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We present the mean pairwise momentum of clusters, as observed through the kinematic Sunyaev-
Zel’dovich (kSZ) effect, as a novel probe of massive neutrinos. We find that kSZ measurements with
current and upcoming surveys will provide complementary constraints on the sum of neutrino masses from
large scale structure and will improve on Planck satellite measurements of the primordial cosmic
microwave background (CMB) and CMB lensing. Central to the constraints is a distinctive scale
dependency of the kSZ neutrino signature on the mean pairwise momentum of clusters that we do not
expect to be mirrored in systematic effects that change the overall amplitude of the signal, like the cluster
optical depth. Assuming a minimal ΛCDM cosmology including massive neutrinos with Planck primordial
CMB priors combined with conservative kSZ specifications, we forecast 68% upper limits on the neutrino
mass sum of 310, 240, and 110 meV for “Stage II” (ACTPolþ BOSS), “Stage III” (Advanced
ACTPolþ BOSS), and “Stage IV” (CMB-S4þ DESI) surveys respectively, compared to the Planck
alone forecast of 540 meV. These forecasts include the ability to simultaneously constrain the neutrino mass
sum and the mass-averaged optical depth of the cluster sample in each redshift bin. If the averaged optical
depth of clusters can be measured with few percent accuracy and a lower limiting mass is assumed, the
projected kSZ constraints improve further to 100, 85 and 33 meV (Stage II, III and IV). These forecasts
represent a conservative estimate of neutrino constraints using cross-correlations of arcminute-resolution
CMB measurements and spectroscopic galaxy surveys. More information relevant for neutrino constraints
is available from these surveys, such as galaxy clustering, weak lensing, and CMB temperature and
polarization.
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I. INTRODUCTION

Neutrino flavor oscillations in atmospheric and solar
neutrinos suggest that neutrinos are massive, implying an
extension to the original Standard model of particle physics
(e.g., [1–4]). These results have also been confirmed by
reactor experiments and particle accelerators (e.g., [5–8]).
Flavor oscillation experiments, however, cannot measure
the neutrino mass eigenstates individually but only the
squared mass differences [9],

Δm2
21 ¼ ð7.59� 0.20Þ × 10−5 eV2 ð1Þ

jΔm31j2 ¼ ð2.43� 0.13Þ × 10−3 eV2: ð2Þ

These measurements allow two distinct neutrino mass
hierarchies: normal (m1 < m2 ≪ m3) and inverted (m3 ≪
m1 ≃m2), as well as a degenerate case (m3 ≃m2 ≃m1).
The difference in the squared masses implies there is a
minimum neutrino mass sum of

P
mν ≈ 58 meV for the

normal hierarchy, roughly two times larger for the inverted
hierarchy, and ∼150 meV for the degenerate case [10].
Cosmological probes are primarily sensitive to the total
sum of the neutrino masses,

P
mν. Direct detection

experiments in combination with cosmological probes will
provide valuable insights into the neutrino hierarchy.
Massive neutrinos affect the background expansion of

the Universe as well as the growth of structure, which
enables constraints from a variety of observations. At early
times massive neutrinos are relativistic, acting as a radiation
component, though they become nonrelativistic at a red-
shift that scales with the mass. Cosmic microwave back-
ground (CMB) experiments can probe massive neutrinos
through their effect on the redshift of matter-radiation
equality, zeq, or the distance to the last scattering surface,
dAðzdecÞ. Furthermore, since massive neutrinos suppress
the matter power spectrum any probe of large scale
structure (LSS), such as galaxies and galaxy clusters as
well as Lyman-α forest, is potentially sensitive to

P
mν.

