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Primordial fluctuations in the relative number densities of particles, or isocurvature perturbations, are
generally well constrained by cosmic microwave background (CMB) data. A less probed mode is the
compensated isocurvature perturbation (CIP), a fluctuation in the relative number densities of cold dark
matter and baryons. In the curvaton model, a subdominant field during inflation later sets the primordial
curvature fluctuation ζ. In some curvaton-decay scenarios, the baryon and cold dark matter isocurvature
fluctuations nearly cancel, leaving a large CIP correlated with ζ. This correlation can be used to probe these
CIPs more sensitively than the uncorrelated CIPs considered in past work, essentially by measuring the
squeezed bispectrum of the CMB for triangles whose shortest side is limited by the sound horizon. Here,
the sensitivity of existing and future CMB experiments to correlated CIPs is assessed, with an eye towards
testing specific curvaton-decay scenarios. The planned CMB Stage 4 experiment could detect the largest
CIPs attainable in curvaton scenarios with more than 3σ significance. The significance could improve if
small-scale CMB polarization foregrounds can be effectively subtracted. As a result, future CMB
observations could discriminate between some curvaton-decay scenarios in which baryon number and dark
matter are produced during different epochs relative to curvaton decay. Independent of the specific
motivation for the origin of a correlated CIP perturbation, cross-correlation of CIP reconstructions with the
primary CMB can improve the signal-to-noise ratio of a CIP detection. For fully correlated CIPs the
improvement is a factor of ∼2–3.
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I. INTRODUCTION

The measured cosmic microwave background (CMB)
anisotropy power spectra [1,2] are consistent with adiabatic
primordial fluctuations, initial conditions for which the
relative particle number densities are spatially constant.
Adiabatic perturbations arise in the simplest inflationary
models, where a single field drives inflation and sets the
amplitude of perturbations in all species. If fluctuations in
particle densities or quantum numbers observed today are
actually set by fluctuations in more than one field, some
fraction of the primordial fluctuations may be isocurvature
(also known as entropy) perturbations, for which there are
initial fluctuations in the relative particle number densities.
The second field may be an axion [3] (and thus a dark-

matter candidate), a curvaton [3–6] (a field that is ener-
getically subdominant during inflation but later sets the
density fluctuations in standard-model species), or alter-
natively, inflation itself may be driven by multiple fields
with different couplings to standard-model particles [3].
Fluctuations very similar to isocurvature fluctuations may
also arise in topological-defect models [5,7–9].
Isocurvature fluctuations are defined by the entropy

fluctuation

Siγ ¼
δni
ni

−
δnγ
nγ

ð1Þ

between a species i and the photons (γ); where ni denotes
the background number density of the species; δni its
spatial fluctuation; and i ∈ fb; c; ν; γg, where b denotes
baryons, c denotes cold dark matter (CDM), and ν denotes
neutrinos. These isocurvature modes individually leave an
imprint on the temperature and polarization power spectra
of the CMB [5] and are highly constrained by current
data [2].
There is one joint combination of isocurvature fluctua-

tions that largely escapes constraints. If

Scγ ¼ −
ρb
ρc

Sbγ; Sνγ ¼ 0; ð2Þ

then the density perturbations carried by the two isocurva-
ture modes cancel in this combination when both the
baryons and CDM are nonrelativistic. This is called a
compensated isocurvature perturbation (CIP).
At linear order, CIPs only affect observables through the

difference in the baryon and CDM pressure and hence on
scales comparable to the baryonic Jeans length [10–14].
For the CMB, these scales are deep into the damping tail
and the regime of secondary anisotropy dominance, as well*chenhe@uchicago.edu
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as beyond the beam scale of any foreseeable CMB experi-
ment. CIPs thus do not induce an observable effect on the
CMB at linear order [10,12,15].
There are potentially observable signatures on the 21 cm

signature of neutral hydrogen at very high redshifts (in
absorption). Sufficiently sensitive measurements for a CIP
detection, however, will require a futuristic space-based
21 cm experiment with a baseline that dwarfs that of
ongoing/upcoming 21 cm efforts like MWA/LOFAR/
PAPER/SKA by an order of magnitude [13].
On the other hand, since CIPs modulate the photon-

baryon and baryon-CDM ratios, they do impact the CMB at
higher order. By modulating these quantities in space, CIPs
change the two-point correlations between CMB multipole
moments in a way that allows their reconstruction [16].
This fact was applied to the WMAP 9-year data in Ref. [17]
to set upper limits on the CIP amplitude independently of
their origin. Similar limits follow from measurements of
the gas fraction in massive galaxy clusters [18]. In these prior
works, the CIP was not assumed to be correlated with the
dominant adiabatic fluctuation. Here we consider an early-
universe mechanism that generates CIPs correlated with
adiabatic fluctuations, yielding another detectable signature.
Correlated isocurvature fluctuations arise naturally in the

curvaton model, in which the curvaton, a subdominant field
during inflation later seeds the observed primordial curva-
ture fluctuations [6,10,19,20]. As different species and
quantum numbers may be generated by, before, or after
curvaton decay, there are mismatches in their number
densities which lead to isocurvature fluctuations including
correlated CIPs.
We assess the sensitivity of CMB anisotropy measure-

ments to correlated CIPs generated in various curvaton-
decay scenarios and find that a CMB Stage 4 [21]
experiment could yield a detection of the largest such
CIPs with more than 3σ significance. The significance
could improve to 11σ if polarized foregrounds and system-
atics can be modeled sufficiently to make a cosmic-variance
limited measurement out to multipoles of l ¼ 4000. More
generally, we find that cross-correlation of CIP reconstruc-
tionswith the primary CMBcan improve the signal-to-noise
ratio for detection of fully correlated CIPs by a factor of
∼2–3 depending on the specific experiment.
We establish that our reconstruction method [16] relies

on a separate-universe (SU) approximation, limiting its use
to angular scales L≲ 100. This has little impact for the
signal-to-noise ratio of CIP searches using completed
CMB experiments, but ultimately limits CIP reconstruction
from nearly cosmic-variance limited future CMB polari-
zation experiments. We correct numerical errors in the
reconstruction noise curves of Ref. [16]; these errors
are ultimately negligible on the scales where the SU
approximation is valid. We also update CIP estimators to
include sample variance from CMB B-mode polarization,
as well as covariance between CIP estimators based on

off-diagonal correlations between different pairs of
observables (e.g. temperature, E-mode polarization, and
B-mode polarization).
We begin in Sec. II by reviewing the predictions for the

amplitude of isocurvature perturbations and their correla-
tions with the adiabatic mode in nine curvaton-decay
scenarios. In Sec. III, we examine the tools for CIP
reconstruction and compute updated reconstruction noise
spectra based on the methods from Ref. [16]. In Sec. IV we
determine the sensitivity of future CMB experiments to
curvaton-inspired correlated CIPs. We assess the improve-
ments in signal-to-noise ratio made possible by cross-
correlating the CIP reconstruction with CMB temperature
and polarization maps. We conclude in Sec. V. In
Appendix A, we show that our reconstruction methods
are limited to CIP modes that are larger than the sound
horizon at recombination. In Appendix B we discuss
differences with the reconstruction results of Ref. [16].

II. CORRELATED CIPS IN CURVATON MODELS

A. General considerations

The curvaton σ is a light spectator scalar field during
inflation and starts to oscillate when the Hubble scale H
approaches the curvaton massmσ shortly before or after the
inflaton ϕ decays into radiation R. Once the curvaton starts
to oscillate, it redshifts like matter and comes to contribute
a larger and larger fraction of the energy density, thus
generating curvature fluctuations [4,6,22–26].
In general, both the curvaton σ and inflaton ϕ contribute

to the curvature fluctuations on constant total density
slicing ζ. Depending on how dominant the curvaton is
when it decays, as quantified by

rD ¼ ρσ
ðρσ þ 4ρR=3Þ

����
D
; ð3Þ

the relative contribution of inflaton and curvaton contribu-
tions to the total curvature varies, and is given by

ζ ¼ ζγ ¼ ð1 − rDÞζϕ þ rDζσ; ð4Þ

where ζi is the curvature perturbation on constant density
ρi slicing, or equivalently the energy density perturbation
δρi=3ðρi þ piÞ on spatially flat slicing. When applied
to particle components, ζi is also the particle number
density perturbation on spatially flat slicing. Thus, i ∈
fσ;ϕ; b; c; ν; γg.
The curvaton can also generate isocurvature fluctuations

[4,22,25,27,28]

Sij ¼ 3ðζi − ζjÞ; ð5Þ

depending on how various particle numbers were gener-
ated. If they were created before curvaton decay, then they
inherit the inflaton’s fluctuations ζϕ. If they were generated
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by curvaton decay, they inherit the curvaton’s fluctuations
ζσ . If they were created from the thermal plasma after the
curvaton decay, they inherit the total curvature perturbation
ζ. In summary [25,27],

ζi ¼
8<
:

ζϕ; before decay;

ζσ; by decay;

ζ; after decay:

ð6Þ

Once generated, these curvature fluctuations remain con-
stant outside the horizon [23,29,30].
We are interested, in particular, in the baryon (b) and

cold dark matter (c) isocurvature fluctuations around the
time of recombination. We assume that lepton number is
not related to curvaton physics, allowing us to neglect
neutrino isocurvature perturbations [25,27]. We thus do not
distinguish between photons γ and the total radiation.
The remaining two isocurvature modes Sbγ and Scγ can

be reorganized into a CIP mode and a CDM isocurvature
mode, called the effective mode since it now carries all of
the nonrelativistic matter isocurvature fluctuations, none of
the baryon isocurvature fluctuations and only part of the
CDM isocurvature fluctuations.1 Specifically, we split each
curvature fluctuation as

ζi ¼ ζCIPi þ ζeffi ; ð7Þ

where by definition the CIP mode satisfies the compensation
conditions δρCIPb ¼ −δρCIPc and δρCIPγ ¼ 0, or equivalently

ζCIPc ≡ −
fb

1 − fb
ζCIPb ;

ζCIPγ ≡ 0; ð8Þ

and the effective mode carries the adiabatic fluctuations and
CDM isocurvature fluctuations but no baryon isocurvature
fluctuations:

ζeffb ≡ ζeffγ ¼ ζ: ð9Þ

Here the baryon fraction is

fb ¼
ρb

ρb þ ρc
; ð10Þ

and we have assumed that the CIP mode is defined by
compensation after both the baryons and CDM become
nonrelativistic.
We define the entropy perturbation carried by the two

modes as

SXij ¼ 3ðζXi − ζXj Þ; ð11Þ

where X ∈ feff;CIPg. Equation (9) then implies that
the effective mode carries only CDM isocurvature fluctua-
tions, as

Seffbγ ¼ 0: ð12Þ

From these relations, we have

SCIPbγ ¼ Sbγ;

Seffcγ ¼ Scγ þ
fb

1 − fb
Sbγ: ð13Þ

Together Seffcγ and SCIPbγ give an alternate representation of
the isocurvature modes Scγ and Sbγ . The benefit of this
representation is that because of the compensating baryon
and CDM entropy fluctuations, the CIP mode corresponds
to zero total isocurvature in nonrelativistic species
[SCIPmγ ≡ fbSCIPbγ þ ð1 − fbÞSCIPcγ ¼ 0], and is unmeasurable
in linear theory, while carrying all of the modulation of the
baryon-photon ratio (since Seffbγ ¼ 0), thus inducing poten-
tially observable changes to CMB anisotropy properties at
second order [13,18].
Now, let us consider the values of Seffcγ and SCIPbγ for the

nine baryon, CDM isocurvature scenarios, obtained by
specifying whether or not the baryon number and CDM are
set before, by, or after curvaton decay. We use the notation
ðbx; cyÞ, where x; y ∈ fbefore; by; afterg, b denotes baryon
number, and c denotes CDM.
Two curvaton-decay scenarios are of particular interest to

CIPs. For the case when the baryon number is created by
curvaton decay, ζb ¼ ζσ and CDM is created before,
ζc ¼ ζϕ,

Seffcγ

ζσ − ζϕ
¼ 3

fb − rD
1 − fb

;

SCIPbγ

ζσ − ζϕ
¼ 3ð1 − rDÞ; ðbby; cbeforeÞ; ð14Þ

and for baryon number created before and CDM by the
decay,

Seffcγ

ζσ − ζϕ
¼ 3

1 − fb − rD
1 − fb

;

SCIPbγ

ζσ − ζϕ
¼ −3rD; ðbbefore; cbyÞ: ð15Þ

In these two cases, Seffcγ can be made small by canceling
the rD and fb terms while leaving SCIPbγ relatively large.
The other cases are given in Table I.
In all cases, the isocurvature modes are proportional to

ζσ − ζϕ. This implies that the cross-correlation between the

1This split between CIPs and an effective mode was introduced
in Ref. [10] with the opposite convention of an effective baryon
isocurvature, rather than the CDM isocurvature mode. The latter
has since become standard (e.g. Ref. [2]).
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curvature and isocurvature modes share a universal corre-
lation amplitude regardless of the curvaton-decay scenario.
For example, for the CIP mode

R≡ PSCIPbγ ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PζζPSCIPbγ SCIPbγ

q

¼ � ð1 − rDÞPζϕζϕ − rDPζσζσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPζϕζϕ þ PζσζσÞ½ð1 − rDÞ2Pζϕζϕ þ r2DPζσζσ �

q ;

ð16Þ

where

hζ�σðkÞζσðk0Þi ¼ ð2πÞ3δðk − k0ÞPζσζσðkÞ;
hζ�ϕðkÞζϕðk0Þi ¼ ð2πÞ3δðk − k0ÞPζϕζϕðkÞ;

hSCIPbγ
�ðkÞζðk0Þi ¼ ð2πÞ3δðk − k0ÞPSCIPbγ ζðkÞ; ð17Þ

and we have used the fact that the curvaton and inflaton
fluctuations are uncorrelated,

Pζζ ¼ ð1 − rDÞ2Pζϕζϕ þ r2DPζσζσ : ð18Þ

If either the curvaton or the inflaton dominates the total
curvature, the CIP mode is fully correlated (R ¼ �1), as is
the CDM-isocurvature mode Seffcγ . The sign of the correla-
tion depends on the decay scenario.
In fact, independently of curvaton domination or decay

scenario, SCIPbγ and Seffcγ are always fully correlated and
cannot be considered independently. Whereas individually
the CIP mode implies both a photon-baryon fluctuation and
a CDM-baryon fluctuation, it can no longer be considered
in isolation from the effective CDM isocurvature mode.

This can lead to counterintuitive results when considering
other representations of the isocurvature modes and deter-
mining their joint observational effects.
For example, in the ðbbefore; cbeforeÞ case, both modes are

present and in fact set the total Sbc ¼ 0. Obviously, this
scenario cannot be tested through a spatial modulation of the
baryon-CDM ratio. Nonetheless, the joint set of modes can
be described by a CIP mode which carries SCIPbc and a fully
correlated CDM isocurvature mode where Seffbc ¼ −SCIPbc . For
the purposes of the tests in this paper, that is the more useful
description, since CMB observables depend mainly on the
photon-baryon modulation of quantities like the sound speed
and damping scale of the plasma. In this representation, both
the adiabatic and effective modes propagate in the presence
of a CIP-modulated baryon-photon ratio. Similarly, there are
cases [(bafter; cby) and (bafter; cbefore)] where Sbc ≠ 0, but the
effective and adiabatic modes do not see a CIP-induced
modulation of the baryon-photon ratio. Ultimately (as we see
below), the most interesting cases are those where the CIP
mode is much larger than the effective mode, due to
observational bounds on the latter, making these subtleties
largely irrelevant.

B. Observational considerations
for curvaton domination

In forthcoming sections, we will consider the limit of
fully correlated CIP modes (R ≈�1), a case that results if
the curvaton completely dominates the total curvature
fluctuation ζ ≈ rDζσ. The inflaton fluctuations obey the
usual relationship to tensor modes

Pζϕζϕ

Pζζ
¼ r

16ϵ
; ð19Þ

TABLE I. CIP and CDM isocurvature modes for the various curvaton-decay scenarios. The center two columns
give the general case, where both curvaton and inflaton fluctuations contribute to the curvature fluctuations; whereas
the right two columns give the curvaton-dominated fluctuation case. Italicized cases are ruled out by observational
bounds. Bold-faced cases produce the largest CIP of the remaining ones and also predict anticorrelated effective
CDM isocurvature and curvature modes.

Baryons CDM Seffcγ

ζσ−ζϕ

SCIPbγ

ζσ−ζϕ
Seffcγ

ζ A ¼ SCIPbγ

ζ

by before −3 rD−fb
1−fb

3ð1 − rDÞ − 3
rD

rD−fb
1−fb

1−fb
fb

ð3þ Seffcγ

ζ Þ
before by 3 1−fb−rD

1−fb
−3rD 3

rD
1−fb−rD
1−fb

−3

by after 3fb
1−rD
1−fb

3ð1 − rDÞ 3 fb
rD

1−rD
1−fb

ð 1
fb
− 1Þ Seffcγ

ζ

after by 3ð1 − rDÞ 0 3ð 1
rD
− 1Þ 0

before after −3 fb
1−fb

rD −3rD −3 fb
1−fb

−3

after before −3rD 0 −3 0
before before −3 rD

1−fb
−3rD −3 1

1−fb
−3

by by 3 1−rD
1−fb

3ð1 − rDÞ 3
rD

1−rD
1−fb

ð1 − fbÞ S
eff
cγ

ζ

after after 0 0 0 0

CHEN HE, DANIEL GRIN, AND WAYNE HU PHYSICAL REVIEW D 92, 063018 (2015)

063018-4



where r is the tensor-to-scalar ratio and ϵ is the slow-roll
parameter from inflation. By comparing with Eq. (18), we
see that the curvaton contribution to the total curvature ζ
is dominant over the inflaton contribution as long as
r ≪ 16ϵ=ð1 − rDÞ2. Even if gravitational waves are
detected near the current upper limit of r ∼ 0.1, curvaton
curvature domination can still be a good approximation for
sufficiently large ϵ=ð1 − rDÞ2. The remaining inflaton
contribution would then cause a small decorrelation of
CIP modes, which we ignore in the following sections.
Under the assumption that the inflaton fluctuations

are negligible, there are tight constraints on the CDM-
isocurvature fraction Seffcγ =ζ that then limit the CIP amplitude

A≡ SCIPbγ

ζ
ð20Þ

in each of the nine scenarios. The two-sided 95% C.L.
constraints from the Planck 2015 temperature and low-l
polarization analysis of totally anticorrelated and correlated
isocurvature modes with no tensors combine to imply [2]

−0.080 <
Seffcγ

ζ
< 0.042 ðTTþ lowPÞ: ð21Þ

The asymmetric errors reflect the fact that there is a mild
preference for anticorrelated CDM isocurvature modes in
the Planck TT data [31]. The standard adiabatic ΛCDM
model predicts power in excess of the observations at low
multipole moment which can be canceled by such a mode.
This preference would strengthen if existing upper limits to
the amplitude of a primordial gravitational wave back-
ground are saturated in the future by a primordial B-mode
detection [32]. The preliminary Planck 2015 high-l polari-
zation, however, disfavors the anticorrelated scenario and
leads to the bounds [2]

−0.028 <
Seffcγ

ζ
< 0.036 ðTT;TE;EEþ lowPÞ ð22Þ

without tensors.
Predictions for the various scenarios simplify in this

curvaton-dominated limit. The largest CIP amplitude is
obtained if baryon number is created by the decay and
CDM before

Seffcγ

ζ
¼ −

3

rD

rD − fb
1 − fb

;

A ¼ 1 − fb
fb

�
3þ Seffcγ

ζ

�
; ðbby; cbeforeÞ: ð23Þ

Note that the CDM mode can be anticorrelated in
this case but only satisfies observational bounds if
the decay fraction is tuned to near the baryon fraction

rD ≈ fb. The observational bound on Seffcγ =ζ implies
A ≈ 3ð1 − fbÞ=fb ≈ 16.5. The converse case gives

Seffcγ

ζ
¼ 3

rD

1 − fb − rD
1 − fb

;

A ¼ −3; ðbbefore; cbyÞ ð24Þ

and again allows anticorrelation and can satisfy observa-
tional bounds if rD is tuned to 1 − fb.
Table I lists the other cases. For the ðbby; cafterÞ and

ðbafter; cbyÞ scenarios, Seffcγ =ζ > 0, and to satisfy observa-
tional bounds, the CIP amplitude is either proportionately
small (jAj ∼ 10−2) or vanishing, respectively. The
ðbbefore; cafterÞ and ðbafter; cbeforeÞ scenarios cannot satisfy
observational bounds on Seffcγ =ζ and are hence ruled out.
For the simultaneous scenarios, ðbbefore; cbeforeÞ cannot
satisfy observational bounds, ðbby; cbyÞ predicts small CIP
modes, and ðbafter; cafterÞ predicts no isocurvature modes.
In summary, the two cases that produce substantial

CIP modes are the ðbby; cbeforeÞ and ðbbefore; cbyÞ scenarios,
which predict A ≈ 3ð1 − fbÞ=fb ≈ 16.5 and A ¼ −3,
respectively. Interestingly, these are also the only two
scenarios where the CDM isocurvature mode can cancel
the excess low multipole power in the Planck TT data.

