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We study quantized solutions of the Wheeler de Witt (WdW) equation describing a closed Friedmann-
Robertson-Walker universe with a Λ term and a set of massless scalar fields. We show that when Λ ≪ 1 in
the natural units and the standard in-vacuum state is considered, either wave function of the universe, Ψ, or
its derivative with respect to the scale factor, a, behave as random quasiclassical fields at sufficiently large

values of a. The former case is realized when 1 ≪ a ≪ e
2
3Λ, while the latter is valid when a ≫ e

2
3Λ. The

statistical rms value of the wave function is proportional to the Hartle-Hawking wave function for a closed
universe with a Λ term. Alternatively, the behavior of our system at large values of a can be described in
terms of a density matrix corresponding to a mixed state, which is directly determined by statistical
properties ofΨ. Similar toΨ, the density matrix can be considered as a c-number valued in the position and
momentum representations. The probability distribution to find a universe with particular values of the
scale factor and field amplitudes following from this density matrix is again proportional to that of the
Hartle-Hawking wave function, while the probability distribution over field velocities is nontrivial and
different from what follows from the Hartle and Hawking formalism. We suppose that a similar behavior of
Ψ can be found in all models exhibiting copious production of excitations with respect to the out-vacuum
state associated with classical trajectories at large values of a. Thus, the third quantization procedure may
provide a “boundary condition” for classical solutions of the WdW equation. Contrary to the previous
proposals, in our case two equivalent descriptions of this classical solutions are possible. Either Ψ can be
regarded as a stochastic classical quantity or the system can be viewed as being in a mixed state defined
over classical solutions to the WdW equation.
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I. INTRODUCTION

One of the possible approaches to the problem of
quantum gravity is based on the canonical quantization
of Einstein equations and analysis of properties and
solutions of the emerging Wheeler de Witt (WdW) equa-
tion for the wave functional of the Universe,Ψ [1], see e.g.,
[2] for a review and further references. When Ψ is
considered as a c-number valued some long-standing issues
arise. First, a direct probabilistic interpretation is hampered;
second, there is an ambiguity related to initial (or, boun-
dary) conditions for solutions to WdW equation. Over the
years several proposals for a possible choice of initial
conditions have been made, notably the ones leading to the
tunneling wave function of Vilenkin [3] and “no-boundary”
wave function of Hartle and Hawking [4].
Some problems are alleviated in an approach, where Ψ

itself is treated as operator valued,Ψ → Ψ̂. This is based on
observation that the WdW equation has a formal structure
of a hyperbolic equation with a variable determined by the
volume element of spatial hypersurfaces playing a role of a

“time,” which can again be canonically quantized. This
procedure is called “the third quantization formalism,” see
e.g., [5]. It was explicitly realized in minisuperspace
models, where the metric was fixed by the condition that
it is of Friedmann-Robertson-Walker (FRW) type, and
matter degrees of freedom were modeled as a set of scalar
fields, see e.g., [6,7].
In the minisuperspace approach the wave functional

becomes a function depending on the scale factor, a, and
field amplitudes, and WdW equation is reduced to a Klein-
Gordon type equation with second derivatives over the
scale factor and the amplitudes entering it with opposite
signs and a potential being, in general, a function of these
variables. When the logarithm of the scale factor is chosen
as a time variable the differential part of WdW equation
takes the standard form of the d’Alembert operator in a
certain factor ordering scheme assumed from now on.
Close to singularity this variable tends to minus infinity and
it may be shown that the potential tends to zero. In this limit
the quantized WdW equation is the familiar Klein-Gordon
equation for a massless quantum scalar field, and, therefore,
the standard vacuum state for this field can be chosen as a
quantum state of the system, e.g., [6]. Hereafter, we call it
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the in state having in mind the analogy with formalism of
quantum fields in curved spacetimes, see [8]. On the other
hand, in a class of models, where classical dynamics with
large values of scale factors is possible, there is another
natural vacuum state associated with a set of quasiclassical
solutions of WdWequation called hereafter the out state. In
general, this state does not coincidewith the in state, thus the
latter contains excitations with respect to the former one.
This effect is interpreted as “creation of universes from
nothing” in the framework of the third quantization pro-
cedure [9]. Technically, this means that a positive frequency
solution defined with respect to the in state is a mixture of
positive and negative frequency solutions corresponding to
the out state, with the Bogolyubov coefficient β in the
decomposition of positive frequency solutions over the
negative frequency ones being nonzero. The amount of
produced universes with given constants of motion corre-
sponding to a particular quasiclassical out mode is propor-
tional to the square of the absolute value of β, summed over
all modes defined with respect to the in state.
In this paper we would like to propose another interpre-

tation of the emergence of “classical” properties of the
system on hand in the framework of the third quantization
formalism. Namely, we show that in a range of sufficiently
large scale factors the quantizedwave function can behave as
a random classical variable. We consider a simple WdW
minisuperspace model of a closed FRW universe with a Λ
term and n homogeneous massless scalar fields, φi,
2 ≤ i ≤ n. It was shown that when Λ ≪ 1 in the natural
Planck units, typical values of β are exponentially large, β ∝
e

2
Λ [7]. On the other hand, theWdWequation of this model is
quite similar to those used to describe the dynamics of test
quantum fields in a natural in-vacuum state in inflationary
models, see e.g., [10–12].As is known the latter problemalso
exhibits a copious “particle” production with respect to a
suitably chosen out state. Also, a large scale part of these
fields essentially behaves as a random classical field, e.g.,
[12–14]. In this case the creation and annihilation operators
in the decomposition of the test field over the normal modes
can be treated as classical random variables obeying
Gaussian statistics. There are several possible tests of this
(quasi)classical behavior, in particular based on investiga-
tion of the evolution of the in-vacuum state in the
Schrodinger representation (e.g., [14,15]), or the use of
theWigner function corresponding to this state, e.g., [14,16].
In particular, the invacuumshouldbe strongly squeezedwith
dispersion of a canonical variable manifesting a quasiclass-
ical behavior beingmuch larger than a typical one following
from the uncertainty principle (e.g., [15]). The Wigner
function in the regime of quasiclassical dynamics is approx-
imately reduced to a phase density distribution of a bunch of
classical trajectories.
We show that both these criteria are satisfied in our

model in a certain average sense, for modes giving the main
contribution to the expectation values of interest [17].

Therefore, these expectation values can be treated as
statistical averages of classical quantities. However, an
important difference with the test field case consists in the
fact that in our case mode amplitudes, and, accordingly, Ψ̂,
are approximately quasiclassical only when 1 ≪ a ≪ e

2
3Λ.