Current constraints on
P

mν depend strongly on the data
sets used. Assuming a six-parameter minimal flat ΛCDM
cosmology plus the neutrino mass sum as a free parameter
leads to an upper limit of

P
mν < 0.72 eV at 95% con-

fidence level for CMB data only, Planck TTþ lowP [11].
Including large scale structure information can further
improve the results, yielding

P
mν < 0.21 eV (95%, for

PlanckTTþ lowPþ BAO) [11]. Combining more data-
sets, such as Lyman-α surveys, can lead to even stronger
constraints [12].
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Neutrino science is not only interesting from a particle
physics perspective, for it has also been used as a means
of reconciling observed tensions in the primary CMB
anisotropies, cluster counts, and lensing as measured by
the Planck satellite [13], and between Planck and the
Background Imaging of Cosmic Extragalactic Polarization
(BICEP) experiment regarding the tensor-to-scalar ratio
[14]. However, understanding systematic effects, such as
cluster mass calibration for the former and foreground
contamination by dust emission for the latter, is crucial for
interpreting these discrepancies before ascribing them to
neutrino physics. Nevertheless this illustrates that, despite
having relatively small masses, neutrinos can play an
important role in cosmology.
In order to reduce systematic effects, measurements

from a variety of different cosmological observations are
necessary. In this paper we consider CMB secondary
anisotropies, specifically the mean pairwise velocity of
clusters as observed through the kinematic Sunyaev
Zel’dovich (kSZ) effect [15], as a novel probe of neutrino
properties. The kSZ effect results in a distortion of the
CMB blackbody spectrum caused by CMB photons,
passing through clusters, being Doppler shifted due to
the line of sight component of the peculiar velocity of the
clusters. Despite its small amplitude, the kSZ effect has
been detected from a large sample of clusters by cross-
correlating CMB maps with luminous red galaxy (LRG)
positions and redshifts [16]. Previously we studied the
potential of using kSZ measurements to test dark energy
and modified gravity models [17]. In this work we extend
the standard ΛCDM parameter space to massive neutrinos,
parametrized in terms of

P
mν, and forecast constrains onP

mν from upcoming surveys.
The paper is organized as follows. In Sec. II we (a) give a

summary of the effect of massive neutrinos on the power
spectrum, halo mass function (HMF), and the growth rate;
(b) present the formalism of the pairwise statistics of
clusters in ΛCDM cosmological models including massive
neutrinos, and (c) describe modeling of the covariance
matrix and nuisance parameters as well as survey assump-
tions. In Sec. III we describe our analysis and present
results before concluding in Sec. IV.

II. FORMALISM

A. Cosmic structure and massive neutrinos

We provide a short summary of the cosmological effects
of massive neutrinos, focusing on the effect of massive
neutrinos on the LSS, and point the reader to [18–20] as
helpful reviews for more details.
Neutrinos cannot be confined on scales below their free-

streaming scale, kfs, given by

kfsðzÞ ¼ 0.8
ΩΛ þΩmð1þ zÞ3

ð1þ zÞ2
�

mν

1 eV

�
hMpc−1 ð3Þ

where Ωm and ΩΛ are the matter and Λ energy density of
today and therefore suppress the matter power spectrum for
k > kfs. Note that different neutrino masses have different
free-streaming wave numbers, leaving LSS not only
sensitive to the total neutrino mass but potentially also
to individual masses. We calculate the matter power
spectrum using CAMB [21] and taking the effect of
massive neutrinos into account.
The universality of the HMF in the context of massive

neutrino cosmologies has been studied in detail (e.g.,
[22,23]). It was found that the HMF as well as the halo
bias is more accurately described if only the cold dark
matter and baryonic matter components, Ωm −Ων, are
taken into account when calculating the HMF rather than
the total mass, Ωm ¼ Ωcdm þ Ωb þΩν. Following [23] we
will denote the cold dark matter and baryonic component as
“cold” matter (subscript “c”) in contrast to total matter that
includes the neutrino mass (subscript “m”). The comoving
number density of halos per unit mass, dnðMÞ=dM, can
then be modeled in the common form

dnðM; zÞ
dM

¼ ρc
M

fðσc; zÞ
d ln σ−1c
dM

; ð4Þ

using ρc ¼ ρcdm þ ρb as the background matter density and
with the rms of the linear cold matter density field given by