III. CIP RECONSTRUCTION

CIPs leave observable imprints on the CMB. In this
section, we review the method for CIP reconstruction
introduced in Ref. [16] and point out the limitations imposed
by its use of a separate-universe approximation, as further
illustrated in Appendix A. Reconstruction methods and
results are general, and do not depend on whether or not
CIPs are generated in a curvaton scenario. Cross-correlations
between the CIPs and the adiabatic mode do depend on the
model. Though the techniques again do not depend on the
level of correlation, for results we assume fully correlated
CIPs as appropriate for a curvaton-dominated scenario.
In Sec. III A, we discuss the separate-universe response

of off-diagonal short-wavelength CMB two-point correla-
tions to the presence of a long-wavelength CIP mode. This
response is calculated by varying background cosmological
parameters, as shown in Sec. III B. Each two-point corre-
lation function represents a noisy measurement of the CIP
mode which we combine to form the minimum variance
estimator in Sec. III C. We discuss its noise properties in
Sec. III D. For correlated CIP modes motivated by the
curvaton scenarios of Sec. II, the reconstruction can be
correlated with the CMB fields themselves to enhance
detection, as discussed further in Sec. IV.

A. Separate-universe approximation

The CIP mode SCIPbγ represents a modulation of the
baryon-photon ratio that is compensated by CDM so as
to cancel its purely gravitational effects. Consequently, it
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leaves no imprint on the CMB to linear order. At second
order, other modes, including the dominant adiabatic mode,
propagate on a perturbed background where quantities such
as the photon-baryon sound speed and damping scale are
spatially modulated. A fixed CIP mode breaks statistical
homogeneity and hence statistical isotropy in the CMB,
and so the CIP can be reconstructed from the correlations
between different CMB temperature and polarization multi-
poles that it induces.
In Ref. [16], an approximation for characterizing these

off-diagonal correlations was applied, based on what
amounts to a separate-universe approximation [33].
Since the CIP mode does not evolve, its impact can be
characterized by a change in cosmological parameters, so
long as its wavelength is sufficiently large compared with
the scale over which the modes propagate. In Appendix A,
we show that for CMB anisotropy shortly after recombi-
nation, this requires the CIP mode to be larger than the
sound horizon at that time. This amounts to the limit
L≲ 100, where L is the multipole index of the CIP
projected onto the surface of last scattering during recom-
bination. Use of the expressions derived here beyond this
domain of validity will bias the associated CIP estimators,
an issue we discuss further in Sec. III C and Appendix A.
For modes that satisfy this approximation, we can treat

the CIP mode shortly after recombination as a shift in the
background

Ωb → Ωbð1þ ΔÞ;
Ωc → Ωc −ΩbΔ; ð25Þ

where

Δðn̂Þ ¼ SCIPbγ ðx ¼ D�n̂Þ; ð26Þ

n̂ is the direction on the sky, and D� is the distance to the
CMB last-scattering surface during recombination. This
angular field can be decomposed into multipole moments

Δðn̂Þ ¼
X
LM

ΔLMYLMðn̂Þ; ð27Þ

so that the restriction on the wavelength of the CIP may be
considered as a low-pass filter where the effects are
characterized out to L≲ 100. Note that this restriction
justifies the use of a single distance in Eq. (26) rather than
an average over the finite width of the recombination era.
In linear theory, the impact of background parameters on

CMB power spectra

hX�
l0m0Zlmi ¼ δll0δmm0CXZ

l ; ð28Þ

are characterized by transfer functions

CXZ
l ¼ 2

π

Z
k2dkTX

l ðkÞTZ
l ðkÞPζζðkÞ ð29Þ

that are given by integral solutions to the Einstein-
Boltzmann equations of radiative transfer. Here X and Z
are any of the CMB temperature and polarization fields
T; E; B. Given observational bounds on the CDM isocur-
vature mode, to a good approximation we can set Seffcγ ¼ 0
when evaluating the transfer functions in Eq. (29). In the
curvaton model with SCIPbγ ¼ Aζ, the Δ field is correlated
with the CMB fields through their joint dependence on ζ.
For the case where the curvaton dominates ζ and in a flat
cosmology, the cross power-spectrum of Δ and the CMB
fields CXΔ

l as well as the auto power-spectrum CΔΔ
l are

described by Eq. (29) with

TΔ
l ðkÞ ¼ AjlðkD�Þ ð30Þ

and can be numerically evaluated in CAMB [15] using
Eq. (29).
Note that even in the presence of CIP modes, which are

themselves statistically isotropic, two-point correlations are
characterized by the diagonal form of Eq. (28) as long as
h…i is understood to be the ensemble average over
realizations of all modes. In fact, in the curvaton model,
the ensemble average over realizations of ζ automatically
includes the CIP and adiabatic modes.
Nonetheless, it is useful to artificially separate the two

and consider the response of CMB fields to a fixed
realization of the CIP mode. In the SU approximation,
this fixed CIP mode is treated as simply a change in
cosmological parameters from Eq. (25) that varies
across the sky [17]. This variation modulates the
statistical properties of the CMB modes according to
the transfer functions. The utility of this split is that it
exposes the fact that there are many pairs of CMB
multipoles where l; l0 ≫ L that can be used to estimate
the realization of ΔLM on our sky. We denote an average
over CMB modes with the CIP mode fixed as h…iCMB.
This average can be thought of as an average over the
subset of ζ modes that are smaller in wavelength than
the sound horizon in the presence of fixed longer-
wavelength ζ modes.
The product of the source and modulation fields in real

space leads to a convolution in harmonic space. Hence, it
connects CMB multipole moments of different l; m in the
same manner as a three-point function, yielding

hX�
l0m0ZlmiCMB ¼ δll0δmm0CXZ

l

þ
X
LM

ΔLMξ
LM
lm;l0m0SL;XZll0 ; ð31Þ

where
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ξLMlml0m0 ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l0 þ 1Þ

4π

r

×

�
l L l0

−m M m0

�
; ð32Þ

and the response functions SL;XZll0 are given in Table II with

CX;dZ
l ¼ 2

π

Z
k2dkTX

l ðkÞ
dTZ

l

dΔ
ðkÞPζζðkÞ ð33Þ

and

KL
ll0 ≡

�
l L l0

0 0 0

�
;

HL
ll0 ≡

�
l L l0

2 0 −2

�
;

which are Wigner 3j coefficients. The response for intrinsic
B modes is new to this work and may provide extra
information on CIP modes should they be detected in the
future.
In the presence of a fixed long-wavelength CIP mode,

statistical isotropy of short-wavelength CMB fields is
therefore broken. Statistical isotropy is of course restored
once the full ensemble average over the random realizations
of the CIP mode is taken. Given the correlation of Δ, ζ and
the T; E CMB fields, a full ensemble average induces a
three-point correlation in the CMB which correlates long-
wavelength modes to short-wavelength power, i.e. a
squeezed bispectrum.
This correlation provides a way of detecting the CIP

mode from a noisy two-point reconstruction ofΔ as long as
the correlation coefficient

RXΔ
L ¼ CXΔ

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CXX
L CΔΔ

L

p ; ð34Þ

shown in Fig. 1, remains large. The sign of the correlation
oscillates due to acoustic oscillations in temperature and
polarization, whereas the level of correlation depends on
the difference in projection effects between the fields.

B. Response of CMB anisotropies to CIP modes

Calculating the response functions in Eq. (33) requires
varying cosmological parameters to mimic the effect of the
CIP within the separate-universe approximation following
Ref. [16]. While Eq. (25) provides a prescription for the
main effect of compensating variations of the background
baryon and cold dark matter densities, there are a number of
subtleties that arise from the treatment of the CIP mode as
an angular field Δðn̂Þ rather than a three-dimensional field
that varies along the line of sight. CMB temperature and
polarization anisotropies that are generated at reionization
(and thus after recombination) break this approximation.
For these sources of CMB anisotropies, the use of the
SU approximation is limited by the horizon scale at the
given time rather than the sound horizon shortly after
recombination.
By varying Ωb and Ωc in the transfer functions, we

implicitly include a reionization response to the CIP that
depends on what other parameters are held fixed. Even if
we assume that the reionization optical depth τ is held fixed
when varying parameters in the transfer function, there is
still an effect on the shape of the polarization spectra due to
the implied modulation of the redshift of reionization zr.
To assess the impact of reionization, we try two other
prescriptions that attempt to remove this sensitivity. The first
case is to simply adopt a model with no reionization, and
the second is to neglect reionization in evaluating Eq. (33)
and then restore it using the analytic damping envelope of
Ref. [34]. All three prescriptions yield similar (at the 10%–
20% level) results for the sensitivity of the CMB to
correlated CIPs in Sec. IV. We conclude that reionization
only causes a small ambiguity for the detectability of CIPs.

TABLE II. The response function SL;XZll0 of the various two-
point observables in Eq. (31).