When a ≫ e
2
3Λ the mode momenta are quasiclassical, and,

therefore, it is the derivative of Ψ̂ over a, which exhibits
quasiclassical behavior. Thus, the third quantization pro-
cedure together with a natural choice of the in state may be
used to define an initial condition for a classical wave
function Ψ. Unlike the known proposals for the initial
conditions in our case Ψ is essentially a random quantity.
Interestingly, the rms value of our wave function,

ffiffiffiffiffiffiffiffiffiffiffiffiffihΨΨ�ip
,

is approximately proportional to the Hartle and Hawking
expression in our model, although it is not clear to us
whether this fact is due to a coincidence, or it may be of a
generic nature.
Alternatively, when 1 ≪ a ≪ e

2
3Λ we can use a density

matrix with c-numbered matrix elements instead of the
classical wave function. Thus, in our model in this regime
the quantum state of the Universe is a mixed one. Its
diagonal elements in the position representation are equal
to hΨΨ�i, while it has a nontrivial structure in the
momentum representation giving a probability to find
universes with different values of _φi.
The structure of the paper is as follows. In Sec. II we

introduce basic definitions and equations. In Sec. III we
obtain asymptotic solutions to the WdW equation in
the limit Λ → 0 based on a procedure involving the
Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) technique
and the use of different approximate solutions with
common ranges of validity. In Sec. IV we discuss values
of jβj2 and the behavior of the Wigner function and the
vacuum state in our model, showing that they all indicate
quasiclassical dynamics of the variables of interest in the
sense explained above. In Sec. Van explicit form ofΨ valid
for values of a ≫ 1 is obtained and its averaged value is
calculated. In the same section we derive expressions for
the density matrix in the momentum and position repre-
sentations and discuss its properties. Finally, we present our
conclusions and discuss our results in Sec. VI.
We use below the natural Planck system of units setting

Planck and gravitational constants as well as the speed of
light to unity.

II. BASIC DEFINITIONS AND EQUATIONS

In what follows we are going to consider the quantum
dynamics of a FRW universe with positive spatial curva-
ture, having a cosmological term Λ, and n massless scalar
fields φi, where i ¼ 1;…; n. In this case the Wheeler de
Witt (WdW) equation takes the form (e.g., [6,19])

� ∂2

∂t2 − Δn þ
Λ
3
exp ð6tÞ − exp ð4tÞ

�
Ψ̂ ¼ 0; ð1Þ
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where t ¼ ln a and a is the scale factor [20],Δn ¼
P

n
i¼1

∂2

∂φ2
i

and Ψ̂ is the wave function. In agreement with the third
quantization procedure we treat the wave function as an
operator obeying the standard commutation relations:

�
Ψ̂ðt; xÞ; ∂∂t Ψ̂

†ðt; x0Þ
�
¼ iδnðx − x0Þ; ð2Þ

where ½� � �� is the field commutator, x represents n-dimen-
sional vector with components φi, δnðxÞ is n-dimensional
Dirac delta function, and the dagger stands hereafter for
Hermitian adjoint.
Equation (1) is formally a Klein-Gordon equation for a

free quantum field having a time dependant potential

VðtÞ ¼ Λ
3
exp ð6tÞ − exp ð4tÞ; ð3Þ

and the associated Lagrangian and Hamiltonian can be
written in the form

L̂ ¼
Z

dnx

� ∂
∂t Ψ̂

∂
∂t Ψ̂

† − Ψ̂;iΨ̂
†
;i − VΨ̂Ψ̂†

�
;

Ĥ ¼
Z

dnxðP̂P̂† þ Ψ̂;iΨ̂
†
;i þ VΨ̂Ψ̂†Þ; ð4Þ

where commas stand for partial differentiation over φi,
summation over repeating Latin indices is implied from
now on, and P̂, P̂† are the canonical momenta. From the
Hamilton equations we easily obtain

P̂ ¼ ∂
∂t Ψ̂

†; P̂† ¼ ∂
∂t Ψ̂: ð5Þ

Note that the variable t plays the role of a timelike
variable in Eq. (4), and, therefore, it will be referred to as
“time” below. In order to avoid confusion, let us point out,
however, that the proper time is clearly absent in the WdW
equation due to its invariance with respect to a choice of the
lapse function.
Solutions to (1) can be represented in the standard form

Ψ̂ ¼
Z

dnkðUωeik·xâk þ U�
ωe−ik·xb̂

†
kÞ; ð6Þ

where k is an n-dimensional vector, · stands for the scalar
product, � is the complex conjugate and ω ¼ ffiffiffiffiffiffiffiffiffi

k · k
p

. The
mode functions Uω satisfy the equation

Üω þ ðω2 þ VÞUω ¼ 0; ð7Þ

where dots stand for differentiation over the timelike
variable t. Note that we clearly have Uω ¼ U−ω.
Assuming that the mode functions are normalized

according to the condition

Uω
_U�
ω − _UωU�

ω ¼ i
ð2πÞn ; ð8Þ

the operators âk and b̂k obey the standard commutation
relations for the creation and annihilation operators

½âk; â†k0 � ¼ δnðk − k0Þ; ½b̂k; b̂†k0 � ¼ δnðk − k0Þ ð9Þ

with other commutators being equal to zero.
It is worth noting that near the singularity when t → −∞

the potential V tends to zero and Eq. (1) formally describes
a massless free scalar field in an effective Minkowski
spacetime. Thus, when the field mode Uω is an eigen-
function of the timelike Killing vector in this spacetime,
and, accordingly, Uω ∝ e−iωt the vacuum state j0i defined
in such a way that âkj0i ¼ 0 and b̂kj0i ¼ 0 for all k is the
standard vacuum state for a massless scalar field in this
asymptotic limit. We use this state as the field state in our
analysis below.
For our purposes it is sometimes convenient to use

another representation for the field Ψ̂ through a Fourier
transform

Ψ̂ ¼
Z

dnkeik·xΨ̂ω;

Ψ̂ω ¼ 1ffiffiffi
2

p ðUωðĉ1;k þ iĉ2;kÞ þ U�
ωðĉ†1;k þ iĉ†2;kÞÞ; ð10Þ

where we introduce new creation and annihilation operators

ĉ1;k ¼
1ffiffiffi
2

p ðâk þ b̂−kÞ; ĉ2;k ¼
iffiffiffi
2

p ðb̂−k − âkÞ: ð11Þ

It is easy to see that these operators obey the standard
commutations. Also, it is evident that the vacuum state j0i
defined above is also a vacuum with respect to these
operators.
The Hamiltonian (4) can be expressed in terms of Ψ̂ω as

Ĥ ¼ ð2πÞn
Z

dnkðP̂ωP̂
†
ω þ ðω2 þ VÞΨ̂ωΨ̂

†
ωÞ;

P̂ω ¼ ∂
∂t Ψ̂

†
ω: ð12Þ

It can be brought to a standard form by separating Ψ̂ω into
the real and imaginary parts as Ψ̂ω ¼ 1ffiffiffiffiffiffiffiffiffiffi

2ð2πÞn
p ðq̂1;ω þ iq̂2;ωÞ,

where q̂1;ω and q̂2;ω are Hermitian and commute with each
other. We have

Ĥ ¼
X
α¼1;2

1

2

Z
dnkðp̂2

α;ω þ ðω2 þ VÞq̂2α;ωÞ;

p̂α;ω ¼ ∂
∂t q̂α;ω: ð13Þ
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The expression (13) tells that the problem can be formu-
lated in terms of an infinite set of oscillators with a time
dependent frequency. Based on the analogy with the
oscillators we introduce other time-dependent “creation
and annihilation operators,” d̂kðtÞ and d̂†kðtÞ, according to
the rule

d̂kðtÞ ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffi

Ωðt0Þ
p

q̂k þ
iffiffiffiffiffiffiffiffiffiffiffi
Ωðt0Þ

p p̂k

�
; ð14Þ

where

Ωðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Vðt0Þ

q
; ð15Þ

the potential V is assumed to be taken at a particular fixed
moment of time, t0, and, therefore, Ωðt0Þ does not depend
on time t. Also, for simplicity we assume hereafter t0 is
such that ω2 þ Vðt0Þ > 0, and, accordingly, Ωðt0Þ is real.
By construction the operators (14) obey the standard
commuting relations. Thus, they can be related to the
operators ĉk by a Bogolyubov transformation

d̂kðtÞ ¼ αωĉk þ βωĉ
†
k; jαωj2 − jβωj2 ¼ 1: ð16Þ

The explicit form of the Bogolyubov coefficients follows
from expressions (10)–(14):