σ2cðM; zÞ ¼
Z

d3kPcc
linðk; zÞW2ðRkÞ; ð5Þ

where Pcc
lin is the linear cold matter power spectrum and the

scale R is given by M ¼ 4π
3
ρcR3. Many different fitting

functions have been proposed within the literature; how-
ever, for the purpose of this work the choice of HMF has
little effect. Here we adopt the fitting function given in [24]
to parametrize the halo multiplicity function, fðσc; zÞ.
Similarly we define the halo bias with respect to the cold

matter, bcðM; zÞ, using the description given in [24].
The growth rate, fg, is defined as

fgðaÞ≡ d lnDðaÞ
d ln a

; ð6Þ

with the growth factor, DðaÞ, normalized to Dða0Þ ¼ 1,
and becomes scale dependent in the presence of massive
neutrinos. Here we use the fitting function

fgðz; kÞ ≈ μðkÞΩγ
mðzÞ; ð7Þ

where

μðkÞ ¼ 1 − AðkÞΩΛfν þ BðkÞf2ν − CðkÞf3ν ð8Þ

with AðkÞ, BðkÞ, CðkÞ given in Table II of [25] and with the
growth exponent, γ, parametrized as γ ¼ 0.55þ 0.05½1þ
wðz ¼ 1Þ� [26].
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B. Motion of clusters as a probe
of massive neutrinos

The mean pairwise velocity of clusters can be modeled
[17,27,28] as

Vðr; aÞ ¼ −
2

3
HðaÞaΩγ

mðaÞ rξ̄hðr; aÞ
1þ ξhðr; aÞ

; ð9Þ

with ξh and ξ̄h given by

ξhðr; aÞ ¼
1

2π2

Z
dkk2j0ðkrÞPlinðk; aÞbð2Þh;cðkÞ; ð10Þ

ξ̄hðr; aÞ ¼
3

r3

Z
r

0

dr0r02μðk; aÞξðr0; aÞbð1Þh;cðkÞ; ð11Þ

where Plin is the linear, total matter power spectrum and
bðqÞh;c are the moments of the halo bias defined as

bðqÞh;c ¼
R
dMMnðM; zÞbqcðM; zÞW2½kR�R

dMMnðM; zÞW2½kR� ; ð12Þ

assuming a Gaussian window function with MðRÞ ¼
ð2πÞ3=2ρcR3. Note that the moments of the halo bias are
taken with respect to the halo mass function and halo bias,
including the effect of massive neutrinos as described above.
Figure 1 shows the mean pairwise velocity of clusters for

different neutrino masses assuming a normal hierarchy
fixing all other cosmological parameters, including Ωmh2

and As, to fiducial values. Note that fixing As and Ωmh2

while increasing the neutrino mass leads to decreasing σ8
and Ωcdmh2 values which corresponds to an increase in the
halo bias. The suppression of the dark matter power
spectrum at large k leads to a suppression of VðrÞ at small
separations, while at large r the effect of massive neutrinos
on the halo bias dominates. The mass of the neutrinos
leaves an r-dependent imprint on VðrÞ, which enables us to
differentiate between the mass of the neutrinos and other
cosmological parameters and systematic effects that pri-
marily change the overall amplitude of VðrÞ. Figure 2
displays the mild sensitivity of VðrÞ to the different
neutrino hierarchies.

