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We study chromo-natural inflation in the axiverse. More precisely, we investigate natural inflation with
two axions coupled with a SU(2) gauge field. Assuming a hierarchy between the coupling constants, we
find that for certain initial conditions, conventional natural inflation commences and continues for tens of
e-foldings, and subsequently chromo-natural inflation takes over from natural inflation. For these solutions,
we expect that the predictions are in agreement with observations on CMB scales. Moreover, since chromo-
natural inflation occurs in the latter part of the inflationary stage, chiral primordial gravitational waves are
produced in the interesting frequency range higher than 10−11 Hz, which might be detectable by future
gravitational wave observations.
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I. INTRODUCTION

As is well known, an inflationary scenario [1] resolves
issues of the standard big bang model such as the horizon
problem and, more importantly, gives rise to explanation
of the origin of the anisotropy of the cosmic microwave
background radiation (CMB) and large scale structures of
the Universe. However, there exists no conclusive model
for inflation based on particle physics. The difficulty
stems from the fact that we need fine tunings of the
inflaton potential to realize slow-roll inflation and rec-
oncile resultant predictions with observations. In fact,
from a particle physics point of view, it is difficult to
keep these fine tunings against radiative corrections. In
particular, the mass of a scalar field is quite sensitive to
the quantum loop corrections. Thus, we need some
symmetry to protect the potential from radiative
corrections.
Natural inflation [2] is proposed as a solution of the

fine-tuning problem. There, the shift symmetry of the
axion protects the mass from radiative corrections. This
symmetry slightly breaks down due to the nonperturba-
tive quantum effect, and consequently an appropriate
periodic potential is generated [3]. Provided a super-
Planckian axion decay constant, it turns out that natural
inflation can explain CMB observations such as the
spectral index [4]. However, it would be difficult to
realize the super-Planckian axion decay constant in the
context of superstring theory or any other fundamental
theory [5,6]. To resolve the issue, we need models where
the effective axion decay constant is super-Planckian
although the actual axion decay constant is sub-
Planckian. So far, all of the models proposed to achieve

this aim resorted to multifield generalization of natural
inflation. For example, aligned inflation [7], monodromy
inflation [8], and N-flation [9] (see also a related
work [10]) can be categorized into natural inflation with
multiple scalar fields. Extra natural inflation utilize a
component of gauge fields [11]. Moreover, chromo-
natural inflation [12] is natural inflation with a
SU(2) gauge field where slow-roll inflation is realized
by the coupling between the axion and the gauge field.
This is also a kind of multifield extension of natural
inflation. Interestingly, apparently different gauge-
flation model and noncanonical single field inflation
model also belong to this class [13–16] (see also a
review [17]). Similar idea is also proposed for ablelian
models [18].
Remarkably, chromo-natural inflation has a peculiar

feature that sizable chiral gravitational waves can be
produced during inflation. This happens because of the
transient tachyonic instability due to the CP violating
axion coupling to the gauge field. Note that the instability
occurs only for one of the helicity modes because of CP
violation. Note that this phenomenon appears in inflation
models which have an axion coupling not only with non-
Abelian but also with abelian gauge fields [19–25].1
However, in the framework of chromo-natural inflation,
either too much gravitational waves are produced or large
non-Gaussianity of curvature perturbations are created
during inflation. Indeed, there is no phenomenologically
allowed region in the parameter space [21–24]. Hence, it is
legitimate to say chromo-natural inflation with a single
axion is not viable from a phenomenological point
of view.
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1The conclusion in [25] that sizable primordial gravitational
waves could be produced on CMB scales without any conflict
with observations is recently challenged by [26].
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In the spirit of multifield extension, however, it is natural
to consider chromo-natural inflation with multiple axions.
Indeed, there appear many axions with various decay
constants and coupling constants in view of the superstring
theory landscape, which is dubbed the axiverse [27].
Recently, multinatural inflation has been intensively stud-
ied [7,9,28]. Nevertheless, the effect of gauge fields is
ignored in the setup of multinatural inflation. In this paper,
we study chromo-natural inflation with two axions and
investigate if sizable chiral gravitational waves can be
produced without conflicting with CMB observations. In
fact, we find that conventional natural inflation occurs on
CMB scales, which enables us to circumvent large non-
Gaussianity and overproduction of gravitational waves
on these scales. Moreover, we show that chromo-natural
inflation commences after tens of e-foldings, which implies
that chiral primordial gravitational waves become sizable in
the interesting frequency range where pulsar timing obser-
vation and interferometer detectors are available for detec-
tion of them.
This paper is organized as follows: In Sec. II, we present

