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We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe
string network. The simulation does not include gravitational backreaction, but we model that process by
smoothing the loop using Lorentzian convolution.We find that loops at formation consist of generally straight
segments separated by kinks. We do not see cusps or any cusplike structure at the scale of the entire loop,
although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of
the string almost always introduces two cusps on each loop. The smoothing process does not lead to any
significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.
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I. INTRODUCTION

Cosmic strings are microscopically thin, astrophysically
long objects which may have formed at early times as a
result of phase transitions or brane inflation in superstring
theories. See Ref. [1] for a review. In the simple cases to be
discussed here, cosmic strings have no vertices or ends, and
thus form a “network” consisting only of infinite strings
and closed loops.
When cosmic strings intersect each other, they can

reconnect. In the case of strings formed by phase transitions
in field theory, this reconnection nearly always takes place.
But in the case of strings from superstring theory, the strings
can pass through each other unchanged, only to reconnect
with some probabilityp in the range 10−3 to 1.When a string
reconnectswith itself, the result is to emit some portion of the
string into a closed loop. Closed loops oscillate, emit
gravitational waves, and so eventually decay away.
This process allows the long string network to scale with

the expansion of the universe, meaning that any statistical
measure of the string network properties with dimension
ðlengthÞα goes as tα, where t is the age of the universe. In
particular, the density of long strings (length per unit volume)
goes as t−2, and thus scales as radiation in the radiation era
and asmatter in the matter era. Scalingmeans that the energy
density of strings is a fixed fraction of the total energy density
in the radiation and matter eras. Thus they do not dominate
the universe as monopoles would [2,3], nor do their effects
become ever tinier with time in these eras.
The evolution of a cosmic string in flat space is easily

described. Let xðσ; tÞ describe the spatial position of the
string at time t, and let the parameter σ be chosen to

parametrize the string energy in units of μ, the energy per
unit length of a static string. Then one can show that in this
gauge, x02 þ _x2 ¼ 1, where prime and dot denote differ-
entiation with respect to σ and t, respectively. By appro-
priate choice of starting point for σ at different t, we can
make x0 · _x ¼ 0. The equations of motion then become

ẍðσ; tÞ ¼ x00ðσ; tÞ: ð1Þ

The general solution can be written

xðσ; tÞ ¼ 1

2
½aðt − σÞ þ bðtþ σÞ�; ð2Þ

where a and b are any functions obeying the constraint
ja0j ¼ jb0j ¼ 1. In the expanding universe, the solutions are
more complicated, but Eqs. (1), (2) are good approxima-
tions for loops much smaller than the Hubble size.
Because the functions a0 and b0 have unit magnitude,

they trace out paths on the unit sphere, the so-called Kibble-
Turok (KT) sphere. In general, one would expect those
paths to intersect [4–6]. In particular, in the case of a closed
loop observed in its rest frame, the center of gravity of a0ðσÞ
and b0ðσÞ lies at the center of the sphere, and so these paths
will intersect except in special cases.
At an intersection, where a0ðt − σÞ ¼ b0ðtþ σÞ, Eq. (2)

gives x0 ¼ 0 and _x ¼ 1. Thus the string doubles back on
itself at a point which (in the approximation of an infinitely
thin string) moves at the speed of light. Such a point is
called a cusp [5]. At a cusp, the string core may overlap
with itself, leading to the emission of high-energy particles
[7–10]. The high Lorentz boost near the cusp may also
produce beams of gravitational [11–13] or electromagnetic
radiation [14–17], and if the string is coupled to other fields
it may lead to particle production [18–23]. Many sugges-
tions have been made for observable astrophysical
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signatures coming from cosmic string cusps. It is therefore
important to understand the parameters that characterize
these kinds of events in a typical cosmic string loop
produced in a scaling network of strings.
The above argument applies only if strings are smooth.

