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It has been argued that the small perturbations to the homogeneous and isotropic configurations of a
canonical scalar field in an expanding universe do not grow. We show that this is not true in general, and
clarify the root of the misunderstanding. We revisit a simple model in which the zero mode of a free scalar
field oscillates with high frequency around the minimum of the potential. Under this assumption the linear
perturbations grow like those in the standard cold dark matter scenario, but with a Jeans length at the scale
of the Compton wavelength of the scalar particle. Contrary to previous analyses in the literature our results
do not rely on time averages and/or fluid identifications, and instead we solve both analytically (in terms of
a well-defined series expansion) and numerically the linearized Einstein-Klein-Gordon system. Also, we
use gauge-invariant fields, which makes the physical analysis more transparent and simplifies the
comparison with previous works carried out in different gauges. As a byproduct of this study we identify a
time-dependent modulation of the different physical quantities associated to the background as well as the
perturbations with potential observational consequences in dark matter models.
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I. INTRODUCTION

It is difficult to overestimate the relevance of the Jeans
instability in modern physical cosmology. In order to
understand the emergence of cosmic structure, we need
a mechanism that transforms the nearly homogeneous and
isotropic early Universe we infer from e.g. the cosmic
microwave background observations, to the highly
clumped one we can see today at the scale of galaxy
clusters and below. In the standard cosmological scenario
this transition is possible thanks to the instability of a scalar
mode that appears when we couple dark matter (DM) to
gravity, the gravitational Jeans instability.
In a universe dominated by a barotropic perfect fluid

with equation of state p ¼ pðεÞ ≪ ε, the behavior of the
small perturbations in the energy density depends crucially
on the speed of sound, c2s ¼ ∂p=∂ε, and the Hubble radius,
H−1 (throughout this paper we use natural units such that
c ¼ ℏ ¼ 1). Roughly speaking, we can distinguish three
different regions in Fourier space [1]. i) On scales smaller
than the Jeans length, λJ ¼ csðπ=Gε0Þ1=2 ∼ csH−1, the
contrast in the energy density oscillates with damping
amplitude, due to the stabilizing effect of pressure and the
expansion of the universe, respectively. Here G is the
Newton constant and ε0 is the background matter density.
ii) Above this length scale but still below the Hubble radius,
self-gravity dominates and the contrast in the energy
density grows: the Jeans instability comes into play.

iii) Finally, at scales larger than the Hubble radius a
relativistic understanding of the problem shows that the
contrast in the energy density freezes.1

Perfect fluid structure formation then demands matter
with a low speed of sound in order to have a window,
cs=H < λ < 1=H, where the Jeans mode is released and the
perturbations can grow. Cold dark matter (CDM) represents
the simplest realization of this scenario, for which one
assumes c2s ≈ 0 for all relevant modes.2

For a canonical scalar field we have c2s ¼ 1 (see e.g.
Ref. [3]), and it is usually argued that this implies that small
perturbations in the energy density do not grow [4]. This
would seem to be a very serious argument against the whole
scalar field DM program [5], so we find it mandatory to
clarify the issue.

1Actually all these statements are gauge dependent. We can
always choose to work in e.g. the uniform density gauge, where
the contrast in the energy density vanishes identically at all scales,
or in e.g. the synchronous gauge, where the contrast in the energy
density grows even for those modes larger than the Hubble radius.
It is only in terms of the conformal-Newtonian gauge that the
behavior outlined in the previous paragraph makes sense, and it is
only in this gauge that we can easily compare our results with
those sketched in the three points above.

2If DM consists of collisionless particles it is more appropriate
to talk about a free-streaming, rather than a Jeans, length;
however, the idea is similar (see e.g. Sections 10.2 and 10.3
in Ref. [2] for a discussion).
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In this paper we will consider the simplest situation: a
universe dominated by a real massive scalar field φ
satisfying the Klein-Gordon equation, ð□þm2Þφ ¼ 0.
Here the box is the d’Alembert operator in four spacetime
dimensions, and m is the mass of the scalar particle [this
corresponds to a scalar field potential of the form VðφÞ ¼
m2φ2=2, so that the mass is defined as m2 ≡ ∂2V=∂φ2].
The more interesting case with a complex field including
the self-interactions and the presence of other matter
components (e.g. radiation, baryons, etc.) will be presented
elsewhere. We will show that when the scalar field is slowly
rolling down the potential, linear perturbations cannot
grow, in accordance with common wisdom. However,
when the scalar field oscillates with high frequency
m ≫ H around the minimum of the potential term, the
Jeans length is not given by the naive value csH−1 one
would guess from a perfect fluid analogy. Instead it is
determined by the Compton wavelength of the scalar
particle, csm−1, and the evolution of perturbations larger
than this scale almost mimics that of the standard CDM
scenario even though c2s ¼ 1 (see Fig. 1 for details). The
main difference with respect to the standard CDM evolu-
tion (apart from the appearance of a nonvanishing Jeans
length), is the presence of a time-dependent modulation of
the different physical quantities. We will present below
both an analytical argument based on expansions of the
solution of the relevant cosmological equations, and results
from simple numerical simulations.
Similar results have been presented before in the