C. General methodology and survey assumptions

We use the Fisher matrix approach to estimate the
covariance matrix between parameters pμ and pν,
Cμν ¼ F−1

μν , with

Fμν ¼
XNz

i

XNr

p;q

∂Vðrp; ziÞ
∂pμ

Cov−1i ðrp; rq; ziÞ
∂Vðrp; ziÞ

∂pν
;

ð13Þ

where Covðrp; rq; ziÞ is the covariance matrix, as defined in
[17], between two clusters pairs at redshift zi with each pair

FIG. 1 (color online). Upper panel: The mean pairwise cluster
velocity, VðrÞ, for different neutrino mass sums,

P
mν. VðrÞ is

calculated at z ¼ 0.15 and assuming a minimum cluster mass of
Mmin ¼ 1 × 1014 M⊙ with other cosmological parameters, in-
cluding Ωmh2 and As, fixed to fiducial values. Here we assume a
normal neutrino hierarchy (m1 ≈m2 ≈ 0; m3 ≠ 0). Lower panel:
Ratio of the mean pairwise velocity, VðrÞ, for the different
scenarios to the fiducial model with

P
mν ¼ 0 (black line in

upper panel). Massive neutrinos clearly leave a scale-dependent
imprint on VðrÞ, which is highlighted by the different slopes of
the lower curves.

FIG. 2 (color online). Ratio of the mean pairwise velocity, VðrÞ,
for the different neutrino models to the normal hierarchy (m1 <
m2 ≪ m3), VðrÞnorm. The inverted hierarchy (m3 ≪ m1 ≃m2)
deviates more strongly from the normal hierarchy assuming a
total mass of

P
mν ¼ 110 meV (blue, dashed-dotted line) than

for
P

mν ¼ 150 meV (red, dashed line). A degenerate model
(m1 ≈m2 ≈m3, black, solid line) with

P
mν ¼ 150 meV ex-

hibits a slightly different behavior from the normal and inverted
hierarchies. This shows that there is a mild sensitivity to the
different masses of the individual neutrinos even when

P
mν is

constant.
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having comoving separations of rp and rq, including
cosmic variance, shot noise and a measurement uncertainty
due to the sensitivity of the CMB instrument (given in [17],
Table III). Nz and Nr are the number of redshift and spatial
separation bins, respectively.
The kSZ effect is proportional to the mean pairwise

momentum of clusters, ∼τv. In order to accurately
measure cluster velocities, the average cluster optical
depth and its dependency on mass and redshift must be
known. The optical depth can be modeled, for instance
using hydrodynamical simulations [29], or constrained
using complementary cluster data such as CMB polari-
zation [30]. We allow large uncertainties in the cluster
optical depth that could introduce systematic biases in
VðrÞ by marginalizing over a potential bias, defined via
V̂ðziÞ ¼ bτðziÞVðziÞ, that scales the amplitude in each
redshift slice. We also introduce the limiting cluster mass
of the sample as a nuisance parameter in our analysis,
imposing a 15% prior.
We consider two sets of cosmological parameters. The

first is a minimal six-parameter flat ΛCDM cosmological
model plus the neutrino mass sum and (1þ Nz) nuisance
parameters, which we denote as ΛMðixedÞDM and sum-
marize as

pmin ¼
n
Ωbh2;Ωmh2;ΩΛ; ns; logð1010AsÞ;

X
mν

o

þ fMmin; bτðzÞg; ð14Þ

where Ωb, Ωm, ΩΛ are the dimensionless baryon, matter
and dark energy densities respectively; h is the Hubble
constant in units of 100 km=s=Mpc; ns and As are the
spectral index and normalization of the primordial spec-
trum of curvature perturbations;Mmin is the limiting cluster
mass of the catalog; and bτ the nuisance parameter due to
uncertainty in τ. The matter energy density includes cold
dark matter, baryons, and the neutrino mass contribution,
i.e. Ωm ¼ Ωcdm þΩb þ Ων, where Ων is the neutrino
energy density, related to the neutrino mass via Ων ¼P

mν=ð93.14 h2 eVÞ (see, e.g., [19]). The second set of
parameters is a more general ΛMDM model that also
includes the curvature energy density, Ωk, and the dark
energy equation of state parameters, w0 and wa, such that
the equation of state is wðaÞ ¼ w0 þ ð1 − aÞwa, or