XZ SL;XZll0 lþ l0 þ L

TT ðCT;dT
l0 þ CT;dT

l ÞKL
ll0 Even

EE ðCE;dE
l0 þ CE;dE

l ÞHL
ll0 Even

EB −iðCE;dE
l0 þ CB;dB

l ÞHL
ll0 Odd

TB −iCT;dE
l0 HL

ll0 Odd

TE ðCT;dE
l0 HL

ll0 þ CE;dT
l KL

ll0 ) Even

BB ðCB;dB
l0 þ CB;dB

l ÞHL
ll0 Even

FIG. 1 (color online). Correlation coefficients RTΔ
L and REΔ

L
between the CIP and the CMB temperature and polarization
fields, respectively, as a function of multipole L for A > 0. The
sign of the correlation oscillates due to acoustic oscillations in
temperature and polarization, whereas the level of correlation
depends on the difference in projection effects between the fields.
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If they are in the future detected and measured precisely, then
a more detailed prescription will be required. For simplicity,
we adopt here the constant τ prescription.
Similarly, the CMB fields from shortly after recombi-

nation are gravitationally lensed by large-scale structure in
the foreground. Gravitational lensing of the CMB also
produces off-diagonal two-point correlations in the pres-
ence of a fixed large-scale lensing potential. Given
differences in the response function, it is in principle
possible to disentangle lensing from CIP effects internally
to the CMB. Likewise, external delensing of the CMB can
help remove the contamination. These topics will need to
be addressed in the future but are beyond the scope of the
present work. They will degrade somewhat the forecasts for
CIP detectability due to loss of degenerate modes. In the
following sections, we treat gravitational lensing effects as
a source of additional Gaussian noise only and continue to
use Cl to denote the unlensed CMB power spectrum.
Throughout this work, we use a flat ΛCDM cosmology

consistent with the 2013 Planck results [35].2 Here Ωb ¼
0.049 and Ωc ¼ 0.268, around which we calculate the CIP
response, and the adiabatic scalar power spectrum with
amplitude As ¼ 2.215 × 10−9, spectral index ns ¼ 0.9624,
the reionization optical depth τ ¼ 0.0925, neutrino mass of
a single species mν ¼ 0.06 eV, and Hubble constant
h ¼ 0.6711, which we hold fixed. We assume that the
tensor modes (parameterized by the tensor-to-scalar ratio r)
are negligible, and thus that there are no intrinsic B modes.

C. Minimum-variance CIP estimator

Each pair of CMB fields X�
l0m0Zlm provides an estimate of

a CIP mode ΔLM that satisfies the triangle inequality,
jl − l0j ≤ L ≤ lþ l0 and M ¼ m −m0. Any single pair,
however, is highly noisy due to the sample variance of
the Gaussian random CMB fields and instrument noise.
Here, we also include the change in the power spectra due
to lensing as an additional noise source. Including all noise
sources means that we replace Eq. (28) with

hX�
l0m0Zlmi ¼ δll0δmm0 ~CXZ

l ; ð35Þ

where

~CXZ
l ¼ CXZ

l þ δCXZ;lens
l þ ~NXZ

l ; ð36Þ

with ~NXZ
l as the measurement noise power in the sky

maps and δCXZ;lens
l as the change in the power spectrum

due to lensing, which we treat as noise. Furthermore,
given a XZ field pairing, the X�

l0m0Zlm and Z�
l0m0Xlm

estimators have correlated noise. Likewise, the different
field pairings XZ and X0Z0 are also correlated. Following
the mathematically identical lensing treatment in Ref. [36]
(see also Ref. [37]), we optimize the weighting of the

estimators to minimize the CMB reconstruction noise.
Optimal weighting generalizes the familiar inverse-
variance weighting to inverse-covariance weighting for
covarying estimators. Differences with the results of
Ref. [16] are discussed in Appendix B.
It is convenient to break the inverse-covariance weight-

ing into two steps. Since we want to examine each XZ pair
individually, we first consider the 2 × 2 covariance of its
multipole pairing. We can write a general estimator as

Δ̂XZ
LM ¼

X
lml0m0

X�
l0m0Zlmξ

LM
lml0m0WXZ

Lll0 ; ð37Þ

where ξLMlml0m0 enforces the triangle inequality and WXZ
Lll0 are

the weights to be determined. The variance of an unbiased
estimator due to Gaussian CMB noise becomes

hjΔ̂XZ
LM − ΔLMj2iCMB ¼

X
ll0

Gll0WXZ
Lll0 f ~CXX

l0
~CZZ
l WXZ�

Lll0

þ ð−1Þlþl0þL ~CXZ
l0

~CXZ
l WXZ�

Ll0l g; ð38Þ

where we have used Wick contractions and identities for
the Wigner coefficients, and

Gll0 ≡ ð2lþ 1Þð2l0 þ 1Þ
4π

: ð39Þ

Note that the covariance of the multipole permutation gives
rise to the second term. We minimize the variance by taking
a derivative of Eq. (38) with respect to WXZ

Lll0 , imposing
the constraint of an unbiased estimator with a Lagrange
multiplier λ, obtaining

~CXX
l0

~CZZ
l WXZ�

Lll0 þ ð−1Þlþl0þL ~CXZ
l0

~CXZ
l WXZ�

Ll0l þ λSL;XZll0 ¼ 0;

ð40Þ

This provides the relative weights WXZ�
Lll0 ∝ gXZ�Lll0 , where

gXZLll0 ¼
SL;XZ�ll0

~CXX
l

~CZZ
l0 − ð−1Þlþl0þLSL;XZ�l0l

~CXZ
l

~CXZ
l0

~CXX
l0

~CZZ
l

~CXX
l

~CZZ
l0 − ð ~CXZ

l
~CXZ
l0 Þ2 : ð41Þ

Note that this takes the form of the inverse 2 × 2 covariance
weight as expected.
The normalization comes from the requirement that the

estimator be unbiased so that

Δ̂XZ
LM ¼ NXZ

L

X
lml0m0

X�
l0m0ZlmgXZLll0ξ

LM
lml0m0 ; ð42Þ

½NXZ
L �−1 ¼

X
ll0

Gll0S
L;XZ
ll0 gXZLll0 : ð43Þ

The normalization factor is also the variance of the
estimator itself,2Specifically, we use baseline model 2.13 from Grid_limit68.
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hjΔ̂XZ
LM − ΔLMj2iCMB ¼ NXZ

L : ð44Þ

Next, we can combine the various α ¼ XZ field pairs to
find the total minimum-variance estimator by again
inverse-covariance weighting the individual estimators

Δ̂LM ¼
X
α

wα
LΔ̂

α
LM; wα

L ¼ NΔΔ
L

X
β

ðM−1
L Þα;β;

½NΔΔ
L �−1 ≡X

αβ

ðM−1
L Þα;β: ð45Þ

The estimator covariance-matrixML is at every L a rank-2
tensor over observable pairs. The indices α and β take
values over labels for pairs of observables, that is,
α; β ∈ fTT; EE; TE; BT; BEg. Using Eq. (42), and iden-
tities of Wigner coefficients, we obtain an expression for
the matrix elements Mα;β

L :

MXZ;X0Z0
L ¼ NXZ

L NX0Z0
L

X
ll0

Gll0gXZLll0 ½ ~CXX0
l0

~CZZ0
l gX

0Z0�
Lll0

þ ð−1Þlþl0þL ~CXZ0
l0

~CX0Z
l gX

0Z0�
Ll0l �: ð46Þ

The total-estimator variance is again the normalization
factor NΔΔ

L . It is straightforward to check that Eqs. (43)
and (44) can be recovered from Eq. (46) by restriction to a
single pair (X ¼ X0, Z ¼ Z0).

D. Reconstruction noise

For reconstruction noise forecasts NXZ
L from the CMB

fields XZ, we can use the ~NXZ
l CMB noise power

specifications (real or projected) of various experiments.
We parameterize it as

~NXZ
l ¼ δ2XZe

lðlþ1Þθ2FWHM=8 ln 2; ð47Þ

with δ2XZ as the detector noise covariance assumed to be
zero if X ≠ Z, and θFWHM as the full-width half-max of an
approximately Gaussian beam. Table III gives the speci-
fications for WMAP [38], Planck [39], ACTPol [40,41],
SPT-3G [42,43], and CMB Stage 4 (CMB-S4 henceforth)
[21] experiments. The WMAP and Planck missions have
concluded, but becauseWMAP data have not yet been used
to search for correlated CIPs, and because no CIP
reconstruction yet exists from Planck data, we “predict”
in those cases as well. For all but the Planck case, we take
δ2EE ¼ δ2BB ¼ 2δ2TT . For Planck, not all HFI bolometers
have polarization sensitivity. To forecast temperature noise,
we use all 3Sþ 4P and 4Sþ 4P bolometers from the 143
and 217 GHz channels, respectively, where S denotes an
unpolarized spider-web bolometer and P a polarized
bolometer. We also calculate the ideal reconstruction
noise for the (zero-instrument-noise) hypothetical cosmic-
variance-limited (CVL) case as the ultimate limit.

The results for CMB-S4 are shown in Fig. 2 (see
Appendix B for other experiments). For all cases, we
generate reconstruction noise curves using a maximum
observed CMB multipole index lCMB ¼ 2500. Beyond this
point, foregrounds dominate the TT spectrum. To assess the
possible effect of CMB foreground subtraction and lower

TABLE III. Instrument noise parameters for illustrative experi-
ments [21,38–43]: full-width half-max (FWHM) of the beam (in
arcmin), noise for temperature measurements δTT (in μKarcmin),
and sky fraction fsky used for cosmological analysis. For Planck,
we indicate temperature and polarization noise separately as
described in the text. For reconstruction, we minimum-variance
weight the V and W bands for WMAP and the 143 and 217 GHz
channels for Planck. The CVL case is full sky and has no
instrument noise by definition.