literature; see for instance Refs. [6] (as far as we know
the gravitational instability of a canonical scalar field—in
the context of a static universe—was reported for the first
time by Khlopov, Malomed and Zel’dovich in Ref. [7]).
However, to our knowledge, we present for the first time a
description of the problem in terms of gauge-invariant
fields. Furthermore, note that our analysis does not rely
on time averages and/or fluid identifications. Instead we
present a well-defined series expansion that makes it
possible to find analytic solutions order by order in the
expansion parameter: it is well known that the time average
of the product of two functions is not in general the product
of the time averages of those functions, and also that a
scalar field is not a perfect fluid [8], so one needs to take

some care with the standard procedure. With this formalism
the results emerge more naturally than in previous works,
and it is convenient in order to identify the root of the
misunderstanding; see Eq. (15) and the paragraphs below.
We will follow the notation in Chapters 7 and 8 of

Ref. [1]; in particular we use the signature ðþ;−;−;−Þ for
the spacetime metric. We highly recommend this reference
to the reader interested in the details about some of the
definitions and conventions below. One should also men-
tion that recently the problem of structure formation with a
massive scalar field has been studied by performing full
nonlinear numerical simulations of the Einstein-Klein-
Gordon system, both in the relativistic [9] and the non-
relativistic [10] regimes. However, we believe that by
studying the problem from the point of view of a mode
analysis in perturbation theory one can more clearly
separate the relevant physical mechanisms that come into
play at different scales.

II. THE HOMOGENEOUS AND ISOTROPIC
BACKGROUND

At very large scales the Universe is (nearly) homo-
geneous and isotropic; that makes it possible to introduce
the idea of a homogeneous and isotropic background.
According to the current cosmological observations this
background can be described in terms of a flat Robertson-
Walker (RW) metric of the form

ds2 ¼ a2ðdη2 − dx2 − dy2 − dz2Þ: ð1Þ

Here η is the conformal cosmological time, ðx; y; zÞ is a
spatial coordinate system comoving with the expansion,
and aðηÞ is the scale factor. Conformal time η is related
to the standard comoving cosmological time t through
t ¼ R

adη. The expansion rate is codified in the Hubble
parameter, H ¼ H=a ¼ a0=a2, with the prime denoting the
derivative with respect to conformal time. The spacetime
symmetries in Eq. (1) guaranty that the background
field cannot depend on the spatial coordinates, so that
φðη; ~xÞ ¼ φ0ðηÞ. Under these assumptions the Klein-
Gordon equation simplifies to

φ00
0 þ 2Hφ0

0 þ a2m2φ0 ¼ 0: ð2Þ

There are two different timescales in Eq. (2): on the
one hand that associated to the cosmological expansion,
H−1 ¼ ðaHÞ−1, and on the other that defined by the mass
of the scalar field, ðamÞ−1. In this paper we will concentrate
on the case when the expansion rate of the universe is very
slow when compared to the characteristic time of oscil-
lation of the scalar field, that is ðaHÞ−1 ≫ ðamÞ−1, which
implies H ≪ m. This inequality is always satisfied at late
times. We will briefly discuss the regime H ≫ m later on
in this section.

FIG. 1. Behavior of the linear perturbations in the contrast in
the energy density for different wavelengths λ. The Jeans length
λJ depends on the matter content in the universe. For a perfect
fluid λJ ∼ csH−1, and structure formation demands c2s ≪ 1.
However, when a canonical scalar field oscillates with high
frequency around the minimum of the potential we have
λJ ∼m−1, even though c2s ¼ 1. As usual this picture should be
understood in the conformal-Newtonian gauge.
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In order to proceed we propose a solution of the form