p ¼ pmin þ fΩk; w0; wag: ð15Þ

We adopt the fiducial values assumed in the Euclid
Assessment Study report [31], ωb ¼ 0.021805,
ωm ¼ 0.1225, ΩΛ ¼ 0.75, ns ¼ 1, logð1010AsÞ ¼ 3.2336,
Ωk ¼ 0, w0 ¼ −0.95, wa ¼ 0 which correspond to
Ωm ¼ 0.25, Ωb ¼ 0.0445, h ¼ 0.7 and σ8 ¼ 0.8. For the
CMB Fisher matrix we also marginalize over the reioniza-
tion optical depth with fiducial value τ0 ¼ 0.11. We assume
a normal hierarchy (m1 ≈m2 ≈ 0; m3 ≠ 0) as our reference

case with the fiducial total neutrino mass,
P

mν ¼
60 meV. We find that our results are robust to the assumed
fiducial cosmology, including the fiducial neutrino mass,
and only show a mild sensitivity to the assumed neutrino
hierarchy.
The kSZ effect can be extracted by cross-correlating the

CMB surveys with cluster positions and redshifts, using
LRGs as a tracer for clusters or by using a photometrical
selected cluster catalog such as RedMApper [32]. In this
work we consider three potential surveys: Stage II—ACTPol
[33] cross-correlated with BOSS [34], Stage III—Advanced
ACTPol [35] and BOSS, and Stage IV—CMB Stage IV [10]
and DESI [36]. Details of the survey assumptions, including
redshift range, overlapping sky coverage between CMB and
LSS surveys, and the minimum cluster mass of the potential
cluster catalogs, are summarized in Table I.
We are conservative in our survey specifications by

assuming a photometrical selected cluster catalog, to ensure
completeness and purity of our sample, with spectroscopi-
cally selected LRGs to give cluster redshifts. We also only
assume single frequency, 150 GHz, CMB measurements
(even though, e.g., Advanced ACTPol will have five
frequency bands). The assumed sky coverage for the
kSZ analysis is subsequently limited by the overlapping
area of photometric and spectroscopic LSS surveys with
CMB kSZ measurements. The assumed redshift range is
given by that for the spectroscopic LRG sample, and the
limiting mass is motivated by the expected, photometrically
selected cluster catalogs. A more detailed discussion can be
found in [17].
In addition to the fiducial scenario, we consider a

more optimistic lower cluster mass limit of Mmin ¼
4 × 1013 M⊙ for Stages II, III and Mmin ¼ 1 × 1013 M⊙
for Stage IV. For our CMB priors we use the survey
specification for a Planck-like survey, including primor-
dial temperature and polarization as well as lensing
information, as given in [37].

TABLE I. Reference survey specifications used to model Stage
II, III and IV kSZ cluster surveys. The expected instrument
sensitivity of the CMB survey, ΔT inst, along with the assumed
optical large scale structure survey redshift range zmin < z <
zmax, redshift binning, and minimum detectable cluster mass
Mmin, are shown. We consider an effective sky coverage by
estimating the degree of overlap between the respective CMB and
optically selected cluster data sets.

Survey stage

Survey Parameters II III IV

CMB ΔT instr (μKarcmin) 20 7 1

Galaxy

zmin 0.1 0.1 0.1
zmax 0.4 0.4 0.6
No. of z bins, Nz 3 3 5
Mmin (1014 M⊙) 1 1 0.6

Overlap Area (1000 sq. deg.) 4 6 10
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III. ANALYSIS

A. Potential kSZ constraints on massive neutrinos

The results of our Fisher matrix analysis, the forecast 1-σ
errors on the total neutrino mass

