac sea picture of

NICOLAS G. UNDERWOOD AND ANTONY VALENTINI PHYSICAL REVIEW D 92, 063531 (2015)

063531-4



particle trajectories determined by a pilot wave that obeys
the many-body Dirac equation [43–45]. Alternatively, a
formal field theory based on anticommuting Grassmann
fields may be written down [6,13] but its interpretation
presents problems that remain to be addressed [46]. For our
purposes we will assume the Dirac sea model for fermions.
During the inflationary era the inflaton field φ is

approximately homogeneous and may be written as

φðx; tÞ ¼ ϕ0ðtÞ þ ϕðx; tÞ; ð11Þ

where ϕ0ðtÞ is a homogeneous part and ϕðx; tÞ [or ϕkðtÞ] is
a small perturbation. As we have noted, during the infla-
tionary expansion perturbations ϕk do not relax to quantum
equilibrium and in fact the exponential expansion of space
transfers any nonequilibrium that may exist from micro-
scopic to macroscopic length scales. The inflaton field is
then a natural candidate for a carrier of primordial quantum
nonequilibrium (whatever its ultimate origin).
The process of “preheating” is driven by the homo-

geneous and essentially classical part ϕ0ðtÞ (that is, by the
k ¼ 0 mode of the inflaton field) [47]. The inflaton is
treated as a classical external field, acting on other
(quantum) fields which become excited by parametric
resonance. Because of the classicality of the relevant part
of the inflaton field, this process is unlikely to result in a
transference of nonequilibrium from the inflaton to the
created particles. During “reheating”, however, perturbative
decay of the inflaton can occur, and we expect that
nonequilibrium in the inflaton field will be at least to
some extent transferred to its decay products.
Note that we follow the standard procedure of treating

the large homogeneous part ϕ0ðtÞ as a classical field and the
small perturbation ϕðx; tÞ as a quantized field. This
deserves some comment. In the context of preheating, it
has been argued that ϕ0ðtÞ arises from a coherent state with
a space-independent quantum expectation value [48]. It is
also common to argue that the large amplitude and large
occupation number of the “zero mode” at the end of
inflation justifies it being treated as a classical field (see
for example Refs. [47] and [49]). Here we assume the
standard formalism, albeit rewritten in de Broglie-Bohm
form. By construction, then, there is no probability dis-
tribution for ϕ0ðtÞ (which has a classical “known” value at
all times). Whereas ϕðx; tÞ has a probability distribution,
which in the standard theory is given by the Born rule and
which in de Broglie-Bohm theory can be more general. The
probability distribution for ϕðx; tÞ is used to calculate the
power spectrum emerging from the inflationary vacuum.
By allowing this distribution to be out of equilibrium, new
physical effects can occur in the CMB [18]. In contrast,
because ϕ0ðtÞ is treated as a classical background field with
no probability distribution there is no question of ascribing
equilibrium or nonequilibrium to this part of the field (at

least not at the level of the effective description which we
adopt here).2

The perturbative decay of the inflaton occurs through
local interactions. For example, reheating can occur if the
inflaton field φ is coupled to a bosonic field Φ and a
fermionic field ψ via an interaction Hamiltonian density of
the form

Hint ¼ aφΦ2 þ bφψ̄ψ ; ð12Þ

where a, b are constants (Ref. [27], p. 507). In actual
calculations, it is usual to consider only the dominant
homogeneous part ϕ0 of the field φ ¼ ϕ0 þ ϕ, and to
ignore contributions from the small perturbation ϕ.
Because the dominant homogeneous part ϕ0 is treated
essentially classically, inflaton decay bears some resem-
blance to the process of pair creation by a strong classical
electric field.
The decay particles will have physical wavelengths no

greater than the instantaneous Hubble radius, λphys ≲H−1,
since local processes cannot significantly excite super-
Hubble modes (for which the particle concept is in any case
ill-defined). This standard argument—that super-Hubble
modes are shielded from the effects of local interactions—
is still valid in the de Broglie-Bohm formulation since we
are speaking of the time evolution of the wave functionalΨ
(and of its mode decomposition) which still satisfies the
usual Schrödinger equation. We have a nonlocal dynamical
Eq. (1) for the evolving configuration qðtÞ, but the
Schrödinger equation for Ψ takes the usual form and
therefore has the usual properties. Local Hamiltonian terms
in the Schrödinger equation will be unable to excite super-
Hubble modes just as in standard quantum field theory.
How could quantum nonequilibrium exist in the decay

products? There seem to be two possible mechanisms.
First, note that the inflaton perturbationϕwill also appear

in the interaction Hamiltonian (12). The dominant processes
of particle creation by the homogeneous part ϕ0 will
necessarily be subject to corrections from the perturbation
ϕ. If the perturbation is out of equilibrium, the induced
corrections will carry signatures of nonequilibrium—as will
be illustrated by a simplemodel of field couplings in Sec. III.
Second, as in any de Broglie-Bohm account of a

quantum process, the final probability distribution for
the created particles will originate from the initial proba-
bility distribution for the complete hidden-variable state.3

2Note that, in the standard formalism being assumed here, even
at very long wavelengths there remains a formal distinction
between the large classical homogeneous field ϕ0ðtÞ and modes
of the small quantized field ϕðx; tÞ.

3In pilot-wave theory the outcome of a single quantum
measurement is determined by the complete initial configuration
(together with the initial wave function and total Hamiltonian).
Over an ensemble, the distribution of outcomes is then deter-
mined by the distribution of initial configurations.
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In this case the initial hidden-variable state will include
vacuum bosonic field configurations together with vacuum
fermionic particle configurations for the created species
(assuming a Dirac-sea account of fermions). Thus, if the
relevant vacuum variables for the created species are out of
equilibrium at the beginning of inflaton decay, the created
particles will in general violate the Born rule. As we have
discussed, inflaton perturbations do not relax to equilibrium
during the inflationary phase. One may expect that the other
degrees of freedom in the vacuum will show a comparable
behavior—in which case they could indeed be out of
equilibrium at the onset of inflaton decay, resulting in
nonequilibrium for the decay products.
At least in principle, then, the particles created by inflaton

decay could show deviations from quantum equilibrium.
However, subsequent relaxation can be avoided only if
the particles are created at a time after their corresponding
decoupling time tdec (when the mean free time tcol between
collisions is larger than the expansion time scale texp ≡ a= _a)
or equivalently at a temperature below their decoupling
temperature Tdec. Otherwise the interactions with other
particles are likely to cause rapid relaxation.
A natural candidate to consider is the gravitino ~G, which

arises in supersymmetric theories of high-energy physics. In
some models, gravitinos are copiously produced by inflaton
decay [50–52] and could make up a significant component
of dark matter [53]. (For recent reviews of gravitinos as dark
matter candidates see for example Refs. [54,55].) Gravitinos
are very weakly interacting and therefore in practice could
not be detected directly, but in many models they are
unstable and decay into particles that are more readily
detectable. Again, as we shall see, in general we expect
any decay process to transfer quantum nonequilibrium from
the initial decaying field to the decay products. Thus, at least
in principle, one could search for deviations from the Born
rule in (say) photons that are generated by gravitino decay.
However, the decay would have to take place after the time
ðtdecÞγ of photon decoupling—so that the decay photons
may in turn avoid relaxation.
It may then seem unlikely that primordial nonequili-

brium could ever survive until the present, since several
stages may be required. But simple estimates suggest that at
least in principle the required constraints could be satisfied
for some models.
The unstable gravitino ~G has been estimated to decouple

at a temperature ðTdecÞ ~G given by [56]

kBðTdecÞ ~G ≡ x ~GðkBTPÞ ð13Þ

≈ ð1 TeVÞ
�

g�
230

�
1=2

�
m ~G

10 keV

�
2
�
1 TeV
mgl

�
2

;

ð14Þ
where TP is the Planck temperature, g� is the number of spin
degrees of freedom (for the effectively massless particles) at

the temperature ðTdecÞ ~G, mgl is the gluino mass, and m ~G is
the gravitino mass. For the purpose of illustration, if we
take ðg�=230Þ1=2∼1 and ð1TeV=mglÞ2∼1, then

x ~G ≈
�

m ~G

103 GeV

�
2

: ð15Þ

If for example we take m ~G ≈ 100 GeV, then x ~G ≈ 10−2.
Gravitinos produced by inflaton decay at temperatures
below ðTdecÞ ~G ≡ x ~GTP could potentially avoid quantum
relaxation. Any nonequilibrium which they carry could
then be transferred to their decay products. If the gravitino
is not the lightest supersymmetric particle, then it will
indeed be unstable. For large m ~G the total decay rate is
estimated to be [57]