Data FWHM Noise fsky

WMAP V band 21 434 0.65
WMAP W band 13 409 0.65
Planck 143 GHz 7.1 37, 78 0.65
Planck 217 GHz 5.0 54, 119 0.65
ACTPol 1.4 8.9 0.097
SPT-3G 1.1 2.5 0.06
CMB-S4 3.0 1.0 0.50
CVL 0.0 0.0 1

10010 1000
L

10 -4

10 -3

10 -2

10 -1

1

101

10 -5

L
(L

+
1)

N
L
  /

2π
X

Z

FIG. 2 (color online). Reconstruction noise curves NXZ
L for

CMB-S4 obtained from the CIP estimator of Eq. (42) with the
indicated pair of observables XZ. The shaded region represents
LðLþ 1ÞCΔΔ

L =ð2πÞ signals that are excluded by WMAP 9-year
data (Ref. [17], see Sec. IV). This bound comes from limits to the
auto-correlation power spectrum CΔΔ

L of CIPs and is thus
conservative for models with correlated CIPs. Where the curves
intersect this bound, the estimator noise and CIP sample variance
of the jAj ¼ 808 model that saturates it are equal. The approxi-
mate domain of validity of the SU approximation L ≲ 100 is
indicated by the arrow. Unless otherwise specified, we assume
the estimators employ CMB multipoles up to lCMB ¼ 2500
throughout.
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contamination in the polarization spectra, we explore
increasing the limit in Sec. IV. Also shown in Fig. 2 is
the bound of jAj < 808 on the CIP signal power converted
from Ref. [17] for the fiducial cosmology. This bound
comes from limits to the auto-correlation power spectrum
CΔΔ
L of CIPs. It is thus valid but could be further improved

if Δ and the primordial curvature ζ are correlated, as we
discuss further in Sec. IV.
The CIP estimator used in all these forecasts, Eq. (42), is

derived under the SU approximation. Naive application of
Eq. (31) outside its regime of validity can thus significantly
bias estimates of the CIP amplitude ΔLM. In the context of
the simple toy model in Appendix A, we can compute the
response exactly and estimate the reduced sensitivity and
bias beyond the SU approximation. Using those results, we
estimate that the reconstruction noise curves are accurate
for L≲ 100. Moreover, the sharply reduced response
beyond this point in the toy model implies that we lose
little information by simply restricting ourselves to these L
values.
The CIP constraints of Ref. [17] are unaffected by the

limitations of the SU approximation, as the WMAP signal-
to-noise ratio (S/N) for CIPs is dominated by scales L≲ 10.
Planck will also not run up against the limitations of the SU
estimator. On the other hand, future experiments will not be
as sensitive to CIPs as naively estimated in the SU
approach, as additional information from polarization-
based estimators is severely reduced when the L≲ 100
limit is imposed. We discuss further the limitations to the
detection of curvaton-generated CIPs in Sec. IV.
It is instructive to develop some intuition for the shapes

of the reconstruction-noise curves in Fig. 2. From the
geometry of converting E into B alone, we can understand
the relative slopes ofNL between B-based and non-B-based
estimators of ΔLM. The difference is easiest to see in the
flat-sky approximation. In order to generate a B mode from
the CIP modulation of an E mode, the modulation must
change the direction of the mode relative to the polarization
direction. In the squeezed limit where l; l0 ≫ L, the flat-sky
correspondence gives Fourier modes where l∥l0 and so does
not generate a B mode. In the full-sky formulas, this comes
about because to good approximation [44]

HL
ll0 ≈ Fðl; L; l0Þ

�
sinð2ϕÞ; lþ l0 þ L odd;

cosð2ϕÞ; lþ l0 þ L even;
ð48Þ

where ϕ is the angle between the l and l0 sides of a triangle
with side lengths fl; L; l0g upon which F also depends. In
the squeezed limit, sinð2ϕÞ ∝ L and cosð2ϕÞ ≈ 1, which
explains why NXB

L =NXE
L ∝ L−2, as we can see is the case in

Fig. 2. We also see in Fig. 2 that for L≲ 100, the noise
spectra of estimators that do not involve B are white. This
behavior is to be expected, given that the prominent
features in the CMB carry the scale of the acoustic peaks
so that the noise for a modulation by a smaller L does not

depend on L. Finally, NTE
L changes slope at roughly the

sound horizon scale L ≈ 100. This is because of the
acoustic phase difference between T and E. The two terms
in the response CT;dE

l and CE;dT
l are opposite in sign and

roughly out of phase by half a period Δl ≈ 100. So for l, l0
that differ by less than half a period, the response remains
small, while for l, l0 separated by more than a period, the
response grows. Note, however, that the L≳ 100 required
for the latter is the region for which the SU approximation
fails, so this enhancement of the response is not of
practical value.

IV. CORRELATED CIP FORECASTS

We now forecast constraints on the amplitude A of totally
correlated (or anticorrelated) CIP modes for the various
experiments in Table III. We thus restrict ourselves to the
curvaton-dominated limit described in Sec. II B. We use
Fisher information matrix techniques in Sec. IVA, and then
discuss the dependence of these results on various aspects
of the data and assumptions in Sec. IV B.

A. Fisher errors

The Fisher information matrix Fij forecasts the inverse-
covariance matrix of a set of parameters pi, including A, on
which the auto- and cross-spectra pairs α ¼ XZ of the
observed CMB and reconstructed CIP fields, fX; Zg ∈
fT; E; B;Δg depend. Under the assumption of Gaussian
statistics for these underlying fields, the Fisher information
matrix can be approximated as

Fij ¼
XLmax

Lmin

ð2Lþ 1Þfsky
X
α;β

∂Cα
L

∂pi
ðC−1L Þαβ ∂C

β
L

∂pj
; ð49Þ

where CL is the covariance matrix for an individual LM
mode in the power spectrum estimator

CXX
0;ZZ0

L ¼ ~CXZ
L

~CX0Z0
L þ ~CXZ0

L
~CX0Z
L ; ð50Þ

and the fsky factor roughly accounts for the reduction in the
2Lþ 1 independent M modes due to the sky cut. Unless
otherwise specified, we always employ the reconstruction-
noise power spectrum NΔΔ

L for a Δ reconstructed from
CMB multipoles up to lCMB ¼ 2500.
In our case, we are interested in the parameter pi ¼ A.

Information on A is contained in the auto-spectrum of the
reconstruction CΔΔ

L ∝ A2, the cross-spectra with the CMB
T and E fields CTΔ

L , CEΔ
L ∝ A, and in principle CBB

L . We
choose to neglect the information coming from BB,
because CIP B-mode power will be swamped by the
lensing spectrum by a factor of ∼102 for the WMAP9
allowed model shown in Fig. 2 [16].
Since other cosmological parameters that define the

curvature power spectrum Δ2
ζ and matter content are well

determined, we quote
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σ2A ≡ 1

FAA
; ð51Þ

which is the forecasted error with all other parameters
fixed. We evaluate the derivatives in Eq. (49) at the fiducial
ΛCDM model defined in Sec. III B. For A we choose the
value for which a 2σA detection is possible which avoids
problems with defining the Fisher matrix at A ¼ 0 dis-
cussed below. For the multipole ranges we choose Lmin ¼
maxðf−1=2sky ; 2Þ, due to the sky cut, and Lmax ¼ 100, due to
the breakdown of the SU approximation, unless otherwise
specified.
Results for these fiducial choices are given in Table IV.

Note that for the CMB-S4 experiment we find that the
curvaton-motivated value of A ≈ 16.5 [realized in the
scenario (bby; cbefore)] can in principle be detected at more
than 3σ statistical significance. Even for currently available
data from WMAP and Planck, the expected limits are
substantially stronger than those determined in Ref. [17] for
WMAP. We shall see that in large part these improvements
are due to the addition of cross-spectra for correlated
CIP modes.

B. Forecast dependencies

Now let us examine the dependence of these results for
the CIP detection threshold on various aspects of the data
and Fisher matrix assumptions: the maximum and mini-
mum CIP multipole Lmax and Lmin, the maximum CMB
multipole used in the CIP reconstruction lCMB, the impact
of including CIP and CMB cross-correlations, the fiducial
CIP amplitude A, and the impact of CMB polarization
measurements on reconstruction and cross-correlation. In
each case, we vary the assumptions one at a time from the
fiducial choices in Sec. IVA.
We begin with the multipole ranges. Recall that the

fiducial CIP maximum multipole Lmax ¼ 100 is chosen to
correspond to the angular scale across which sound waves
have traveled by the end of the recombination era. As
discussed in Appendix A, longer-wavelength CIP modes or
smaller multipoles can be considered as SU variations in
cosmological parameters. Since the breakdown of this

approximation occurs within a factor of a few of this scale
(see Fig. 7), we show in Fig. 3 the dependence of the 2σ
detection threshold on Lmax.
For the Planck experiment, whose CIP reconstruction is

dominated by TT estimators, the dependence on Lmax is
very mild, consistent with the nearly white-noise spectrum
of estimators that do not involve B modes shown in Fig. 2.
For future experiments that have good polarization sensi-
tivity, the noise curves of BT and BE can cross the others
near L ¼ 100. Were it not for the breakdown of the SU
approximation, the implied limits on A would thereafter
improve substantially, yielding far better constraints with
polarization reconstruction and with cross-correlation than
without. As discussed below, improvements from cross-
correlation depend strongly on the multipole at which the
signal is extracted. With the fiducial Lmax ¼ 100, polari-
zation reconstruction yields improvements in NΔΔ

L of order
unity rather than orders of magnitude.
Given that non-B-mode based CIP reconstruction has the

highest signal-to-noise ratio at the lowest multipoles, it is
also interesting to examine the dependence of 2σA on Lmin
with Lmax ¼ 100 (see Fig. 4). In addition to variations due
to the details of the survey geometry, real experiments are
limited by systematics, 1=f noise, and foreground sub-
traction that can compromise their ability to probe small
multipoles. As expected, the experiments that are the least
dependent on B modes are the most affected by Lmin. For
Planck, setting Lmin ¼ 10 degrades limits by a factor of 1.6,
while for CMB-S4, this choice degrades limits by a factor
of ∼1.3.
We have also assumed that CIP reconstruction will be

limited to CMB multipoles smaller than lCMB ¼ 2500

TABLE IV. 2σA detection threshold for A given all auto- and
cross-spectra (see Sec. IVA for assumptions). Cross-spectra
allow considerable improvement from the current bounds, and
CMB-S4 is able to probe the largest prediction for the curvaton
model (A ≈ 16.5) at more than 3σ significance.