αω ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn
2

r � ffiffiffiffi
Ω

p
ðt0ÞUω þ iffiffiffiffiffiffiffiffiffiffiffi

Ωðt0Þ
p _Uω

�
;

βω ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn
2

r � ffiffiffiffi
Ω

p
ðt0ÞU�

ω þ iffiffiffiffiffiffiffiffiffiffiffi
Ωðt0Þ

p _U�
ω

�
: ð17Þ

The normalization condition (8) tells that the
Bogolyubov coefficients do obey the second equality
in (16).
The vacuum state defined by the condition dkðt0Þj0iad ¼

0 determines so-called “adiabatic” vacuum state j0iad (see
e.g., [8]). Note that, by definition, this state does not depend
on time.
Of special importance are two particular values of

t0, t0 → �∞.
In the former case the adiabatic vacuum state provides a

natural out-vacuum state for our problem. Thus, when
βkðt0 → ∞Þ ≠ 0 the state j0i contains excitations above the
out vacuum usually interpreted as “creation of particles” (or
universes, in our case) from “nothing.”
The latter case corresponds to setting Vðt0Þ in (15) to

zero. Clearly, in this situation relations (16) and (17) simply
determine the evolution of ĉk and ĉ†k in the Heisenberg
representation. On the other hand, in the Schrodinger
representation these relations can be used to determine
the evolution of the wave functional, see e.g., [14] and
Sec. IV B below.

III. AN ASYMPTOTIC ANALYTIC SOLUTION
OF THE WDW EQUATION

In general, solutions to Eq. (7) can be obtained analyti-
cally only when either the first or the second term in the
expression for potential V in (3) is discarded. This
corresponds to neglecting the influence of the Λ term or
spatial curvature, respectively. When both terms in Eq. (3)
are retained it can either be solved numerically or an
approximate solution can be looked for using appropriate
asymptotic methods. Here we consider the second pos-
sibility in detail in the limit Λ ≪ 1, which may be
appropriate for inflationary models, where the value of
the Λ term is generally much smaller than its natural Planck
value Λ ¼ 1. Numerical solutions will be used to validate
our analytic approach.
Additionally, for simplicity we are going to consider

sufficiently small values of the frequency ω, namely,
in our analytical work we formally assume hereafter

that ω ≪ ωcrit, where ωcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VminðtminÞ

p ¼ 2ffiffi
3

p 1
Λ, and

VminðtminÞ ¼ − 4
3Λ2, tmin ¼ 1

2
ln 2

Λ are the minimal (negative)
value of the potential V and the corresponding value of the
variable t, respectively. For such values of ω we can use the
WKBJ approximation, assuming that a solution to (7) is
approximately proportional to

1ffiffiffi
_S

p eiSðtÞ; S¼�
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þV

p
; jSj≫ 1 ð18Þ

both in the classically forbidden region corresponding to an
intermediate range of t, where ω ≪ −V and in the
classically allowed regions corresponding to small values
of t, where V → 0, and large values of t, where V ≫ ω. In
the forbidden region the phase S is purely imaginary, and
therefore a general solution to (7) has the form of a sum of
growing and decaying exponents multiplied by the pre-
exponential factor, while in the allowed region S is real and
the solution to (7) has oscillatory behavior. It is very
important to note that the WKBJ approximation breaks
down when the time t is close to t� ¼ 1

2
ln 3

Λ such that
Vðt�Þ ¼ 0. However, in the vicinity of this moment of time
one can simplify (7), find an appropriate exact solution of
the simplified equation and match it to the WKBJ solution.
Thus, the whole time interval −∞ < t < þ∞ can be

subdivided into four overlapping regions: (1) the region of
sufficiently small t, where the curvature term dominate over
the term proportional to Λ in the expression for the
potential, (2) the classically forbidden region, (3) the region
close to the moment t ¼ t� and (4) the classically allowed
region. These regions together with the potential VðtÞ are
schematically shown in Fig. 1. Matching solutions in all
these regions and using the normalization condition (8) we
can find a solution for Uω approximately valid when
ω ≪ ωcrit. As we shall see below, a comparison with
numerical results shows that this solution is qualitatively
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valid even when ω ≤ ωcrit. On the other hand, an approxi-
mate solution in the opposite limit ω ≫ ωcrit can be
obtained by setting the term determined by the curvature
in (3) to zero. Its form is well known, see e.g., [2], and
unimportant for us.
Let us consider the behavior of Uω by turns, starting

from region (1).
In this region the explicit form of the solution can be

written as

Uω ≈ CωI−iω
2

�
e2t

2

�
; Cω ¼ 2−iω

Γð1 − iω
2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞnωp ; ð19Þ

where IνðxÞ is the modified Bessel function of the first
kind, the coefficient Cω is determined by the normalization
condition (8) and ΓðxÞ is the gamma function, see also e.g.
[21]. It is easy to see that when e2t ≪ 1 from Eq. (19) it
follows that Uω ≈ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞnω
p e−iωt, which is just the standard

positive frequency solution in ðnþ 1Þ-dimensional
Minkowski spacetime normalized according to (8), see
e.g., [19].
Below we shall need an asymptotic form of the modified

Bessel function of purely imaginary index at large values of
its argument. As discussed in e.g., [22] to this purpose it is
convenient to consider the modified Bessel function of
second kind KνðxÞ and an additional function LνðxÞ
defined according to the rule

KνðxÞ ¼
π

2 sinðπνÞ ðI−νðxÞ − IνðxÞÞ;

LνðxÞ ¼
iπ

2 sinðπνÞ ðI−νðxÞ þ IνðxÞÞ: ð20Þ

Note that both functions are real when their argument is real
and the index is purely imaginary. As shown in [22] when
x → ∞, LiμðxÞ ≈ 1

sinhðπμÞ
ffiffiffiffi
π
2x

p
ex, while KiμðxÞ has the well-

known asymptotic form: KiμðxÞ ≈
ffiffiffiffi
π
2x

p
e−x in the same

limit. Using these expressions and considering sufficiently
large values of t we obtain from (19) and (20)

Uω ≈
Cωffiffiffi
π

p e−t
�
exp

�
e2t

2

�
þ i sinh

�
πω

2

�
exp

�
−
e2t

2

��
:

ð21Þ

Note that although the last term in the brackets is
exponentially small at large t it is needed to be retained
for the asymptotic solution (21) to satisfy the normalization
condition (8).
The solution (21) can be matched to a WKBJ solution of

the form (18) in a time interval within region (2), where on
one hand the time t is small enough such that t < tmin, and
on the other hand, it is sufficiently large for the condition
ω ≪

ffiffiffiffiffiffiffi
−V

p
to be fulfilled.

