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We present a mirror model moving in the quantum vacuum of a massive scalar field and study its motion
under infinitely fluctuating quantum vacuum stress. The model is similar to the one in [Q. Wang and W. G.
Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress Phys. Rev. D 89, 085009
(2014).], but this time there is no divergent effective mass to weaken the effect of divergent vacuum energy
density. We show that this kind of weakening is not necessary. The vacuum friction and strong
anticorrelation property of the quantum vacuum are enough to confine the mirror’s position fluctuations.
This is another example illustrating that while the actual value of the vacuum energy can be physically
significant even for a nongravitational system, and that its infinite value makes sense, but that its physical
effect can be small despite this infinity.
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I. INTRODUCTION

In [1] we presented a mirror model with an internal
degree of freedom that interacts with a massless scalar
field which shows that the value of vacuum energy
does have physical significance. Due to vacuum fluc-
tuations, the mirror experiences infinitely fluctuating
stress in a magnitude proportional to the value of
vacuum energy density. We found that although the
infinitely fluctuating quantum vacuum stress provides
infinite instantaneous acceleration of the mirror, the
mirror’s position would be confined in a small region
without Brownian-like diffusion. This happens because
of two special properties of the quantum vacuum:
(1) the vacuum friction and (2) the strong anticorre-
lation of vacuum fluctuations.
The coupling we used in [1] between the derivative of the

field and the single internal degree of freedom, which is
modeled as an harmonic oscillator, has advantages when
the field is massless but has the disadvantage that the
energy of the oscillator has an ultraviolet divergence. In the
calculation processes this divergence provides a divergent
effective mass which weakens the effect of the infinities
due to the vacuum fluctuation. This gives an impression
that our results are highly dependent on this divergent
effective mass [2]. However, in this paper, we present
another mirror model without this divergent effective mass
weakening and show that this weakening is not necessary.
The vacuum friction and strong anticorrelation property of
the quantum vacuum are enough to confine the mirror’s
position fluctuations. The model is a mirror with an internal
degree of freedom interacting with a massive scalar field
and with direct coupling to the value of the field instead of
its derivative as in [1]. The details of this model will be
given in Sec. II.
Units are chosen throughout such that c ¼ ℏ ¼ 1.

II. THE MIRROR MODEL

We consider a mirror model which has an internal
harmonic oscillator q with natural frequency Ω. Its free
Lagrangian is 1

2
ð _q2 þ Ω2q2Þ. Coupled to this is a massive

scalar field ϕ with free Lagrangian 1
2

R ð _ϕ2 − ϕ02 −
m2ϕ2Þdx, where the dot _ and the prime 0 denote the time
and space derivatives, respectively. We will consider the
simplest coupling, the one between the internal degree of
freedom q and ϕ given by

R
ϵqϕδðxÞdx. The action of the

whole system is, thus,

S ¼ 1

2

ZZ
ð _ϕ2 − ϕ02 −m2ϕ2Þdtdx

þ 1

2

Z
ð _q2 −Ω2q2Þdt

þ ϵ

Z
qðtÞϕðt; 0Þdt: ð1Þ

Varying (1) with respect to the field ϕ and the internal
degree of freedom q gives the following equations of
motion:

ϕ̈ − ϕ00 þm2ϕ ¼ ϵqδðxÞ; ð2Þ

q̈þΩ2q ¼ ϵϕðt; 0Þ: ð3Þ

For the massless casem ¼ 0, this model is the same with
the model (2.1) in [3]. Unfortunately, in this massless case
the internal degree of freedom, q, is unstable, which was
not mentioned by the authors of [3]. To see this, first notice
that the solution for ϕ is of the form

ϕ ¼ ϕ0 þ
ϵ

2

Z
t−jxj

dt0qðt0Þ; ð4Þ
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where ϕ0 satisfies the homogeneous field equation,

