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The scale of baryon acoustic oscillations (BAO) imprinted in the matter power spectrum provides an
almost-perfect standard ruler: it only suffers subpercent deviations from fixed comoving length due to
nonlinear effects. We study the BAO shift in the large Horndeski class of gravitational theories and compute
its magnitude in momentum space using second-order perturbation theory and a peak-background split.
The standard prediction is affected by the modified linear growth, as well as by nonlinear gravitational
effects that alter the mode-coupling kernel. For covariant Galileon models, we find a 14%–45%
enhancement of the BAO shift with respect to standard gravity and a distinct time evolution depending
on the parameters. Despite the larger values, the shift remains well below the forecasted precision of
next-generation galaxy surveys. Models that produce significant BAO shift would cause large redshift-
space distortions or affect the bispectrum considerably. Our computation therefore validates the use of the
BAO scale as a comoving standard ruler for tests of general dark energy models.
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I. MOTIVATION

One of the most exciting promises of modern cosmology
is the possibility of testing fundamental physics using the
largest scales available to observation [1]. Among other
developments, the signatures of baryon acoustic oscilla-
tions (BAO) have provided an invaluable test of models for
cosmic acceleration through their imprint in the cosmic
microwave background [2] and the distribution of large
scale structure (LSS) [3] using either galaxies [4–8], the
Lyman-α forest or quasars [9,10] (see Refs. [11–13] for
reviews). To an excellent approximation, the BAO signal
in the LSS provides a comoving standard ruler that traces
the expansion of the universe and probes the onset of
cosmic acceleration.
Nonlinear corrections are known to introduce a small

departure from the perfect standard ruler behavior, system-
atically shifting the BAO scale toward smaller values at low
redshift. This effect has been well studied for cold dark
matter cosmologies with a cosmological constant using
perturbation theory [14–21] and simulations [22–24] (for
earlier works see [25,26]). The result is that the BAO scale
imprinted in the matter distribution shrinks by approxi-
mately 0.3% at redshift zero [22,24]. However, this value
relies on the assumption that gravity is Newtonian in the
scales of interest.

Little attention has been devoted to the nonlinear BAO
evolution in more general theories of gravity. Since the shift
in the BAO scale is comparable to the subpercent level of
precision expected by forthcoming galaxy surveys [27] that
aim to test such theories, it will be necessary to understand
the effects of nonstandard gravity on the BAO scale to
correctly interpret the data in the next generation of dark
energy experiments.

II. PEAK-BACKGROUND SPLIT COMPUTATION
OF THE BAO SHIFT

Sherwin and Zaldarriaga have explained the BAO shift
in terms of the effect of long modes on the short scale
power spectrum [21]. In their picture, large overdense
regions undergo less overall expansion, reducing the size
of the physical BAO scale with respect to the average (see
also [28]). This effect is not compensated by underdense
regions, because cosmic structures in overdense regions
undergo more growth and give a larger contribution to the
power spectrum. Therefore, local differences in expansion
and growth lead to a net shortening of the comoving BAO
scale, causing a small departure from the standard ruler
behavior. Alternatively, the shift of the BAO scale can also
be understood as arising from contributions to the power
spectrum which are off-phase with respect to the linear
prediction [16,18].
The BAO shift can be studied by comparing the nonlinear

power spectrum to a rescaled version of the linear one [18]:
*emilio.bellini@icc.ub.edu
†zumalacarregui@thphys.uni‑heidelberg.de

PHYSICAL REVIEW D 92, 063522 (2015)

1550-7998=2015=92(6)=063522(7) 063522-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.063522
http://dx.doi.org/10.1103/PhysRevD.92.063522
http://dx.doi.org/10.1103/PhysRevD.92.063522
http://dx.doi.org/10.1103/PhysRevD.92.063522


PðkÞ ≈ P11ðk=αÞ ¼ P11ðkÞ − ðα − 1ÞkP0
11ðkÞ þ � � � ; ð1Þ

where the shift can be read from the coefficient of the second
term (more sophisticated templates are actually used to
obtain the BAO scale from data, but we will stick to this
description for simplicity). Here and below the power

spectrum is defined as hδð~kÞδð~k0Þi≡ ð2πÞ3δDð~kþ ~k0ÞPðkÞ
and Pnm ∝ hδnδmi, where we expand the density contrast
as δ ¼ δ1 þ δ2 þ � � �.
One can compare Eq. (1) with the prediction from

standard perturbation theory

PðkÞ ¼ ðP11 � � � þ P1nÞ þ ðP22 � � � þ PmnÞ: ð2Þ

All P1n contributions are proportional to P11ðkÞ and thus do
not contribute to the second term in Eq. (1) [18]. Only the
mode-coupling terms (second parenthesis) do contribute
to the shift, with the first of such contributions given by