The usual calculations, in fact, assume that a00 and b00 are of
order 1=L, where L is the invariant length of the string loop.
On the other hand, cosmic strings have kinks: places where
the direction of the string changes suddenly due to a previous
reconnection. Such discontinuities in a0 and b0 allow them to
jump to different parts of the unit sphere without crossing
eachother. In such cases, the argument fails, and theremaybe
no cusps. To knowwhether or not there are cusps, we need to
know the shape of the functions a and b.
A loop is born when a long string reconnects with itself.

At this time, the loop consists of structures that were
present on the long string from which it formed, plus two
kinks from the final reconnection. In the first oscillation,
the loop may fragment, but after one oscillation fragmen-
tation is rare. (In flat space, loop trajectories are periodic, so
after one whole oscillation without fragmentation, no
further fragmentation is possible. In the expanding universe
there is a correction, but it is typically small.) After that, the
loop slowly loses energy by emitting gravitational waves,
with power ΓGμ2, where Γ is a number of order 50
[5,11,24,25] and G is Newton’s constant. This leads the
loop to lose length at rate ΓGμ. When it has lost a
significant fraction of its length by this process, its shape
may be substantially modified. In particular, we expect it to
be much smoother than it was at formation.
The loops which are most important for observable

signals are those which have significantly evaporated. At
any given time t in the history of the universe, most string is
in loops of size around ΓGμt, which are thus roughly half
evaporated [26]. Even if we consider loops of some fixed
size l, most of these were created long ago [26] and have
suffered significant evaporation, except for those of the
very largest sizes.
The goal of this paper is to determine the shape of cosmic

string loops over the course of their lives. We start by
analyzing loops and long strings taken directly from a large
cosmic string network simulation in the expanding uni-
verse. We find that these strings consist primarily of long
segments that are generally straight, connected by large-
angle kinks. The straight segments are not exactly straight,
but rather consist of several shorter and straighter segments,
with smaller-angle kinks between those. We never see a
smooth motion of a0 or b0 from one place to another of the
sort that could lead to the formation of a cusp.
Thus the track of a0 or b0 in the simulated loops at

formation consists not of a smooth, closed curve, as usually
envisioned, but rather of a sequence of small, irregular
regions. Within each region, the tangent vector jumps
rapidly from place to place, and the regions are connected
by sudden, large jumps. In a loop, these regions are either
well separated or touch along a curve, but they never

significantly overlap or cross through each other. Thus the
“crossings” of a0 and b0 occur entirely in the large jumps
(kinks) and never in smooth regions of string that would
lead to the phenomenology associated with cusps.
Our large scale string network simulation does not include

gravitational backreaction, so it is accurate only at scales
above those that might be smoothed by that process. But
gravitational effects on long strings, and thus on newly
formed loops, are not very important. Loops forming at any
given time have sizes much larger than ΓGμt [27] so their
general shapes are little affected by previous smoothing.
Gravitational effects after loop formation, however, are

very important, as discussed above.Unfortunately,we are not
presently able to simulate the gravitational backreaction on a
loop. So instead, we attempt to understand it by smoothing
the loop using convolution, as described below. This gives us
a more realistic population of loops with various degrees of
smoothing, and we study these in addition to the newborn
loops. Indeed, after significant smoothing, most loops have
two significant cusps in each oscillation.
The rest of this paper is organized as follows. In the next

section, we discuss the shape of loops directly taken from the
simulation without gravitational smoothing, and in Sec. III
we discuss the structures found on long strings. In Sec. IVwe
discuss our smoothing procedure, and in Sec. V we discuss
the shape of loops with various degrees of smoothing, the
number and size of cusps they produce, their distribution of
angular momenta, and to what degree the trajectory of each
loop lies on a plane. We conclude in Sec. VI.

