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An explicit one-parameter Lie point symmetry of the four-dimensional vacuum Einstein equations with
two commuting hypersurface-orthogonal Killing vector fields is presented. The parameter takes values over
all of the real line and the action of the group can be effected algebraically on any solution of the system.
This enables one to construct particular one-parameter extended families of axisymmetric static solutions
and cylindrical gravitational wave solutions from old ones, in a simpler way than most solution-generation
techniques, including the prescription given by Ernst for this system. As examples, we obtain the families
that generalize the Schwarzschild solution and the C-metric. These in effect superpose a Levi-Civita
cylindrical solution on the seeds. Exploiting a correspondence between static solutions of Einstein’s
equations and Ricci solitons (self-similar solutions of the Ricci flow), this also enables us to construct new
steady Ricci solitons.
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I. INTRODUCTION

The high nonlinearity of the Einstein equations makes
them extremely difficult to solve. It makes it hard to draw
generic physical conclusions about gravity and besets
quantization. However, soon after Einstein found his
equations, and thought them unsolvable, the first exact
solution, describing the spacetime around a spherically
symmetric massive object, was obtained by Schwarzschild.
Since then Einstein’s equations have been systematically
studied for different matter fields subject to various local
symmetries, algebraic conditions and other simplifying
assumptions, and today we have many exact solutions in
four dimensions that are well understood [1–3]. These
solutions provide a concrete means to study the non-
linearities of the gravitational field. They shed light on
more general nonexact solutions, guide numerical study
and play a pivotal role in every quantum gravity program
[4]. Their study has brought the physics and mathematics
communities together.
The difficulty of directly integrating Einstein’s equations

has led to many solution-generation techniques in which
one obtains a solution, or a family of solutions, from a
“seed” solution, of the same system or a different system. In
1954 Buchdahl showed how to obtain a Ricci-flat solution
from another in the presence of a hypersurface-orthogonal
Killing vector field [5] (see Sec. IV). Ehlers in 1957
showed how one could obtain a stationary axisymmetric
metric starting from any static metric [6]. Later, in 1972,
Geroch showed that one can use the two commuting Killing

vector fields of any stationary axisymmetric metric to
obtain an infinite-parameter family of solutions [7,8].
Following the discovery of Tomimatsu–Sato solutions
[9,10], stationary axisymmetric systems were vigorously
studied, aided by techniques developed in other systems of
partial differential equations (various Bäcklund and other
transformations, inverse-scattering methods [11] etc.).
Many sophisticated general results and specific solutions
were obtained for stationary axisymmetric systems includ-
ing the Einstein–Maxwell system (see [12] and Chapter 34
of [3]). However, applying those results to obtain explicit
solutions, of the same system or another, often involves
solving an associated set of equations and performing a
good number of mathematical steps. One cannot usually
simply write down a new solution starting from a seed
solution.
Although the impressive work in four dimensions, and

current efforts in obtaining higher-dimensional gravita-
tional solutions modeled on the four-dimensional ones,
may suggest that there is little left to explore analytically for
the four-dimensional Einstein equations with physically
interesting symmetries and simple matter fields, in par-
ticular the vacuum, there is still more to be known. We
present here one such unexpected new development.
We study the vacuum Einstein equations in the presence

of two commuting hypersurface-orthogonal Killing vector
fields. In Lorentzian four dimensions, these are axially
symmetric static solutions and (Einstein-Rosen) cylindrical
gravitational waves and can be obtained from one another
by a complexification of appropriate coordinates. In par-
ticular, we find a one-parameter Lie group that is a
symmetry of the system and maps any solution into a
one-parameter extended family. In addition, the action of

*akbar@utdallas.edu
†m.a.h.maccallum@qmul.ac.uk

PHYSICAL REVIEW D 92, 063017 (2015)