a chromo-natural inflation model with two axion fields and
derive equations of motions for the homogeneous fields. In
Sec. III, we investigate the inflationary dynamics. We find
that natural inflation occurs first and chromo-natural
inflation takes over from natural inflation for a class of
initial conditions. In Sec. IV, we evaluate chiral primordial
gravitational waves produced during inflation. It turns
out that the amplitude of chiral gravitational waves is
enhanced on small scales, which might be detectable by
future observations. The final section is devoted to our
conclusion.

II. CHROMO-NATURAL INFLATION WITH
TWO AXIONS

In this section, we present an inflationary model in the
axiverse and derive equations of background motions.
Specifically, we consider two axionic fields χ and ω which
couple with a SU(2) gauge field Aa

μ. The field strength of
the gauge field Fa

μν is defined by

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
ν; ð1Þ

where g is its gauge coupling constant and ϵabc is the Levi-
Cività symbol whose components are structure constants of
the SU(2) gauge field. The action reads

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
ð∂μχÞ2 −

1

2
ð∂μωÞ2 − Vðχ;ωÞ

−
1

4
FaμνFa

μν −
1

4

�
λχ

χ

f
þ λω

ω

h

�
~FaμνFa

μν

�
; ð2Þ

where we used ℏ ¼ c ¼ 1 and Mpl ¼ ð8πGÞ−1=2 ¼ 1.
Here, g is a determinant of a metric gμν (note that it is

not related with the gauge coupling constant), R is a Ricci
scalar, and ðf; hÞ are decay constants of the axions. The
dual field strength tensor ~Faμν is defined by

~Faμν ¼ 1

2!
ϵμνρσFa

ρσ; ϵ0123 ¼ 1ffiffiffiffiffiffi−gp : ð3Þ

We introduced coupling constants of the axions to the
gauge field, λχ ; λω. Here, we assume that there exists a
hierarchy between the λχ and λω value: λχ ∼Oð1Þ ≪ λω.
Then we can practically set

λχ ¼ 0: ð4Þ

The potential for the axions Vðχ;ωÞ is given by

Vðχ;ωÞ≡ μ41

�
1 − cos

�
χ

f

��
þ μ42

�
1 − cos

�
ω

h

��

≡UðχÞ þWðωÞ; ð5Þ
where μ1; μ2 are dynamically generated energy scales. We
assume that the energy scales of the two axions are the
same:

μ1 ¼ μ2 ≡ μ: ð6Þ

We verified that there is no qualitative difference even in the
presence of the difference in energy scales as long as the
hierarchy is not so large.
Let us consider homogeneous background dynamics in

this setup. As to the metric, we use a spatially flat metric,

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2δijdxidxj; ð7Þ

where N is the lapse function. After taking the variation of
the action, we setN ¼ 1 in order to regard the time function
t as the proper time of the hypersurface. The axions are
homogeneous χ ¼ χðtÞ;ω ¼ ωðtÞ. As a gauge condition,
we choose the temporal gauge,

Aa
0 ¼ 0: ð8Þ

We also take an ansatz,

Aa
i ¼ aðtÞϕðtÞδai ; ð9Þ

which is invariant under the diagonal transformation of the
spatial rotation SO(3) and the SU(2) gauge symmetry. It is
known that this configuration is dynamically stable [29].
Thus, their field strength Fa