Data 2σA

WMAP 152
Planck 43.3
ACTPol 40.2
SPT-3G 38.2
CMB-S4 10.3
CVL 6.5

FIG. 3 (color online). 2σ detection threshold as a function of the
maximum CIP multipole Lmax from all spectra for Planck,
ACTPol, SPT-3G, and CMB-S4 as a function of Lmax. The
shaded band for Lmax > 100 represents the limit of the SU
approximation which we take in all other results. Other param-
eters are set to the fiducial choices of Sec. IVA.
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beyond which the primary anisotropy is severely Silk
damped. For TT-based reconstruction, foreground con-
tamination will make information in higher multipoles
difficult to extract regardless of instrument sensitivity.
This is not necessarily the case for polarization [45], and
so in Fig. 5, we plot the dependence on lCMB for an ideal
CVL experiment. By lCMB ¼ 4000, the detection threshold
improves to 2σA ≈ 3. This level of sensitivity would begin
testing the second-largest predicted amplitude of the
curvaton-dominated scenarios A ¼ −3 [realized in the
scenario ðbbefore; cbyÞ] and models with admixtures of
inflaton fluctuations. Recall that these two largest cases
are also the only ones where the effective CMB isocurva-
ture mode can cancel large-angle TT power.
Next, we examine the impact of CIP cross-correlation

with theCMBand the choice of the fiducial value ofA. In the
reconstruction noise-dominated regime, cross-correlation
helps extract the signal from the noise. In principle, we
can evaluate this improvement by comparing Fisher
matrix errors utilizing only the auto-spectrum (α ¼ ΔΔ)
in Eq. (49) with the full result. There is one important
subtlety of Fisher errors that we must address first. Given
that CΔΔ

L ∝ A2, it is clear from Eq. (49) that FAA ∝ A2 or
σA ∝ A−1, which diverges as A → 0. On the other hand, the
corresponding limit on A2, σA2 remains finite:

σA2 ¼ 2jAjσA: ð52Þ

Of course, a finite upper limit onA2 implies a finite limit onA
as well, in spite of the Fisher estimate. The Cramer-Rao
bound only guarantees that the Fisher estimate gives the best
possible errors of an unbiased estimator.When the data only
provide an upper limit, such an estimator can be substan-
tially suboptimal. For this reason, we choose for our fiducial

signal the point where A ¼ 2σA, which represents a low
significance detection rather than an upper limit.
To ensure that our Fisher estimates of σA from auto-

correlation are not misleading, consider an alternate def-
inition of the error on A that corresponds to a mapping of
the upper limit on A2:

~σA ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ σA2

q
− jAj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 2jAjσA

q
− jAj: ð53Þ

This quantity remains finite at A → 0 as expected. In Fig. 6,
we compare σA and ~σA of the ΔΔ auto-spectrum for the
CMB-S4 experiment. The two estimates agree well as long
as jAj≳ 2σAðAÞ (unshaded region). This is the reason we
quote our primary results as the value of A at the detection
threshold A ¼ 2σA.
We also show here the results obtained if only cross-

spectra (TΔ and EΔ) are used, for comparison with the
total. In the A → 0 limit, they dominate the Fisher infor-
mation leading σA to be finite and independent of the
fiducial A value in this limit.
Also interesting is the signal-dominated large-A regime

where CΔΔ
L ≫ NΔΔ

L . Although the cross-spectra alone
provide worse limits than the auto-spectrum alone, the
total is better than what one would expect by summing their
independent information content. This is because having
the auto- and cross-correlation helps eliminate the sample
variance of the Gaussian random curvature fluctuations ζ.
Indeed, if the CIP and CMB modes were perfectly
correlated, sample variance could be eliminated entirely.
For the S4 experiment, Fig. 6 shows that the cross-

spectra improve the detection threshold for A by a factor of
2.3. It is interesting to trace this improvement back to the

FIG. 4 (color online). 2σ detection threshold as a function of
the minimum CIP multipole Lmin from all auto- and cross-
correlations for Planck, ACTPol, SPT-3G, and CMB-S4. Other
parameters are set to the fiducial choices of Sec. IVA.

CVL

FIG. 5 (color online). 2σ detection threshold for the CVL case
as a function of the maximum CMB multipole lCMB used in
reconstruction. Other parameters are set to the fiducial choices of
Sec. IVA.
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level of correlation between the CIP and CMB modes. By
assuming the noise-dominated regime CΔΔ

L ≪ NΔΔ
L , as

appropriate for a first detection, we can approximate the
auto-spectra errors as

σ−2A jΔΔ ≈
X
L

2Lþ 1

2
fsky

�
2

A
CΔΔ
L

NΔΔ
L

�
2

ð54Þ

and compare this to the cross-spectrum where X ∈ T; E:

σ−2A jXΔ ≈
X
L

ð2Lþ 1Þfsky
1

A2

CΔΔ
L

NΔΔ
L

CXX
L

~CXX
L

ðRXΔ
L Þ2; ð55Þ

where we recall that RXΔ
L is the cross-correlation coefficient

shown in Fig. 1. As expected, cross-correlation is more
important when the reconstruction signal-to-noise ratio
CΔΔ
L =NΔΔ

L is smaller.
For a detection threshold A ¼ 2σA, we can estimate this

ratio and hence how the improvement scales with exper-
imental assumptions. For the auto-spectrum, this threshold
occurs when

CΔΔ
L

NΔΔ
L

∼
1

LΔf
1=2
sky

; ð56Þ

where LΔ is a representative multipole, roughly the L value
by which the Fisher sum accumulates half its total value.
For this level of signal, the cross-spectra would give better
constraints by a factor of

σ−2A jXΔ
σ−2A jΔΔ

∼ LΔf
1=2
sky

CXX
L

~CXX
L

ðRXΔ
L Þ2: ð57Þ

Given that the correlation coefficient averaged over a
sufficiently large range in L is always of order unity, we
can now see that the improvement due to adding the cross-
correlation depends on very few aspects of the experiment.
For an experiment whose CIP reconstruction is dominated
by CVL TT measurements like Planck, the typical CIP
multipole in the signal is L≲ 10 and the improvement is
limited (1.9 for Planck). For an experiment with good
polarization sensitivity and sky coverage, the improvement
can be larger due to both the higher L out to which the
signal can be detected and the addition of the EΔ cross-
spectrum. In fact, improvements are ultimately limited by
the SU approximation L≲ 100. For the S4 experiment, the
improvement of a factor of 2.3 from the cross-spectra
comes partially from EΔ. Without EΔ, the 2σA threshold
goes from 10 to 15, and hence polarization plays a significant
role in making a 3σ detection of A ≈ 16.5 possible.
Finally, it is interesting to compare these forecasted

constraints with existing CMB constraints to CIPs, which
come from CΔΔ

L alone and do not apply information from
cross-correlations of T=E with Δ. The latest WMAP
95% C.L. upper limit on a scale-invariant spectrum of
CIPs is LðLþ 1ÞCΔΔ

L ≤ 0.011 [17]. For correlated CIP
modes, this corresponds to an upper limit of A2 ≤ ð808Þ2.
The Fisher forecast from the auto-spectrum predicts that the
2σ detection threshold in A2 is A2 ¼ 2σA2 ¼ ð469Þ2. Note
that in the Fisher approximation a 2σ detection in σA2 ¼
2A2 implies σA ¼ 4A (for example, the 2σ threshold in A
for WMAP is A ¼ 264). The Fisher value in this case
underestimates the actual errors by a factor of 3.0 in A2 or
1.7 in A, which should be borne in mind when considering
forecasted errors. We have isolated the root of this
discrepancy to the difference between the forecast instru-
ment noise obtained from Eq. (47) and the true WMAP
instrument noise at map level.
The Fisher auto-result can also be compared with the

signal-to-noise ratio forecast in Ref. [16] for a scale-
invariant CIP in the WMAP 7-year data release. There,
to be maximally conservative, instrument noise was
computed assuming a single differencing assembly. The
resulting forecast, S=N ¼ 300Δ2

cl, corresponds to σA2 ¼
1.8 × 105 for the correlated CIP in the NΔΔ

L ≫ CΔΔ
L regime.

Our Fisher forecast σA2 ¼ 4.2 × 104 is a factor of 4.3 lower,
mostly due to lower values of NΔΔ

L calculated for the full
multiple-differencing-assembly 9-year experiment.

V. CONCLUSIONS

In the curvaton model, quantum fluctuations of a
spectator field during inflation seed the primordial curva-
ture perturbation ζ after inflation and in the process can
produce correlated isocurvature fluctuations from its decay.

FIG. 6 (color online). Fisher error σA vs A for CMB-S4 from
combinations of auto- (ΔΔ) and cross-spectra (TΔ, EΔ). Also
shown is ~σA, the Fisher error implied from σA2 for auto-spectra
from Eq. (53). The two auto-spectra analyses agree well for
A > 2σA, which defines the regime where we can meaningfully
compare various Fisher results. Cross-spectra increasingly domi-
nate the total at low signal-to-noise ratio A=σA but also improve
the total result at high signal-to-noise ratio by reducing sample
variance. All other parameters are set according to Sec. IVA.
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In some curvaton-decay scenarios, the usual adiabatic and
total matter isocurvature perturbations are accompanied by
relatively unconstrained compensated isocurvature pertur-
bations (CIPs) between baryons and dark matter. In the
curvaton model, CIPs are correlated with the adiabatic
fluctuations with amplitude given by SCIPbγ ¼ Aζ.
The most interesting (and observationally allowed)

scenarios are those where baryon number is generated
by curvaton decay, while cold dark matter is generated
before; or where baryon number is generated before curva-
ton decay, and cold dark matter is generated directly by
curvaton decay. These cases yield CIP amplitudes of A ≈
16.5 and A ¼ −3, respectively. By modulating the propa-
gation of acoustic waves during the tightly coupled epoch,
CIPs induce detectable off-diagonal two-point correlations
in the CMB [16]. The correlation with the dominant
adiabatic mode means that the cross-power spectrum
between the CIP estimators and the CMB fields themselves
can in principle be used to probe very small values of A
where the auto-correlation is too noisy for detection.
In this work, we obtain the expected amplitude of fully

correlated CIPs in the different curvaton-decay scenarios
relevant to dark matter and baryon number production. The
sensitivity to A of seven different CMB experiments and the
ideal cosmic-variance-limited (CVL) case was computed
using the Fisher information and applying a more refined
calculation of CIP reconstruction noise than past work [16].
We find that the validity of the implicit separate-universe
approximation made in previous work [16] requires a cut
L≲ 100 on the multipole index of the reconstructed CIP
multipole moments Δ̂LM. While this cut does not affect
existing limits to CIPs like Ref. [17], it is important for
predictions of future sensitivity, particularly for precise
future CMB polarization experiments.
Large-scale CMB temperature anisotropies are corre-

lated with the large-scale primordial curvature perturbation
ζ, and so cross-correlating the reconstructed CIP with CMB
temperature maps can improve the detection threshold for A
by a factor of 1.7–2.7 depending on the experiment. The
smallest values in this range apply for TT-dominated
experiments such as WMAP or Planck, and we expect
that the upper limits to A from Ref. [17] would improve by
a factor of ≃1.7 if those CIP maps were cross-correlated
with large-scale temperature maps. For a CVL experiment
out to multipoles l < 2500, the improvement by a factor
∼2.7 is largely independent of the instrument details and
most sensitive to LΔ, the multipole below which the
majority of the S/N comes from. Since the TT estimator
noise has a steeper slope in L than the BT estimator,
polarization-dominated experiments will naturally have
S/N up to a larger LΔ.
The planned CMB-S4 experiment will approach the

cosmic-variance limit for polarization. As a result, it could
detect the A ≈ 16.5 scenario (the largest value attainable
in curvaton CIP scenarios) with more than 3σ significance.