Before doing so let us discuss the WKBJ phase, S, in
(18). In general, it can be represented in the form

S ¼ �i
Z

dx
2x

ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
; PðxÞ ¼ 4x2 −

8

3
Λx3 − ω2;

ð22Þ

where we introduce a new independent variable x ¼ e2t
2
.

Since the polynomial PðxÞ is of the third order explicit
integration over x in (22) is rather cumbersome. It becomes
trivial, however, when we set ω ¼ 0. In this case PðxÞ ∝ x2,
and the integration gives S ¼ ∓ i

Λ ð1 − 2Λx
3
Þ3=2. In order to

avoid unnecessary complications let us take into account
that in the limit ω ≪ ωcrit the term ω2 in (22) may play a
role only when t ∼ t�. To take this fact into account we can
consider a modified polynomial, Pmod, in (22) fixed by the
following conditions: it is of third order, Pmod ∝ x2, Pmod ¼
P when ω ¼ 0 and Pmodðt�Þ ¼ 0. By doing so we obtain
Pmod¼x2ð4− 4

9
Λ2ω2− 8

3
ΛxÞ and S¼∓ i

Λð1−Λ2ω2

9
− 2Λx

3
Þ3=2.

Taking this into consideration it is easy to see that the
matching procedure in region (2) gives in the leading order

Uω≈
Cωffiffiffi
π

p e−t

ϕ1=4
−

�
e

1
Λð1−ϕ3=2

− Þ þ isinh

�
πω

2

�
e−

1
Λð1−ϕ3=2

− Þ
�
; ð23Þ

where

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5 x 10
5

V
(t

)

t

−ω2

1)
2)

2)1) 2)
3)

3) 3)
4)

4)

FIG. 1 (color online). We show the potential VðtÞ together with
four overlapping regions, where various approximations dis-
cussed in the text are possible. The potential is calculated for
Λ ¼ 3 × 10−3, square of the mode frequency is taken to be
ω2 ¼ 0.5. Since the precise positions of boundaries of these
regions are ambiguous they are shown schematically. Vertical
solid, dashed, dotted, dot-dashed lines show the positions of
boundaries of regions (1), (2), (3) and (4), respectively.
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ϕ− ¼ 1 −
Λ2ω2

9
−
Λ
3
e2t: ð24Þ

Now let us consider region (3), where t ∼ t�. For that we
assume that relative difference ðt� − ω2Λ2

18
− tÞ=t� is small

and simplify Eq. (7) retaining only leading order terms with
respect to the relative difference. It is convenient to
introduce a natural variable z ¼ 181=3

Λ2=3 ðt� − ω2Λ2

18
− tÞ to see

that after the simplification Eq. (7) is reduced to the Airy
equation

d2

dz2
Uk − zUk ¼ 0: ð25Þ

Solutions to (25) are matched to (23) in the region, where
both conditions ðt� − ω2Λ2

18
− tÞ=t� ≪ 1 and z ≫ 1 are ful-

filled. This gives the solution in the form

Uω ¼ Cω2
−1=6

�
Λ
3

�
1=3

ð2e1
ΛAiðzÞ þ i sinh

�
πω

2

�
e−

1
ΛBiðzÞÞ;

ð26Þ

where AiðzÞ and BiðzÞ are Airy functions of the first and the
second kind, respectively.
The solution can be analytically continued to the region

z < 0. Using a standard result and assuming that z1 ≡
−z ≫ 1 we obtain

Uω ¼ Cω
2−1=6ffiffiffi
π

p
z1=41

�
Λ
3

�
1=3

�
2e

1
Λ sin

�
2

3
z3=21 þ π

4

�
þ i sinh

�
πω

2

�
e−

1
Λ cos

�
2

3
z3=21 þ π

4

��
: ð27Þ

Finally, we can match solution (27) to the solution of the form (18) in the classically allowed region (4) using the
same technique as the one leading to expressions (26) and (27) and taking into account that in this region

S ¼ 1
Λ ðΛ3 e2t þ Λ2ω2

9
− 1Þ3=2. We have

Uω ¼ Cωffiffiffi
π

p e−t

ϕ1=4
þ

�
2e

1
Λ sin

�
1

Λ
ϕ3=2
þ þ π

4

�
þ i sinh

�
πω

2

�
e−

1
Λ cos

�
1

Λ
ϕ3=2
þ þ π

4

��
; ð28Þ

where

ϕþ ≡ −ϕ− ¼ Λ
3
e2t þ Λ2ω2

9
− 1: ð29Þ

Equations (19), (23), (26) and (28) give the expression of
Uω in regions (1)–(4), respectively. Note that the term ∝ ω2

in (29) must be discarded in the limit t → ∞, since it gives
an artificially large contribution due to the use of PmodðxÞ
instead of PðxÞ in our analysis above.

IV. TRANSITION TO QUASICLASSICALITY

Equation (7) describes an oscillator with a time-dependent
frequency. Its form is analogous to the form of the equation
used, for example, to study the evolution of a test massless
scalar quantum field in an expanding Universe, see e.g.,
[11,12,23], although potential VcðηÞ used in the cosmologi-
cal setting has another time dependence [26], η is the so-
called “conformal time.” In a class of cosmological models,
notably in the important case of inflationary models VcðηÞ
tends to zero at small values of η, while at sufficiently large η
its absolute value can be much larger than the square of the
wave number, k2c, characterizing a particular field mode. In
this case the in-vacuum state specifying initial conditions for
the field evolution is typically defined in a way analogous to
what is used in this paper. Modes evolving in the regime
kc <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijVcðηÞj
p

during a considerable period of time expe-
rience a copious growth of occupation numbers with respect

to a natural out-vacuum state. When inflationary models are
considered, such a regime corresponds to physical wave-
lengths of the modes being larger than the cosmological
horizon scale, and, accordingly, kc ≪ 1=η. In the framework
of these models it has been shown (see e.g., [12,14]) that a
large scale part of the field consisting of the modes with
sufficiently small wave numbers, which have been evolved
outside the cosmological horizon for a long time, behaves as
a classical random field with zero expectation value. We
suppose similar behavior in our case for the part of the wave
function consisting of modes with ω < ωcrit, at large values
of our time variable t. To probe the classical behavior we are
going to calculate explicit values of the Bogolyubov
coefficients given by expressions (17) and, following [14],
the time dependence of the Wigner function corresponding
to our quantum state, which has a special form for a system
evolving in a quasiclassical regime.

A. Calculation of the amount of produced universes

The amount of universes produced at late “times” t → ∞
per unit of volume in k space [27] is given by the square of
an absolute value of Bogolyubov coefficient β,

jβωj2 ¼
ð2πÞn
2

ðΩðt0ÞUωU�
ωþΩ−1ðt0Þ _Uω

_U�
ωÞ− 1=2; ð30Þ

where we use (8) and (17). Note that the physical meaning
of multiple production of universes was discussed in
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e.g., [6]. As discussed in this paper jβj2 may be considered
as being proportional to a probability to find a universe with
given parameters, in our case characterized by different
values of k. In quantum cosmology the picture of multiple
universes itself has a direct physical meaning either when
their wave functions can interfere (e.g., [6]) or through
nonlinear interaction terms added to the quantized WdW
equation, see e.g., [28].
In order to obtain jβj2 explicitly we assume that

t ¼ t0 → ∞, thus calculating occupation numbers with
respect to our out-vacuum state. In this limit we have

Ωðt0Þ ≈
ffiffiffi
Λ
3

q
e3t and ϕþ ≈ Λ

3
e2t. Substituting these expres-

sions into (28) and the resulting one into (30) we obtain

jβωj2 ¼
1

8 sinhðπω
2
Þ
�
2e

1
Λ − sinh

�
πω

2

�
e−

1
Λ

�
2

ð31Þ

[29]. Equation (31) tells that jβωj2 ∝ e
2
Λ when ω ≪ ωcrit.