μν can be deduced as

Fa
0i ¼

dðaϕÞ
dt

δai ; Fa
ij ¼ gϵabcAb

i A
c
j ¼ ga2ϕ2ϵaij: ð10Þ

Substituting these configurations into the action, we obtain
the following background action,
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S ¼
Z

d4x
a3

N

�
−3

_a2

a2
þ 1

2
_χ2 þ 1

2
_ω2 − N2V þ 3

2

ð _aϕÞ2
a2

−
3

2
N2g2ϕ4 − 3Ng

λω
h
ω
ϕ2

a
ð _aϕÞ

�
; ð11Þ

where a dot denotes a derivative with respect to the cosmic
time t. Taking the variation with respect to N and setting
N ¼ 1 after the variation, we obtain the Hamiltonian
constraint,

3H2 ¼ 1

2
_χ2 þ 1

2
_ω2 þ 3

2
ð _aϕÞ2a−2 þ 3

2
g2ϕ4 þ V; ð12Þ

where H ≡ _a=a is the Hubble parameter. The equations for
inflatons and gauge fields read

χ̈ þ 3H _χ þUχ ¼ 0; ð13Þ

ω̈þ 3H _ωþWω ¼ −3
λω
h
gϕ2ð _ϕþHϕÞ; ð14Þ

ϕ̈þ 3H _ϕþ ð _H þ 2H2Þϕþ 2g2ϕ3 ¼ g
λω
h
ϕ2 _ω: ð15Þ

Here, we defined

Uχ ≡ dU
dχ

¼ μ4

f
sin

�
χ

f

�
; Wω ≡ dW

dω
¼ μ4

h
sin

�
ω

h

�
:

ð16Þ
The equation for the scale factor aðtÞ is given by

_H ¼ −
1

2
_χ2 −

1

2
_ω2 − ð _ϕþHϕÞ2 − g2ϕ4: ð17Þ

We can expect that χ plays the role of an inflaton for natural
inflation and ω becomes an inflaton for chromo-natural
inflation. We will see that both types of inflation can occur
for appropriate initial conditions.

III. AN INFLATIONARY DYNAMICS

In this section, we discuss an inflationary trajectory
of this two-field inflation. We perform numerical
calculations with the following sets of parameters:
ðf; h; μ; g; λωÞ ¼ ð5; 5 × 10−4; 10−2; 10−3; 1.5 × 103Þ.
Note that this example is not the only way to realize
our setup.
We recall the property of each inflation at first. From (13)

the slow-roll equation for χ reads

3H _χ þ Uχ ≈ 0: ð18Þ

This is a conventional single field slow-roll equation. If
natural inflation is dominant, slow-roll parameters in terms
of the potential are defined by

ϵV ≈
1

2

�
Uχ

U

�
2

; ηV ≈
Uχχ

U
; ð19Þ

where Uχχ is the second-order derivative of UðχÞ with
respect to χ. On the other hand, from Eqs. (14) and (15),
slow-roll equations for ω and the gauge field read

3H _ωþWω ≈ −3
λω
h
gϕ2ð _ϕþHϕÞ; ð20Þ

3H _ϕþ 2H2ϕþ 2g2ϕ3 ≈ g
λω
h
ϕ2 _ω: ð21Þ

Chromo-natural inflation happens when the “magnetic
drift” term (the coupling term of the axion to the gauge
sector) is sufficiently large: λ2ωg2ϕ4 ≫ h2H2 (note that
g2ϕ4 ≪ H2 during inflation). Then diagonalizing (20)
and (21) for _ω and _ϕ, we obtain the slow-roll equations:

λω
h

_ω ≈ −
hHWω

λωg2ϕ4
−
H2

gϕ
þ 2gϕ; ð22Þ

_ϕ ≈ −Hϕ −
hWω

3λωgϕ2
: ð23Þ

Since ϕ is almost constant during chromo-natural inflation,
its value becomes

ϕ ≈ ϕmin ≡ −
�

hWω

3gλωH

�
1=3

: ð24Þ

Substituting the above value (24) into the first term in the
right-hand side of Eq. (22), we can deduce the slow-roll
equation for ω as

λω
h

_ω ≈ 2gϕþ 2H2

gϕ
≡ −2H

1þm2
ϕ

mϕ
; ð25Þ

where we defined the following parameter:

mϕ ≡ −
gϕ
H

: ð26Þ

We show that this parameter is relevant to the chiral
instability of gauge fluctuations and plays a crucial role
for determining the amount of gravitational waves gen-
erated by gauge fields. From these slow-roll conditions, if
chromo-natural inflation is dominant, slow-roll parameters
defined by the Hubble parameter are written by