φ0ðηÞ ¼ φH
0 ðηÞ½φm

0 ðηÞ þO2ðH=mÞ�; ð3aÞ

HðηÞ ¼ HHðηÞ½1þOðH=mÞ�; ð3bÞ

aðηÞ ¼ aHðηÞ½1þO2ðH=mÞ�: ð3cÞ

Here functions with a superscript H vary on cosmological
time scales, ðfHÞ0 ∼ aHfH, whereas those with a super-
script m vary on time scales given by the mass of the
scalar field, ðfmÞ0 ∼ amfm. In principle, higher-order terms
oscillate in time with high frequency. Consequently, the
derivative of one of those terms is not necessarily sup-
pressed in the series expansion, e.g. d½OðH=mÞ�=dη ∼ aH.
That is the reason for which the series expansion of the
Hubble parameterH has a linear term inH=m, even though
such a term is not present in the expression for the scale
factor a.
Introducing the ansatz (3) into the Klein-Gordon equa-

tion we obtain

φ0ðηÞ ¼
AMPl

ðmηÞ3 ½sinðmtÞ þO2ðH=mÞ�; ð4Þ

where A is an integration constant, MPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the

reduced Planck mass, and where we have fixed an arbitrary
phase to zero. For later convenience, and with no loss of
generality, from now on wewill also choose A2 ¼ 24. From
the above expression we see that the scalar field oscillates
around φ0 ¼ 0 with constant frequency m in comoving
time t (so that the frequency will increase in conformal time
η as the universe expands), and an amplitude that decays as
1=η3. Introducing this expression for φ0ðηÞ into the
Friedmann equations,

H2 ¼ 8πG
3

a2ε0; ð5aÞ

H0 −H2 ¼ −4πGa2ðε0 þ p0Þ; ð5bÞ

one finds

HðηÞ ¼ 2

η

�
1 −

3

4

�
H
m

�
sinð2mtÞ þO2ðH=mÞ

�
; ð6Þ

aðηÞ ¼ ðmηÞ2½1þO2ðH=mÞ�: ð7Þ

For completeness we can also integrate the expression for
the comoving time to obtain

mt ¼
Z

madη ¼ ðmηÞ3
3

½1þO3ðH=mÞ�: ð8Þ

In the above equations we have used the fact that the
background energy density and pressure are given by

ε0 ¼
1

2

�
φ02
0

a2
þm2φ2

0

�
; p0 ¼

1

2

�
φ02
0

a2
−m2φ2

0

�
: ð9Þ

In particular we find that, to lowest order in the series
expansion, the background energy density redshifts with
the inverse of the comoving volume, ε0 ∼ 1=a3, whereas for
the background pressure we obtain p0 ∼ ð1=a3Þ cosð2mtÞ.
Note that to this same order we cannot distinguish the
expansion rate from that in a CDM universe, H ¼ 2=η,
even tough jp0j ∼ ε0 during the evolution. Interestingly,
this does not depend on the mass of the scalar particle, as
long as it is large enough when compared to the expansion
rate of the universe.
Since H=m ∼ 2=ðmηÞ3, the condition H ≪ m demands

mη ≫ 1. In terms of the scalar field, Eq. (4) above, we
obtain jφ0j ≪ MPl. That guarantees large values jϵsrj ¼
jηsrj ¼ 2M2

Pl=φ
2
0 ≫ 1 of the slow-roll parameters [11], with

ϵsr ≡ ðM2
Pl=2Þð∂φV=VÞ2 and ηsr ≡M2

Plð∂2
φV=VÞ, so we

can safely conclude that the universe is not in a period
of slow-roll inflation, as was evident from Eq. (6).
At this point one should mention that the dominant terms

in the solution of the Friedmann-Klein-Gordon system
given by Eqs. (4), (6) and (7) coincide with those of the
exact solution found in Ref. [12] for a scalar field evolving
in a universe dominated by a barotropic fluid such that
H ¼ 2=ð3γtÞ, with γ constant (when γ ¼ 1 this background
barotropic fluid can be associated with the average energy
density and pressure of the scalar field itself). Something
similar happens with the solution reported in Ref. [13],
obtained in terms of time averages. The main difference
with our results is the fact that here we have made explicit
the existence of higher-order terms in H=m, and in
particular we have shown the first oscillating subdominant
contribution to the Hubble parameter. Note however that
this is not only a purely academic question: the inclusion of
the higher-order terms will be crucial next for the under-
standing of the evolution of the small perturbations.
Figure 2 shows the evolution of the conformal Hubble

factor H=m as a function of the conformal time mη for a
free scalar field oscillating around the minimum of the
potential. The solid line corresponds to standard CDM,
while the dashed and dotted lines show the case of the
scalar field using both the analytical approximation in
Eq. (6), and a full numerical solution of the Klein-Gordon
and Friedmann system, Eqs. (2), (5a), and (5b), respectively
[for the numerical case we solve for H from Eq. (5b), and
use Eq. (5a) to monitor the numerical error]. Notice that the
evolution for the case of the scalar field follows closely that
of CDM with small oscillations around it. Initially we have
H=m ¼ 0.2 and the oscillations are still evident, but their
amplitude decreases as time goes on.
Next we will consider the behavior of the small pertur-

bations around the homogeneous and isotropic solution in
Eqs. (4), (6), and (7). In particular, we find that an unstable
Jeans mode grows at scales between the Compton length of
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the scalar particle and the Hubble radius of the universe; see
Eq. (21) below for details.