This result was obtained in [7] by qualitative means. On the
other hand, as it is evident from (31) jβωj2 strongly
decreases with increase of ω. It is formally equal to zero
at ω ≈ 4

πΛ. However, this value is slightly larger than ωcrit

and we derived (31) assuming that ω ≪ ωcrit. Therefore,
the latter effect may be an artifact of our approximations.
Figure 2 shows jβωj2 given by Eq. (30) as well as the result
of calculation of jβωj2 by numerical means. One can see
that there is a very good agreement between analytic and
numerical results at small values of ω. When ω ∼ ωcrit
numerical and analytic curves differ by several orders of
magnitude, but have qualitatively similar behavior. In both
cases there is a drastic decrease of jβωj2 towardsωcrit. When
ω > ωcrit the numerical curve shows that jβωj2 is small.

B. Wigner function

As was discussed in e.g., [14,15] in a quasiclassical
regime the Wigner function has a special form of a
distribution over a generalized coordinate multiplied by
a sharply peaked distribution centered at a linear combi-
nation of generalized momentum and coordinate of a
classical trajectory. Let us calculate it for our model. In
this section, we assume, for simplicity, that our quantum
field Ψ† is quantized in a box, since this assumption does
not influence our conclusions. This has an advantage that
we shall deal with ordinary functions rather than func-
tionals when treating wave functions corresponding to the
quantum state of our system [30]. In this case the
Kronecker deltas are implied in (2) and (9) instead of
delta functions, and summation instead of integration in the
expressions containing integrals over k is to be used. The
normalization condition also changes but we are nonethe-
less going to use Eq. (8) since it does not affect our results.
After this assumption is made, the expression (13) tells

that our model is reduced to a discrete set of oscillators with
time dependent frequency and different values of k and α.
Let us consider one of them with a particular value of ω.
The Wigner function corresponding to this oscillator has
the standard form

Wðp; qÞ ¼ 1

π

Z
∞

−∞
dyΨ�

Sðqþ yÞΨSðq − yÞe2ipy; ð32Þ

where c-numbers p and q are conjugated momentum and
coordinate, ΨSðqÞ is the wave function in the Schrodinger
representation, andwe omit indices k, α andω in this section.
To find the evolution of ΨSðqÞ let us note that in the

Schrodinger representation the operators p̂ and q̂ entering
(13) have the standard form p̂ ¼ −i ∂

∂q and q̂ ¼ q. On the
other hand ΨSðqÞ corresponds to the vacuum state,
and, therefore, ĉΨSðqÞ ¼ 0. Setting Ωðt0Þ ¼ ω in
Eqs. (14)–(16) we express ĉ in terms of p̂ and q̂ to get

�
d
dq

þDq

�
ΨSðqÞ ¼ 0; ð33Þ

where

D ¼ ω

�
α� − β

α� þ β

�
: ð34Þ

Note that the same equation was obtained in [14] in the
quantum field context. Taking into account that when
t → −∞ ΨSðqÞ tends to that of the vacuum state of an
oscillator with frequency ω we have

ΨSðqÞ¼
�
K
2π

�
1=4

exp

�
−
Dq2

2

�
; K¼DþD�; ð35Þ

and substituting (35) into (32) we obtain

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

ω/ω
crit

|β
ω
|2

FIG. 2 (color online). The square of absolute value of the
Bogolyubov coefficient βω is shown as a function of ratio ω=ωcrit,
for Λ ¼ 3 × 10−3. Solid and dashed curves represent numerical
result and expression (31), respectively.
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Wðp; qÞ ¼ 1

π
exp

�
−
�
Kq2

2
þ ð2pþ RqÞ2

2K

��
;

R ¼ iðD� −DÞ: ð36Þ

The Wigner function has an important symmetry with
respect to interchange of the canonical variables. Namely, it
can be written in another form,

Wðp; qÞ ¼ 1

π
exp

�
−
�
Knp2

2
þ ð2q − RnpÞ2

2Kn

��
;

Kn ¼
1

D� þ
1

D
; Rn ¼ i

�
1

D� −
1

D

�
: ð37Þ

This property follows from the observation that when the
momentum rather than coordinate representation for the

operators p̂ and q̂ is used we have a similar equation for
wave function differing from (33) by a new coefficient
Dn ¼ 1=D. Also, in the momentum representation there
should be the opposite sign of the argument in the exponent
in (32). Note that since the Wigner function is positive
definite in our case we treat it as determining a probability
distribution in phase space.
When either K → 0 or Kn → 0 distributions (36), (37)

are sharply peaked around 2pþ Rq ¼ 0 and 2q − Rnp,
respectively. Let us show that these relations hold
“on average” for a classical solution of our equations of
motion in the limit t ≫ 1 and calculate coefficients K, Kn,
R and Rn explicitly, in the same limit. To do so we simplify
the expressions for α and β in Eq. (17) using the same
approximations as in Sec. IVA, but now setting Ωðt0Þ¼ω
there. We obtain

α ¼ ð2πÞn−12 Cωððω1=2Ω−1=2ðtÞa1 þ ω−1=2Ω1=2ðtÞa2Þ sinϕþ iðω1=2Ω−1=2ðtÞa2 þ ω−1=2Ω1=2ðtÞa1Þ cosϕÞ; ð38Þ
and

β ¼ ð2πÞn−12 C�
ωððω1=2Ω−1=2ðtÞa1 − ω−1=2Ω1=2ðtÞa2Þ sinϕþ iðω1=2Ω−1=2ðtÞa1 − ω−1=2Ω1=2ðtÞa2Þ cosϕÞ; ð39Þ

where, by definition,ΩðtÞ ¼
ffiffiffi
Λ
3

q
e3t is the asymptotic value

of (15) with t0 being substituted by t, in the limit t → ∞,
a1 ¼ 2e

1
Λ, a2 ¼ sinhðπω

2
Þe−1

Λ, ϕ ¼ Λ1=2

33=2
e3tð1 − 3

Λ e
−2tÞ3=2 þ π

4

is the phase of sine and cosine entering (28). Note that
_ϕ ≈ ΩðtÞ and we use Eq. (29) for ϕþ setting ω ¼ 0 there
due to the reason explained above, but taking into account
the curvature term in the arguments of sine and cosine.
Substituting (38) and (39) in (34)–(37) we have

K ¼ 2Ω
a1a2

a21sin
2ϕþ a22cos

2ϕ
≈ 2Ω

a2
a1

1

sin2ϕ
;

R ¼ Ω
ða22 − a21Þ sin 2ϕ

a21sin
2ϕþ a22cos

2ϕ
≈ −2Ω cotϕ; ð40Þ

and

Kn ¼ 2Ω−1 a1a2
a22sin

2ϕþ a21cos
2ϕ

≈ 2Ω−1 a2
a1

1

cos2ϕ
;