ϵH ≈
h
λω

1þm2
ϕ

mϕ

Wω

W
; ð27Þ

ηH ≈
h
λω

1þm2
ϕ

mϕ

�
2Wω

W
−
Wωω

Wω

�
; ð28Þ
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where Wωω is the second order derivative of WðωÞ with
respect to ω.
Then we find that _ω can be very small compared to _χ due

to the magnetic drift factor. In fact, we can approximate

���� _ω_χ
���� ≈ 2

V
Uχ

h
λω

1þm2
ϕ

mϕ
; ð29Þ

where the factor h=λω must be small in order for chromo-
natural inflation to occur. When the rate (29) is sufficiently
small, the inflationary trajectory of this dynamics is almost
along χ direction. Once the slow-roll conditions for χ break
down, the trajectory goes along ω direction and chromo-
natural inflation occurs. From this feature, we can roughly
estimate the number of e-foldings Ne as a sum of the
number of e-foldings for each trajectory,

Ne ≡ Neχ þ Neω; ð30Þ

where we defined

Neχ ≡
Z

tm

ti

Hdt; ð31Þ

Neω ≡
Z

tf

tm

Hdt ≈
Z

ωf

ωm

H
_ω
dω: ð32Þ

Note that natural inflation becomes dominant during
ti < t < tm, and chromo-natural inflation occurs until
t ¼ tf. Unfortunately, it is difficult to evaluate Neχ ana-
lytically because both the dynamics of χ and ω are relevant
in general. However, we can estimateNeω from the attractor
value (24) and the slow-roll equation (25),

Neω ≈ −
Z

~ωf

~ωm

32=3

2

μ4=3g2=3λ4=3ω H4=3 sin ~ω1=3

3λ2=3ω H8=3 þ 31=3g4=3μ8=3 sin ~ω2=3
d ~ω;

ð33Þ

where ~ω≡ ω=h.
Here, we focus on the solutions which realize a natural

inflation on CMB scales and a chromo-natural inflation on
scales smaller than CMB scales. In general, CMB con-
straints are determined by the dynamics of fluctuations
which cross the horizon at 50–60 e-folds before the end of
inflation, NCOBE. So, if adiabatic scalar fluctuation or its
non-Gaussianity are almost derived from natural inflation at
NCOBE—that is, χ is the dominant contribution of the
potential energy at first—we can choose appropriate
background values to suppress chiral gravitational waves
without overproducing scalar fluctuations [22,23]. In order
to realize such a condition, we consider the inflationary
trajectory where Neω is smaller than NCOBE: Neω ≲ NCOBE.
Practically, we can set ~ωf at zero. Thus, from (33), we can

numerically deduce the condition ~ωm ≲ 0.12π for the para-
meters ðf;h;μ; g;λωÞ ¼ ð5;5× 10−4;10−2;10−3;1.5× 103Þ.
Fortunately, for small ~ω, the number of e-foldings Neω can
be estimated as

Neω≈
Z

ωm

ωf

~ω

2

½12μ4g2λ4ω�1=3
½λωμ4 ~ω3�2=3þ½12g2�2=3d ~ω

¼1

4

�
12g2λ2ω
μ4

�
1=3

�
log

�
1þ

�
λωμ

4

12g2

�
2=3

~ωðtÞ2
������

~ωm

~ωf

¼1

4

�
12g2λ2ω
μ4

�
1=3

log

�
1þ

�
λωμ

4

12g2

�
2=3

~ωðtmÞ2
�
: ð34Þ

Substituting the parameters into the above formula, we
actually see inequality ~ωm ≲ 0.12π holds for achieving the
condition New ≲ NCOBE.
As to the initial conditions for χ and ω, we numerically

find that there are many cases for which the inequality
New ≲ NCOBE holds and natural inflation becomes domi-
nant on CMB scales. In Fig. 1, we plotted the region in
the space of initial conditions where the conditions
Ne ≳ NCOBE and New ≲ NCOBE are satisfied. For these
cases, we expect that chiral gravitational waves on CMB
scales are suppressed and all other observational constraints
are satisfied.