1550-7998=2015=92(6)=063017(9) 063017-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.063017
http://dx.doi.org/10.1103/PhysRevD.92.063017
http://dx.doi.org/10.1103/PhysRevD.92.063017
http://dx.doi.org/10.1103/PhysRevD.92.063017


the group can be represented algebraically. This produces,
for example, an axially symmetric family that contains the
spherically symmetric Schwarzschild metric as a special
case and another family that contains the C-metric (both
families being distinct from the generalizations previously
found).
The two systems—the systems of vacuum static axisym-

metric solutions and cylindrical wave solutions—are well
studied in relativity. The first gravitational wave solution
found by Einstein and Rosen was cylindrical and the
cylindrical wave system was among the very first to be
quantized [13]. Despite the fact that cylindrical waves
cannot describe radiation from an isolated body, they have
been used to understand energy loss due to gravity and
the asymptotic structure of radiative spacetimes, test the
quasilocal mass energy of Thorne and in cosmic censorship
(see, for example, the review [4] and [14]).
The present paper was inspired by study of the Ricci

flow equations, in particular the correspondences between
Ricci solitons (self-similar solutions of Ricci flow), the
Einstein-scalar field theory and static vacuum solutions of
the Einstein equations [15]. The symmetry of the axisym-
metric vacuum system that we present here translates to an
analogous symmetry for the corresponding steady Ricci
solitons, which we will discuss in Sec. V. The results
obtained are independent of the metric signature, and thus
this paper will be of interest to mathematicians looking at
warped-product Ricci-flat metrics and warped-product
Ricci solitons [16–19].

II. THE SYSTEM(S)

A. Static vacuum system

It is well known that the general static axially symmetric
vacuum solutions of Einstein’s equations can be written in
Weyl coordinates as

ds2 ¼ −e2uðρ;zÞdt2

þ e−2uðρ;zÞ½e2kðρ;zÞðdρ2 þ dz2Þ þ ρ2dϕ2�; ð2:1Þ

where uðρ; zÞ and kðρ; zÞ satisfy the following three
equations:

∂2u
∂ρ2 þ

1

ρ

∂u
∂ρ þ

∂2u
∂z2 ¼ 0; ð2:2Þ

∂k
∂ρ ¼ ρ

��∂u
∂ρ

�
2

−
�∂u
∂z

�
2
�
; ð2:3Þ

∂k
∂z ¼ 2ρ

∂u
∂ρ

∂u
∂z : ð2:4Þ

By “a solution” we refer to a pair ðu; kÞ solving (2.2)–(2.4).
The first equation (2.2) is just the axially symmetric
Laplace equation in cylindrical coordinates in an auxiliary

three-dimensional Euclidean space. For any (harmonic)
function uðz; ρÞ solving (2.2), kðz; ρÞ is uniquely deter-
mined and found by integrating (2.3) and (2.4), which
reflect the nonlinearities of the Einstein equations. No
distinction is made between solutions in which u and/or k
differ by additive constants since they will give rise to the
same metric by mere redefinitions of the coordinates.

B. Einstein-Rosen cylindrical wave system

It can be obtained from (2.2)–(2.4) by z → it and t → iz
and as such we will not separate it for discussion.

III. SYMMETRIES AND GENERATING
NEW SOLUTIONS FROM OLD

If ðu1; k1Þ and ðu2; k2Þ are two solutions, linearity of
(2.2) implies u ¼ c1u1 þ c2u2 is a solution of (2.2).
However, the nonlinearity of (2.3) and (2.4) prevents
one from obtaining a standard prescription for k in terms
of the four quantities fu1; u2; k1; k2g. One has to compute
the line integral of (2.3) and (2.4) (or some equivalent set of
differential equations) starting with u ¼ c1u1 þ c2u2,
which is no different from the basic problem of solving
(2.3) and (2.4) for a given u. We discuss this general case
further in Sec. III A.
Given an arbitrary solution ðu0; k0Þ can one generate

another solution by some simpler means without solving
the full set (2.2)–(2.4)? Ernst [20] gave a method by which
one can obtain a new solution ðu0 þ cz; k0 þ cF − c2

2
ρ2Þ

from a given solution ðu0; k0Þ provided the real function F
satisfies the following (simpler) differential equation:1