Rn ¼ Ω−1 ða21 − a22Þ sin 2ϕ
a22sin

2ϕþ a21cos
2ϕ

≈ 2Ω−1 tanϕ; ð41Þ

where Ω≡ΩðtÞ from now on, we take into account that
when ω ≪ ωcrit we have a2 ≪ a1 to get the approximate
expressions. Note that these are valid only when the phase
ϕ is not very close to ϕj ¼ πj and ϕj ¼ π=2þ πj (j is an
integer), respectively, for Eqs. (40) and (41). Hereafter, we
assume that the value of time variable t is such that this

condition is satisfied. The opposite case should be treated
separately.
When the classical motion is considered p ¼ _q. Using

this fact and the approximate expressions for R and Rn in
(40) and (41) we easily see that both combinations
2pþ Rq and 2q − Rnp are equal to zero provided that q
is proportional to sinϕ, which is an approximate solution of
the classical equations of motion at large times. Thus, in
both cases of small K and Kn distributions (36) and (37)
can be treated as describing bundles of classical trajectories
with a random Gaussian distribution of the coordinate and
momentum, respectively. It is interesting to point out that
these trajectories have the same phase ϕ. Thus, in the
quasiclassical limit only one of two linearly independent
solutions of the equations of motion is present. This is
analogous to the test quantum field problem, where the so-
called “growing” mode is singled out in the same regime.
Let us stress again that this picture is not correct when the
degenerate set of phase ϕj is considered. In the latter case
the behavior of the system is no longer quasiclassical.
It is instructive to introduce a “nascent delta function”

δϵðxÞ ¼ 1ffiffiffiffiffi
2πϵ

p e−
x2
2ϵ having the property that δϵ→0ðxÞ → δðxÞ

and rewrite (36) and (37) in an equivalent form as

Wðp; qÞ ¼
ffiffiffiffiffiffi
K
2π

r
e−

Kq2

2 δK

�
pþ R

2
q

�

¼
ffiffiffiffiffiffi
Kn

2π

r
e−

Knq2

2 δKn

�
q −

Rn

2
p

�
: ð42Þ
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Equation (42) tells that when K → 0 or Kn → 0 the
probability distribution over q or p has a dispersion much
larger than 1, while the probability distribution over the other
coordinate shrinks. This is a characteristics of a strongly
squeezed vacuum state. It is well known in this case the
coordinate having a large dispersion can be treated as a
classical random quantity with a Gaussian distribution [15].
Thus, we have two possible cases of quasiclassical evolution
of one particular mode referred to hereafter as case one and
case two. In the former case corresponding to modes with
relatively small ω the coordinate can be treated as a classical
random variable, while in the latter case valid for modes with
relatively large ω, which are, however, smaller than ωcrit it is
the momentum which is quasiclassical.
From the condition 1̄

K ≡ 1
π

R
dϕ 1

K ¼ 1 let us find a typical
frequency, ωs, which separates modes evolving in the two
different quasiclassical regimes. When ω ≪ ωs we have
case one, while the opposite case two is realized when
ωs ≪ ω ≪ ωcrit. Note that when ω ∼ ωs the system behav-
ior is essentially quantum. We have

ωs ¼
2

π

�
2

Λ
− 3t −

1

2
ln

�
Λ
3

��
; ð43Þ

where we assume, for simplicity, that πωs
2

> 1. Neglecting
the logarithmic correction we see that case one is present in
the system only when

t < tcrit ≡ 2

3Λ
; ð44Þ

and, accordingly, the scale factor a < acrit ¼ e
2
3Λ.

V. QUASICLASSICAL STOCHASTIC WAVE
FUNCTION OF THE UNIVERSE AND ITS

DESCRIPTION THROUGH A DENSITY MATRIX

A. Quasiclassical wave function

As we discussed in the previous section when 1 ≪ t ≪
tcrit the large scale part of the Ψ̂ consisting of modes with
ω ≪ ωs, Ψqc, may be considered as a quasiclassical one. It
can be represented using an approach analogous to the so-
called coarse graining procedure frequently used for
quantum fields evolving in an inflationary Universe [12]
as an integral over all modes with frequencies smaller than
ωL ¼ ξLωs, where a constant ξL is assumed to be small. It
is easy to see that ωL is given by the same expression as
(43), but with the argument of the logarithm being divided

by ξL∶
ffiffiffi
Λ
3

q
→

ffiffiffi
Λ
3

q
ξ−1L . We have

Ψqc ¼
Z

dnkðUωeik·xak þ U�
ωe−ik·xb�kÞ; ð45Þ

where all quantities are assumed to be c-numbers and the
mode function is given by (28). Complex random numbers

ak and bk have Gaussian distributions and must be
normalized in such a way that resulting statistical averages
of different products of Ψqc and its complex conjugate

coincide with vacuum averages of products of Ψ̂ and Ψ̂†:

haka�k0 i ¼ δnðk − k0Þ; hbkb�k0 i ¼ δnðk − k0Þ; ð46Þ

where h� � �i denotes a statistical average from now on and
all other correlators are equal to zero.
Let us calculate the averaged square of the absolute value

ofΨqc, P ¼ hΨqcΨ�
qci giving an average probability to find

a universe. In the beginning we formally assume that
ωL ∼ ωcrit. Clearly, in this limit P� ≡ Pðωs ¼ ωcritÞ ¼
h0jΨ̂Ψ̂†j0i. We have

P� ¼
π−n=2

2nΓðn=2Þ

ffiffiffiffi
3

Λ

r
e−3tð4e2

ΛI1sin2ϕþ e−
2
ΛI2cos2ϕÞ;

ð47Þ

where

I1 ¼
Z

∞

0

dω
ωn−1

sinhðπω
2
Þ ¼ 2

2n − 1

πn
ðn − 1Þ!ζðnÞ;

I2 ¼
Z

ωcrit

0

dωωn−1 sinh

�
πω

2

�
∼
1

π
ωn−1
crit e

πωcrit
2 ; ð48Þ

where we use the same approximations as in the previous
section, ζðnÞ is the Riemann zeta function and the inte-
gration limit in the first integral is formally extended from
ωcrit to infinity since the integrand there decreases expo-
nentially with ω. Remembering that ωcrit ¼ 2ffiffi

3
p 1

Λwe see that

the second term in (47) is much smaller than the first and
can be discarded. Note that the integrals in (47) are
logarithmically diverging when n ¼ 1. We leave this
special case for a future paper and assume from now on
that we have more than one massless field in our model,
n ≥ 2. Neglecting the second term we can rewrite (47) in
the form

P� ¼ Cne
2
Λ−3tsin2ϕ;

Cn ¼
ð2n − 1Þ
2n−3π

3
2
n

ðn − 1Þ!ζðnÞ
Γðn

2
Þ

�
3

Λ

�
1=2

: ð49Þ

Remarkably, the expression (49) is the same as the
probability distribution obtained with help of the Hartle-
Hawking wave function [4], for a closed Universe with
Lambda term, see e.g., [2], his Eq. (8.63) with VðϕÞ ¼ Λ

3
.