ϕ̈0 − ϕ00
0 ¼ 0: ð5Þ

Then inserting (4) into (3) and taking the time derivative
gives

q
… þ Ω2 _q −

ϵ2

2
q ¼ ϵ _ϕ0ðt; 0Þ: ð6Þ

The characteristic equation of the above ordinary differ-
ential equation (6),

λ3 þΩ2λ − ϵ2=2 ¼ 0; ð7Þ

has a positive root, which means that the internal degree of
freedom q is unstable. However, if the field is massive
enough, the system becomes stable. In the following, we
will give the solution of the system and explain why it is
stable if the field is massive enough.
By doing a Fourier transform of the field ϕ and the

internal degree of freedom q, we find that there are two
different classes of mode solutions. The first class is a
continuum class of modes which are proportional to e−iωt

with frequencies ω ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
≥ m. These have an

ingoing field which resonantly excites the q mode and is
radiated

ϕkðt; xÞ ¼ c1

�
eikx −

ϵ2akeijk∥xj

2ijkjð−ω2 þΩ2Þ þ ϵ2

�
e−iωt; ð8Þ

qkðtÞ ¼ c1
2ijkjϵ

2ijkjð−ω2 þΩ2Þ þ ϵ2
e−iωt; ð9Þ

where c1 is a constant and −∞ < k < þ∞.
The second class is an isolated and localized mode,

ϕκðt; xÞ ¼ c2e−κjxje−iω̂t; ð10Þ

qκðtÞ ¼ c2
2κ

ϵ
e−iω̂t; ð11Þ

where c2 is a constant and κ is one of the three roots of the
cubic equation,

fðκÞ ¼ κ3 þ ðΩ2 −m2Þκ − ϵ2=2 ¼ 0; ð12Þ

and the frequency ω̂ is related to κ by ω̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − κ2

p
.

To make sure that the mode solution (10) is well defined,
we require that the real part of κ is positive, since otherwise
(10) will blow up at spatial infinity. In the following we
analyze which roots of (12) satisfy this requirement.
First, since fð0Þ ¼ −ϵ2=2 < 0 and fðκÞ → þ∞, as

κ → þ∞, the cubic equation (12) always has one real
positive root, which is denoted by κ1. For the other two

roots, which are denoted by κ2 and κ3, there are two
different cases.
Case I: κ2 and κ3 are complex conjugate. In this case,

because the coefficient of the quadratic term of fðκÞ is 0,
we have the relation between the three roots:

κ1 þ κ2 þ κ3 ¼ 0: ð13Þ

Because κ1 is real and positive, the real part of κ2 and κ3
must be negative.
Case II: κ2 and κ3 are both real. In this case fðκÞ has two

equally spaced stationary points at κ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −Ω2Þ=3

p
.

Also at these two points, fð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −Ω2Þ=3

p
Þ ≥ 0 and

fðþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −Ω2Þ=3

p
Þ ≤ −ϵ2=2. Then from the property of

continuity of fðκÞ, we know that κ2 and κ3 are both
negative.
Thus, in summary, κ1 is the only root that satisfies the

requirement of having a positive real part and, thus, the κ in
(10) and (11) can only be κ1.
Next we need to consider the stability of (10) and (11) in

time. For the e�iω̂t to be stable, ω̂ must be real. Since ω̂

is related to κ1 by ω̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − κ21

p
, we then must have

m > κ1. This requirement is equivalent to the condition
that fðmÞ > fðκ1Þ ¼ 0, which leads to m > ϵ2

2Ω2.
In the following we only consider the stable case with

large enough m.

III. QUANTIZATION OF THE SYSTEM

The system can be canonically quantized by a standard
procedure [4]. First, we define the inner product of the
solutions of (2) and (3) with

ððϕ1; q1Þ; ðϕ2; q2ÞÞ ¼ − i
Z

∞

−∞
dxðϕ1∂tϕ

�
2 − ϕ�

2∂tϕ1Þ

− iðq1∂tq�2 − q�2∂tq1Þ: ð14Þ

The mode solutions (8), (9), (10) and (11) are orthogonal
to each other under the above inner product definition. We
can further normalize these mode solutions by the follow-
ing conditions:

ððϕk; qkÞ; ðϕk0 ; qk0 ÞÞ ¼ δðk − k0Þ; ð15Þ

ððϕκ; qκÞ; ðϕκ; qκÞÞ ¼ 1: ð16Þ

Then the system can be quantized by expanding the
field operator ϕ and the internal degree of freedom q
as the sum of normalized mode solutions (8), (9), (10)
and (11) with creation and annihilation operators as
coefficients:

ϕ ¼
Z

∞

−∞
dkðakϕk þ a†kϕ

�
kÞ þ ðAϕκ þ A†ϕ�

κÞ; ð17Þ
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q ¼
Z

∞

−∞
dkðakqk þ a†kq

�
kÞ þ ðAqκ þ A†q�κÞ: ð18Þ

The creation and annihilation operators would satisfy the
standard commutation relations:

½ak; a†k0 � ¼ δðk − k0Þ ð19Þ

½A; A†� ¼ 1: ð20Þ

In the following, we summarize the result of the above
quantization method.
The field operator ϕ can be decomposed into three parts:

ϕðt; xÞ ¼ ϕ0ðt; xÞ þ ϕ1ðt; jxjÞ þ ϕ2ðt; jxjÞ: ð21Þ

The ϕ0 in (21), which satisfies

ϕ̈0 − ϕ00
0 þm2ϕ0 ¼ 0; ð22Þ

includes all the free-field modes e−iðωt−kxÞ. It is expanded
in terms of annihilation and creation operators:

ϕ0ðt; xÞ ¼
Z

∞

−∞
dk

1ffiffiffiffiffiffiffiffiffi
4πω

p ½ake−iðωt−kxÞ þ a†ke
iðωt−kxÞ�:

ð23Þ

The ϕ1 in (21) includes all the modes e−iðωt−jk∥xjÞ:

ϕ1ðt; jxjÞ ¼ −
Z

∞

−∞
dk

1ffiffiffiffiffiffiffiffiffi
4πω

p
�

ϵ2ake−iðωt−jk∥xjÞ

2ijkjð−ω2 þΩ2Þ þ ϵ2

þ ϵ2a†ke
iðωt−jk∥xjÞ

−2ijkjð−ω2 þ Ω2Þ þ ϵ2

�
: ð24Þ

The ϕ2 in (21) includes the single mode e−iω̂t−κjxj:

ϕ2ðt; jxjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κϵ2

2ω̂ð4κ3 þ ϵ2Þ

s
ðAe−iω̂t þ A†eiω̂tÞe−κjxj:

ð25Þ

The internal oscillator q is expanded as

qðtÞ ¼
Z

∞

−∞
dk

1ffiffiffiffiffiffiffiffiffi
4πω

p
�

2ijkjϵake−iωt
2ijkjð−ω2 þ Ω2Þ þ ϵ2

þ −2ijkjϵa†keiωt
−2ijkjð−ω2 þ Ω2Þ þ ϵ2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κ3

ω̂ð4κ3 þ ϵ2Þ

s
ðAe−iω̂t þ A†eiω̂tÞ: ð26Þ

We can see from the above expression (26) that, for large k,
the integrand

qðkÞ ∝ 1

k5=2
ðak þ a†kÞ; _qðkÞ ∝ 1

k3=2
ðak − a†kÞ: ð27Þ

Then the expectation value of the internal energy of the
mirror, for large k, goes as�

1

2
ð _q2 þ Ω2q2Þ

�
∼
Z

dk
1

k3
< ∞: ð28Þ

Therefore, unlike the mirror in [1], the integrand here drops
fast enough in response to high-frequency modes that the
motion of q only adds a finite amount of energy to the
mirror’s effective mass.

IV. THE FORCE EXERTED ON THE MIRROR

As in [1], the force exerted on the mirror is defined as the
pressure difference from both sides,

FðtÞ ¼ lim
x→0þ

ðT11ðx−Þ − T11ðxþÞÞ; ð29Þ

where xþ ¼ ðt; xÞ and x− ¼ ðt;−xÞðx ≥ 0Þ are two space-
time points which are symmetrically located on the two
sides of the mirror, and T11 is the space-space component
of the stress-energy tensor of type (2,0) of the field ϕ:

T11ðt; xÞ ¼ 1

2
ð _ϕ2ðt; xÞ þ ϕ02ðt; xÞ −m2ϕ2Þ: ð30Þ

Inserting (21) and (30) into (29) and noticing that when
x → 0þ, due to continuity of the field ϕ, only the following
terms survive:

FðtÞ ¼ 2fϕ0
0ðt; 0Þðϕ0

1ðt; 0Þ þ ϕ0
2ðt; 0ÞÞg; ð31Þ

where the curly bracket fg is the symmetric product which
is defined as

fABg ¼ 1

2
ðABþ BAÞ: ð32Þ

The expectation value of the force (31) is zero when
evaluated in the incoming vacuum state. However, the
fluctuation of this force in the vacuum state,

σFðtÞ ¼ hF2ðtÞi − hFðtÞi2; ð33Þ

is not. In fact, if we insert (31) into (33) and then take
Wick’s expansion, we get