IV. CHIRAL GRAVITATIONAL WAVES

In the previous section, we found chromo-natural infla-
tion can take over from the conventional natural inflation.
Hence, we expect that sizable chiral gravitational waves are
produced in the interesting range of frequencies, which
might be detectable by interferometer detectors such as

FIG. 1 (color online). The region (white) of initial values which
satisfies conditions Ne ≳ NCOBE and New ≲ NCOBE under a
restriction π=2 ≤ ~χi ≤ 9π=10ð~χi ≡ χi=fÞ. The top blue line
represents New ∼ NCOBE and the bottom blue line is the lower
bound which satisfies both New ≥ 0 and Ne ≳ NCOBE. Hence, in
the middle white band we can find phenomenologically viable
solutions with chiral gravitational waves.
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advanced LIGO [30] or KAGRA [31]. In this section, we
perform numerical calculations with a set of parameters:
ðf; h; μ; g; λωÞ ¼ ð3.5; 3.5 × 10−4; 10−2; 10−3; 1.5 × 103Þ.
Let us examine if this actually occurs or not.
The metric with tensor perturbations reads

ds2 ¼ aðτÞ2½−dτ2 þ ðδij þ hijÞdxidxj�; ð35Þ

where hij is transverse and traceless, hii ¼ hij;j ¼ 0. Using
a new variable ψ ij ≡ aðτÞhij, the quadratic action SEH for
the tensor perturbations is given by

δSEH ¼
Z

dx4
1

2

�
1

4
ψ 0ijψ 0

ij −
1

4
ψ ij;kψ ij;k

−
�
3

4

a00

a
−
1

2

�
a0

a

�
2
�
ψ ijψ ij

�
; ð36Þ

where a prime represents a derivative with respect to a
conformal time τ. From the action for the scalar field Sscalar,
we also have a contribution to the quadratic action for
tensor perturbations:

δSscalar ¼
Z

d4x

�
−
a2

4
ψ ijψ ij

��
1

2a2
ðχ02 þ ω02Þ − V

�
:

ð37Þ
Next, we define the perturbation for the gauge field as
follows:

Aa
i ¼ aϕδai þ tai; ð38Þ

where tij is also transverse and traceless, tii ¼ tij;j ¼ 0.
Note that we can treat the second term as a tensor since the
index “a” can be identified with the spatial index “i.” Then,
the action Sgauge for the gauge sector is given by

δSgauge ¼
Z

d4x

�
−
1

4

��
−2t0ai t0ai −

1

2a2
ðaϕÞ02ψ ijψ ij

þ 4

a
ðaϕÞ0ψ ijt0ij þ 2tai;jt

a
i;j − 4gaϕϵabitbj t

a
j;i

− 4gaϕ2ψ jmϵaijðtam;i − tai;mÞ − 4g2a2ϕ3ψ ijtij

þ 3

2
g2a2ϕ4ψ ijψ ij þ

λω
f
ωð2ϵijkt0ai ðtak;j − taj;kÞ

− 2gðaϕtijtijÞ0Þ
�
: ð39Þ

We can rewrite the total action in terms of Fourier
components defined by

ψ ijðx; τÞ ¼ 2
X
A¼�

Z
d3k
ð2πÞ3 e

A
ijðkÞψA

k ðτÞeik·x; ð40Þ

tijðx; τÞ ¼
X
A¼�

Z
d3k
ð2πÞ3 e

A
ijðkÞtAk ðτÞeik·x; ð41Þ

where eAijðkÞ are the polarization tensors which satisfy the
following normalization relation, eAijðkÞeBijð−kÞ ¼ δAB,
and the index “A ¼ fþ;−g” represents circular polari-
zation states defined by ikiϵaije

�
jmðkÞ ¼ �ke�amðkÞ. Thus,

we get the following quadratic action for tensor
perturbations:

δStensor ≡ δSEH þ δSscalar þ δSgauge

¼ 1

ð2πÞ3
Z

d3kdτ

�
1

2
ψ̄�
k
0ψ�

k
0 −

1

2
k2ψ̄�

k ψ
�
k þ 1

2

�
a00

a
þ 2

ðaϕÞ02
a2

− 2g2a2ϕ4

�
ψ̄�
k ψ

�
k

�

þ 1

ð2πÞ3
Z

d3kdτ

�
1

2
t̄�k

0t�k
0 −

1

2
k2t̄�k t

�
k −

λω
2h

gaϕω0t̄�k t
�
k � 1

2
k

�
2gaϕþ λω

h
ω0
�
t̄�k t

�
k

∓ kgaϕ2ðψ̄�
k t

�
k þ t̄�k ψ

�
k Þ þ g2a2ϕ3ðψ̄�

k t
�
k þ t̄�k ψ

�
k Þ −

ðaϕÞ0
a

ðψ̄�
k t

�
k
0 þ t̄�k

0ψ�
k Þ
�
: ð42Þ

Then, we get the equations of motion for tensor perturba-
tions

ψ�
k
00 þ

�
k2 −

a00

a
− 2

��
ϕ0 þ a0

a
ϕ

�
2

− g2a2ϕ4

��
ψ�
k

¼ −2
�
ð�kgaϕ − g2a2ϕ2Þϕt�k þ

�
ϕ0 þ a0

a
ϕ

�
t�0
k

�
;

ð43Þ

t�k
00 þ

�
k2 þ λωgaϕ

h
ω0∓k

�
2gaϕþ λω

h
ω0
��

t�k

¼ −2
�
ð�kgaϕ − g2a2ϕ2Þϕψ�

k −
��

ϕ0 þ a0

a
ϕ

�
ψ�
k

�0�
:

ð44Þ

Now, we replace τ with the following dimensionless
parameter:
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x≡ −kτ: ð45Þ
Moreover, we can use the following slow-roll conditions:

aðτÞ ¼ −
1

Hτ
; ð46Þ

ϕ0 ¼ 0; ð47Þ

λω
h
ω0 ¼ −2

1þm2
ϕ

mϕ
Ha: ð48Þ

Then, (43) and (44) can be reduced to

d2ψ�
k

dx2
þ
�
1 −

2

x2
−

2

x2
ð1 −m2

ϕÞϕ2

�
ψ�
k

¼ 2
ϕ

x
dt�k
dx

þ 2mϕðmϕ � xÞ ϕ
x2

t�k ; ð49Þ

d2t�k
dx2

þ
�
1þ m

x2
�mt

x

�
t�k ¼ −2ϕ

d
dx

�
ψ�
k

x

�

þ 2mϕðmϕ � xÞ ϕ
x2

ψ�
k ;

ð50Þ
where we defined

m≡ 2ð1þm2
ϕÞ; ð51Þ

mt ≡ 2

�
2mϕ þ

1

mϕ

�
: ð52Þ

From these equations, we notice that the dynamics of
the tensor perturbations depends on the helicity. For the
metric perturbations, we can neglect the term stemmed
from gauge interactions in the left-hand side of (49) since ϕ
is sufficiently smaller than Planck scale. In fact, this is a

good approximation as we show the dynamics of metric
perturbations later. Thus, the metric mode function is
obtained as

ψ�
k ðxÞ≈ψ�

vackðxÞ

þ2

Z
∞

0

dx0Gvacðx;x0Þ
�
ϕ

x0
∂x0 þmϕðmϕ�x0Þ ϕ

x02

�
t�k ðx0Þ;

ð53Þ

where ψ�
vackðxÞ is a vacuum mode fluctuation in de Sitter

space,

d2ψ�
vack

dx2
þ
�
1 −

2

x2

�
ψ�
vack ¼ 0; ð54Þ

and Gvacðx; x0Þ is its Green function,

�
d2

dx2
þ 1 −

2

x2

�
Gvacðx; x0Þ ¼ −δðx − x0Þ: ð55Þ

Thus, we can see that the contribution of gauge fields as
well as vacuum metric fluctuations can produce gravita-
tional waves. Hence, we need to know the dynamics of the
gauge field perturbations. For simplicity, we ignore the
backreaction of metric perturbations:

d2t�k
dx2

þ
�
1þ m

x2
�mt

x

�
t�k ¼ 0: ð56Þ

From this free equation, we can see that t−k has a tachyonic
mass in the following time interval:

1

2

�
mt −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t − 4m
q 	

< x <
1

2

�
mt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t − 4m
q 	

:

ð57Þ

Since this instability occurs near the horizon crossing and
has a sufficiently large growth rate, we can safely neglect

FIG. 2 (color online). The time evolution of the gauge field ϕðtÞ and mϕðtÞ with ð~χi; ~ωiÞ ¼ ðπ=2; π=9Þ for the sets of parameters
ðf; h; μ; g; λωÞ ¼ ð3.5; 3.5 × 10−4; 10−2; 10−3; 1.5 × 103Þ. Note that αðtÞ represents e-folds. We see that mϕ is small on CMB scales.
Consequently, production of chiral gravitational waves is suppressed. Interestingly, mϕ increases during chromo-natural inflation.
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the backreaction of metric perturbations. It is easy to see
that the interval (57) depends on mϕ and gets minimum
value when mϕ ≈ 0.8. On the other hand, tþk has no
instability and its effect on the metric perturbation is
negligible as we show later. Thus, we can expect that
the dynamics of mϕ determines the growth rate of one
helicity mode of gauge fields, namely, the amount of chiral
gravitational waves.
The time evolutions of ϕ and mϕ are shown in Fig. 2, in

which αðtÞ is the number of e-foldings. Indeed, we found
that mϕ stays near the minimum mϕ ∼ 0.8 on CMB scales,
so that we can avoid the overproduction of chiral gravi-
tational waves. One may worry about the stability of scalar
fluctuations in chromo-natural inflation [22,23]. However,
natural inflation occurs for the first tens of e-foldings in
typical cases; hence, we would not need to worry about the
instability. Remarkably, we can see that mϕ gets a large
value after the end of natural inflation because the Hubble
parameter gets smaller. Therefore, sizable chiral primordial
gravitational waves will be produced, which implies the
possibility of detecting chiral gravitational waves on small
scales. We can see these features in Fig. 3. In Fig. 3, we plot
the time evolution of the amplitude of metric fluctuations at
the horizon crossing in the natural phase and chromo-
natural phase, respectively. Note that αðtÞ represents e-
folds. We can see that the amplitude of hþk ðtÞ is nearly the
same as the vacuum fluctuation with no contribution of
gauge fields, while the amplitude of h−k ðtÞ starts to appear
in chromo-natural stage due to the chiral enhancement of

gauge fields (αðtÞ ∼ 15). Moreover, we verify that the
solution of a metric fluctuation h−k ðtÞ ¼ ψ−

k ðtÞ=a satisfying
Eq. (53), where gauge fluctuations t�k ðxÞ satisfy a free
equation (56), is an excellent approximation to the solution
of the full equations (43) and (44).
Finally, we roughly estimate the density parameter of

gravitational waves ΩgwðfÞ. In the case of Fig. 3, the chiral
primordial gravitational waves are produced in the fre-
quency range higher than 10−11 Hz. In the conventional
quasi–de Sitter inflation, ΩconðfÞ is given by [32]

h20ΩconðfÞ ≈ 10−13
�

H
10−4

�
2

; ð58Þ

where h0 ∼ 0.7 is the dimensionless Hubble parameter. In
our model, the Hubble parameter H is approximately 10−5

on small scales. Hence, h20Ωvac is about 10−15. On the other
hand, the amplitude of the chiral gravitational wave is
enhanced by a factor 101.5 compared to the conventional
models (see Fig. 3). Since ΩgwðfÞ is proportional to the
square of the amplitude of fluctuations, it can be estimated
as 10−15 × ð101.5Þ2 ¼ 10−12. Thus, this gives rise to the
density parameter h20Ωgwð10−11 HzÞ ∼ 10−12. Moreover,
the density parameter Ωgw becomes larger in the high-
frequency region from mHz to kHz, which can be observed
by various detectors [33] such as the space interferometer
detector DECIGO [34] (h20Ωgw ≳ 10−13), eLISA [35]
(h20Ωgw ≳ 10−9), advanced LIGO, KAGRA (h20Ωgw ≳
10−4), and possibly even by the pulsar timing array

k = 30

k = 10−3

k = 30

k = 10−3

FIG. 3 (color online). We plotted the time evolutions of the amplitude of physical metric fluctuations h�k ðtÞ ¼ ψ�
k ðtÞ=awith ð~χi; ~ωiÞ ¼