II. LOOPS AT FORMATION

We first discuss the shape of cosmic string loops just as
they are found in our simulation, which does not include
gravitational smoothing. Our simulation process is
described in detail in Refs. [27,28]. The results in this
section are taken from a simulation in the matter era of size
500 in units of the initial correlation length. The initial
conformal time for this simulation is 4.5 and the ending
time 500.0, so the dynamic range is 110.
Several groups have studied the properties of noninter-

secting loops from a set of random initial conditions
[29,30]. We will make some comparisons with these other
studies when appropriate. On the other hand, our results
should describe more accurately the properties of real loops
from a network since we take the initial distribution of
loops from a scaling network of strings. In fact we believe
these loops are a good representative set of scaling loops
themselves. (See the discussion in Ref. [27]).
Because a0 and b0 are piecewise linear in our simulation,

their paths on the unit sphere consist of discrete points
corresponding to the linear pieces. Where the string changes
direction at a kink, there is a line connecting two points.
In Fig. 1 we show the paths of a0 and b0 for a non-self-

intersecting loop appearing in our simulation at time 500.
We see immediately that the tangent vectors are arranged in
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five separated clumps, with jumps between them. In this
particular case, the clumps of a0 are well separated from the
clumps of b0. The only places where the paths of a0 and b0
cross each other are in large-angle kinks that connect the
different clumps. Thus this loop will not produce any of the
traditional cusps. We show in Fig. 2 a snapshot of this loop
in physical space at a time when one can clearly see the five
different directions made from these blobs.
A more common situation is shown in Fig. 3. In this case

the clumps of a0 and b0 touch along a curve, further shown

in Fig. 4. This happens because overlapping segments are
lost to loop production, until the unit sphere has been
divided into domains with many points of a0 and those with
many b0, separated by a complicated curve. This is the
telltale sign of a non-self-intersecting loop on the Kibble-
Turok sphere. The non-self-intersecting loops resulting
from our simulations cover a continuum of possible
distributions of clumps on the sphere, from the kind of
well-separated clumps in Fig. 1 through the type repre-
sented by the first panel in Fig. 9 below, where most of the
sphere is covered by the blobs.
One can disturb this situation by introducing additional

perturbations to the loops so that the “islands” of a0 heavily
overlap the ones of b0. We have performed such experi-
ments with a number of loops. The result from this exercise
is an excited loop whose subsequent evolution quickly
produces an important amount of fragmentation until one is
back again in a similar representation of the loop on the KT
sphere of isolated blobs of a0 and b0 segments.
Near the dividing curve between the a0 and b0 clumps,

there will be points of a0 and points of b0 that are very close
to each other. In fact, there are even some points that lie on
the “wrong side” of this curve, i.e., places where points of
a0 reach into the domain of b0, and vice versa. In most such
cases, the distance (angle) on the wrong side of the curve is

A
B

FIG. 1 (color online). The paths of a0 (red or dark) and b0 (blue
or light) on the unit sphere for a loop of length 6.28 seen at time
500.0. Each vertex represents a segment with constant tangent
vector. The tangent vectors have been projected from the unit
sphere into the figure plane with the Mollweide projection (the
same one usually used for cosmic microwave background maps).
Kinks are represented by straight lines on the figure.

FIG. 2. A snapshot of the loop represented by its a0 and b0 in
Fig. 1. One can clearly see the 5 different orientations of the
tangent vector of the string corresponding the 5 combinations of
the regions of a0 and b0 in the Kibble-Turok sphere in Fig. 1 that
exist at this time. The small variations of the tangent vector in
each of these segments give some idea of the angular spread of
the lumps on the KT sphere.

A

B

FIG. 3 (color online). The paths of a0 (red or dark) and b0 (blue
or light) on the unit sphere for a loop of length 8.29.

A
B

FIG. 4 (color online). Close-up of the upper left of Fig. 3.
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quite small, but there are a few cases, such as the leftmost
point of a0 in Fig. 4, where a0 reaches deeply into the
domain of b0. Such deep excursions seem to consist only of
single points with only a very tiny amount of string. For
example, the point mentioned above represents a segment
of a0 with length less than 10−8.
When a0 and b0 are nearly equal, a piece of string will

move rapidly. This may lead to gravitational wave emission
and other signatures. In some ways, these regions are
similar to cusps. Indeed, they may be an important source
of gravitational waves, which will be the subject of a
separate paper. However, they do not have the usual form of
the cusp where a0 and b0 move steadily across the sphere
and cross each other. They certainly cannot be analyzed by
Taylor series expansion around a crossing point, as is
usually done for cusps.