P
mν, are displayed in

Table II for our fiducial case as well as more optimistic
assumptions on the τ bias parameter and limiting mass. The
left-hand columns of Table II depict the most conservative
scenario in which we treat the mass-averaged optical depth
of clusters τ as an unknown nuisance parameter in each
redshift bin, bτðzÞ, that scales the overall amplitude of the
mean pairwise velocity, VðrÞ. Under this assumption the
optical depth of clusters can scale the overall amplitude of
VðrÞ but has no r-dependent effect. The scenarios depicted
in the middle and right columns show less conservative
assumptions on the limiting mass (middle) as well as
adding a 1% prior on bτðzÞ (right).
With kSZ measurements alone, the total neutrino mass is

degenerate with other cosmological parameters, in particu-
lar with the matter density Ωmh2 and the dark energy
equation of state parameters w0 and wa. Since kSZ data
alone cannot constrain the cosmological background
parameters well [17], the predicted error on the total
neutrino mass is comparatively loose. The forecasted 68%
upper limit on the total neutrino mass with kSZ data only is
1300, 810 and 280 meV for Stage II, III and IV respectively
for the minimal ΛMDM cosmology in our most con-
servative scenario. In comparison, our projected Planck
constraints are 540 meV using the primordial temperature
and polarization power spectrum and 200 meV when
including lensing.
Adding primordial CMB data from Planck can improve

the constraints significantly by breaking degeneracies with
the other parameters. For a minimal ΛMDM cosmology in
combination with Planck CMB results, kSZ measurements
can improve constraints on

P
mν and achieve 310, 240 and

110 meV at 68% confidence level for Stage II, III and IV
with no prior on bτðzÞ. Marginalizing over the overall

amplitude in each redshift bin does not deteriorate the
constraints significantly. This can be understood consid-
ering the scale-dependent effect of the neutrino mass on
VðrÞ (see Fig. 1). The r-dependent change of VðrÞ due to
massive neutrinos cannot be compensated by an overall
shift of the amplitude of VðrÞ; therefore there is not a strong
degeneracy between

P
mν and bτ. Remarkably, even

without prior knowledge of the average cluster optical
depth, τ, the kSZ data set should significantly improve
upon the Planck constraints (see Fig. 3).
Incompleteness of the survey on the sky or substantial

variation in the depth of the survey could potentially yield to
an inaccurate estimate of the minimum mass of the sample
introducing a scale dependence. However, loosening the
prior on the limiting mass to account for this effect only
mildly affects the results when the CMB information is
included. Doubling the prior on the minimum mass to 30%
changes the results on the neutrino mass by less than 8%.
The CMB contains additional information related toP
mν due to gravitational lensing by large scale structure.

We compare the relative potential constraints by including
the information from Planck CMB lensing as a separate
case. In Table II, Planck refers to CMB temperature and
polarization data only, while Planck+lens also includes the
forecasts for a Planck CMB lensing extraction performed
with a quadratic estimator based on temperature and
polarization data [38]. For the minimal ΛMDM cosmology,
when including lensing, the expected errors reduce to 74,
70, and 47 meV. As shown in Fig. 3, this represents a
considerable improvement relative to constraints from
Planck alone plus CMB lensing. We stress that in this
analysis we are assuming that the lensing extraction can be
performed perfectly from CMB maps, which is an opti-
mistic assumption. On the other hand, the kSZ constraints
include relatively conservative assumptions (see Sec. II C).
Hence, it is likely that the improvement with respect to
CMB data alone achievable with pairwise velocities will be
even larger than that presented in this paper.

TABLE II. Forecasts for 1σ errors on
P

mν for a normal hierarchy. Left columns: Results marginalizing over bτ: marginalized
constraints (top row) on the sum of the neutrinos mass for the kSZ surveys including Planck primordial CMB priors for a five-parameter
minimal ΛMDM cosmology þP

mν as well as (second row) including Ωk; w0; wa; and (lower rows) similar results also including
Planck lensing constraints. Middle columns: Assuming a more optimistic optically selected mass cutoff of Mmin ¼ 4 × 1013 M⊙ for
Stages II and III and Mmin ¼ 1 × 1013 M⊙ for Stage IV, relative to the fiducial scenarios of Mmin ¼ 1014 M⊙ (Stages II and III) and
Mmin ¼ 6 × 1013 M⊙ (Stage IV). Right columns: Including a 1% prior on bτ and optimistic assumptions on the minimum mass.
The CMB Planck priors alone provide σðPmνÞ ¼ 540ð660Þ meV for a minimal (general) ΛMDM cosmology and σðPmνÞ ¼
200ð240Þ meV including CMB lensing.