P22ðkÞ ¼
Z

d3q
ð2πÞ3 4½F2ð~k − ~q; ~qÞ�2P11ð~k − ~qÞP11ð~qÞ: ð3Þ

Here F2 is the second-order symmetrized mode-coupling
kernel [29]. The rest of the computation in the peak-
background split approximation proceeds by expanding in
k=q, integrating with a cutoff at kBAO and extracting the
coefficient of kP0

11ðkÞ from the result (see [21] for further
details). The long modes with q ≪ k ∼ kBAO describe the
effect of the large fluctuations on the smaller scales.
The computation can be generalized to alternative

theories of gravity by noting that the structure of the kernel
F2 is preserved on subhorizon scales, but each term
acquires a time-dependent coefficient CiðtÞ

F2ð~p; ~qÞ ¼ C0 þ C1μ

�
p
q
þ q
p

�
þ C2

�
μ2 −

1

3

�
; ð4Þ

which reduces to the standard constant values, C0 ¼
17=21, C1 ¼ 1=2 and C2 ¼ 2=7, under matter domination
in the case of standard gravity (we drop the time-
dependence for notation convenience). Explicit computa-
tions in the subhorizon, quasistatic limit of Horndeski
theories with nonrelativistic matter determine that the
modifications to the kernel coefficients are not independent
[30,31] and satisfy

C1 ¼
1

2
; C0 þ

2

3
C2 ¼ 1: ð5Þ

The BAO shift can be read by plugging the generalized
kernel (4), into the mode-coupling power spectrum (3),
expanding to leading order in q=k, performing the inte-
gration and comparing with Eq. (1). This generalizes the
result of Ref. [21] to

α − 1 ¼ 2

5

�
2C0 −

1

2

�
hδ2Li; ð6Þ

where Eqs. (5) have been used to write the result in terms of
the monopole C0. In the above expression the integration
over the momentum leads to the long mode variance

hδ2Li≡
Z

kBAO

0

dq
ð2πÞ3 4πq

2P11ðq; tÞ ≈ σ2rsðtÞ; ð7Þ

where we use a cutoff at BAO scale, well estimated by the
sound horizon at the drag epoch kBAO ∼ 1=rsðzdÞ [32].
Following Ref. [21], we use the square of the variance
of the density field on a sphere of radius rsðzdÞ for the
computation of the BAO shift: hδ2Λi ≈ σ2rsðtÞ. This gives a
slight underestimate with respect to the shift measured in
simulations of standard cosmology, but we expect com-
parison among models to be accurate.
LSS surveys observe galaxies, which are known to be

biased with respect to the underlying matter distribution.
The effects of nonlinear density-halo bias can be para-
metrized as

δhðxÞ ¼ b1δðxÞ þ
1

2
b2δ2ðxÞ þ � � � ; ð8Þ

where the bias parameters b1; b2 relate the matter and the
halo overdensity (the above expansion should hold on large
scales). The halo-halo power spectrum generalizing Eq. (2)
reads

PhðkÞ ¼ b21ðP11 þ P22Þ þ b1b2Pδ2
1
δ2
þ � � � ; ð9Þ

where second-order terms that do not involve mode
coupling have been omitted as they do not contribute to
the BAO shift. The first parenthesis contains the linear and
mode-coupling matter power spectrum renormalized by the
linear bias. The second term mixes second order corrections
with nonlinear bias, and affects the BAO shift. This term is
given by

Pδ2
1
δ2
ðkÞ ¼

Z
d3q
ð2πÞ3 2F2ð~k − ~q; ~qÞP11ð~k − ~qÞP11ðqÞ; ð10Þ

where the only difference with Eq. (3) is that the kernel
appears linearly. As before, one can compute the leading
order expansion in q=k and compare with a rescaled version
of the linear halo power spectrum [cf. Eq. (1) multipled by
b21]. Identifying the kP0

11ðkÞ term yields the contribution to
the shift, which now reads

ðα − 1Þjh ¼
�
4

5
C0 −

1

5
þ 2

3

b2
b1

�
hδ2Li: ð11Þ

This result generalizes Eq. (6). Note that the relations (5) for
the perturbation theory kernels make the bias contribution to
the shift independent of the theory of gravity, i.e. of any
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departure in the value of C0. For this reason we will not
consider nonlinear bias in the next section.