III. LONG STRINGS

We can gain some further insight into the shape of strings
by looking at the tangent vectors to the long strings in our
simulation. In Fig. 5 we show a section of a0 of length 25.9
consisting of 13197 consecutive straight segments of
string.1 The colors are chosen by a hierarchical clustering
algorithm, which works as follows. We first merge the two
segments of a0 which are the closest on the unit sphere,
replacing them by a merged segment with the total length
and the average direction. The average is weighted by the
length of each segment. We then proceed to the next-closest
pair, and so on. When the angle between two pieces of
string (which may be the result of previous merges) is
greater than a threshold, here 60°, we stop merging.
The clustering procedure has divided the path of a0 into 4

“clumps.” Within each clump, the points appear to wander
over a certain region of the unit sphere. Large kinks connect
each clump to the next.
Figure 6 shows only the leftmost clump from Fig. 5,

further split by the same algorithm with the threshold now
40°. The motion within the clump is not just random
wandering. In fact the clump can be seen to be made up of 5
major subclumps with a certain degree of overlap. Such a
structure is what one would expect in a scaling regime. If
one separates clumps at a certain angular threshold, the size
of the clumps as a fraction of the horizon size should not
change with time. Thus clumps at later times should be
composed of many clumps that existed at earlier times.
These clumps are made smaller by damping due to the
expansion of the universe. Thus at any given time, each
large clump should consist of several smaller clumps
separated by smaller angles, and so on.
Since our simulation begins with piecewise-linear initial

conditions, one might worry that the clumping structure is
related to the kinks that were present in the initial

conditions. To investigate this possibility, in Fig. 7 we
distinguish the kinks that were present in the initial
conditions from those that occurred later at reconnections.
While some of the structure comes from the initial con-
ditions, a significant portion was added later.
Our picture of string shapes is thus the following. The

tangent vector a0 on a long string wanders over small areas
of the unit sphere to form small clumps, then jumps to
another nearby area to form another small clump. Nearby
small clumps form a single larger clump, and larger jumps
connect the larger clumps, and so on. The path of a0 or b0 on
a loop at formation is simply a section of the path that
existed in a long string, with the ends of that section
connected by one new kink formed when the loop was
broken off, thus it has the same structure, and we do not
expect cusps on newly formed loops.

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Total length 25.9

FIG. 5 (color online). 13197 consecutive segments of a long
string at time 500.0, separated into 4 clumps by a hierarchical
clustering algorithm. The clumps are shown with different colors
(shading) and symbols. Dotted lines show the kinks that connect
the clumps.
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 0

 0.5
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-2 -1.5 -1 -0.5  0

Total length 2.50

FIG. 6 (color online). The leftmost clump of Fig. 5, further
broken down with threshold 40°.1The number 13197 was chosen to start and end at large kinks.
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IV. GRAVITATIONAL SMOOTHING

Now we turn to the effects of gravitational backreaction
on the shape of strings. The general expectation, going back
to the work of Quashnock and Spergel [31] is that kinks
formed at time t1 will be smoothed out by a later time t2
over length ΓGμðt2 − t1Þ, where Γ ∼ 50. This effect limits
the depth of the hierarchy of clumps and subclumps. Since
the kinks in small subclumps were generally formed long
ago, subclumps with σ < ΓGμt do not exist at time t.
Instead, at such scales the string is smooth.
On long strings, or recently formed loops, this effect is

minimal. Observational constraints limit Gμ to be less than
10−8 (E.g., see Ref. [26]) so ΓGμ < 10−6. Only a tiny
percentage of the energy goes into loops with sizes smaller
than or comparable to 10−6t, so in general the effects of
smoothing are small.
On the other hand, for old loops, the effect is very