Now we are going to estimate a correction accounting
for ωL being smaller than ωcrit, but much larger than unity.
In this case the upper limit of integration in I1 should beωL.
We have I1 ¼

R ωL
0 dω ωn−1

sinhðπω
2
Þ ¼

R
∞
0 dω ωn−1

sinhðπω
2
Þ − ΔI, where

ΔI has the same integrand, but with integration being
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performed from ωL to ∞. Approximating sinhðxÞ there as
1
2
ex we obtain

ΔI ≈
2nþ1

πn

�
πωL

2

�
n−1

e−
πωL
2

¼ 2nþ1

πn
ξ−1L

ffiffiffiffi
Λ
3

r �
2

Λ
− 3tþ ln

� ffiffiffiffi
Λ
3

r
ξ−1L

��n−1

e−ð2Λ−3tÞ;

ð50Þ

and

P ¼ P�ð1 − ΔI=I1Þ: ð51Þ
Equations (50) and (51) tell that when t ≪ tcrit the
correction determined by the dependency of ωL on time
is exponentially small and the averaged quasiclassical wave
function in our Universe is that of Hartle and Hawking.
Neglecting the contribution to (47) proportional to I2

corresponds to discarding the term proportional to cosϕ in
(28). In this case Eq. (45) can be written as a product of a
time dependent regular factor and a stochastic function over
the spatial variables

Ψqc¼
2ffiffiffi
π

p
�
3

Λ

�
1=4

e
1
Λ−

3
2
tsinϕ

Z
dnkðCωeik·xakþC�

ωe−ik·xb�kÞ:

ð52Þ
In the end let us briefly discuss the opposite case

t ≫ tcrit. In this case almost all modes except those with
very low frequencies are in the regime of high frequency
quasiclassical behavior called “case two” in the previous
section. In this regime, the modes momenta are quasiclass-
ical, and, accordingly, the time derivative of the wave
function can be treated as a random classical variable, while
the wave function itself is essentially quantum.
Differentiating (52) over the time we obtain an explicit
expression for the time derivative

_Ψqc¼
2ffiffiffi
π

p
�
Λ
3

�
1=4

e
1
Λþ3

2
tcosϕ

Z
dnkðCωeik·xakþC�

ωe−ik·xb�kÞ:

ð53Þ
Note that Eq. (49) tells that a probability to find a universe
with the scale factor larger than critical is exponentially
damped on average. On the other hand from Eq. (53) it
follows that the average of _Ψqc always grows with time.

B. Density matrix

Let us show that the stochastic wave function introduced
above allows for an alternative description in terms of a
density matrix with c-number valued matrix elements. For
simplicity we assume below that we are in the regime when
the wave function is approximately classical and,

accordingly, 1 ≪ a ≪ acrit. Also, we use sometimes here-
after the bra and ket notation, for example representing (52)
as Ψqc ¼ hxjjΨi. Let us stress that we are going to use both
position representation associated with the field ampli-
tudes, φi, as well as the adjoint momentum representation,
which are clearly unrelated to the position and momentum
representations considered in Sec. VA, where the dynamics
of a mode amplitude of the wave function is treated.
In order to calculate explicitly the density matrix ρðx; x0Þ

corresponding to (52) it is convenient to use temporarily the
momentum representation taking into account that
hkjjxi ¼ 1

ð2πÞn=2 e
−ikx. Making the Fourier transform of

(52) we get an expression similar to (10) with the exception
that now the wave function in the momentum representa-
tion is considered as being c-number valued:

Ψk ≡ hkjjΨi ¼ ð2πÞn=2FðaÞðCωak þ C�
ωb−kÞ;

FðaÞ ¼ 2ffiffiffi
π

p
�
3

Λ

�
1=4

e
1
Λ−

3
2
t sinϕ; ð54Þ

where we remind that ak and bk are classical complex
Gaussian random numbers with correlation properties
given by (46). It is convenient to represent these in terms
of real random quantities as

ak ¼
1

2
ðα1 þ α3 þ iðα4 − α2ÞÞ;

b−k ¼
1

2
ðα1 − α3 þ iðα4 þ α2ÞÞ;

hαiαki ¼ δikδ
nðk − k0Þ; ð55Þ

introduce real and imaginary parts of Ψk and Cω as
R¼ReðΨkÞ, I¼ ImðΨkÞ, Aω ¼ ReðCωÞ and Bω ¼ ImðCωÞ,
and represent (54) in the form

R ¼ ð2πÞn=2FðaÞðAωα1 þ Bωα2Þ;
I ¼ ð2πÞn=2FðaÞðAωα4 þ Bωα3Þ: ð56Þ

Now, since both R and I are sums of two uncorrelated
random Gaussian numbers the general theorem tells
that their distribution functions PðRÞ and PðIÞ are also
Gaussian, with the square of dispersion σ2 ¼ hRRi ¼ hIIi,
while their joint distribution functionPðR; IÞ ¼ PðRÞPðIÞ.
Explicitly, we have

PðR; IÞ ¼ 1

2πσ2
exp

�
−
jΨkj2
2σ2

�
; σ2 ¼ ð2πÞnF2jCωj2:

ð57Þ

The expression (57) gives a probability to find Ψk with
particular values of R and I. Using this fact the density
matrix in the momentum representation, ρðk; k0Þ, can be
obtained by the usual rule ρðk; k0Þ ¼ R

dRdIΨkΨ�
k0PðR; IÞ,
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where we can set k ¼ k0 under the integral taking into
account that ρðk; k0Þ is clearly diagonal in this representa-
tion. In this way we obtain

ρðk; k0Þ ¼ 2ð2πÞnF2jCωj2δnðk − k0Þ;

jCωj2 ¼
π

4ð2πÞn sinh
−1
�
πω

2

�
; ð58Þ

where we use (19). The expression (58) tells that mainly the
modes of Ψqc with small values of ω give contributions to
the mixed state defined by ρðk; k0Þ, while the contribution
of modes with ω ≫ 1 is exponentially damped, see also the
end of this section.
The density matrix in the position representation,

ρðx;x0Þ¼ 1
ð2πÞn

R
dnkdnk0eiðkx−k0x0Þρðk;k0Þ, is easily obtained

from (58) taking into account that we can extend the upper
limits of integrals over k and k0 to infinity, since the
contribution of modes with ω > ωs to them is negligible
provided that ωs ≫ 1. We have

ρðx;x0Þ ¼ F2r−
n−2
2

2
n
2
þ1π

n
2
−1

Z
∞

0

dss
n
2Jn−2

2
ðrsÞsinh−1

�
πω

2

�
; ð59Þ

where r ¼ jx − x0j, JνðzÞ is the Bessel function and we use
the standard result that a multidimensional Fourier trans-
form of a function depending only on the modulus of the
momentum vector takes the form of a one-dimensional
Hankel transform. Note that, since the Bessel function
in (59) has a half-integer index, it can be expressed through
elementary functions.
That the density matrix is a function only of the relative

distance in the field space is clearly due to the homogeneity
of our model with respect to the field coordinates, which, in
its turn, is valid only for massless fields. In general, for the
potentials V depending on the field coordinates the
homogeneity is broken and the density matrix must be

determined by the field coordinates themselves. The
dependence of ρðx; x0Þ on r is shown in Fig. 3 for several
values of n.
The diagonal elements of the density matrix ρðx; xÞ give

probabilities to find fields with particular values of x. They
can be easily obtained from (50) using the decomposition
of Bessel function near the origin of its argument and the
first expression in (48). In this way we obtain ρðx; xÞ ¼ P�,
where P� is given by Eq. (49) as it should be.
It is well known that the Fourier transform of (59)

determines a probability distribution of particles (universes,
in our case) over k, and, accordingly, over the field
velocities _φi, see e.g., [31]. Then Eq. (58) tells that it is
proportional to jCðωÞj2 and we employ this result to obtain
a normalized probability distribution over ω, PðωÞ, as