If polarized foregrounds are negligible or can be removed
so that CIP reconstruction can be performed with lCMB ∼
4000 [45], the sensitivity to A of a CVL experiment will
dramatically improve. In the cosmic-variance limit, this
would allow the A ≈ 16.5 scenario to be detected with
∼11σ significance, and possibly test the second largest CIP
scenario jAj ¼ 3, as well as models with admixtures of
inflaton fluctuations.
A detection of fully correlated CIPs could discriminate

between the different curvaton-decay scenarios. The largest
correlation A ≈ 16.5 arises in the ðbby; cbeforeÞ scenario,
where the baryon number is created by the curvaton decay
and the CDM number before the decay. This is the last
observationally permitted scenario in which dark matter is
produced before curvaton decay, as the other cases are
already ruled out by the matter isocurvature constraints. A
detection of A ≈ 16.5 would provide strong support for the
ðbby; cbeforeÞ curvaton scenario, in which the dark matter
must be produced before curvaton decay, pointing us
towards novel dark-matter production mechanisms prior
to curvaton decay. This would also hint that baryon number
generation is connected to the physics of a spectator field
during inflation. This case would also predict a level of
local non-Gaussianity of fnl ≈ 6 [46] that might be used to
confirm a measurement from CIPs. Indeed, the Planck
temperature (fnl ¼ 2.5� 5.7, 68% C.L.) and preliminary
polarization (fnl ¼ 0.8� 5.0, 68% C.L.) constraints are
already close to this predicted amplitude [47]. If A ≈ 16.5 is
ruled out by either means, we would know that in the
curvaton model, dark matter is either directly produced by
curvaton decay or (thermally, from the relativistic plasma)
after curvaton decay.
Challenges remain for future work—in particular, a

precise evaluation of biases in correlated CIP measure-
ments from off-diagonal correlations induced by weak
gravitational lensing, and the generalization of the expres-
sions here to models where inflaton and curvaton contri-
butions to ζ are more comparable. Our work may pave the
way for future CMB measurements to uncover the physics
of curvaton decay.
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APPENDIX A: WAVE PROPAGATION IN AN
INHOMOGENEOUS MEDIUM

Adiabatic acoustic waves in the CMB propagate on a
background that is spatially modulated by the presence of
the CIP mode SCIPbγ ðxÞ. Here we present a simplified model
of this system to test the domain of validity of the separate-
universe (SU) approximation introduced in Ref. [16].
In this simple model, we consider an acoustic wave in

fractional temperature fluctuations T propagating in a
medium with temporally constant, but spatially modulated
sound speed

T̈ − c2s

�
1þ d ln c2s

dΔ
ΔðxÞ

�
∇2T ¼ 0: ðA1Þ

Note that the qualitative difference between this model and
the SU model used in Eq. (33) is that the Taylor approxi-
mation for c2sðxÞ is employed for the medium itself, rather
than for the observables after the acoustic mode has
propagated through the medium. Since the medium is only
weakly inhomogeneous, we can solve the wave equation by
iteration. By expanding

T ¼ T0 þ T1 þ � � � ; ðA2Þ
Eq. (A1) becomes

T̈0 − c2s∇2T0 ¼ 0;

T̈1 − c2s∇2T1 ¼ c2s
d ln c2s
dΔ

ΔðxÞ∇2T0; ðA3Þ

where overdots are derivatives with respect to the time
variable η. For the zeroth-order solution, we take
T0 ¼ −ζ=5, _T0 ¼ 0 as the initial condition and solve for
the Fourier modes

T0ðk; sÞ ¼ −
1

5
ζðkÞ cosðksÞ; ðA4Þ

where the sound horizon is

sðηÞ ¼ csη: ðA5Þ
Given the solutions to the homogeneous equation, the

solution for T1 is

T1ðk; sÞ ¼
1

5

d ln c2s
dΔ

Z
d3k0

ð2πÞ3 Δðk − k0Þζðk0Þ

×
k02

k2 − k02
½cosðk0sÞ − cosðksÞ�: ðA6Þ

Note that T1 responds as an oscillator subject to an external
force given by the modulation and the unmodulated

solution. In particular, when k0 ¼ k, the oscillator is
driven at its natural frequency, leading to an enhanced
response.
The two-point correlations with fixed modulating

mode can likewise be expanded to first order in the
modulation

hTðkÞTðk0ÞiT ≈ hT0ðkÞT0ðk0ÞiT þ Rðk; k0ÞΔðKÞ; ðA7Þ

where K ¼ kþ k0. The unmodulated piece is given by

hT0ðkÞT0ðk0ÞiT ¼ ð2πÞ3δðkþ k0Þcos2ðksÞPζζðkÞ
25

; ðA8Þ

and the modulation response function is given by

Rðk; k0Þ ¼ −
d ln c2s
dΔ

Pζζðk0Þ
25

k02

k2 − k02
cosðk0sÞ

× ½cosðk0sÞ − cosðksÞ� þ perm; ðA9Þ

where the permutation refers to k ↔ k0. This response
should be compared with the SU approximation, where the
Taylor expansion is performed on the solution rather than
the medium

TSUðx; sÞ ¼ T0ðx; sÞ þ
dT0

dΔ
ðx; sÞΔðxÞ; ðA10Þ

and gives off-diagonal correlations of the form of Eq. (A7)
but with the SU response function

RSUðk; k0Þ ¼ PζζðkÞ
25

cosðksÞ d cosðksÞ
dΔ

þ perm

¼ −
d ln c2s
dΔ

PζζðkÞ
25

ks
4
sinð2ksÞ þ perm: ðA11Þ

Note that − cosðksÞ=5 plays the role of the transfer
function.
A comparison shows that the two are only equal in the

limit k0 → k. To keep track of the differences, let us define

ϵ≡ ðk0 − kÞs ðA12Þ

and x ¼ ks. We can rewrite the response [Eq. (A9)] as

Rðk; k0Þ ¼ d ln c2s
dΔ

Pζζðk0Þ
25

ðxþ ϵÞ2
x2 − ðxþ ϵÞ2 sinðϵ=2Þ

× ½sinð2xþ 3ϵ=2Þ − sinðϵ=2Þ� þ perm: ðA13Þ

It is clear that the validity of the SU approximation requires
jϵj ≪ 1. It is not sufficient for the wavelength of the
acoustic mode to be much smaller than the modulating
mode (k=K ≫ 1). The criterion for a coherent driving of the
oscillator is that the phase error introduced by ϵ itself
be small.
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Now, let us consider the relevant case for reconstruction
where k ≫ K or x ≫ ϵ and there are many pairs of acoustic
modes (satisfying jkj≃ jk0j≃ k) that can be used to
measure the modulation. If Pζζ is a featureless power
law, the response can be simplified considerably, yielding

Rðk; k0Þ ≈ −
d ln c2s
dΔ

PζζðkÞ
25

ks
2

sin ϵ
ϵ

sinð2ksþ ϵÞ; ðA14Þ

which leads to both a damping of the response and a
decoherence in the phase for jϵj > 1.
Next, consider the impact of the reduced response on the

estimator of the modulation mode. In the SU approxima-
tion, we can use Eq. (A7) to obtain the minimum-variance
CIP estimator:

Δ̂ðKÞ ¼ NSU
K

Z
d3k
ð2πÞ3

TðkÞTðk0ÞRSUðk; k0Þ
~PTTðkÞ ~PTTðk0Þ

;

ðNSU
K Þ−1 ¼

Z
d3k
ð2πÞ3

½RSUðk; k0Þ�2
~PTTðkÞ ~PTTðk0Þ

; ðA15Þ

where kþ k0 ¼ K and

~PTTðkÞ ¼ cos2ðksÞPζζðkÞ
25

þ NTTðkÞ; ðA16Þ

with NTT as the noise power spectrum from measurement
errors. Beyond the SU approximation, this estimator is
biased:

bKðKrsÞ≡ hΔ̂ðKÞiT
ΔðKÞ

¼ NSU
K

Z
d3k
ð2πÞ3

Rðk; k0ÞRSUðk; k0Þ
~PTTðkÞ ~PTTðk0Þ

: ðA17Þ

To estimate this bias, we can first determine ϵ for
each pair of modes that satisfies kþ k0 ¼ K. Defining
k · K ¼ μkK and assuming k ≫ K, we have

ϵ ≈ −Ksμ: ðA18Þ

Note that ϵ does not depend on k, but only on the angle of k
with K.
We can approximate the minimum variance estimator

in Eq. (A15) by ignoring variations in the weights due to
the k dependence of ~PTTðkÞ, in particular due to the
unphysical zeros in power which would be filled in by
the Doppler effect and projections in a real observable.
Given the difference of the true- and separate-universe
responses, this estimator would be biased as

bK ≈
hR 1

−1 dμ
sin ϵ
ϵ sinð2xþ ϵÞ½sinð2xÞ þ sinð2xþ 2ϵÞ�ix

h1
2

R
1
−1 dμ½sinð2xÞ þ sinð2xþ 2ϵÞ�2ix

¼ 2Sið2KsÞ
2Ksþ sinð2KsÞ ; ðA19Þ

where h…ix denotes an average of a cycle of the oscillation
in x.
Near Ks ≈ 1, the estimator becomes slightly positively

biased, bK > 1, but quickly falls to bK ≪ 1 for larger
values. Thus, the estimator essentially low-pass filters the
modulation field, allowing through modes that are larger
than the sound horizon. We show the behavior of bK in
Fig. 7 (left), calculated using both Eq. (A17) (shown as a
range for different noise models, and variety of
kmax=K ≫ 1) and the analytic approximation Eq. (A19).
The former is nearly independent of assumptions and
agrees very well with the latter except for a small range
around Ks ∼ 3. Also shown is the result of evaluating
Eq. (A17), with NTT ¼ 0 for definiteness, but with the
same cycle-averaged assumption ~PTTðkÞ → h ~PTTðkÞix that
was made in the analytic approximation. The agreement
with the analytic approximation shows that the overshoot
around Ks ∼ 3 is due to this average. With this average, the
unphysical zero crossings of the sound wave are eliminated
in both Eqs. (A17) and (A19), and in that sense is closer to
a physical model than the full calculation of Eq. (A17).
In any case, the analytic model captures the main feature of
the bias which is a sharp cutoff in sensitivity for Ks ≫ 1.
For angular projections of the acoustic waves and the

modulation mode, this reduced response and the corre-
sponding bias is somewhat larger. In the flat-sky approxi-
mation, the angular modulation mode is related to the
spatial one at an epoch s as

LKs

bK bL

1001011010.1

0.6

0.8

1

0.5

1

cycle avg
noise, kmax

analytic projected
analytic

FIG. 7 (color online). Reconstruction bias in K (left) and in L
(right) space. Left: Analytic expression of Eq. (A19) is in
excellent agreement with the evaluation of Eq. (A17) using
the same cycle-averaged replacement assumption ~PTTðkÞ →
h ~PTTðkÞix. The gray range shows the full calculation for a wide
family of Poisson noise power spectra and kmax. Right: Projected
bias using the analytic expression from Eq. (A27) with θ� ¼ 0.01,
showing that L < 100 is nearly unbiased.