different. For a loop which has lost half its initial energy to
gravitational radiation, the length of the loop and the
smoothing scale are equal. Such a loop will be quite
smooth and will likely have cusps at scales similar to its
length. As discussed in the Introduction, loops with a
significant degree of evaporation are the most important
cosmologically, so it is crucial to understand the effect of
gravitational backreaction on loop shapes.
Unfortunately, we do not know the effect of gravitational

backreaction in detail, so we must resort to a toy model to
understand these phenomena.As a loop radiates gravitational
waves, it must lose energy. We expect small structures to
radiate their energy away more quickly than large ones, so
that small structures are damped more quickly, resulting in a
smoothing of the loop. Thus we will attempt to understand
effects of gravitational backreaction by progressively
smoothing our loops using convolution.
There is a simple model of gravitational backreaction for

wiggles on a straight string [32,33]. If one takes small-
amplitude sinusoidal wiggles traveling in one direction on

the string and large wiggles (representing the underlying
loop in this case) traveling in the other, and if the difference
in wavelengths is not too large [33] one finds that the small
wiggles are damped approximately as an exponential with
time constant proportional to wavelength. After a fixed time
period, wiggles of different wavelengths would be damped
exponentially with exponents inversely proportional their
wavelengths.
Following this idea, we would like to Fourier decompose

the tangent vectors a0 and b0 and damp each harmonic n by
some factor e−wk, where w is a constant and k ¼ 2πn=L is
the wave number. This corresponds to convolving a0 and b0

with a Lorentzian of width w, i.e., w=ðπðσ2 þ w2ÞÞ.
Unfortunately, there is a constraint on the magnitude of

the tangent vectors, ja0j ¼ jb0j ¼ 1. Smoothing any non-
trivial function a0 or b0 will decrease its magnitude and
violate this constraint. We tried simply renormalizing by
setting a0 → a0=ja0j after smoothing, but this works very
poorly. The additional function 1=ja0j is in general not very
smooth and multiplying by it undoes most of the desired
damping of the high frequency modes.
After trying several techniques to address this problem,

we arrived at the following solution. Instead of just
convolving with a Lorentzian of width w and then renorm-
alizing, we convolve many times with much narrower
Lorentzians, and renormalize after each one. We use as our
Lorentzian width 1=20 of the spacing between the points
used to describe the function a0 or b0. (It may seem a bit
strange to convolve with something narrower than the point
spacing, but since a Lorentzian falls off slowly, the kernel is
still quite wide.) Distributing the renormalization through
the smoothing procedure yields much better results. The
short modes are in fact damped by approximately the
amount they would have been without renormalization.
We would like to consider loops which have lost some

fraction f of their initial energy to gravitational radiation.
What does this corresponds to in terms of Lorentzian
smoothing? We consider the amplitude of the n ¼ 1 mode
as a proxy for the total length. This amplitude is multiplied
in the smoothing procedure by expð−2πcÞ, where c ¼ w=L
is the ratio of the Lorentzian width to the string length.
Thus we say that smoothing with coefficient c has removed
a fraction

f ¼ 1 − expð−2πcÞ ð3Þ

of the initial loop length, and choose c to achieve any
desired fraction of evaporation.
We have studied loops taken from two simulations of

size 500 in the matter era and two of size 1000 in the
radiation era. In each case, we looked at all loops produced
in the second half of the simulation with the ratio of loop
size to horizon size at least 0.01. For each loop we
repeatedly smooth the loop by convolution, evolve it for
at least one oscillation to check whether smoothing has