III. THE LINEAR PERTURBATIONS

In this paper we will not consider vector and tensor
modes, and will concentrate on the scalar sector of the
perturbations. After all this is the sector that contains the
Jeans mode of the theory. With this assumption, the most
general expression for the spacetime metric of a universe
close to a flat homogeneous and isotropic RWone takes the
form

ds2 ¼ a2fð1þ 2ϕÞdη2 þ 2∂iBdxidη

− ½ð1 − 2ψÞδij − 2∂i∂jE�dxidxjg: ð10Þ

For the perturbed scalar field we will also write
φ ¼ φ0 þ δφ. Here ϕ, B, ψ , E and δφ are functions of
the spacetime coordinates η and ~x, with δφ ≪ φ0

and ϕ; B;ψ ; E ≪ 1.
All of these fields depend on the choice of coordinates

used to write the line element in Eq. (10), and they could in
principle be describing fictitious inhomogeneities. For this
reason it is sometimes convenient to work with gauge-
invariant fields, such as [1]

Φ ¼ ϕ − ð1=aÞ½aðB − E0Þ�0; ð11aÞ

Ψ ¼ ψ þHðB − E0Þ; ð11bÞ

δφ ¼ δφ − φ0
0ðB − E0Þ: ð11cÞ

Note that the above fields coincide with the amplitude of
the metric and the scalar field perturbations in the con-
formal-Newtonian (also known in the literature as the
longitudinal) coordinate system, for which B ¼ E ¼ 0.
To linear order in the new field variables, the 00 and 0i

Einstein field equations, essentially the Hamiltonian and
momentum constraints, take the following form:

ΔΨ − 3HðΨ0 þHΦÞ ¼ 4πGa2δε

¼ 4πG½φ0
0δφ

0 þ a2m2φ0δφ − φ02
0 Φ�;
ð12aÞ

Ψ0 þHΦ ¼ 4πGφ0
0δφ; ð12bÞ

where Δ is the Laplace operator in flat space, and where
δε ¼ δε − ε00ðB − E0Þ is the gauge-invariant density pertur-
bation. For a scalar field, and to this order in the series
expansion, there are no anisotropic stresses and the i ≠ j
field equations fix Φ ¼ Ψ. (Note that so far we are using
two different series expansions: one in the small perturba-
tions of the spacetime metric and the scalar field, and the
other in the expansion rate of the universe. We will soon
introduce a new one in terms of the Jeans length.)
In order to move forward we find it convenient to define

the new quantities

v ¼ a

�
δφþ φ0

0

H
Ψ

�
; z ¼ aφ0

0

H
: ð13Þ

The gauge-invariant field vðη; ~xÞ is usually known as the
Mukhanov-Sasaki variable, and the function z depends
only on the spacetime background, z ¼ zðηÞ. Note that,
leaving the scale factor aside, the Mukhanov-Sasaki var-
iable represents the scalar field perturbation evaluated in the
spatially flat gauge ψ ¼ E ¼ 0 [14]. Whenever the scalar
field dominates the evolution of the universe, Eqs. (12a)
and (12b) simplify to

Δ
�
a2Ψ
H

�
¼ 4πGz2

�
v
z

�0
; ð14aÞ

�
a2Ψ
H

�0
¼ 4πGz2

�
v
z

�
: ð14bÞ

These two equations can be combined to obtain

v00 − c2sΔv −
z00

z
v ¼ 0; ð15Þ

with c2s ¼ 1 analogous to a “speed of sound” for a
canonical scalar field [3]. The main reason for this
identification is the similarity of Eq. (15) with that obtained
for a barotropic perfect fluid with sound speed cs; see e.g.
Eq. (7.65) in Ref. [1]. Notice that even though here we
are only interested in the case of a scalar field with no
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FIG. 2. Evolution of the conformal Hubble factor H=m as a
function of the conformal time mη for a free scalar field
oscillating around the minimum of the potential. We show for
comparison the solution in standard CDM (solid line), and both
the analytical approximation in Eq. (6) (dashed line), and the
full numerical solution of the Friedmann-Klein-Gordon system,
Eqs. (2), (5a), and (5b), (dotted line). In the figure the integration
begins at mη ¼ 101=3, with a ¼ 102=3 and H=m ¼ 2 × 10−1=3.
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self-interactions, so far the analysis of the perturbations is
general and valid for an arbitrary potential.
Equation (15) above fixes a characteristic length scale