Γ ~G ¼ ð193=48Þðm3
~G
=M2

PÞ; ð16Þ

where MP ≃ 1.2 × 1019 GeV is the Planck mass. The time
ðtdecayÞ ~G at which the gravitino decays is of order the
lifetime 1=Γ ~G. Using the standard temperature-time relation

t ∼ ð1 sÞ
�
1 MeV
kBT

�
2

; ð17Þ

the corresponding temperature is then

kBðTdecayÞ ~G ∼ ðm ~G=1 GeVÞ3=2 eV: ð18Þ

For example, again for the case m ~G ≈ 100 GeV, the relic
gravitinos will decay when kBðTdecayÞ ~G ∼ 1 keV. This is
prior to photon decoupling, so that any (potentially non-
equilibrium) photons produced by the decaying gravitinos
would interact strongly with matter and quickly relax to
quantum equilibrium. To obtain gravitino decay after
photon decoupling, we would need kBðTdecayÞ ~G ≲
kBðTdecÞγ ∼ 0.3 eV, or m ~G ≲ 0.5 GeV. For such small
gravitino masses, decoupling occurs at (roughly)

ðTdecÞ ~G ¼ x ~GTP ≈ ðm ~G=10
3 GeVÞ2TP ≲ 10−7TP: ð19Þ

In such a scenario, to have a hope of finding relic
nonequilibrium in photons from gravitino decay, we would
need to restrict ourselves to those gravitinos that were
produced by inflaton decay at temperatures ≲10−7TP.
Our considerations here are intended to be illustrative

only. It may prove more favorable to consider other
gravitino decay products—or to apply similar reasoning
to other relics from the Planck era besides the gravitino.4

4Colin [58] has developed the pilot-wave theory of (first-
quantized) Majorana fermions and suggests that quantum non-
equilibrium might survive at sub-Compton length scales for these
systems.
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And of course one could also consider photons that are
generated by the annihilation of relic particles as well as by
their decay.
While definite conclusions must await the development

of detailed and specific models, in principle the required
constraints do not seem insuperable. There is, however, a
further question we have yet to address: whether or not
relaxation will still occur even for decay particles that are
decoupled. Decoupling is necessary but not sufficient to
avoid relaxation. We may discuss this for decay particles
whose physical wavelengths are sufficiently sub-Hubble
(λphys ≪ H−1) that the Minkowski limit applies, since
extensive numerical studies of relaxation have already
been carried out in this limit. If the decay particles are
free but in quantum states that are superpositions of even
modest numbers of energy eigenstates, then rapid relaxa-
tion will occur (on time scales comparable to those over
which the wave function itself evolves) [6–11,38]. On the
other hand, if the number of energy states in the super-
position is small then it is likely that relaxation will not take
place completely. It was shown in Ref. [38] that, if the
relative phases in the initial superposition are chosen
randomly, then for small numbers of energy states it is
likely that the trajectories will not fully explore the
configuration space, resulting in a small but significant
nonzero “residue” in the coarse-grained H-function—
corresponding to a small deviation from quantum equilib-
rium—even in the long-time limit. It appears that such
behavior can occur for larger numbers of energy states as
well, but will be increasingly rare the more energy states are
present in the superposition (see Ref. [38] for a detailed
discussion). Decay particles will be generated with a range
of effective quantum states. For that fraction of particles
whose wave functions have a small number of superposed
energy states, there is likely to be a small residual non-
equilibrium even in the long-time limit. Therefore, again, at
least in principle there seems to be no insuperable obstacle
to primordial nonequilibrium surviving to some (perhaps
small) degree until the present day.

C. Relic conformal vacua

While inflaton decay will certainly create nonequili-
brium particles from an initially nonequilibrium vacuum,
we have seen that there are practical obstacles to such
nonequilibrium surviving until the present day. The
obstacles do not seem insurmountable in principle, but
whether a scenario of the kind we have sketched will be
realized in practice is at present unknown. There is,
however, an alternative and rather simpler scenario which
appears to be free of such obstacles. This involves con-
sidering relic nonequilibrium field modes for the vacuum
only. This has the advantage that vacuum wave functions
are so simple that no further relaxation can be generated—
any relic nonequilibrium from earlier times will be frozen
and preserved.

But how could primordial field modes remain unexcited
in the postinflationary era? For a given field there are three
mechanisms that can cause excitation: (i) inflaton decay,
(ii) interactions with other fields, and (iii) spatial expansion.
It is, however, possible to avoid each of these. Firstly, while
a field mode is in the super-Hubble regime it will in effect
be shielded from the effects of local physics and will not be
subject to excitation from perturbative interactions (with
the inflaton or with other fields).5 Secondly, if during the
postinflationary radiation-dominated phase the field mode
enters the Hubble radius at a time tenter that is later than the
decoupling time tdec for the corresponding particle species,
the mode will remain free of interactions and continue to be
unexcited (see Fig. 1). Finally, the effects of spatial
expansion may be avoided altogether by restricting our
attention to fields that are conformally coupled to the
spacetime metric. For example, for a massless scalar field ϕ
with Lagrangian density

L ¼ 1

2

ffiffiffiffiffiffi
−g

p �
gμν∂μϕ∂νϕ −

1

6
Rϕ2

�
ð20Þ

(where R is the curvature scalar), the dynamics is invariant
under a conformal transformation gμνðxÞ → ~gμνðxÞ ¼
Ω2ðxÞgμνðxÞ, ϕðxÞ → ~ϕðxÞ ¼ Ω−1ðxÞϕðxÞ, where ΩðxÞ is
an arbitrary spacetime function [59,60]. Because a
Friedmann–Lemaître spacetime is conformally related to
a section of Minkowski spacetime, the spatial expansion
will not create particles for a (free) conformally coupled

FIG. 1. Length scales for a radiation-dominated expansion. The
solid line shows the time evolution of the physical wavelength
λphys ¼ aλ ∝ t1=2. The dashed line shows the time evolution of
the Hubble radius H−1 ¼ 2t. The mode enters the Hubble radius
after the decoupling time tdec.

5Again, this standard argument is still valid in the de Broglie-
Bohm formulation since we are referring to the time evolution of
the wave functional only.
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field. The natural or conformal vacuum state is stable, just
as in Minkowski spacetime [59,60]. Conformal invariance
is however possible only for massless fields, whether
bosonic or fermionic. As examples of conformally coupled
particle species, we may consider photons and (if they
exist) massless neutrinos and massless gravitinos.
Because ground-state wave functions and the associated

de Broglie velocity fields are so simple (indeed trivial),
relic vacuum modes will not relax to equilibrium and
could therefore survive as carriers of nonequilibrium until
the present day. As we shall see, nonequilibrium vacuum
modes would in principle generate corrections to particle-
physics processes.
At what length scale might relic nonequilibrium exist in

the vacuum today? This may be estimated by requiring that
the modes enter the Hubble radius at times tenter > tdec
(so as to avoid excitation and hence likely relaxation).
Thus we require that at the time tdec the vacuummodes have
an instantaneous physical wavelength λvacphysðtdecÞ that is
super-Hubble,

λvacphysðtdecÞ≳H−1
dec; ð21Þ

where H−1
dec is the Hubble radius at time tdec (as shown in

Fig. 1). Now λvacphysðtdecÞ ¼ adecλvac (where adec ¼ T0=Tdec

and T0 ≃ 2.7 K) and H−1
dec ¼ 2tdec with tdec expressed in

terms of Tdec by the approximate formula (17). The lower
bound (21) then becomes (inserting c)

λvac ≳ 2cð1 sÞ
�
1 MeV
kBTdec

��
1 MeV
kBT0

�
ð22Þ

or

λvac ≳ ð3 × 1020 cmÞ
�
1 MeV
kBTdec

�
: ð23Þ

This is a lower bound on the comoving wavelength λvac at
which nonequilibrium could be found for conformally
coupled vacuum modes.
The lower bound (23) becomes prohibitively large unless

we focus on fields that decouple around the Planck
temperature or soon after. For photons kBðTdecÞγ ∼
0.3 eV, and so for the electromagnetic vacuum (23)
implies λvacγ ≳ 1027 cm. For massless, conformally coupled
neutrinos (if such exist), kBðTdecÞν ∼ 1 MeV and λvacν ≳
1020 cm≃ 30 pc (or ∼102 light years). Relic nonequili-
brium for these vacua could plausibly exist today only at
such huge wavelengths and any induced effects would be
far beyond any range of detection in the foreseeable future.
We must therefore consider fields that decoupled close to

the Planck temperature. Gravitons are expected to be
minimally coupled and so would not have a stable vacuum
state under the spatial expansion. However, a massless

gravitino field should be conformally coupled, in which
case it would be a candidate for our scenario. For massless
gravitinos we have a lower bound

λvac~G ≳ ð10−2 cmÞð1=x ~GÞ ð24Þ

[again writing kBðTdecÞ ~G ≡ x ~GðkBTPÞ≃ x ~Gð1019 GeVÞ
and with x ~G ≲ 1]. If, for example, we take x ~G ≈ 10−2 then
λvac~G ≳ 1 cm. According to this crude and illustrative
estimate, relic nonequilibrium for a massless gravitino
vacuum today appears to be possible for modes of wave-
length ≳1 cm.