III. BAO SHIFT IN ALTERNATIVE THEORIES
OF GRAVITY

We focus our analysis on theories within the Horndeski
Lagrangian [33], which contains many examples of interest
for cosmology including Brans-Dicke, fðRÞ, chameleons,
kinetic gravity braiding and covariant Galileons. Horndeski’s
theory also contains the characteristic interactions that
appear in consistent theories of massive gravity and higher
dimensional theories, and it is thus expected to effectively
describe some of their distinctive features [34].1

Although our analysis is general, for the sake of simplicity
we will present results for a covariant Galileon model [44]
(see also [45,46]). We fix the Galileon Lagrangian param-
eters and the cosmological parameters to the best-fit models
obtained by Barreira et al. [47] (without massive neutrinos),
which have zero cosmological constant. We noticed that the
quintic Galileon model we present has a gradient instability
in the tensor sector. However we decided to include it in our
analysis since it is a good fit for the data and has interesting
properties at second-order in perturbation theory. Indeed,
as we shall see it produces large modifications of the dark
matter kernel, which can be detected by studying the
bispectrum with current surveys [48,49].
Simpler scalar-tensor theories [such as Brans-Dicke,

chameleons or fðRÞ] lead to very constrained modifications
and cannot produce large contributions to the kernel [31].
For such models the only sizeable contributions to the
BAO shift stem from the enhancement of linear growth,
and would thus be in conflict with measurements of LSS
clustering. If one further demands that these theories are
screened in the Galaxy or the Solar system, the range of the
scalar force is too short to even affect cosmological scales in
the linear regime [50]. An exception is given by nonuniversal
couplings to matter: Coupled dark matter models can
significantly increase the shift of the BAO scale [51].
The generalized Sherwin-Zaldarriaga formula (6) depends

on the theory of gravity in two ways: a correction from linear
physics, given by σ2rs, and a modification of the mode
coupling kernel (4), given by C0. We compute the evolution
of the background, the linear power spectrum and the density
contrast σ2rs using a modified version of the CLASS code
[52,53] based on the general description of Horndeski
perturbations presented in [54] (see also [55]). The compu-
tation of the nonlinear corrections to the kernel follows
the approach of Ref. [31] (see also [56]) by taking the
subhorizon approximation and the quasistatic approximation
(valid for covariant Galileons on the scales of interest [57]).

We will also assume that the scale at which the model
becomes strongly coupled is smaller than theBAO scale. This
is indeed the case for cubic and quartic Galileon models,
as suggested by a comparison between fully nonlinear and
linearized N-body simulations for Galileons [58,59].
The quantities that determine the BAO shift (6,11) are

presented in Table I for the selected models at redshift zero,
together with their deviation with respect to the prediction
of standard gravity with a cosmological constant. All the
models considered tend to increase the density contrast σrs
due to an enhanced effective force of gravity and the
different background expansion. The nonlinear corrections
to C0 are highly dependent on the model parameters,
acquiring positive and negative sign and ranging from
subpercent in the cubic, percent in the quartic, and
becoming fairly large in the quintic example.
The time evolution of the BAO shift and the mode-

coupling corrections are displayed in Fig. 1. Departures
with respect to standard gravity occur only at low redshift
and become largest in the accelerated era when the scalar
field energy density drives the cosmic expansion. Besides
this general trend, each model is characterized by a specific
time dependence. Our results allow us to distinguish
between a very soft nonlinear regime in which the mode
coupling is mostly determined by interactions of the matter
fluid (standard gravity, cubic model) and large nonlinear
effects, as in the case of the quintic model, with the quartic
case being an intermediate example. This is a consequence
of the nonlinear gravitational interactions introduced in
Horndeski’s theory.

IV. DISCUSSION

Our results show an enhancement of the BAO shift with
respect to the standard prediction and provide the first
estimate of this effect for modified gravity. It is possible to
compare the predicted shift to the forecasted sensitivity of
next-generation galaxy surveys. Let us focus on measure-
ments on the BAO scale transverse to the line of sight
θBAO ¼ rs=DA, where DA is the comoving angular diam-
eter distance (comparison with line-of-sight BAO yields
similar results). One can compare the two sources of
uncertainty

TABLE I. Density contrast, mode coupling kernel monopole
and BAO shift in the matter power spectrum for reference model
and selected Galileon models at redshift zero (cf. Fig. 1). Values
in parenthesis indicate the relative deviation with respect to a
cosmological constant model. Tracer bias can be added using
Eq. (11).