given by csajz00=zj−1=2 (in this paper we will work with
comoving wave numbers k, but we will talk about physical
wavelengths λ, with λ ¼ 2πa=k). This length provides us
with a ruler to discriminate between large and small scales
in the scalar field perturbations. The correct estimation of
this length scale for the different physical situations—and
in particular the relative size it takes when compared to
the Hubble radius—lies precisely at the heart of the usual
misunderstanding.
As we will find soon [see Eqs. (20) and (21) below], the

scale csajz00=zj−1=2 determines the Jeans length of the scalar
field. However, this quantity is not always related to the
naive guess csH−1 one would expect from a perfect fluid
analogy. In order to clarify this point, let us consider two
representative cases. When the scalar field is rolling down
to the minimum of the potential we have φ0

0 ∼ aHφ0, which
implies jz00=zj ∼ ðaHÞ2. This fixes the characteristic Jeans
length to the Hubble radius. Short-wavelength perturba-
tions (when compared to this length scale) oscillate in space
and time as v ∼ sinðcskηþ ~k · ~xÞ, with c2s ¼ 1. The Jeans
mode is then stabilized and the perfect fluid analogy seems
possible, i.e. small perturbations to the homogeneous
and isotropic solutions do not grow. Consider, for instance,
the case of the inflaton during a slow-roll regime, or a
quintessence field in the present universe, as particular
realizations of this scenario.
However, when the zero mode of the scalar field is

oscillating with high frequency m ≫ H around the mini-
mum of the potential, we have instead φ0

0 ∼ amφ0, which
results in jz00=zj ∼ ðamÞ2. The new length scale is well inside
the Hubble radius, making possible the growth of perturba-
tions with aH < k < c−1s am (remember that for a canonical
scalar field c2s ¼ 1). Now the naive estimation csH−1 for the
Jeans length has nothing to do with the correct one, csm−1.

Let us consider in more detail this second scenario.
Notice that, using the solutions in Eqs. (4), (6), and (7), the
“mass” term in Eq. (15) takes the form

z00

z
¼ −a2m2

�
1þ 6

�
H
m

�
sinð2mtÞ þO2ðH=mÞ

�
: ð16Þ

As mentioned before, this is a purely background quantity.
For practical reasons we will work with periodic boundary
conditions over a box of comoving size L. We can always
take the limit L → ∞ at the end of the calculations. Under
this assumption, the general solution to Eq. (15) can be
written in the form

vðη; ~xÞ ¼ 1

L3=2

X
~k≠0

½C~kv~kðηÞei
~k·~x þ c:c:�: ð17Þ

Here C~k are some dimensionless integration constants that
label the different possible solutions, c.c. denotes the
complex conjugate, and the functions v~kðηÞ satisfy the
equation

v00~k þ ω2
~k
ðηÞv~k ¼ 0; with ω2

~k
ðηÞ ¼ k2 −

z00

z
: ð18Þ

Note that the boundary conditions demand ki ¼ 2πni=L,
with ni ¼ �1;�2;… and i ¼ 1; 2; 3. The zero mode k ¼ 0
is already included in the description of the spacetime
background, and for that reason it does not appear
in Eq. (17).
According to the Eq. (18) the behavior of the mode

functions v~kðηÞ depends crucially on the relative value
between the square of the wave number k2, and the
background function z00=z. For those modes smaller than
the Compton wavelength, k ≫ am, we obtain (remember
that in the fast expansion regime the Compton wavelength is
always well inside the Hubble radius, and then am ≫ aH)