D. Particle physics in a nonequilibrium vacuum

If nonequilibrium vacuum modes do exist today, how
could they manifest experimentally? In principle they
would induce nonequilibrium corrections to particle crea-
tion from the vacuum (as already noted for inflaton decay)
or to other perturbative processes such as particle decay.
Consider for example a free scalar field Φðx; tÞ that is

massive and charged. Let us again write the Fourier
components as ΦkðtÞ ¼ ð ffiffiffiffi

V
p

=ð2πÞ3=2ÞðQk1ðtÞ þ iQk2ðtÞÞ
with real Qkr (r ¼ 1; 2). In Minkowski spacetime—which
is suitable for a description of local laboratory physics—the
vacuum wave functional takes the form

Ψ0½Qkr; t� ∝
Y
kr

exp

�
−
1

2
ωQ2

kr

�
exp

�
−i

1

2
ωt

�
; ð25Þ

where ω ¼ ðm2 þ k2Þ1=2 and m is the mass associated with
the field. (On expanding space the vacuum wave functional
will reduce to this form in the short-wavelength limit.)
Let us assume that the quantum state of the field is

indeed the vacuum state (25). Assuming for simplicity that
the (putative) long-wavelength nonequilibrium modes are
uncorrelated, we may then consider a hypothetical non-
equilibrium vacuum with a distribution of the form

P0½Qkr� ∝
Y
kr

ðk>kcÞ

exp ð−ωQ2
krÞ:

Y
kr

ðk<kcÞ

ρkrðQkrÞ; ð26Þ

where ρkrðQkrÞ is a general nonequilibrium distribution for
the mode kr and the wavelength cutoff 2π=kc is at least as
large as the relevant lower bound (23) on λvac. The short
wavelength modes (k > kc) are in equilibrium while the
long wavelength modes (k < kc) are out of equilibrium.
(The vacuum distribution P0 is time independent because
the de Broglie velocity field generated by (25) vanishes,
_Qkr ¼ 0, since the phase of the wave functional depends on
t only.)
If the field Φ is now coupled to an external and classical

electromagnetic field Aext, corresponding to a replacement
∇Φ → ∇Φþ ieAextΦ in the Hamiltonian, pairs of
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oppositely charged bosons will be created from the
vacuum.6 As in our discussion of inflaton decay, the
probability distribution for the created particles originates
from the initial probability distribution P0½Qkr� for the
vacuum field Φ. (There are no other degrees of freedom
varying over the ensemble, since the given classical field
Aext is the same across the ensemble.) Clearly, if P0 ≠
jΨ0j2 for long-wavelength modes, the final probability
distribution for the created particles will necessarily carry
traces of the initial nonequilibrium that was present in the
vacuum. We could for example consider an interaction
Hamiltonian e2A2

extΦ�Φ and calculate the final particle
distribution arising from a given initial nonequilibrium
vacuum distribution of the form (26).
Similarly, processes of particle decay will be affected by

the nonequilibrium vacuum. Consider, for example, the
decay of a particle associated with a (bosonic or fermionic)
field ψ that is coupled to Φ and to a third field χ. (For
bosonic fields, the decay might be induced by an inter-
action Hamiltonian of the form aχΦ2ψ where a is a
coupling constant.) An initial state jpiψ ⊗ j0iΦ ⊗ j0iχ—
where jpiψ is a single-particle state of momentum p for the
field ψ and j0iΦ, j0iχ are respective vacua for the fields Φ
and χ—may have a nonzero amplitude to make a transition7

jpiψ ⊗ j0iΦ ⊗ j0iχ → j0iψ ⊗ jk1k2iΦ ⊗ jp0iχ ð27Þ

to a final state containing two excitations of the field Φ and
one excitation of χ. The final probability distribution for the
outgoing particles will originate from the initial probability
distribution for all the relevant (hidden-variable) degrees of
freedom—which in this case consist of the relevant vacuum
variables for Φ and χ together with the variables for the
field ψ . (Again, if ψ is fermionic the associated hidden
variables may consist of particle positions in the Dirac sea
[43–45].) Because all these variables are coupled by the
interaction, an initial nonequilibrium distribution (26) for a
subset of them (that is, for the Qkr) will generally induce
corrections to the Born rule in the final joint distribution
for the collective variables and hence for the outgoing
particles. Thus, for example, for gravitinos decaying in a

nonequilibrium vacuum we would expect the decay pho-
tons to carry traces of nonequilibrium in the probability
distributions for their outgoing momenta and polarizations.

III. PERTURBATIVE TRANSFER OF
NONEQUILIBRIUM

We now turn to some simple but illustrative field-
theoretical models of the behavior of nonequilibrium
systems. The first question that needs to be addressed is
the perturbative transfer of nonequilibrium from one field
to another. In this section we present a simple (bosonic)
field-theoretical model that illustrates this process.
Suppose we have two Klein-Gordon fields ϕ1 and ϕ2,

confined inside a box of volume V with dimensions lx, ly,
and lz such that the fields are necessarily zero valued on the
boundaries of the box. In consideration of these boundary
conditions, we expand and quantize the fields in a set of
standing waves as ði ¼ 1; 2Þ

ϕiðxÞ ¼
X
k

23=2qikffiffiffiffi
V

p sinðkxxÞ sinðkyyÞ sinðkzzÞ; ð28Þ

with annihilation operators

aik ¼
ffiffiffiffiffiffiffi
ωik

2

r �
qik þ i

ωik
pik

�
; ð29Þ

and a total Hamiltonian

H0 ¼
X
k

ðω1ka
†
1ka1k þ ω2ka

†
2ka2kÞ: ð30Þ

We have dropped the zero point energy, and kx ¼ nπ=lx
and similarly for y and z. The two fields are coupled by the
interaction Hamiltonian

HI ¼ g
Z
V
d3xϕ1ðxÞϕ2ðxÞ ð31Þ

¼ g
2

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1kω2k

p ða1k þ a†1kÞða2k þ a†2kÞ; ð32Þ

where g is a coupling constant. If we suppose that at time
t ¼ 0 the system is in the free (unperturbed) eigenstate jEii,
the first order perturbative amplitude to transition to the
state jEfi is

dð1Þf ðtÞ ¼ hfjHIjii
e−iEft − e−iEit

Ef − Ei
: ð33Þ

This will be damped for any Ef significantly different from
Ei. We may exploit this fact by further insisting that
(i) lx ≫ ly ≫ lz, so that the lowest mode of each field is

significantly lower than all others, and

6The de Broglie-Bohm theory of a charged scalar field
interacting with the electromagnetic field is discussed in
Refs. [6,28].

7In a de Broglie-Bohm account, the apparent “collapse” of the
quantum state as indicated by Eq. (27) is only an effective
description. During a standard quantum process—such as a
measurement, a scattering experiment, or general transition
between eigenstates—an initial packet ψðq; 0Þ on configuration
space evolves into a superposition ψðq; tÞ ¼ P

ncnψnðq; tÞ of
nonoverlapping packets ψnðq; tÞ. The final configuration qðtÞ can
occupy only one “branch”—say ψ iðq; tÞ, corresponding to the ith
“outcome”. The motion of qðtÞ will subsequently be affected by
ψ iðq; tÞ alone, resulting in an effective “collapse” of the wave
function. The “empty” branches still exist but no longer affect the
trajectory qðtÞ. (See, for example, Chapter 8 of Ref. [4].)
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(ii) the limit m2 → m1 is taken, so that the lowest modes
of ϕ1 and ϕ2 have the same unperturbed energy.