A old
A new

FIG. 7 (color online). Magnified view of the bottom clump of
Fig. 5. Kinks that were present in the initial conditions are shown
in blue (gray); those that were formed by later intersections are
shown in black. The latter includes the kinks that go into and
come out of the clump. The path of a0 sometimes jumps to a new
value and then back again, leading to lines that appear to end.
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introduced self-intersections, smooth the loop again, and so
on. In all there are 7 smoothing steps. The steps involve
amounts of smoothing corresponding to a total loss since
formation of the fractions 1=128, 1=64, 1=32, 1=16,
1=8, 1=4 and 1=2 of the original loop energy. Since
repeated smoothing with coefficients c1; c2; c3… corre-
sponds to a single smoothing step with coefficient
c ¼ c1 þ c2 þ c3 þ � � �, we determine the actual smooth-
ing coefficients by solving the equations

1 − e2πc1 ¼ 1=128; ð4Þ
1 − e2πðc1þc2Þ ¼ 1=64; ð5Þ

1 − e2πðc1þc2þc3Þ ¼ 1=32; ð6Þ
and so on to determine the coefficients c1 through c7.
To simplify the smoothing procedure, which requires

repeated fast Fourier transforms, we work with numbers of
frequencies and numbers of points that are powers of 2. We
start with a function a0 (and similarly b0) that is piecewise
constant with nonuniform pieces. We Fourier transform this
function, keeping at step i some number Ni frequencies
(half of which are negative frequencies whose amplitudes
are just the complex conjugate of the positive-frequency
amplitudes). We smooth in Fourier space by multiplying by
an exponential representing the transform of a narrow
Lorentzian. Then we transform back into Ni uniformly
spaced points, adjust the new tangent vectors to have
uniform magnitude, Fourier transform back into Ni
frequencies, and so on, until we have achieved the desired
degree of smoothing for the given step. We choose

Ni ¼ ð4096; 4096; 2048; 1024; 512; 256; 128Þ; ð7Þ
so that frequency Ni=2, the highest we keep at each step,
would be reduced by the Lorentzian convolution by
about2 10−7.
The smoothing procedure described above is the best we

have found, but we tried several other procedures (e.g.,
using a Gaussian instead of a Lorentzian) and the results are
all qualitatively similar.

V. SMOOTHING RESULTS

A. Smoothing of loops and their tangent vectors

We show in Fig. 8 some pictures of a typical loop at
different stages of the smoothing process. We see that
indeed our smoothing procedure has removed small-scale
structure from the loop.
In Fig. 9, we show an example of the change in the paths

of a0 and b0 on the Kibble-Turok sphere for a particular
loop across the different stages of smoothing. We can
clearly see that the procedure smooths out structures at

increasingly large scales on the figure. A fragmentation
event can be seen in these figures as a sharp disappearance
of a collection of segments in both the a0’s and the b0’s. We
have chosen a particular loop where we can see this clearly.
After each fragmentation process, the remaining loop is not
generally in the rest frame, so we boost it back to its rest
frame before we further evolve it.

B. Weighting of simulation data

When we discuss the fraction of loops with certain
properties, we are interested in the fraction of loops of
any given size existing at some given time. What the
simulation gives us, however, is a set of loops of different
sizes produced in the same interval of time. As explained in
Ref. [26], each loop should thus enter into all histograms
and averages with weight xδ, where x is the ratio of the
rest energy of the loop in units of μ to the horizon
distance at the time of formation, and δ ¼ 1 for matter
and 3=2 for radiation. All results below use this weighting
procedure.

C. Fragmentation

The first question we ask is whether smoothing causes
loops in non-self-intersecting trajectories to self-intersect
and fragment. The answer is that this is not an important
process. In our simulations, 90% of the loops survive the
smoothing procedure until half of their energy is eliminated
by gravitational radiation with loss of no more than 10% of
their energy into fragmentation. We have followed this
procedure for loops obtained in simulations in the radiation
and matter era and we do not see significant variations on
these numbers for the two cases.3

FIG. 8. Snapshots for several steps of the smoothing procedure
for a loop of length 17.9 at time 1000 in the radiation era.

2The actual amount of smoothing is somewhat less than pure
Lorentzian convolution, because some is undoneby renormalization.