σFðtÞ ¼ 4hϕ02
0 ðt; 0Þihðϕ0

1ðt; 0Þ þ ϕ0
2ðt; 0ÞÞ2i: ð34Þ

Noticing that, in the 1þ 1 dimension, the term
hϕ02

0 i ¼ 1
2
h _ϕ0

2 þ ϕ02
0 −m2ϕ2i ¼ hT11i, we obtain that the

fluctuation of force exerted on the mirror is proportional to
the expectation value of the Minkowski vacuum stress:
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σFðtÞ ∼ 4hðϕ0
1ðt; 0Þ þ ϕ0

2ðt; 0ÞÞ2ihT11i: ð35Þ

The difference between the vacuum stress T11 and the
vacuum energy density T00, which is defined as

T00ðt; xÞ ¼ 1

2
ð _ϕ2ðt; xÞ þ ϕ02ðt; xÞ þm2ϕ2Þ; ð36Þ

is m2ϕ2. It is only the logarithmic divergence compared to
the quadratic divergence for the expectation value of the
vacuum energy density in 1þ 1 dimension; thus, the
divergence of the fluctuation of force exerted on the mirror
is in the same order as the divergence of the vacuum energy
density.

V. VACUUM FRICTION DUE TO
DOPPLER EFFECT

Similar to [1], if the mirror initially stays at rest, it would
experience a friction force when it starts to move. The
friction force arises from the Doppler shift of the reflected
vacuum modes due to the changing velocity of the mirror.
In this section we consider that the mirror initially has
been at rest for a long time. It then starts to move with a
constant velocity v [see Fig. 1)]. We calculate the expect-
ation value of the vacuum friction at the jump point t ¼ 0.
We will consider everything in the mirror’s instantaneous
rest frame.
For the trajectory shown in Fig. 1, when t < 0, the

mirror’s rest frame is the ðt; xÞ coordinate system and the
field ϕ0 is expanded as the sum of positive frequency
modes e−iðωt−kxÞffiffiffiffiffiffi

4πω
p with coefficients ak and negative frequency

modes eþiðωt−kxÞffiffiffiffiffiffi
4πω

p with coefficients a†k [see (23)]. When t ≥ 0,

the mirror’s rest frame is the ðt0; x0Þ coordinate system [see
Fig. 1] and the same field ϕ0 is expanded as

ϕ0ðt0; x0Þ ¼
Z

∞

−∞

dk0ffiffiffiffiffiffiffiffiffiffi
4πω0p ½bk0e−iðω0t0−k0x0Þ þ b†k0e

iðω0t0−k0x0Þ�;

ð37Þ

where theω0, k0 in the ðt0; x0Þ coordinate system are Doppler
shifted from the ω, k in the ðt; xÞ system to

ω0 ¼ γðω − kvÞ; ð38Þ

k0 ¼ γðk − ωvÞ; ð39Þ

and, correspondingly, the operator coefficients bk0 and ak
are related by

bk0 ¼ ðγð1þ k0v=ω0ÞÞ1=2ak; ð40Þ

where γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2

p is the Lorentz factor.

Due to Lorentz invariance, the expression of the friction
force in the ðt0; x0Þ frame is exactly the same form as in the
ðt; xÞ frame (31). The only difference is that the spatial
derivative 0 is now with respect to jx0j instead of jxj.
Therefore, the friction force at the jumping point t ¼ 0 is

Fð0Þ ¼ 2fϕ0
0ð0; 0Þðϕ0

1ð0; 0Þ þ ϕ0
2ð0; 0ÞÞg; ð41Þ

where

ϕ0
1ð0;0Þ ¼ −ϵ2

Z
∞

−∞

dkffiffiffiffiffiffiffiffiffi
4πω

p
�

ijkjak
2ijkjð−ω2 þΩ2Þ þ ϵ2

þ c:c

�
:

ð42Þ

Transforming the above expression (42) for ϕ0
1ð0; 0Þ from

the ðt; xÞ frame to the ðt0; x0Þ frame by using (38), (39) and
(40) gives

ϕ0
1ð0; 0Þ

¼ −ϵ2
Z

∞

−∞

dk0ffiffiffiffiffiffiffiffiffiffi
4πω0p

×

�
iγjk0 þ ω0vjbk0

2iγjk0 þ ω0vjð−γ2ðω0 þ k0vÞ2 þ Ω2Þ þ ϵ2
þ c:c

�
:

ð43Þ

Since the operators A, A† and ak, a†k commute, the
expectation value of the second term, ϕ0

0ϕ
0
2, in (41) is

zero. Thus, when taking the expectation value of the force
at t ¼ 0, only the first term ϕ0

0ϕ
0
1 survives. Inserting (37)

and (43) into (41) and taking the expectation value in the
vacuum state gives the friction force

FIG. 1. The trajectory for a mirror that initially stays at rest and
then jumps to move with a constant velocity v at time t ¼ 0.
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F ¼
�
ϵ4

π

Z þ∞

0

dk
k

4k2ðΩ2 − ω2Þ2 þ ϵ4

�
γv: ð44Þ

VI. FLUCTUATING MOTION OF THE MIRROR

In this section, we investigate how the mirror moves
under the infinitely fluctuating quantum vacuum stress
(35). Analogues to the motion of the mirror in [1], the
nonrelativistic equation of motion of the mirror here can be
modeled as

dv=dtþ βðvÞv ¼ F=M; ð45Þ
where M is the mass of the mirror and β is the damping
coefficient. From (44) we know that β is velocity dependent
with the property that

lim
v→1

β ¼ þ∞: ð46Þ

For simplicity, we first assume that β is constant and then
the solution of the mirror’s velocity and position with initial
conditions Xð0Þ ¼ 0; vð0Þ ¼ 0 can be expressed as

vðtÞ ¼ 1

M
e−βt

Z
t

0

dt0eβt0Fðt0Þ; ð47Þ

XðtÞ ¼ 1

M

Z
t

0

dt0e−βt0
Z

t0

0

dt00eβt00Fðt00Þ: ð48Þ

Then we can directly calculate the fluctuation of the
mirror’s velocity,

σvðtÞ ¼ hvðtÞ2i − hvðtÞi2

¼ 1

M2
e−2βt

Z
t

0

Z
t

0

dt1dt2eβðt1þt2ÞCorrðFðt1Þ; Fðt2ÞÞ;

ð49Þ

and the fluctuation of the mirror’s position,

σXðtÞ ¼ hXðtÞ2i − hXðtÞi2

¼ 1

M2

Z
t

0

dt1e−βt1
Z

t1

0

dt2eβt2

·
Z

t

0

dt3e−βt3
Z

t3

0

dt4eβt4CorrðFðt2Þ; Fðt4ÞÞ;
ð50Þ

where the correlation function,

CorrðFðt1Þ; Fðt2ÞÞ ¼ hFðt1ÞFðt2Þi − hFðt1ÞihFðt2Þi;
ð51Þ

can be obtained by first inserting (23), (24) and (25) into
(31) and then taking a Wick’s expansion. The result is