These conditions ensure that the system state in which field
ϕ1 has one particle occupying its lowest mode and the field
ϕ2 is a vacuum has identical unperturbed energy to the
system state in which the individual field states are
reversed. We shall denote these states j1; 0i and j0; 1i
respectively. Since these states have identical unperturbed
energies, the first order perturbative amplitudes (33)
between the states is significantly amplified, whereas all
others damped. This is the justification of the rotating wave
approximation, familiar from quantum optics and cavity
QED (see for instance Ref. [61]). Put simply, the states
j1; 0i and j0; 1i are strongly coupled to each other and only
very weakly coupled to any other state.
We make the rotating wave approximation by removing

all terms in the Hamiltonian that would effect an evolution
to states other than j1; 0i and j0; 1i. This allows us to
employ the effective Hamiltonian,

Heff ¼ ωða†1a1 þ a†2a2Þ þ
g
2ω

ða1a†2 þ a2a
†
1Þ: ð34Þ

We have suppressed the mode subscripts for simplicity.
The approximate Schrödinger equation Heff jψi ¼ i∂tjψi,
along with the initial condition jψijt¼0 ¼ j1; 0i, yields the
solution

jψi ¼ e−iωt
�
cos

�
gt
2ω

�
j1; 0i − i sin

�
gt
2ω

�
j0; 1i

�
: ð35Þ

The sine and cosine in Eq. (35) describe an oscillatory
decay process in which the first type of particle is seen to
decay into the second type, which promptly decays back.
This type of flip-flopping between one type of particle and
the other is functionally equivalent to vacuum-field Rabi
oscillations in the Jaynes-Cummings model [61,62] of
quantum optics and cavity QED wherein an exchange of
energy occurs between an atom and a cavity mode of the
electromagnetic field, perpetually creating a photon, then
destroying it only to create it once more.8

To develop a de Broglie-Bohm description of
this particle decay process, one needs to specify the

configuration of the system. For bosonic fields the canoni-
cal approach [3] is to use the Schrödinger representation
with mode amplitudes as the configuration. In our case this
is particularly simple; the state of any one system in an
ensemble is described by the coordinates q1 and q2,
proportional to the amplitudes of the lowest (standing)
mode of each field. In this representation the Hamiltonian is

Heff ¼ −
1

2
ð∂2

q1 þ ∂2
q2Þ þ

1

2
ω2ðq21 þ q22Þ

− ωþ g
2

�
q1q2 −

1

ω2
∂q1∂q2

�
: ð36Þ

In the rotating wave approximation there are derivative
terms in the interaction Hamiltonian. The de Broglie
velocity fields associated with the Hamiltonian (36) may
be derived in the standard way, and by using

ψ�∂q1∂q2ψ − ψ∂q1∂q2ψ
�

¼ i∂q1ðjψ j2∂q2Im lnψÞ þ i∂q2ðjψ j2∂q1Im lnψÞ ð37Þ

(a special case of the general identity 2 of Ref. [36]).
Writing ψ ¼ jψ jeiS, the guidance equations may be
expressed as

_q1 ¼ ∂q1Sþ g
2ω2

∂q2S;

_q2 ¼ ∂q2Sþ g
2ω2

∂q1S: ð38Þ

For the particular state (35), these yield

_q1 ¼
1
2
ðq2 − g

2ω2 q1Þ sinðgtωÞ
q21cos

2ð gt
2ωÞ þ q22sin

2ð gt
2ωÞ

;

_q2 ¼
1
2
ð−q1 þ g

2ω2 q2Þ sinðgtωÞ
q21cos

2ð gt
2ωÞ þ q22sin

2ð gt
2ωÞ

: ð39Þ

The configuration qðtÞ ¼ ðq1ðtÞ; q2ðtÞÞ and velocity
_qðtÞ ¼ ð _q1ðtÞ; _q2ðtÞÞ of a particular member of an ensem-
ble evolving along a trajectory described by Eq. (39) has
the properties qðtÞ ¼ qðtþ 2πω=gÞ, _qðtÞ ¼ _qðtþ 2πω=gÞ,
qðtÞ ¼ qð−tÞ, and _qðtÞ ¼ − _qð−tÞ. The trajectories qðtÞ are
periodic, and halfway through their period backtrack along
their original path.
Given the velocity field (39), we may integrate the

continuity equation (2) to obtain the time evolution of
an arbitrary distribution ρ. (Our numerical method is
described in the Appendix.)
In Fig. 2 we compare the evolution of quantum non-

equilibrium with that of equilibrium for the case
ω ¼ g ¼ 1. The decay from an initial product state j1; 0i
to a final product state j0; 1i is seen in the (product)
equilibrium distributions on the right-hand side of Fig. 2.
We illustrate the transfer of nonequilibrium in the left-hand

8From a field-theoretical viewpoint the quadratic interaction
(31) may seem too trivial an example since the interaction may be
removed by a linear transformation of the field variables. Such a
transformation would not, however, negate the physical meaning
of the original system. Our aim is to illustrate with a simple
example how nonequilibrium may be passed from one type of
field to another. We expect a similar passing of quantum non-
equilibrium between fields to be caused by any reasonable
interaction term. Our example is based on a model—widely
used in quantum optics to study the interaction between a two-
level atom and a single mode of the quantized electromagnetic
field inside a cavity—that is simple enough to be tractable while
at the same time providing a genuine field-theoretical account of
energy transfer to and from a quantized field.
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side of Fig. 2 for the case of an initial nonequilibrium that
has simply been narrowed in q1 (with respect to equilib-
rium). Hence only the first field is initially out of equilib-
rium. As time passes the distribution becomes correlated in
q1 and q2. At t ¼ π, when according to standard quantum
mechanics we should find another product state (corre-
sponding to j0; 1i), there exists a complicated overall
nonequilibrium in ðq1; q2Þ. The marginal distributions
are shown in Fig. 3.
The evolution of nonequilibrium depends strongly on the

particular values of ω and g, although in general we see two
important properties of this evolution. Firstly it is apparent
from Figs. 2 and 3 that nonequilibrium in the marginal
distribution of the original particle state (or excited field)
will generate nonequilibrium in its decay product.

Secondly, although the initial product state jψijt¼0 ¼
j1; 0i evolves into the product state j0; 1i at t ¼ πω=g,
the nonequilibrium distribution is correlated between the
two fields. Such correlation could not exist in standard
quantum mechanics.

IV. ENERGY MEASUREMENTS
AND NONEQUILIBRIUM SPECTRA

In this section we focus on quantum-mechanical mea-
surements of energy for elementary field-theoretical sys-
tems in nonequilibrium. As we have discussed, in this paper
we restrict ourselves to simple models that may be taken to
illustrate some of the basic phenomena that could occur.
The following analysis is presented for the electromag-

netic field, partly because it provides a convenient illus-
trative model and partly because (as explained in Sec. II)
we envisage the possibility of detecting decay photons
produced by particles in nonequilibrium rather than the
parent particles themselves. However, the analysis should
apply equally well to other field theories.

A. Setup and effective wave function

Wework in the Coulomb gauge,∇:Aðx; tÞ ¼ 0, with the
field expansion

FIG. 2 (color online). The evolution of quantum equilibrium
and nonequilibrium through the particle decay process described
by state (35) and guidance equation (39). Initially state (35) is a
product between an excited (one particle) state in q1 and a ground
(vacuum) state in q2. This is shown in the top right graph. As time
passes, t ¼ 0 → π, the excited state in q1 decays into exactly the
same excited state in q2. At time t ¼ π the state (35) exists in
another product state, except this time with excited and ground
states switched between fields. This is shown in the bottom right
graph. The evolution of a quantum nonequilibrium distribution is
shown in the left column. Before the interaction takes place,
quantum nonequilibrium exists only in the one particle state of
the first field; it has been narrowed with respect to the equilibrium
distribution. As time passes, the first field generates nonequili-
brium in the second. At t ¼ π, by standard quantum mechanics,
the decay process is complete and there exists another product
state. In contrast, the introduction of quantum nonequilibrium has
created a distribution at t ¼ π that is correlated between q1 and
q2. The marginal distributions for the fields are shown in Fig. 3.
(This figure takes ω ¼ g ¼ 1.)