3The exact percentages are 92% for radiation and 87% for
matter. If we instead ask of what is the percentage of loops that lose
less than 1% then we get 79% for radiation and 73% for matter.
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Looking at movies of the loop evolution after fragmen-
tation we have identified two major sources of loop
fragmentation which are quite distinct and that pretty much
cover all the cases where there is significant energy lost into
loops by the parent loop.
Most of the cases where fragmentation occurs seem to be

coming from fast-moving regions of the parent loop. The
loops being produced from those regions are typically small
but often have high Lorentz boosts. Furthermore there are
several cases where we have seen trains of small loops
created from those regions.

The other kind of fragmentation comes from the late time
smoothing of the loop where the smoothing length is
already comparable to the size of the loop. It is not clear
how much one should trust this limiting regime of the
smoothing process so in some sense we may be overesti-
mating the amount of fragmentation by including these
possible energy losses.

D. Number of cusps

As shown in Fig. 9, the smoothing procedure yields an
important reduction of the number of crossings between the

A
B

FIG. 9 (color online). The effect of smoothing on the distribution of the a0 and b0 in the loop shown in Fig. 8. We see the production of
a small loop from a region of high velocity where the a0 ≈ b0 after step 3 of our smoothing procedure. We mark the region of interest with
a shaded disk near the center of the figure. The ejection of this loop is seen by the disappearance of a series of points of a0 ’s as well b0’s.
Subsequent smoothing reconnects these points and smooths the string again.
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a0 and the b0 functions on the sphere. We plot in Fig. 10 the
distribution of the number of cusps for loops directly from
the simulation, after two smoothing steps, and after the final
step of the smoothing procedure. We see that the number of
“cusps” gets dramatically reduced already in the first stages
of smoothing and quickly settles to 2 cusps per loop either
for radiation or matter.
Furthermore, the amount of energy or length involved in

each crossing increases from a very small amount to a
considerable fraction of the total energy of the loop at the
final stage of our smoothing procedure. In order to quantify
this we estimate the value of the length associated with the
second derivative of a and b at the point of the cusp by
calculating

αcusp ¼
2π

Lja00cuspj
; ð8Þ

and similarly for βcusp in terms of b00. We show in Fig. 11
the distribution for the values of

ffiffiffiffiffiffi
αβ

p
at different stages of

smoothing. We use the product αβ because this is the area
of the world sheet that is involved in the cusp, and controls,
for example, the amount of gravitational radiation emit-
ted [13].
As we mentioned earlier, at the time of loop formation,

there are a very large number of “cusps,” but these are really
crossings of kinks that have no significant energy as can be
seen in Fig. 11. On the other hand, nearly all smoothed
loops have 2 cusps per oscillation, and these cusps are quite
substantial.

E. Angular momentum

The angular momentum of a loop is defined by the
expression,

J ¼ μ

Z
L

0

ðx × _xÞdσ; ð9Þ

which can be written in terms of the a and b functions by

J ¼ μ

4

Z
ða × a0 þ b × b0Þdσ: ð10Þ

It is useful to define a dimensionless quantity that
compares the angular momentum of a loop of certain size
L to the maximum angular momentum for a loop of that
energy,4

J ¼ jJj
Jmax

¼ 4π
jJj
μL2

: ð11Þ

We show in Fig. 12 the weighted histogram of the angular
momentum for the distribution of loops in our simulation.
The initial distribution of loops as they come out of the
simulation seems to have a somewhat larger typical angular
momentum than the one found earlier in [29]. This is
probably due to the statistical difference of the loops
considered in these earlier studies compared with our
scaling loops. We see that the distribution moves toward
a larger fraction of the total possible angular momentum
after smoothing has taken place. This does not mean, of
course, that angular momentum increases but only that it
grows relative to the total energy on the loop. One can
understand this by realizing that most of the total angular
momentum of the loop comes from the bulk motion of the
loop and not the small scale structure on it. Smoothing
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FIG. 10 (color online). Distribution for the number of cusps
before smoothing, after two smoothing steps, and when the loop
is fully smoothed. Initially there are very many cusps, but these
are really just crossings of kinks. By the end there are almost
always 2 cusps in both cases.
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FIG. 11 (color online). Distribution of the value of the cusp
parameter

ffiffiffiffiffiffi
αβ

p
at the same steps as in Fig. 10. Initially the

“cusps” are infinitesimal, but by the end they involve most of
the loop.