σðPmνÞ in meV

No prior on bτ No prior on bτ, opt. Mmin 1% prior on bτ, opt. Mmin

Stage II Stage III Stage IV Stage II Stage III Stage IV Stage II Stage III Stage IV

kSZþ Planck
Minimal ΛMDM 310 240 110 180 140 64 100 85 33
þΩk; w0; wa 520 470 220 430 360 120 220 210 99

kSZþ Planckþ
lens

Minimal ΛMDM 74 70 47 64 58 30 63 57 28
þΩk; w0; wa 87 85 79 84 83 68 81 79 60
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The right-hand columns of Table II display the results
assuming a more optimistic limiting mass of the cluster
sample, Mmin ¼ 1 × 1013 M⊙ for Stage IV and Mmin ¼
4 × 1013 M⊙ for Stage II and III. Under these assumptions,
the sum of the total neutrino mass for a Stage IV survey
plus CMB priors can be constrained up to 64 meV at
68% confidence level. Imposing a prior on the optical depth
bias parameter can further improve the results (see Fig. 4).
The uncertainty in

P
mν reduces to 100, 85, and 33 eV

(Stage II, III and IV) assuming a 1% prior on the mass-
averaged optical depth.
For a more general cosmology including the curvature

energy density, Ωk, and the dark energy equation of state
parameters, w0 and wa, the kSZ measurement constraints
are significantly degraded; however, as shown in Table II,
the constraints remain quite strong when also including
Planck lensing measurements to help constrain the back-
ground expansion history (see also the discussion in [17]).
This highlights the potential power of combining con-
straints from CMB lensing and kSZ measurements from the
same survey instead of relying on the Planck lensing
measurements. Here we highlight the sensitivity of kSZ
measurements to

P
mν and leave combined lensing and

kSZ forecasts to future work.
An important factor that determines the constraining

power of kSZ pairwise velocities measurements is the
minimum comoving separation achievable by the survey.
Photometric surveys would not be able to reconstruct the
signal at lower separations as a consequence of the redshift
uncertainty. As a test, we have repeated our baseline
analysis using a minimum r cutoff rmin ¼ 50 Mpc=h.
This cutoff represents the approximate minimum separation
achievable with a photometric survey like the Dark Energy
Survey (see, for example, the discussion in [39]). In this
case, while for kSZ data only the constraints deteriorate
more than a factor of 2, when including CMB priors from
Planck the 1σ error degradation is only 10%–20% depend-
ing on the survey considered. For example, for a minimal
ΛMDM model we find a σðPmνÞ of 90, 89 and 82 meV
respectively for Stage II, III and IV surveys, from the

combination of kSZ data with PlanckCMBþ lensing with
no prior on bτðzÞ.
kSZ measurements from combining LSS and CMB

surveys provide an alternative, complementary approach
to constraining the neutrino mass sum from using galaxy
cluster and CMB measurements independently. For exam-
ple, Stage IV LRG and emission line galaxy clustering
forecasts, assuming degenerate massive neutrinos with a
total mass

P
mν ¼ 60 meV, a minimal ΛMDM cosmol-

ogy and fiducial values of the cosmological parameters
from Planck [40], suggest potential constraints on the
neutrino mass, of 24 meV for DESI [41] including a
CMB prior and using the galaxy broadband up to
kmax ¼ 0.1 h=Mpc, after accounting for uncertainties in
galaxy bias, shot noise and nonlinear damping uncertain-
ties. Similar constraints are forecast for Stage IV CMB

FIG. 3 (color online). Constraints on the neutrino mass sum,
P

mν, versus the matter density,Ωmh2 (left); the dark energy equation of
state, w0 (middle); and its evolution, wa (right). Contours show 2D 68% confidence levels for the following data sets: Planck (black),
Planck and kSZ Stage IV (blue), Planck including CMB lensing (green), and Planck including CMB lensing plus kSZ Stage IV(red).
Solid lines assume no prior on the average cluster optical depth evolution, bτðzÞ, while dashed lines assume a 1% prior on bτðzÞ.