v~kðηÞ ¼
1ffiffiffiffiffi
2k

p ð1þO2ðH=m; am=kÞÞ exp ½−ið1þO2ðH=m; am=kÞÞkη�; ð19aÞ

whereas for modes larger than this quantity, k ≪ am, we find

v~kðηÞ ¼
AðkÞffiffiffiffiffiffiffi
2m

p
�
BðkÞz̄ − 1

5
BðkÞa

�
k
am

��
k
aH

��
sinðmtÞ − 3

2

�
H
m

�
cos3ðmtÞ þO2ðH=mÞ

�

− iB−1ðkÞz̄
Z

dðmηÞ
z̄2

þ i
7
B−1ðkÞ 1

a2

�
k
am

��
k
aH

��
cosðmtÞ − 3

2

�
H
m

�
sin3ðmtÞ þO2ðH=mÞ

�
þO2ðH=m; k=amÞ

�

ð19bÞ

(or v~k ¼ vr~k þ ivi~k if we prefer to think in terms of two real,

linearly independent mode functions vr~k and vi~k.). Here

we have defined z̄ ¼ z=
ffiffiffi
6

p
MPl. Also, the functions v~kðηÞ

have been normalized so that v~kðv�~kÞ
0 − v0~kðv

�
~k
Þ ¼ i, with

the convention that in the asymptotic limit H=m → 0,

k=ðamÞ → ∞, we recover standard massless plane waves,

i.e. v~kðηÞ ¼ e−ikη=
ffiffiffiffiffi
2k

p
in Eq. (19a). In the above expres-

sion AðkÞ is a phase factor, jAðkÞj2 ¼ 1, and BðkÞ is a real
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number necessary to connect the two regimes in Eqs. (19a)
and (19b) at k ∼ am. For our purposes in this paper we will
not need to determine these quantities.
Notice that, while factors of aH=k are small in Eq. (19a),

this is not necessarily true for factors of k=aH in the case of
Eq. (19b), where they can even dominate for modes inside
the Hubble radius, i.e. those modes with aH < k < am.
This implies that, for modes larger than the Compton
wavelength, the lowest nonvanishing contribution to the
Mukhanov-Sasaki variable is not given by limk→0v~kðηÞ∼
z̄ − iz̄

R
dðmηÞ=z̄2, as one could have naively expected.

Incidentally the extra terms will be crucial to determine the
behavior of the modes relevant for structure formation.

Since aH ∼ η−1 and am ∼ η2, eventually all modes reach
this regime. This completes our discussion of the
Mukhanov-Sasaki variable.
However, the Mukhanov-Sasaki variable is only an

auxiliary field (remember that this quantity is related to
the perturbation in the scalar field evaluated in the spatially
flat gauge). In order to make contact with observations we
need to move our attention, for instance, to the Newtonian
potential Ψ, or to the contrast in the energy density, δε=ε0.
Introducing the expressions for the Mukhanov-Sasaki
variable [Eqs. (19a) and (19b)], into e.g. Eq. (14a), we
obtain for the Newtonian potential3

Ψ~kðηÞ ¼
ffiffiffi
3

2

r
1

MPl
×

8><
>:

iffiffiffiffi
2k

p
	
aH
k



1
a cosðmtÞe−ikη; if k ≫ am;

AðkÞffiffiffiffiffi
2m

p
h
1
5
BðkÞ þ iB−1ðkÞ

	
aH
k


	
am
k



1
a3

i
; if k ≪ am;

ð20Þ

whereas from the Hamiltonian constraint (12a), we find for the contrast in the energy density4

δε

ε0

����
~k
¼

ffiffiffi
2

3

r
1

MPl
×

8>>>>><
>>>>>:

−iffiffiffiffi
2k

p
	

k
aH



1
a cosðmtÞe−ikη; if k ≫ am;

AðkÞffiffiffiffiffi
2m

p
h
− 1

5
BðkÞ

	
k
aH



2
− iB−1ðkÞ

	
m
H



1
a3

i
; if aH ≪ k ≪ am;

AðkÞffiffiffiffiffi
2m

p
h
− 6

5
BðkÞ þ 9iB−1ðkÞ

	
aH
k


	
am
k



1
a3

i
cos2ðmtÞ; if k ≪ aH:

ð21Þ

Note that the two expressions above have been reported
only to the lowest nonvanishing order in the series
expansions. A pattern of small-amplitude, high-frequency
oscillations are expected around the expressions in
Eqs. (20) and (21), but this will be enough for the purposes
of this paper.

For modes larger than the Compton wavelength,
k < am, the Newtonian potential mimics the behavior of
standard CDM: one of the solutions remains constant,
while the other decreases in time with H=a ∼ η−5; see for
instance Eq. (7.53) in Ref. [1] for details. On the other
hand, for modes smaller than the Compton wavelength,
k > am, the solution oscillates in time with a decreasing
amplitude, H ∼ 1=η3. This decay in the amplitude of the
Newtonian potential is characteristic of a barotropic
perfect fluid p ¼ pðεÞ ≪ ε with a nonvanishing Jeans
scale, c2s ≠ 0.
Something similar happens for the contrast in the energy

density, where high-frequency modes with k > am oscil-
late in time with damped amplitude, 1=a2H ∼ η−1. In
contrast, there appear two different regimes for the modes
larger than the Compton wavelength. Perturbations larger
than the Compton length but still smaller than the Hubble
radius, aH < k < am, can grow in time as 1=ðaHÞ2 ∼ η2,
or decrease as 1=ðHa3Þ ∼ η−3, which is again the same
behavior as in the standard CDM scenario. On the other
hand, those modes larger than the Hubble radius, k < aH,
freeze with a time-dependent modulation in cos2ðmtÞ. It is
possible to trace back this oscillatory dependency to a
background term, H0 −H2 ∼ cos2ðmtÞ=a, that appears in
the expression for the contrast in the energy density; see