FIG. 3 (color online). The ensemble marginal distributions of
the particle and vacuum state created at t ¼ π in the decay process
shown in Fig. 2. The top graph shows the marginal distribution
for the excited field ρmarðq2Þ ¼

R
dq1ρðq1; q2; tÞjt¼π . The bottom

graph shows the nonequilibrium marginal distribution of the
vacuum field ρmarðq1Þ ¼

R
dq2ρðq1; q2; tÞjt¼π , obtained after the

original particle state has decayed.
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Aðx; tÞ ¼
X
k0s0

½Ak0s0 ðtÞuk0s0 ðxÞ þ A�
k0s0 ðtÞu�

k0s0 ðxÞ�; ð40Þ

where the functions

uk0s0 ðxÞ ¼
εk0s0ffiffiffiffiffiffiffiffiffiffi
2ε0V

p eik
0:x ð41Þ

and their complex conjugates define a basis for the function
space. In expansion (40) and henceforth, summations over
wave vectors are understood to extend over half the
possible values of k0. This is to avoid duplication of bases
u�
k0s0 with u−k0s0 . See for instance Ref. [63]. The primes are

included for later convenience. This expansion allows one
to write the energy of the electromagnetic field as

U ¼ 1

2

Z
V
d3x

�
ε0E:Eþ 1

μ0
B:B

�
ð42Þ

¼
X
k0s0

1

2
ð _Ak0s0 _A

�
k0s0 þ ω2

k0Ak0s0A�
k0s0 Þ; ð43Þ

where ω0
k ¼ cjk0j. Equation (43) defines a decoupled set of

complex harmonic oscillators of unit mass. We shall prefer
instead to work with real variables and so we decompose
Ak0s0 into its real and imaginary parts

Ak0s0 ¼ qk0s01 þ iqk0s02: ð44Þ

One may then write the free field Hamiltonian as

H0 ¼
X
k0s0r0

Hk0s0r0 ð45Þ

with r0 ¼ 1; 2, where

Hk0s0r0 ¼
1

2
ðp2

k0s0r0 þ ω2
k0q2k0s0r0 Þ; ð46Þ

and where pk0s0r0 is the momentum conjugate of qk0s0r0 .
Suppose we wish to perform a quantum energy meas-

urement for a single mode of the field. We may follow the
pilot-wave theory of ideal measurements described in
Ref. [4]. The system is coupled to an apparatus pointer
with position variable y. The interaction Hamiltonian HI is
taken to be of the form gω̂py, where again g is a coupling
constant and ω̂ is the operator corresponding to the
observable to be measured. In our case we have

HI ¼ gHksrpy; ð47Þ

where py is the momentum conjugate to the pointer
position y and where k, s and r refer specifically to the
field mode that is being measured. Including the free

Hamiltonian Happ for the apparatus, the total
Hamiltonian is

Htot ¼ H0 þHapp þHI: ð48Þ
We assume an initial product state

ψð0Þ ¼ ψksrðqksr; 0Þϕðy; 0ÞχðQ; 0Þ; ð49Þ

where ψksr is the wave function for the mode in question, ϕ
is the apparatus wave function and χ is a function of the rest
of the field variables Q ¼ fqk0s0r0 jðk0; s0; r0Þ ≠ ðk; s; rÞg.
The function χ is left unspecified as there is no need to
make assumptions concerning the state of the rest of the
field. Now, sinceHI andHapp commute with all the terms in
H0 that include Q, under time evolution the χ function
remains unentangled with the rest of the system while the
apparatus and the mode being measured become entangled.
We may then write

ψðtÞ ¼ Ψðqksr; y; tÞχðQ; tÞ; ð50Þ

where

Ψðqksr; y; tÞ ¼ exp ½−iðHksr þHapp þ gHksrpyÞt�
× ψksrðqksr; 0Þϕðy; 0Þ;

χðQ; tÞ ¼
" Y
ðk0s0r0Þ≠ðksrÞ

exp ð−iHk0s0r0 tÞ
#
χðQ; 0Þ:

ð51Þ
Since the system and apparatus remain unentangled with χ,
the dynamics remain completely separate. We may concern
ourselves only with Ψðqksr; y; tÞ as an effective wave
function. The velocity field in the (qksr; y) plane depends
on the position in that plane but is independent of the
position inQ. We may then omit the ksr labels in qksr and
Hksr, and the k label in ωk.
Let the measurement process begin at t ¼ 0 when the

coupling is switched on. As usual in the description of an
ideal von Neumann measurement (see for example
Ref. [4]), we take g to be so large that the free parts of
the Hamiltonian may be neglected during the measurement.
The system will then evolve according to the Schrödinger
equation

ð∂t þ gH∂yÞΨ ¼ 0: ð52Þ
Expanding Ψ in a basis ψnðqÞ of energy states for the field
mode, we have the solution

Ψðq; y; tÞ ¼
X
n

cnϕðy − gEntÞψnðqÞ; ð53Þ

where we choose ϕ and ψn to be real and
P

njcnj2 ¼ 1.
Equation (53) describes the measurement process. If the
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initial system state is an energy eigenstate (cn ¼ δmn for
some m), the pointer packet is translated with a speed
proportional to the energy Em of the eigenstate. By
observing the displacement of the pointer after a time t,
an experimenter may infer the energy of the field mode. If
instead the field mode is initially in a superposition of
energy states, the different components of the superposition
will be translated at different speeds until such a time when
they no longer overlap and thus do not interfere. An
example of this evolution into nonoverlapping, noninter-
fering packets is shown in Fig. 4. At this time an
experimenter could unambiguously read off an energy
eigenvalue. The weightings jcnj2 in the superposition could
be determined by readings over an ensemble.

B. Pointer packet and rescaling

For simplicity we choose the initial pointer wave
function ϕ in Eq. (53) to be a Gaussian centred on y ¼ 0,

ϕðyÞ ¼ σ−
1
2ð2πÞ−1

4e−y
2=4σ2 ; ð54Þ

where σ2 is the variance of jϕðyÞj2.
It is convenient to introduce the rescaled parameters

Q ¼ ffiffiffiffi
ω

p
q; Y ¼ y

σ
; T ¼ gωt

2σ
: ð55Þ

The evolution of the wave function is then determined by
the Schrödinger equation,

∂TΨ ¼ ð∂2
Q −Q2Þ∂YΨ: ð56Þ

The general solution is

ΨðQ; Y; TÞ ¼
X
n

cnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2nþ1=2n!

p

× exp

�
−
1

4
ðY − ð2nþ 1ÞTÞ2

�
e−Q

2=2HnðQÞ;

ð57Þ

where HnðQÞ are Hermite polynomials. [Equation (57)
differs from Eq. (53) by a factor σ1=2ω−1=4, to normalize the
wave function in the rescaled configuration space.]

C. Continuity equation and guidance equations

From the Schrödinger equation (56), it is simple to
arrive at

∂T jΨj2 ¼ Ψ�∂2
Q∂YΨþΨ∂2

Q∂YΨ� − ∂YðQ2jΨj2Þ: ð58Þ

From here we use the identity

Ψ�∂2
Q∂YΨþΨ∂2

Q∂YΨ�

≡ 1

3
∂Qð2Ψ∂Q∂YΨ� − ∂YΨ∂QΨ�

− ∂QΨ∂YΨ� þ 2Ψ�∂Q∂YΨÞ

þ 1

3
∂YðΨ∂2

QΨ
� − ∂QΨ∂QΨ� þΨ�∂2

QΨÞ: ð59Þ

This, again, is a special case of the general identity 2 of
[36]. The continuity equation is found to be

FIG. 4 (color online). Illustration of the energy measurement process, showing the evolution of the Born distribution into disjoint
packets (for the case c0 ¼ c1 ¼ c2 ¼ 1=

ffiffiffi
3

p
). The variables q, y and t have been replaced by the rescaled variablesQ, Y and T defined in

Sec. IV B. The initial pointer wave function is chosen to be a Gaussian centred on Y ¼ 0. Initially the components of the total wave
function overlap and interfere. As time passes each component moves in the Y direction with speed 2nþ 1. After some time the
components no longer overlap and the experimenter may unambiguously read off the energy eigenvalue from the position of the pointer
(Y coordinate).
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∂T jΨj2 þ ∂QRe

�
2

3
∂YΨ∂QΨ� −

4

3
Ψ�∂Q∂YΨ

�

þ ∂YRe

�
1

3
j∂QΨj2 − 2

3
Ψ�∂2

QΨþQ2

�
¼ 0; ð60Þ

from which we may deduce the de Broglie guidance
equations

∂TQ ¼ Re

�
−
4

3

∂Q∂YΨ
Ψ

þ 2

3

∂YΨ∂QΨ�

jΨj2
�
; ð61Þ

∂TY ¼ Re

�
−
2

3

∂2
QΨ

Ψ
þ 1

3

∂QΨ∂QΨ�

jΨj2
�
þQ2: ð62Þ

The factor Q2 in Eq. (62) will turn out to have the most
predictable effect on the evolution of quantum nonequili-
brium in Sec. IV E. Any individual system in which jQj is
abnormally large will, at least to begin with, have an
abnormally large pointer velocity. The Q2 term originates
from the potential term in Hksr ¼ 1

2
p2
ksr þ 1

2
ω2
kq

2
ksr.