FIG. 4 (color online). The impact of imposing a prior on a
potential systematic offset in the mass-averaged optical depth,
parametrized by a multiplicative bias in each redshift bin, bτðzÞ,
for Stage II (blue), Stage III (green) and Stage IV (red) surveys,
on the 1-σ constraints on

P
mν. This assumes a mass cutoff of

Mmin ¼ 4 × 1013 M⊙ for Stage II and III and Mmin ¼
1 × 1013 M⊙ for Stage IVas well as including CMB temperature
and polarization priors. This shows that

P
mν constraints are

more weakly dependent on τ than the dark energy and gravity
parameters studied in [17].
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surveys alone and improved constraints from combining
CMB lensing with galaxy surveys (see, e.g., [10]). Adding
kSZ measurements should improve these constraints for
CMB surveys with the roughly arcminute resolution
required for accurate kSZ measurements [35].

IV. CONCLUSIONS

The mean pairwise velocity of clusters, as observed
through the kSZ effect, is a novel probe of massive
neutrinos. Upcoming kSZ measurements are expected to
be comparable in their constraining power to upcoming
spectroscopic and photometric galaxy surveys and CMB
surveys. Like other LSS probes, the kSZ cannot differ-
entiate strongly between different hierarchies, but can
measure the sum of the neutrino mass through its sup-
pression of the matter power spectrum and its effects in the
HMF, halo bias and growth rate, as discussed in Sec. II,
leading to a scale-dependent variation in VðrÞ.
Conservative forecasts for kSZ measurements in combi-

nation with Planck primordial CMB priors provide con-
straints on the sum of neutrino masses with a precision of
310, 240 and 110 meV for Stage II, III and IV respectively,
assuming a fiducial mass of 60 meV, a normal hierarchy
and a minimal ΛMDM cosmology. These constraints
include simultaneous constraints on the average optical
depth of the cluster sample in different redshift bins by
marginalizing over the overall amplitude of VðrÞ in each
bin. The kSZ effect can lead to strong constraints and
improve upon Planck results even without precise knowl-
edge of τ, due to the scale-dependent effect of massive
neutrinos on VðrÞ. We investigated the uncertainty in the
minimum mass of the sample, that could change the scale
dependency of the mean pairwise velocity and potentially
introduce a bias. The results only show a mild dependency

on the uncertainty in the limiting mass. Detailed hydro-
dynamical simulations could further improve the under-
standing of potential scale-dependent effects. We leave
additional analysis of systematic effects for further studies.
More optimistic assumptions on the limiting mass of the
cluster sample and the cluster optical depth can improve the
results to 100, 85 and 33 meV (Stage II, III and IV). These
constraints can be further improved by including CMB
lensing measurements.
Our conservative analysis has led to potentially powerful

constraints on the cosmic growth history to characterize the
properties of neutrinos and other cosmological parameters
using the kinematic Sunyaev-Zel’dovich effect. Here we
have only considered constraints from Planck satellite data
combined with kSZ measurements from cross-correlating
spectroscopic galaxy surveys and CMB surveys. CMB
polarization and x-ray cluster measurements may allow a
refined understanding of cluster optical depth. Upcoming
measurements of type 1a supernovae, galaxy clustering,
weak lensing, and the CMB have the potential to break
degeneracies in kSZ measurements, providing complemen-
tary constraints on the expansion history, to give even more
stringent constraints on the properties of the dark sector
including dark energy and neutrinos.
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