4The state with maximum angular momentum for a particular
mass is the rotating double line, which is the simplest example of
a Regge trajectory [34].
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reduces the small scale structure but does not have a great
effect on the angular momentum. It would be interesting to
see whether a more realistic model of backreaction changes
this picture since gravitational waves should radiate part of
the angular momentum on the loop.

F. Planarity

Copi and Vachaspati [30] studied the degree to which
cosmic string loops line in a plane. Their loops were formed
by fragmentation of single loops with specified harmonics.
Here we do a similar analysis of loops coming from our
simulations and their smoothed versions. We consider the
tensor

I ij ¼
Z

dtdσxiðσ; tÞxjðσ; tÞ; ð12Þ

where the integral is taken over one oscillation and the
coordinates are in the rest frame of the loop. This tensor
(related to the quadrupole and moment of inertia tensors)
gives the extent of the string world sheet in different
directions. If the motion of the loop is confined to a plane, I
will have a zero eigenvalue in the perpendicular direction.
If the world sheet extends in all spatial directions equally,
then the 3 eigenvalues of I will be equal. Thus we define
the planarity,

P ¼ 1 −
�
minimum eigenvalue of I
average eigenvalue of I

�
; ð13Þ

which takes on values ranging from 0 for spherical
symmetry to 1 for a planar loop.
We can compute I by integrating over a and b. The

results are shown in Fig. 13. We find that loops at formation
are significantly planar, P ∼ 0.8 or 0.9, but smoothing
makes them more three-dimensional.

Reference [30] performed the same tensor calculation,
but on a and b separately, rather than on x. They found
the two parts of the string to be substantially linear, with
the largest eigenvalue of order 0.85 of the sum of the
eigenvalues. Adding together the two mostly linear parts of
the string yields a mostly planar shape, similar to what we
found here for loops at formation. Reference [30] did not
attempt to simulate gravitational smoothing.

VI. CONCLUSIONS

We have analyzed the shape of loops and long strings in
large cosmic string network simulations. Contrary to the
usual view that strings are smooth, we find that long strings
consist of generally straight segments punctuated by large-
angle kinks. We find that the tangent vectors a0 and b0 to the
right- and left-moving parts of strings form hierarchical
“clumps” on the unit sphere. We do not see places where a0
and b0 trace out smooth paths.
When a loop forms, it inherits the a0 and b0 of the string

from which it formed. Thus loops at formation do not have
smooth regions of a0 and b0 that could cross to form a cusp.
Furthermore, fragmentation of loops nearly completely
divides the unit sphere into regions with only a0 and those
with only b0. Only in unusual cases where these tangent
vectors cross into each other’s regions could cusps be
possible.
Nevertheless, gravitational backreaction will smooth

loops and produce cusps on loops which formerly had
only kinks. We study this process with a toy model and find
that nearly all loops end up with 2 cusps per oscillation with
most of the loop involved in the cusps.
The angular momentum of loops at the time of formation

is about one quarter the maximum possible value, and
increases by smoothing into about half the maximum
possible value. This does not mean that the angular
momentum of the loop is increasing, but rather that the
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FIG. 12 (color online). Distribution of the angular momentum
of the loops before and after smoothing.
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FIG. 13 (color online). Distribution of the planarity measure PI
for loops at formation and after the last smoothing step.
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length of the loop decreases during smoothing and that
small-scale structure that does not contribute much to the
overall angular momentum is the first to be eliminated.
At formation, loops have some degree of planarity, on

the order of 0.85 as we described above. However,
smoothing reduces the degree of planarity so that the
smoothed loops are midway between a planar loop and
a loop which has no preferred axes, with a wide
distribution.
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