CorrðFðt1Þ; Fðt2ÞÞ ¼
ϵ4

16π2

Z
∞

−∞
dk

k2

ω
e−iωðt1−t2Þ

·

�Z
∞

−∞
dk0

k02e−iω0ðt1−t2Þ

ω0ðk02ð−ω02 þ Ω2Þ2 þ ϵ4=4Þ þ
8πκ3e−iω̂ðt1−t2Þ

ω̂ð4κ3 þ ϵ2Þϵ2
�
: ð52Þ

Inserting (52) into (49), we obtain

σvðtÞ ¼
ϵ4

16π2M2

Z
Λ

−Λ
dk

k2

ω
·

�Z
∞

−∞
dk0

k02ð1 − 2e−βt cosðωþ ω0Þtþ e−2βtÞ
ω0ðk02ð−ω02 þΩ2Þ2 þ ϵ4=4Þðβ2 þ ðωþ ω0Þ2Þ

þ 8πκ3ð1 − 2e−βt cosðωþ ω̂Þtþ e−2βtÞ
ω̂ð4κ3 þ ϵ2Þϵ2ðβ2 þ ðωþ ω̂Þ2Þ

�
; ð53Þ

where Λ is high-frequency cutoff. Similarly, inserting (52) into (50), we obtain

σXðtÞ ¼
ϵ4

16π2M2

Z
Λ

−Λ
dk

k2

ω
·

�Z
∞

−∞
dk0

k02½ 1
β2
ð1 − e−βtÞ2 þ 4sin2ðωþω0

2
tÞ

ðωþω0Þ2 − 1
β ð1 − e−βtÞ 2 sinðωþω0Þt

ωþω0 �
ω0ðk02ð−ω02 þ Ω2Þ2 þ ϵ4=4Þðβ2 þ ðωþ ω0Þ2Þ

þ
8πκ3½ 1

β2
ð1 − e−βtÞ2 þ 4sin2ðωþω̂

2
tÞ

ðωþω̂Þ2 − 1
β ð1 − e−βtÞ 2 sinðωþω̂Þt

ωþω̂ �
ω̂ð4κ3 þ ϵ2Þϵ2ðβ2 þ ðωþ ω̂Þ2Þ

�
: ð54Þ

As Λ → ∞ and t → ∞, σX and σv have a simple relation:

σX ∼
1

β2
σv: ð55Þ
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The mean-squared velocity σv is logarithmically diver-
gent, which is a very slow divergence, as the high-
frequency cutoff Λ goes to infinity. Unlike in [1], there
is no logarithmically divergent effective mass to cancel the
divergence in the mean-squared velocity (53) as the cutoff
Λ goes to infinity. However, notice that even in [1], we have
σv ¼ 2, which is still faster than the speed of light. For the
same reason as in [1], this unphysical result comes from the
small constant damping coefficient β assumption we made
in the beginning. Actually, from the expression for the
friction force (44), we see that the damping coefficient is
monotonically increasing as the velocity increases. When
the mirror’s velocity approaches 1, the damping coefficient
β [see (44) and (46)] goes to infinity to make sure that the
mirror’s velocity never reaches the speed of light. If we
further fully consider the relativistic effect, the increased
mirror’s “relativistic mass” would just make the result even
smaller. Therefore, we can conclude that the mean-squared
velocity is

σv < 1: ð56Þ
Thus, from the relation (55), we obtain that the mean-

squared position is

σX <
1

β2
: ð57Þ

Since the mirror’s speed approaches the light speed 1, we
then get from the property (46) that the damping coefficient
β would be, on average, very large, which means that while
the force on the mirror and its velocity undergo wild
fluctuations, its position fluctuations would again be
expected to be confined in a small region.
Notice that we derived the relation (55) based on the

nonrelativistic equation of motion (45) and the assumption
that the damping coefficient is constant. This relation might
not be valid if we fully consider the relativistic effect
and the nonconstancy of the damping, but the conclusion
should not be affected. That is because our conclusion does
not essentially rely on (55). The key point is that, in the
long time limit, the magnitude of the fluctuations of the
velocity and position are time independent; i.e., it does not
grow with time. This nondiffusing property is guaranteed
by the strong anticorrelation of the the quantum fluctuation,
which is manifest in (53) and (54). When considering the
exact relativistic effect and the monotonically increasing
damping as velocity increases, the anticorrelation of the
quantum fluctuation is still there, and the only difference is

that the mirror would be more difficult to move, which
would make the magnitude of the mirror’s fluctuating
motion even smaller. Thus, the mirror would still be
confined but moving back and forth with a speed close
to the light speed due to the infinitely fluctuating quantum
vacuum. The fluctuation time scale would be on the order
of the cutoff time scale 1=Λ, and the range of the mirror’s
fluctuating motion would be confined in

ΔX ∼
1

Λ
: ð58Þ

This goes to 0 as we take the high-frequency cutoff Λ to
infinity; i.e., we would expect the fluctuating forces not to
move the mirror.

VII. CONCLUSIONS

We present a mirror moving in a quantum vacuum of a
massive scalar field which is similar to the massless one in
[1]. The finite mass allows a stable nonderivative coupling
to the coordinate of the oscillator without a divergent self-
energy. In both cases the field exerts a fluctuating force on
the mirror in a magnitude proportional to the infinite value
of the vacuum energy density. The main difference from [1]
is that we are using a different coupling and, by necessity, a
massive field. In the calculation process of the mirror model
of [1], there exists a divergent effective mass to weaken the
effect of the infinite vacuum fluctuations. However, this
weakening does not exist in the model we used in this
paper. The vacuum friction and strong anticorrelation
property of the quantum vacuum are enough to confine
the mirror’s position fluctuations.
This is another example illustrating that while the actual

value of the vacuum energy can be physically significant
even for a nongravitational system, and that its infinite
value makes sense, but that its physical effect can be small
despite this infinity.
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