In contrast with Sec. III, here we have chosen to retain
the zero-point energy of the ksr mode. Since the pointer is
coupled to the total energy of the ksrmode, this does affect
the dynamics though only in a minor respect. Had we
normal ordered Eq. (48), the pointer velocity Eq. (62)
would have an extra additive term of −1. In the state-
specific expressions of Sec. IV D, normal ordering is
equivalent to switching to a coordinate system moving
in theþY direction at a (rescaled) velocity of 1, the velocity
of the vacuum component in Eq. (57). Equivalently, one
may use the coordinate transformation Y → Y 0 ¼ Y − T,
which we shall indeed do in Sec. IV E 2.

D. Expressions for three examples

1. Vacuum

If the field mode being measured is in its vacuum state
(cn ¼ δn0), the evolution of the total wave function (57) and
the associated velocity fields (61) and (62) are given by

Ψ ¼ 2−
1
4π−

1
2 exp

�
−
1

2
Q2 −

1

4
ðY − TÞ2

�
; ð63Þ

∂TQ ¼ 1

3
QðT − YÞ; ð64Þ

∂TY ¼ 2

3
ð1þQ2Þ: ð65Þ

2. One particle state

If instead the field mode being measured contains one
particle or excitation (cn ¼ δn1), the relevant expressions
are

Ψ ¼ 2
1
4π−

1
2Q exp

�
−
1

2
Q2 −

1

4
ðY − 3TÞ2

�
; ð66Þ

∂TQ ¼ 1

3
ðY − 3TÞ

�
1

Q
−Q

�
; ð67Þ

∂TY ¼ 1

3

1

Q2
þ 4

3
þ 2

3
Q2: ð68Þ

3. Initial superposition of vacuum and one particle state

For a superposition, the relative phases in the cn’s will
contribute to the dynamics. For a superposition of initial
vacuum and one particle states, we take c0 ¼ eiθ=

ffiffiffi
2

p
and

c1 ¼ 1=
ffiffiffi
2

p
. Our expressions then become

Ψ ¼
�
eiθffiffiffi
2

p þQeTðY−2TÞ
�
2−

1
4π−

1
2e−

1
4
ðY−TÞ2 exp

�
−
1

2
Q2

�
;

ð69Þ

∂TQ ¼ Re

�
− 5

3
T þ 2

3
Q2T þ 1

3
Y

eiθffiffi
2

p eTð2T−YÞ þQ

�

þ
2
3
QT

j eiθffiffi
2

p eTð2T−YÞ þQj2 −
1

3
ðY − TÞQ; ð70Þ

∂TY ¼ Re

� 2
3
Q

eiθffiffi
2

p eTð2T−YÞ þQ

�
þ

1
3

j eiθffiffi
2

p eTð2T−YÞ þQj2

þ 2

3
ðQ2 þ 1Þ: ð71Þ

E. Results for nonequilibrium energy measurements

We will now consider outcomes of quantum energy
measurements for nonequilibrium field modes. Like many
features of quantum mechanics, the usual statistical energy
conservation law emerges in equilibrium. But for non-
equilibrium states there is no generally useful notion of
energy conservation.9

We may consider a parameterization of nonequilibrium
that simply varies the width of the Born distribution (as
discussed in Sec. II A for primordial perturbations). Our
initial ρ is written

ρðQ; Y; 0Þ ¼ 1

w
jΨðQ=w; Y; 0Þj2; ð72Þ

where w is a widening parameter equal to the initial
standard deviation of ρ relative to jΨj2,

9The fundamental dynamical equation (1) is first order in time
and has no naturally conserved energy. When rewritten in second
order form there appears a time-dependent “quantum potential”
that acts as an effective external energy source [4].
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w ¼ σρ
σjΨj2

����
t¼0

: ð73Þ

[Comparing with Eq. (7), we would have w ¼ ffiffiffi
ξ

p
for

primordial perturbations.]

1. Short-time measurement of vacuum modes

In Fig. 5 we show the short-time behavior of widened
and narrowed nonequilibrium distributions ρ under the

energy measurement of a vacuum mode. As the Q2 term in
the Y velocity (65) dominates for any jQjt¼0 > 1, widened
distributions show more initial movement of the pointer.
The tails of widened distributions “flick” forwards and
inwards, and then seem to linger. It is at this time that the
pointer position could indicate the detection of an excited
state (or particle) for the vacuum, or even occupy a position
disallowed by standard quantum mechanics for any initial
superposition of energy states (see Fig. 6). The closer the
tails get to the Q-axis, the slower the pointer travels. Once
inside jQj < 1=

ffiffiffi
3

p
, the tails move slower than the Born

distribution (which eventually catches up). So although the
widened distribution may produce the most dramatic
deviations from standard quantum mechanics, the devia-
tions are short-lived and any measuring device would need
to make its measurement before the tails recede.

FIG. 5 (color online). The evolution of vacuum nonequilibria under an energy measurement process (as simulated by the code
discussed in the Appendix). On the left is a snapshot of the evolution of a widened initial ρ with w ¼ 3, taken at T ¼ 1.50. The tails of ρ
evolve quickly to large Y and small Q. These tails are evident in the marginal distribution for Y shown in Fig. 6. On the right is the same
simulation except narrowed by a factor w ¼ 1=3, and taken at T ¼ 6.00. In this case ρ remains in what might loosely be deemed the
support of jΨj2, though displaying internal structure. The narrowed ρ initially lags behind the Born distribution, before getting swept
outwards and upwards, creating a double-bump in the pointer marginal distribution. Note that the equilibrium pointer distribution
undergoes an upward displacement to indicate the zero-point energy of the vacuum mode.

FIG. 6 (color online). Marginal pointer distributions ρmarðYÞ
under the energy measurement of vacuum mode nonequilibria at
T ¼ 4. (For comparison we also show the Born pointer marginals
for the vacuum and one-particle cases.) For the widened vacuum
mode (w ¼ 4), there is a significant probability of “detecting a
particle” (that is, an excited state) in the vacuum mode. For this
case there also exists a significant probability of finding the
pointer around Y ¼ 8 (which for all practical purposes would be
impossible without nonequilibrium for any initial superposition).
For the narrowed nonequilibrium (w ¼ 1=4), the pointer distri-
bution lags behind the Born pointer distribution initially. As time
progresses, ρ will get swept outwards and upwards (cf. the right-
hand side of Fig. 5), creating a double-bump in the pointer
distribution.

FIG. 7 (color online). Above, a selection of the trajectories for
the measurement of a vacuum mode (with normal ordering). The
velocity field is time independent, resulting in periodic orbits
around ð� ffiffiffiffiffiffiffiffi

1=2
p

; 0Þ. Numerical simulations show that the pointer
marginals converge to stationary nonequilibrium distributions
characteristic of the initial nonequilibrium state (see Fig. 8).
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In contrast, the narrowed distribution shows less dra-
matic behavior. It recedes slowly to the back of the Born
distribution, and then some is swept out, up and around the
Born distribution (see the right-hand side of Fig. 5). The
pointer stays roughly where one would expect it to from
standard quantum mechanics.
If one were to perform an ensemble of similar prepara-

tions and measurements, recording the position of the
pointer in each, one would find the marginal distribution
ρmarðYÞ. The marginal distributions for w ¼ 1=4; 1 and 4

are shown at T ¼ 4 in Fig. 6. Any deviation that this
distribution shows from the marginal Born distribution
would of course be indicative of quantum nonequilibrium.