Model σrs 2C0 αk − 1 [%]

Λ 0.067 1.62 0.20
Cubic 0.071 (7%) 1.61 (−0.4%) 0.23 (14%)
Quartic 0.073 (9%) 1.58 (−2%) 0.23 (15%)
Quintic 0.071 (7%) 1.92 (19%) 0.29 (45%)

1We will not consider viable extensions of Horndeski’s
theory [35,36], nor full theories containing interacting gravitons
[37–39]. See Refs. [40–43] for reviews on the cosmology of
alternative theories of gravity.
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ΔDA

DA
¼ DA

rs
Δθ þ Δrs

rs
; ð12Þ

where the first term is the observational error (assuming
known rs) and the second term is the systematic error
induced by the shift, Δrs=rs ¼ α − 1. Weinberg et al. have
provided an example forecast for an all-sky BAO survey in
which the expected error ranges from 2.8% at z ¼ 0.15 to
0.1% z≳ 3.5 (these data can be found in Table 2 of
Ref. [12]).2 Figure 1 compares both terms in Eq. (12)
and shows that the BAO shift is well below the precision for
all the examples considered at any fiducial redshift. Note
that the forecasted precision is mainly limited by survey
volume, implying that more sophisticated observational
setups will not be able to reduce the errors considerably.
More realistic forecasts based on specific surveys lead to
lower precision (see Ref. [27]).
It is very unlikely that models more general than the ones

considered here can lead to sufficiently large shifts to bias
the BAO scale measurements while remaining compatible
with other observations. The theoretical prediction, Eq. (6),
allows one to identify two contributions to the shift: the
modified linear growth and the nonlinear gravitational
effects that modify the mode-coupling kernel. Any theory
of gravity with a very large shift requires a considerable
enhancement of at least one of these contributions, which
can be probed by observables other than BAO.3

A large departure of σrs would be ruled out by redshift
space distortions or other clustering measurements.
Similarly, large corrections to the mode coupling kernel
would induce large distortions in the bispectrum [note that
Eq. (5) implies that a ≳23.5% increase in C0 would change
of sign in the quadrupole term in F2]. We emphasize that
these nonlinear gravitational effects are exclusive of fully
fledged Horndeski theories (cf. quartic and quintic example
Galileons considered here) and very suppressed in simpler
scalar-tensor theories [e.g. Brans-Dicke, fðRÞ] or cubic
theories (e.g. our cubic example, kinetic gravity braiding [60]
and limits of extra-dimensional theories [61]). Most works on
higher order perturbation theory for modified gravity have
focused on the latter type of models [30,56,62–64].
Our findings validate the use of BAO measurements as

a comoving standard ruler for current and next-generation
LSS surveys, at all redshifts of interest and even for the most
extreme theories of gravity. There are several refinements
that can improve our calculation, such as including higher
order perturbation theory corrections. Other developments
would be necessary in order to better connect these results
with observations, such as the inclusion of more sophisti-
cated bias models (which has been shown to affect the
magnitude and time evolution [24]) and redshift-space
distortions (which typically increase the magnitude of the
shift relative to real space). Finally, extending our result
would allow us to confirm the validity of density field
reconstruction [65,66] of BAO for general theories of
gravity.4 Despite possible refinements, the smallness of
the effects ensures the validity of our conclusions regarding
the shift.

FIG. 1 (color online). Time evolution of the BAO shift in the matter power spectrum (left panel) and integrated kernel (right panel) for
standard and Galileon gravity models (cf. Table I). Red lines indicate expected sensitivity of DA across redshift bins from an optimistic
BAO survey [12] [see discussion around Eq. (12)].

2Their forecast also assumes density field reconstruction
improvements in the nonlinear damping by a factor of 2. Since
this procedure has not been validated for general theories of
gravity, we take the forecasted precision as an optimistic bound.

3Another possibility is that a modification of gravity enhances
the BAO shift by producing a large value of the nonlinear halo
bias b2=b1. Such a possibility would however rely on the details
of halo formation and its study would require methods other than
cosmological perturbation theory.

4The validity of BAO reconstruction schemes has been argued
to rely exclusively in the equivalence principle [67]. This
assumption depends on the theory of gravity: it is valid for
the Galileon models considered here but would be violated by
chameleon gravity [68].
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These are some initial steps in understanding the inter-
play between extended theories of gravity and the BAO
scale imprints on the distribution of LSS. Further work
should address other aspects of LSS and BAO in general
theories of gravity in order to optimize the performance and
model independence of the next-generation of dark energy
experiments. This will ultimately shed light on the optimal
strategy to test gravitational physics using future LSS
surveys and learn more on the connections between
fundamental physics and cosmology.
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