PðωÞ¼ ωn−1jCðωÞj2R
∞
0 dωωn−1jCðωÞj2¼

ωn−1sinh−1ðπω
2
ÞR

∞
0 dωωn−1sinh−1ðπω

2
Þ

¼ πn

2ð2n−1Þðn−1Þ!ζðnÞω
n−1sinh−1

�
πω

2

�
; ð60Þ

where we use (48) and (58). Let us remind that in the
classical limit ω is proportional to the absolute value of the
“total” field velocity, ω ∝ vtot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1 _φ

2
i

p
. Thus,

Eq. (60) may be used to find probabilities of universes
with different vtot. This, in its turn, can be employed to
determine natural initial conditions for classical evolution
of the Universe (or its sufficiently homogeneous parts, see
Discussion below). It is instructive to calculate different
expectation values of powers of ω,

hωki ¼ 1

πk
ðnþ k − 1Þ!
ðn − 1Þ!

ð2nþk − 1Þ
ð2n − 1Þ

ζðnþ kÞ
ζðnÞ ; ð61Þ

where we use again (48). The dependence of hωki on n is
shown in Fig. 4 for k ¼ 2;…; 5, respectively.
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FIG. 3 (color online). We show the dependence of the ratio ρðx; x0Þ=F2 as a function of the relative distance r ¼ jx − x0j. Solid, dashed,
dotted and dot-dashed curves are calculated for n ¼ 2, 3, 4 and 5, respectively.
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VI. CONCLUSIONS AND DISCUSSION

We show, in the framework of a simple thirdly quantized
minisuperspacemodel of a closedFRWuniversewith a small
Lambda term and n massless scalar fields, that its wave
function operator has a simple interpretation in the limit of
large scale factors a ≫ 1 provided that a natural in-vacuum
state is specified for the system. Namely, when 1 ≪ a ≪ e

2
3Λ

thewave functionoperatormaybeapproximately treated as a
classical random field with its averaged value being propor-
tional to theHartle-Hawkingwave function.Whena ≫ e

2
3Λ it

is the derivative of thewave function, which has the property
of a classical random field.1

The physical explanation of this result is the same as in
the well developed theory of creation of a test field or
density inhomogenities/gravitational waves in a inflation-
ary Universe. Both models have a copious production of
excitations with respect to a suitably chosen out-vacuum
state. In both models the in vacuum in the Schrodinger
picture evolves to a strongly squeezed state, while the
Wigner function of a particular mode has a special form at
large values of the natural time variable (or, the scale factor)
being proportional to a product of a Gaussian distribution
of one of the canonical variables with large dispersion and a
distribution strongly peaked about a relation involving
canonical variables, which is valid on solutions to classical
equations of motion.
Thus, the natural in vacuum for the quantumWdWmodel

provides a well defined classical although stochastic wave
function at sufficiently large values of the scale factor. The
fact that its averaged value is proportional to the Hartle-
Hawking result needs a further investigation. Perhaps, some
progress could be made in the path integral formulation of

our theory, although of course the classical action entering
the Hartle-Hawking formalism should be substituted by the
action induced by Lagrangian (4) in our case.
We also show that the stochastic wave function formalism

is equivalent to the presence of a density matrix describing a
mixed state. Similar to the wave function approach, the
matrix elements can be treated as c-numbers at sufficiently
large values of scale factors. Thus, in the framework of our
model a mixed state defined over classical solutions of
WdW equations emerges in this asymptotic limit. Diagonal
elements of the density matrix giving a probability to find
some particular values of fields and scale factor are again
proportional to the corresponding expression following from
the Hartle and Hawking formalism, thus the density matrix
has a trivial form in the position representation. However, in
the momentum representation the dependence is nontrivial,
it gives a probability to find universes with different values
of field velocities. We calculate this as well as associated
expectation values in Sec. V B. It is important to stress that
this result is different from what follows from the Hartle-
Hawking wave function, since the latter is uniform in the
position representation for the model with massless fields,
and, therefore, predicts that field velocities are strictly zero
in this case.
Clearly, that the density matrix gives a nontrivial dis-

tribution in the momentum representation is due to the fact
that in our models the field velocities have a direct physical
meaning, while the field amplitudes are defined up to
arbitrary constant values. In principal, the distributions of
this kind can be used to specify the most natural initial
conditions for classical evolution of the Universe.
Note, however, that this program is hampered by the

usual problems with interpretation of wave function and
meaning of measurements in quantum cosmology. Indeed,
for example, it would be difficult to probe such distribu-
tions without a consideration of an ensemble of universes
with observers belonging to different universes able to
communicate with each other. Of course, it is difficult to
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FIG. 4 (color online). The dependence of the expectation values given by Eq. (61) is shown as a function of n. Solid, dashed, dotted
and dot-dashed curves are calculated for k ¼ 2, 3, 4 and 5, respectively.

1Let us note that in certain minisuperspace models considering
classical WdW wave functions they also demonstrate quasiclass-
ical (in this case WKBJ-like) behaviour only at sufficiently small
values of scale factors, see e.g., [32].
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achieve even when we take into account that the universes
could “interact” through quantum interference. The diffi-
culty can be alleviated either in models, where there is a
nonlinear interaction among the universes or in a modifi-
cation of the model, where it is assumed that it describes
sufficiently large locally homogeneous parts of positive
curvature of a generally inhomogeneous Universe. In the
latter case measurements can be performed in all parts and
compared with each other after, say, the Lambda term
decays due to some reason and these parts come into causal
contact with each other. Similar approaches were recently
discussed in e.g., [33] in the framework of loop quantum
gravity and [34] in a thirdly quantized model.
It is interesting to point out that when the Universe is

assumed to be slightly inhomogeneous, there is another
mechanism of emergence of a mixed state by averaging out
inhomogeneous degrees of freedom, see e.g., [35] or [36].
Also, let us note that the density matrix approach has been
considered in the third quantization formalism, although in
a sense quite different from what is discussed in this paper,
see e.g., [37].
We suspect that a similar behavior of wave function (or,

emergence of the classical density matrix) at large values of
a is present in all models, where a large production of
excitations is observed.

Note that, strictly speaking, our results are valid for the
number of massless fields n ≥ 2. When n ¼ 1 the integrals
I1 and I2 in Eq. (48) experience a logarithmic divergency at
small values of ω. This is also similar to the well-known
logarithmic infrared divergency of test field in inflationary
models, see e.g., [11] and references therein. Although this
case definitely needs an additional study, our formalism
may be used to define various conditional probabilities.
Finally, it would be very important to generalize our

approach to the much more realistic case of a massive scalar
field in a FRW universe. In this case the separation of
variables in the WdW equation is absent. However, this
equation can be tackled numerically and our approach
could be used to interpret numerical results. It is expected
that the massive field case could have a nontrivial depend-
ence of the density matrix on the field coordinates.
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