2. Long-time (large g) measurement of vacuum modes

Let us discuss a second measurement regime, which may
be thought of as valid for large T and/or [since
T ¼ gωt=ð2σÞ] large g.
To aid analysis, we shall continue as if we had normal

ordered the Hamiltonian (48). This, as mentioned in
Sec. IV C, is equivalent to switching to the “reference
frame” of the Born distribution with Y → Y 0 ¼ Y − T.
Under normal ordering the wave function and guidance
equations become

Ψ ¼ 2−
1
4π−

1
2 exp

�
−
1

2
Q2 −

1

4
Y 02

�
; ð74Þ

∂TQ ¼ −
1

3
QY0; ð75Þ

∂TY 0 ¼ 2

3
Q2 −

1

3
: ð76Þ

The guidance equations are now time-independent and
conserve a stationary Born distribution. The trajectories
are periodic. A selection of the trajectories produced
by Eqs. (75) and (76) are shown in Fig. 7. The trajectories
do not pass the line Q ¼ 0, and so we cannot find relaxa-
tion to the Born distribution for any initial ρ asymmetric
in Q.
Our numerical simulations indicate that any nonequili-

brium in the vacuum mode will, in the large T or large g
limit, produce a corresponding stationary nonequilibrium
in the pointer distribution. Furthermore, from this pointer
distribution, numerical simulations could deduce the initial

FIG. 8 (color online). Characteristic stationary pointer margin-
als ρmarðY 0Þ for energy measurement of nonequilibrium vacuum
modes in the large T or large g approximation. In this regime,
initial nonequilibrium in the field mode will produce a corre-
sponding stationary nonequilibrium for the pointer. Field modes
with larger spread produce pointer marginals with larger spread.
Field modes with smaller spread form pointer marginals with
central depressions.

FIG. 9 (color online). The evolution of nonequilibria under energy measurement of single-particle states. On the left, a widened
(w ¼ 3) nonequilibrium distribution; on the right, a narrowed (w ¼ 1=3) nonequilibrium distribution. The Born distribution, shown for
comparison in each case, moves at a rescaled speed of dY=dT ¼ 3 (although individual de Broglie trajectories have variable speeds).
Pointer marginal distributions for this process are shown in Fig. 10.
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nonequilibrium in the vacuum mode. Our simulations show
that this limit will be reached at T ∼ 120 for 1=8 < w < 8.
Eight such stationary pointer marginals are displayed in

Fig. 8. These are found under the measurement of non-
equilibrium vacuum modes described by width parameters
ranging from w ¼ 1=16 to 8. Nonequilibrium modes that
are wider than equilibrium make the spread in the pointer
position correspondingly wider. In contrast, for the meas-
urement of nonequilibrium vacuum modes that are nar-
rower than equilibrium, the pointer marginal forms a
central depression whilst staying in the same region.
Measurements of the pointer over an ensemble would be

enough to deduce the character of the initial nonequilibrium
for each case.

3. Measurement of a single particle state

Under the energy measurement process, the effective
wave function becomes Eq. (66) and the trajectories satisfy
the guidance equations (67) and (68). The Born distribution
evolves in the Y direction at a rescaled velocity dY=dT ¼ 3.
Since now the Y velocity [Eq. (68)] has terms proportional
to Q2 and 1=Q2, we might expect some increased pointer
movement both for the widened and narrowed nonequili-
brium cases. In fact, our simulations show that a narrowed
distribution yields relatively less pointer movement than the
widened distribution (as we had for the case of the
vacuum). Plots of the evolution of ρðQ; Y; TÞ are shown
in Fig. 9, and marginal pointer distributions are shown in
Fig. 10. As in the case of the vacuum mode measurement,
there is a significant probability of detecting an extra
excitation or of finding the pointer in a position disallowed
by standard quantum mechanics for any superposition
being measured.

4. Measurement of a superposition

Quantum nonequilibrium would in general cause anoma-
lous results for the spectra of energy measurements. To
illustrate this, we take the simple example of an equal
superposition of vacuum and one-particle states. Quantum
mechanically, an experimenter would observe a 50%
probability of detecting a particle. We take c0 ¼ eiθ=

ffiffiffi
2

p
and c1 ¼ 1=

ffiffiffi
2

p
, with the wave function and velocity fields

specified in Eqs. (69–71). The dynamics of the measure-
ment depends strongly on the initial relative phase θ of the
superposition. This is seen in Fig. 11, where we show the
time evolution of joint distributions ρðQ; Y; TÞ. Examples

FIG. 10 (color online). Marginal pointer distributions ρmarðYÞ
under energy measurement of one particle state nonequilibria at
time T ¼ 4. (For comparison we also show the Born pointer
marginals for the vacuum, one-particle and two-particle cases.)
The widened nonequilibrium (w ¼ 4) shows a significant prob-
ability of detecting two excitations (or “particles”) instead of one,
and again there is a significant probability of finding the pointer
around Y ¼ 16 (a position disallowed by standard quantum
mechanics for any initial superposition). As in the case of the
vacuum mode measurement, the narrowed nonequilibrium
(w ¼ 1=4) will be distinguished only by its internal structure.
The tendency to form a double-bump in the pointer distribution is
also seen in this case.

FIG. 11 (color online). Evolution of joint distributions ρðQ; Y; TÞ under energy measurements of a nonequilibrium field mode in a
superposition of a vacuum and a one-particle state with c0 ¼ eiθ=

ffiffiffi
2

p
and c1 ¼ 1=

ffiffiffi
2

p
[Eq. (69)]. On the left we have taken θ ¼ 0. On the

right we have taken θ ¼ π=2. Both cases have widened distributions with w ¼ 2, and snapshots are taken at T ¼ 1.66. (For comparison,
Born distributions are also shown in both cases.)

QUANTUM FIELD THEORY OF RELIC NONEQUILIBRIUM … PHYSICAL REVIEW D 92, 063531 (2015)

063531-17



of the marginal pointer distributions produced in the energy
measurement process are shown in Fig. 12. After about
T ¼ 3.5, all marginal pointer distributions display two
distinct areas of support, meaning that an experimenter
would unambiguously obtain either 1

2
ω or 3

2
ω in each

individual energy measurement, regardless of whether
nonequilibrium is present or not. However, a widened
nonequilibrium distribution would cause a larger proba-
bility of obtaining the outcome 3

2
ωk (“detecting a particle”),

while a narrowed nonequilibrium distribution would cause

the opposite effect. Although the trajectories are strongly
dependent on the initial phase, the marginal pointer dis-
tributions are only weakly dependent on this.
In practice, one might not know the initial relative phase

of the superposition. To make contact with what an
experimenter might actually measure (albeit in the context
of our simplified field-theoretical model), we have taken an
average over ten phases: θ ¼ 2πn=10; n ¼ 0; 1;…; 9. We
run each simulation up to time T ¼ 4.5 and calculate the
proportion of the distribution ρ that lies beyond Y ¼ 9.0.
This is the probability of observing an excitation, whilst the
proportion of ρ before Y ¼ 9.0 is the probability of
observing the vacuum. (These numbers are clear from
Fig. 12.) Figure 13 illustrates the results of this averaging
process for 20 separate width parameters w. We find a
remarkable correlation. For example, for nonequilibrium
close to the Born distribution, widening the distribution
will proportionally increase the ensemble probability of
“detecting a particle”. Clearly, nonequilibrium would gen-
erate an incorrect energy spectrum.

V. CONCLUSION

We have considered the possibility that our universe
contains quantum nonequilibrium systems—in effect a new
form or phase of matter (including the vacuum) that
violates the Born probability rule and which is theoretically

FIG. 13 (color online). Ensemble probabilities of energy measurements for an equal superposition of particle and vacuum states as
affected by quantum nonequilibrium of varying width w (with results averaged over the relative phase θ in the superposition). As
jc0j ¼ jc1j ¼ 1=

ffiffiffi
2

p
, there should be a 50% probability of detecting a particle. However, widened nonequilibria give probabilities larger

than 50% for particle detection, while narrowed nonequilibria give probabilities less than 50% for particle detection when averaged over
θ. (Hollow markers represent results for individual relative phases θ, whilst solid markers represent averages over θ ¼ 2nπ=10,
n ¼ 1; 2;…; 10. Dependence on the relative phase is seen to affect the outcomes only for w≲ 1.)