4Here we have used the identity

δε

ε0

����
~k
¼ 8πG

z2

a2

��
1

3
þH0 −H2

k2

�
1

H

�
v~k
z

�0
−
�
v~k
z

��
; ð23Þ

that relates, in Fourier space, the Mukhanov-Sasaki variable to the
contrast in the energy density. Using the evolution for the
background universe we can write

1

3
þH0 −H2

k2
¼ 1

3

�
1 − 9

�
aH
k

�
2

cos2ðmtÞ þOðH=mÞ
�
: ð24Þ

3Here we have used the identity

Ψ~kðηÞ ¼ −8πG
z2

a2

�
H
2k2

�
v~k
z

�0�
; ð22Þ

that relates, in Fourier space, the Mukhanov-Sasaki variable to the
Newtonian potential.
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Eqs. (23) and (24) in footnote 4. These oscillations are
therefore not expected to appear in the case of a complex
scalar field for which H0 −H2 ∼ 1=a.
In particular, the growing mode in the energy density

contrast δε=ε0 ∼ 1=ðaHÞ2 ∼ η2 ∼ t2=3 (i.e. δε=ε0 ∼ a to the
lowest order in the expansion series) at those scales larger
than the Compton wavelength but smaller than the Hubble
radius, 1=m < λ < 1=H, is usually identified with structure
formation in the universe [see for instance Eq. (7.56) in
Ref. [1]]. Note however that the (large) oscillations for the
contrast in the energy density of modes larger than the
Hubble radius are not present in the case of CDM.
At this point it is interesting to stress once again the fact

that these statements are only valid in the conformal-
Newtonian coordinate system, where the gauge-invariant
fields Ψ and δε=ε0 take the same values as the Newtonian
potential and contrast in the energy density, respectively.
If we move to e.g. the synchronous coordinate system
ϕ ¼ B ¼ 0, the contrast in the energy density is related to
the gauge-invariant field δε=ε0 through δεs=ε0 ¼
δε=ε0 − ε00=ðaε0Þ

R
aΨdη, the constant of integration in

this formula corresponding to an unphysical fictitious
mode. As in the standard CDM scenario, the expression
for intermediate wavelengths aH ≪ k ≪ am in Eq. (21)
describes now all the modes larger than the Compton
wavelength of the scalar particle, k ≪ am, and then in this
gauge the contrast in the energy density grows with time as
the scale factor, even for those modes that are well outside
the Hubble horizon. (It is in this gauge that the matter
power spectrum is usually presented in the literature.) Note
that in this coordinate system the large oscillations in the
energy density disappear, and then it is not clear for us if
they could be observable in practice or if they are only a
gauge artifact.
Figure 3 shows the evolution of the contrast in the energy

density, δε=ε0j~k, for three individual Fourier modes that are
representative of the different regimes. For this figure we
have considered the same background evolution of Fig. 2,
so that initially we have mη ¼ 101=3, a ¼ 102=3 and
H=m ¼ 2 × 10−1=3. In order to calculate the contrast in
the energy density we integrate numerically Eqs. (14b) and
(18) for the function v~k and the Newtonian potential Ψ~k,
simultaneously with the background evolution. We then use
the Hamiltonian constraint (12a) to find the perturbation
in the energy density, δε~k.
The top panel in Fig. 3 corresponds to a mode with

k=m ¼ 108=3 ≈ 464, which is clearly in the regime k > am
for the time interval mη ∈ ð2; 11Þ. We can see that the
contrast in the energy density oscillates with an amplitude
that decays like 1=ða2HÞ, as expected. One can also clearly
see from the figure that we have oscillations with two quite
different frequencies: a high-frequency oscillation coming
from the term e−ikη, modulated by a lower-frequency
oscillation that corresponds to the term cosðmtÞ in
Eq. (21). The middle panel corresponds to a mode with