CHEN HE, DANIEL GRIN, AND WAYNE HU PHYSICAL REVIEW D 92, 063018 (2015)

063018-16



ΔðLÞ ¼ 1

D2

Z
dK∥

2π
ΔðK⊥ ¼ L=D;K∥Þeik∥D; ðA20Þ

where D is the distance to the observed surface, and ∥ and
⊥ denote directions with respect to the line of sight.
Defining TðlÞ analogously, we again have off-diagonal
correlations of angular moments

hTðlÞTðl0Þi ¼ hT0ðlÞT0ðl0ÞiT þ 1

D4

Z
dk∥
2π

Z dk0∥
2π

eiK∥D

× Rðk; k0ÞΔðL=D;K∥Þ; ðA21Þ

where L ¼ l þ l0 and

hT0ðlÞT0ðl0ÞiT ¼ ð2πÞ2δðl þ l0Þ
Z

dk∥
2π

cos2ðksÞ

×
Pζζðl=D; k∥Þ

25D2
: ðA22Þ

Note that here we take the angular observable as the
value of the local temperature field on the surface. For
the real case of CMB temperature anisotropy, the Doppler
effect also contributes and suffers even greater projection
effects.
In the separate-universe approximation for R in

Eq. (A12), Eq. (A21) reduces to

hTðlÞTðl0ÞiT ¼ hT0ðlÞT0ðl0ÞiT þ RSUðl; l0ÞΔðLÞ: ðA23Þ

The angular response function

RSUðl; l0Þ ¼ −
d ln c2s
dΔ

Z
dk∥
2π

ks
4
sinð2ksÞPζζðl=D; k∥Þ

25D2

þ perm ðA24Þ

is again the derivative of the transfer function implied
by Eq. (A22). Likewise, the SU approximation holds for
triangles in the integrals where jϵj ≪ 1. Due to the
projection, however, even if the projected 2D triangles
in the transverse plane satisfy the analogous criteria,
the 3D triangles that compose the estimators may not,
since K ≥ K⊥.
In the exact expression of Eq. (A21), the off-diagonal

angular multipole pairs are no longer simply proportional to
the projected modulation mode ΔðLÞ. Thus, it is not
possible to evaluate the bias in the reconstruction itself.
Instead, the bias appears in the auto- and cross-correlations
of the reconstructed mode. Since the expressions are
cumbersome, we instead estimate projection effects by
calculating the bias that would result if the auto-correlation
were constructed by the projection of biased estimators
of ΔðKÞ.

For a nearly scale-invariant spectrum (K3PΔΔ ≈ const),

CΔΔ
L ¼ 1

D2

Z
dK∥

2π
PΔΔðL=D;K∥Þ

≈
2π

D2

K3PΔΔ

2π2

Z
∞

K⊥

dK

K2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − K2⊥

p

¼ 2π

L2

K3PΔΔ

2π2
: ðA25Þ

Thus, the angular power spectrum gets contributions from
modes with y ¼ K=K⊥ > 1 as

d lnCΔΔ
L

dy
¼ pðyÞ ≈ 1

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p : ðA26Þ

We therefore estimate projection effects by weighting b2K
accordingly:

b2LðLθ�Þ ¼
Z

∞

1

dypðyÞb2KðKs ¼ yLθ�Þ: ðA27Þ

Here θ� ¼ s=D is the projected acoustic scale. In the
ΛCDM cosmology, θ� ≈ 0.01, and so Lθ� ¼ 1 for
L ¼ 100. The resulting projected bias is shown in Fig. 7
(right). Clearly the bump near Lθ� ¼ 1 arises from the
bump in the three-dimensional bias plot in Fig. 7 (left). For
this toy model of CMB acoustic waves, we see that L ¼
100 is a scale at which to safely truncate all estimators ofΔ.
Since this is only a toy model, we expect that this estimate
is only accurate to order unity corrections and explore
sensitivity to variations in Lmax in the main text.

APPENDIX B: IMPROVED RECONSTRUCTION
NOISE CURVES

The CIP reconstruction methods introduced in Ref. [16]
are valid as long as L≲ 100, as discussed in Appendix A.
Aside from changes to precise instrumental noise properties
and best-fit cosmological parameters, the curves shown for
NTT

L and NEE
L in Ref. [16] are thus valid for all L≲ 100. We

find, however, that numerical errors were made in Ref. [16],
affecting the shape of NΔΔ

L at scales L≳ 100; the limit to
CIP reconstruction (L≲ 100) imposed by the SU approxi-
mation, however, means that these errors are of no practical
significance, and have no bearing on the validity of existing
CMB limits to CIPs [17].
Due to an erroneous index in the code employed there,

however, a swap took place between the indices l and l0
when evaluating Eqs. (41) and (43) for NTB

L and NEB
L . For

the last two experimental cases considered there [the nearly
cosmic-variance-limited (CVL) EPIC mission concept and
the actual cosmic-variance limit], the analytic damping
envelope reionization prescription of Ref. [34], was
employed, rather than the constant-τ prescription employed
elsewhere in Ref. [16]. For L≲ 100, we find that together
these two errors lead to errors of ΔNXB

L =NXB
L ≲ 10−2 when

X ∈ fT; Eg for all experiments considered in Ref. [16],
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and so these errors are negligible on scales where the SU
approximation is valid.
The curves shown there for NXY

L were actually numeri-
cally obtained using inverse-variance weighting of different
multipole pairs, instead of the correct inverse-covariance
weighting. Inverse-variance weights are correct (and agree
with inverse-covariance weights) for reconstruction noise
from the pairs TT, EE, TB, and EB, for which the
observable members of a pair are either totally correlated
or uncorrelated in the absence of an isotropy-breaking
realization of the CIP field. For TE, however, the neglect of
covariance between T and E leads to incorrect behavior.
Additionally, denominators in expressions for ðNTE

L Þ−1
were evaluated as if l ¼ l0 even when this was not the
case. For L≲ 100, we find that this leads to errors of
ΔNTE

L =NTE
L ≲ 10−1 for all experiments considered in

Ref. [16], and so these errors are negligible on scales
where the SU approximation is valid.
Calculations in Ref. [16] were sped up by using permu-

tation symmetries inside sums to simplify evaluations of
NXY

L . For NTB
L , NTE

L , and NEB
L , summands were erroneously

multiplied by a factor of 1=2 when l ≥ jL − l0j, but we find
this leads to errors of ΔNTE

L =NTE
L ≲ 2 × 10−1 when L < 10

and ΔNTE
L =NTE

L ≲ 5 × 10−2 when 10 < L < 1000, and so
these errors are small on scales where the SU approximation
is valid.
For clarity and future reference, correct reconstruction

noise curves NXY
L are shown in Fig. 8 for the Planck,

ACTPol, and SPT-3G experiments, as well as for the CVL
case. Reconstruction noise curves for CMB-S4 are shown
earlier in this paper, in Fig. 2. Total reconstruction noise
curves are obtained using the full inverse-covariance weight-
ing of different estimators [See Eqs. (45) and (46)] rather
than the inverse-variance weighted sum used in Ref. [16].3

Using these reconstruction noise curves, we evaluate the
signal-to-noise ratio for a detection of a scale-invariant
spectrum of CIPs (with damping from projection as in

ΔΔ (Total)
BE
BT
TT
TE
EE

FIG. 8 (color online). Reconstruction noise curves NXZ
L for Planck, ACTPol, SPT-3G, and the cosmic-variance limit (CVL),

obtained from the CIP estimator of Eq. (42) with the indicated pair of observables XZ. The approximate domain of validity
of the SU approximation L≲ 100 is indicated by the arrow. We assume the estimators employ CMB multipoles up to
lCMB ¼ 2500.

3In practice, this distinction only matters for L ranges where
the identity of the lowest-noise individual CIP estimator (e.g. TT,
EE, TE, TB, or EB) is transitioning from one observable pair to
another.
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Ref. [16] for scales below the thickness of the recombi-
nation era) using onlyΔΔ auto-correlations, analogously to
Ref. [16], but using Planck 2013 parameter values [31].
Results are shown in Tables V and VI for a variety of
experiments and for the CVL case, with and without the
SU domain of validity imposed, and with/without damping
from projection. We now discuss the results qualitatively.
When erroneous reconstruction noise curves are used

(with regard to the errors enumerated above), the spurious
improvement obtained by neglecting the SU approximation
can be as high as ∼50% (in the CVL case). If, on the other
hand, the improved reconstruction noise curves are used,
the spurious improvement falls to 5% for the CVL case.
Put another way, if signal-to-noise ratio is evaluated
including only modes for which the SU approximation
is valid, the difference between the old and new noise curve
codes is negligible.

If CIP projection damping is neglected (that is, a scale-
invariant power spectrum of CIPs is assumed on all
scales), the spurious improvement obtained by neglecting
the SU approximation can be as high as 100% (in the
CVL) if the erroneous reconstruction noise curves are
used. If, on the other hand, the improved reconstruction
noise curves are used, the spurious improvement falls to
∼20% for the CVL case. In all cases, the spurious
improvement in signal-to-noise ratio (for high Lmax) is
caused by the polarization-driven flattening in the
reconstruction noise curves at high L.
We recommend using the reconstruction noise curves

and tables here for future CIP forecasts in the auto-only
case. The differences between these different scenarios are
much more dramatic if information from cross-correlations
between Δ and T or E is included, as is the case in the rest
of the paper.
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