FIG. 12 (color online). Marginal pointer distributions ρmarðYÞ
for c0 ¼ c1 ¼ 1=

ffiffiffi
2

p
and w ¼ 1=2; 1; 2, taken at T ¼ 4.5. Non-

equilibrium is seen to cause anomalous spectra as observed by an
experimenter. Similar results are obtained for other relative
phases.
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possible in the de Broglie-Bohm formulation of quantum
theory. While the practical likelihood of detecting such
systems remains difficult to evaluate, we have argued that at
least in principle they could exist today as relics from the
very early Universe. We have provided simple field-
theoretical models illustrating the effects of quantum non-
equilibrium in a particle-physics context. In particular, we
have seen that quantum nonequilibrium would generate
anomalous spectra for standard measurements of energy, as
well as generating corrections to particle-physics processes
generally.
The possibility of detecting relic nonequilibrium systems

today depends on uncertain features of high-energy physics
and cosmology. Dark matter, which is thought to make up
approximately 25% of the mass-energy of the Universe,
may consist of relic particles (such as gravitinos) that were
created in the very early Universe and which have propa-
gated essentially freely ever since. (For reviews see, for
example, Refs. [54,64].) As we have seen, such particles are
plausible candidates for carriers of primordial quantum
nonequilibrium, and we expect that particle-physics proc-
esses involving them—for example, decay or annihilation—
would display energetic anomalies.
On the experimental front, an especially promising devel-

opment would be the detection of photons from dark matter
decay or annihilation. These are expected to form a sharp
spectral line, probably in the gamma-ray region. Recent
interest has focused on reports of a sharp line from the
Galactic center at ∼130 GeV in data from the Fermi Large
Area Telescope (LAT) [65,66]. While the line might be a
dark matter signal, its significance (and even its existence) is
controversial. The line could be caused by a number of
scenarios involving dark matter annihilations [67]. It might
also be due to decaying dark matter [68], for example the
decay of relic gravitinos [69,70]. (In a supersymmetric
extension of the Standard Model with violation of R-parity,
the gravitino is unstable and can decay into a photon and a
neutrino [71].) On the other hand, a recent analysis of the
data by the Fermi-LAT team casts doubt on the interpretation
of the line as a real dark matter signal [72].
Should dark matter consist (if only partially) of relic

nonequilibrium systems, we may expect to find energetic
anomalies for decay and annihilation processes. However,
to distinguish these from more conventional effects would
require more detailed modelling than we have provided
here. There is also the question of whether the anomalies
are likely to be large enough to observe in practice. These
are matters for future work.
In principle, it would be of interest to test dark matter

decay photons for possible deviations from the Born rule
(perhaps via their polarization probabilities [35]). We have
seen that simple perturbative couplings will transfer non-
equilibrium from one field to another, leading us to expect
that in general a decaying nonequilibrium particle will
transfer nonequilibrium to its decay products. Another open

question, however, is the degree to which the nonequili-
brium might be degraded during this process. In a realistic
model of a particle decay we might expect some degree of
relaxation. It would be useful to study this in pilot-wave
models of specific decay processes.
As a general point of principle, one might also be

concerned that in the scenario discussed in this paper
the probability distribution for delocalized field modes in
the early Universe—where the probability distribution is
presumably defined for a theoretical ensemble—appears to
have measurable implications for decay particles in our one
Universe. How can this be? A similar point arises in the
standard account of how the power spectrum for primordial
perturbations has measurable implications for our one
CMB sky. In inflationary theory, the probability distribu-
tion for a single mode ϕk of the inflaton field does have
measurable implications in our single Universe. As we
discussed in Sec. II A, the variance hjϕkj2i of the primor-
dial inflaton distribution appears in the power spectrum
PRðkÞ ∝ hjϕkj2i for primordial curvature perturbations
Rk ∝ ϕk at wave number k. The power spectrum PRðkÞ
in turn appears in the angular power spectrum Cl [Eq. (8)],
which may be accurately measured for our single CMB sky
provided l is not too small. In the standard analysis it is
assumed that the underlying “theoretical ensemble” of
universes is statistically isotropic, which implies that the
ensemble variance Cl ≡ hjalmj2i is independent of m—
where alm are the harmonic coefficients for the observed
temperature anisotropy. We then in effect have 2lþ 1
measured quantities alm with the same theoretical variance.
Provided l is sufficiently large, one can perform meaningful
statistical tests for our single CMB sky and compare with
theoretical predictions for Cl. Statistical homogeneity also
plays a role in relating the Cl’s for a single sky to the power
spectrum PRðkÞ for the theoretical ensemble [18,25]. To
understand how the theoretical ensemble probability has
measurable implications in a single universe, it is common
to speak of the CMB sky as divided up into patches—
thereby providing an effective ensemble in one sky. This
works if l is sufficiently large, so that the patches are
sufficiently small in angular scale and therefore sufficiently
numerous. Similar reasoning applies to particles (or field
excitations) generated by inflaton decay. In this context it is
important to note that realistic particle states, as observed
for example in the laboratory, are represented by field
modes defined with respect to finite spatial volumes V.
Almost all of the particles in our Universe were created by
inflaton decay, and in practice their states are in effect
defined with respect to finite spatial regions. By measuring
particle excitations in different spatial regions, it is possible
to gather statistics for outcomes of (for example) energy
measurements. (One might also consider a time ensemble
in one region, but a space ensemble seems more relevant in
the case of relic decay particles.) The resulting statistical
distribution of outcomes for the decay particles will depend
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on the original probability distribution for the decaying
inflaton field—just as the statistics for patches of the CMB
sky depend on the probability distribution for the inflaton
during the inflationary era. A full account would require an
analysis of inflaton decay more precise than is currently
available. In particular, one would like to understand how
this process yields particle states that are confined to finite
spatial regions. It is generally understood that the decay
products form as excitations of sub-Hubble modes, with
wave functions confined to sub-Hubble distances.
Depending on the details, this can correspond to relatively
small spatial distances today. Of course, particle wave
packets will also spread out since their creation, but still we
may expect them to occupy finite spatial regions. Further
elaboration of this point lies outside the scope of this paper.
Even if there exist localised sources or spatial regions

containing particles in a state of quantum nonequilibrium, it
might be difficult in practice to locate those regions. In
particular, if a given detector registers particles belonging
to different regions without distinguishing between them,
then it is possible that even if nonequilibrium is present in
the individual regions it will not be visible in the data
because of averaging effects. How one might guard against
this in practice remains to be studied.
Finally, we have seen that the likelihood of nonequili-

brium surviving until today for relic particles depends on
the fact that a nonequilibrium residue can exist in the long-
time limit for systems containing a small number of
superposed energy states [38]. While this may certainly
occur in principle, its detailed implementation for realistic
scenarios requires further study. On the other hand, no such
question arises in our scenario for relic nonequilibrium
vacuum modes, since the simplicity of vacuum wave
functionals guarantees that further relaxation will not occur
at late times. Long-wavelength vacuum modes may be
carriers of primordial quantum nonequilibrium, untouched
by the violent astrophysical history that (according to our
hypotheses) long ago drove the matter we see to the
quantum equilibrium state that we observe today. It remains
to be seen if, in realistic scenarios, the effects on particle-
physics processes taking place in a nonequilibrium vacuum
could be large enough to be detectable.
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APPENDIX: NUMERICAL METHODOLOGY

Most studies of relaxation in de Broglie-Bohm theory
have used the backtracking method of Ref. [8] (see for
instance [8,10,11,21]). This method uses the fact that the
ratio f ¼ ρðx; tÞ=jψðx; tÞj2 is conserved along trajectories.
A uniform grid of final positions is evolved backwards
from the final time tf to the initial time ti. The final
distribution is constructed from the conserved function f.
Although this method has been successful in producing
accurate results, it has the disadvantage that backtracking to
ti must be carried out for each desired final time tf.
We have instead chosen to integrate the continuity

Eq. (2) directly using a finite-volume method. The method
used is a variant of the corner transport upwind method
detailed in Secs. 20.5 and 20.6 of [73], modified so as to
apply to the conservative form of the advection equation.
This algorithm has the advantage that different “high
resolution limiters” may be switched off and on with ease,
so that one may compare results. (We use a monotonized
central limiter throughout.) The main disadvantage of this
approach is a consequence of the velocity field (61) and
(62) diverging at nodes (where jψ j → 0). Since such an
algorithm is required to satisfy a Courant-Friedrichs-Lewy
condition to maintain stability, without velocity field
smoothing the algorithm is inherently unstable. We have
found that a simple way to implement a smoothing is to
impose a maximum absolute value on the velocities.
The maximum is taken throughout to be 1=10th of the
ratio of grid spacing to time step.
We have found that the finite-volume method is

less efficient than the backtracking method over larger
time scales. In fact, the long-time simulations shown in
Fig. 8 were produced using a fifth-order Runge-Kutta
algorithm to evolve trajectories directly. However for short
time scales—the prime focus of this work—the finite-
volume method is a useful tool.
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