k=m ¼ 1=2 × 102=3 ≈ 2.32, so that aH < k < am, also in
the same time interval. In this case we see that the contrast
in the energy density grows as 1=ða2H2Þ, with small
oscillations. These modes are interesting for structure
formation since they grow as if they were made of
CDM. Finally, the bottom panel corresponds to a mode
with k=m ¼ 10−7=3 ≈ 4.64 × 10−3, for which we have
k < aH in the evolution. In this case the contrast in the
energy density rapidly reaches a regime where it oscillates
with constant amplitude. Notice that in all these three
scenarios the frequency of the oscillations increases as time
goes by. This is again to be expected since the frequency
should be constant in cosmological time t, so that it
increases in conformal time η.
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FIG. 3. Evolution of the contrast in the energy density, δε=ε0j~k,
as a function of conformal time mη for three different Fourier
modes, k=m ¼ ð102; 1=2; 10−3Þ × 102=3, in the universe depicted
in Fig. 2. The lower and higher wave numbers were chosen in
order to lie outside of the region ½aH; am� during the evolution.
Solid lines represent the results of the numerical evolution,
whereas dashed lines are obtained from an appropriate combi-
nation of the envelopes of the linearly independent solutions in
Eq. (21). Modes shorter than the Compton wavelength (top panel)
oscillate with damped amplitude. On the contrary, modes larger
than the cosmological horizon (bottom panel) freeze, showing an
oscillatory behavior associated to the inherent oscillation of the
scalar field. Finally, those modes that are larger than the Compton
wavelength but smaller than the Hubble radius (middle panel)
grow at the same rate as the scale factor, as it is expected in
the case of CDM. These modes can give rise to structures in the
late universe. Note that since the equations are linear we can
rescale the vertical axes in the figures arbitrarily, as long as the
amplitudes remain always less than unity.
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IV. DISCUSSION

For a perfect fluid with equation of state p ¼ pðεÞ ≪ ε,
there is a close relation between the Hubble radius and the
Jeans length, λJ ∼ csH−1. This is no longer true in the case
of a canonical scalar field, where the characteristic Jeans
length is fixed instead by λJ ∼ csajz00=zj−1=2. When this
length scale is much smaller than the Hubble radius,
perturbations can grow. For a perfect fluid this is possible
only if c2s ≪ 1. For a scalar field we have c2s ¼ 1, but we
could still satisfy ajz00=zj−1=2 ≪ H−1. This is what happens,
for instance, when the zero mode of the scalar field is
oscillating with high frequency (when compared to the
expansion rate of the universe) around a minimum of the
potential, where ajz00=zj−1=2 ∼m−1. Note that this value for
the Jeans length at the scale of the Compton wavelength of
the scalar particle cannot be resolved in terms of a non-
relativistic analysis, as was previously done by Hu et al. in
Ref. [5]. Indeed, the value of the Jeans length we identify
in this paper does not coincide with the naive estimation
they reported in Eq. (4) of that reference, and which has
been frequently used after that (see e.g. Ref. [10]).
For those modes larger than the Jeans length the scalar

field follows the evolution in the standard CDM scenario,
except for the large oscillations of the contrast in the energy
density for modes larger than the Hubble radius when
evaluated in e.g. the conformal-Newtonian gauge. Note
however that these (large) oscillations are not present in the
behavior of the Newtonian potential, for which the scalar
field behaves like CDM, or even in the super-Hubble
modes of the contrast to the energy density when evaluated
in e.g. the synchronous gauge. As far as we know these
oscillations of the contrast in the energy density for long-
wavelength modes in certain coordinate systems had not
been previously reported in the literature, and it will be very
interesting to explore if they are only a gauge artifact or if
on the contrary they could have imprinted some signatures
on the cosmological observables. We expect these oscil-
lations will not affect the large-scale structure of the
universe. After all, the distribution of galaxies is only
sensitive to the subhorizon modes, and these modes follow
the standard CDM evolution. However, they could affect
e.g. the cosmic microwave background photons at large
angular scales, which traced super-Hubble scales for a long
period of time during the cosmological evolution. We leave
a more detailed analysis of this point for a future work.

For those modes smaller than the Jeans length the
evolution cannot bring the small perturbations in the early
universe to the nonlinear regime, and the inhomogeneities
are erased. This will introduce a cutoff in the mass power
spectrum for the distribution of galaxies in the universe.
Something similar happens in warm DM scenarios [15].
If the mass of the scalar particle lies at the scale of
10 μeV or above, as it is expected for the QCD axion
[16], the Jeans length would be smaller than a centimeter,
and the growth of cosmic structures would be probably
indistinguishable to that in the standard CDM scenario, at
least while in the linear regime (see Ref. [9] for the case
when nonlinearities become important). However, if we
consider ultralight scalar particles of masses as low as
10−22 eV [5,17], the Jeans length grows to the scale of
parsecs. This could have observable physical consequences
in cosmology [10,18], alleviating, for instance, the missing
satellite discrepancy [19].
In order to determine properly the new expression for the

mass power spectrum we would need a more elaborate
analysis that includes, on the one hand, a knowledge of the
initial conditions for the scalar field after inflation, as well
as the evolution of the perturbations during the radiation
dominated era. We leave this study for a future paper.
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