ðπ=2; π=9Þ for a set of parameters ðf; h; μ; g; λωÞ ¼ ð3.5; 3.5 × 10−4; 10−2; 10−3; 1.5 × 103Þ. The left figure is a time evolution of h−k ðtÞ
and the right figure is that of hþk ðtÞ. Here, αðtÞ is the number of e-foldings. We compare the evolutions of fluctuations with different
wave numbers (k ¼ 10−3; 30). The fluctuations crossing the horizon before αðtÞ ∼ 10 are on CMB scales where natural inflation is
dominant. On the other hand, the fluctuations crossing the horizon after αðtÞ ∼ 10 are on smaller scales where chromo-natural inflation
begins to dominate (see Fig. 2). Solid yellow lines are plots of metric fluctuations h�k ðtÞ which are solutions of the full numerical
equations (43) and (44), while dashed black lines are plots of metric fluctuations h�k ðtÞ which are solutions of (54)—standard vacuum
metric fluctuations with no contribution of gauge fields. Dot-dashed black lines in the left figure are plots of h−k ðtÞ which is an
approximate solution of (53) with t�k ðxÞ satisfying a free-field equation (56), so we can see that these solutions are good approximations
to the full solutions of metric perturbations. As initial conditions, we imposed the Bunch-Davies vacuum conditions. On CMB scales,
h−k ðtÞ is close to that with no gauge contribution. On the other hand, on smaller scales, h−k ðtÞ gets enhanced.
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SKA [36] (h20Ωgw ≳ 10−15). It should be stressed that there
is a chance to observe chiral primordial gravitational
waves [37].

V. CONCLUSION

We studied chromo-natural inflation in the axiverse and
discussed the generation of chiral primordial gravitational
waves. Concretely speaking, we investigated natural infla-
tion with two axions coupled with a SU(2) gauge field. We
assumed a hierarchy between the axion coupling constants
to gauge fields. Note that the coupling constants need not
be small; rather, one of them should be large so that
chromo-natural inflation occurs. We assumed the axion
which has strong coupling constant to the gauge field is
energetically subdominant initially. This is natural because
there are many axions except for the one with the strongly
coupled axion. Then we found that conventional natural
inflation commences and continues for tens of e-foldings
before chromo-natural inflation subsequently takes over.
Since the role of gauge fields in the early stage is negligible,
we expect that the predictions are in agreement with
observations on CMB scales. Thus, we concluded that
overproduction of chiral gravitational waves in the chromo-
natural inflation model can be circumvented in the axiverse.
This is because the parameter of the gauge field mϕ is
sufficiently small during natural inflation. We also found
that mϕ increases in the course of chromo-natural inflation,
which implies that chiral gravitational waves are enhanced
on small scales. Remarkably, the chiral primordial gravi-
tational waves are produced in an interesting frequency

range higher than 10−11 Hz, which might be detectable in
future gravitational wave observations such as the pulsar
timing experiment using SKA, advanced LIGO, eLISA,
and KAGRA. Although other mechanisms can also pro-
duce chiral primordial gravitational waves [19,38], since
the spectrum of primordial gravitational waves in chromo-
natural inflation is distinctive, the observations at several
different frequencies will be able to discriminate the
chromo-natural inflation with two axions from others.
Note that we treated natural inflation with a super-

Planckian decay constant. However, by using the mecha-
nism in [7,28] where a combination of two axions is used,
we are able to get an “effective” super-Planckian decay
constant from two sub-Planckian decay constants. Hence,
in the context of the multifield extension of natural
inflation, our model is phenomenologically viable.
For future work, we need to analyze the spectrum of

chiral gravitational waves in detail to compare the pre-
dictions with observations. We should also study scalar
perturbations and explicitly check the stability of natural
inflation with two axions [22,23]. Moreover, we will seek a
way to embed the current model into fundamental theory.
We leave these issues for future work.
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