∇F ¼ 2iρ∇u0; ð3:1Þ

where, in Weyl coordinates, ∇ ¼ ∂ρ þ i∂z.
Ernst’s method superposes a multiple of the simple

cylindrical solution with u ¼ z on ðu0; k0Þ. Ernst himself
applied this to obtain a generalization of the C-metric, and
Kerns and Wild similarly obtained a one-parameter gen-
eralization of the Schwarzschild metric [21]. For these one
has to solve (3.1) starting with the seed’s u0, the difficulty
of which depends on the functional form of u0.
Remark 3.1.—It is not necessary to transform the seed

metric to Weyl coordinates in order to apply this trans-
formation. Ernst notes that for

ds2 ¼ h½ðdx1Þ2 þ ðdx2Þ2� þ lðdx3Þ2 − fðdx4Þ2; ð3:2Þ

one has the same equation (3.1) with ∇ ¼ ∂x1 þ i∂x2 and
ρ2 ¼ fl. Also, the Weyl coordinates obey

1In Ernst’s paper, (3.1) is misprinted (see the erratum to [20])
and an auxiliary function L is introduced which can be dispensed
with. Unfortunately these oversights were repeated in [3], where
L was renamed G.
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∇z ¼ i∇ρ: ð3:3Þ

It is easy to generalize to any coordinates in which the
metric of ðx1; x2Þ space is diagonal: any overall factor in ∇
can then be dropped as it appears on both sides of the
equations (3.3) and (3.1). This provides the simplest way of
rederiving the new solutions given in [20,21].
Are there further ways of producing new solutions from

old without solving the field equations or an equivalent set
of equations? One possible avenue that addresses this
question is to look for explicit symmetries of the system.
It is not difficult to see that the transformation

ðu0; k0Þ → ðβu0; β2k0Þ ð3:4Þ
leaves the system (2.2)–(2.4) invariant; in other words, for
any arbitrary solution ðu0; k0Þ there is a (nonequivalent)
solution ðβu0; β2k0Þ for β ∈ ð−∞;∞Þ. More recently this
has been used in [22] to generate new solutions.2 However,
this transformation does not mix dependent and indepen-
dent variables, which is why it was easy to find it by
inspection. Below we present a transformation that mixes
variables in a nontrivial way. It is a parallel to Ernst’s
method in that it adds a multiple of a simple cylindrical
solution, in this case the solution u ¼ ln ρ discussed below.
This prescription is clearly distinct from Ernst’s, as we
discuss further in Sec. IV.
Theorem 3.1: For α ∈ ð−∞;∞Þ, the transformation

ðu0; k0Þ → ðu0 þ α ln ρ; k0 þ 2αu0 þ α2 ln ρÞ ð3:5Þ
leaves the system (2.2)–(2.4) invariant. In other words, for
every static axially symmetric vacuum solution of the
Einstein equations,

ds2 ¼ �e2u0ðρ;zÞdt2

þ e−2u0ðρ;zÞ½e2k0ðρ;zÞðdρ2 þ dz2Þ þ ρ2dϕ2�; ð3:6Þ

there exists a one-parameter generalization:

ds2 ¼ �e2u0ðρ;zÞρ2αdt2

þ e−2ð1−2αÞu0ðρ;zÞρ2αðα−1Þ½e2k0ðρ;zÞðdρ2 þ dz2Þ�
þ e−2u0ðρ;zÞρ2ð1−αÞdϕ2: ð3:7Þ

Proof: By direct substitution of (3.7) into (2.2)–(2.4).
Many papers in the literature speak in terms of

“Newtonian gravitational potentials” (which have no direct
connection with the actual Newtonian limit of the solution)
since a solution u of the Laplace equation (2.2), which is of
course the same as the equation for an axisymmetric
Newtonian gravitational potential in a vacuum, determines

k uniquely via (2.3) and (2.4). Applying the above trans-
formation to ðu0; k0Þ≡ ð0; 0Þ, i.e. to (empty, flat)
Minkowski space, we get

ds2 ¼ −ρ2αdt2 þ ρ2α
2−2αðdρ2 þ dz2Þ þ ρ−2αþ2dϕ2 ð3:8Þ

which is the Levi-Civita metric, one of the oldest and most
widely used metrics in relativity (see [23] for a recent
review). It is a particular case of the Kasner form, (13.51)
in [3], which one can write as

ds2 ¼ x2pdx2 þ x2ady2 þ x2bdz2 þ x2cdt2; ð3:9Þ

where the signature is in fact arbitrary and a, b, c and p
satisfy the algebraic relations aþ bþ c ¼ pþ 1 and
a2 þ b2 þ c2 ¼ ðpþ 1Þ2. In terms of the Newtonian
potential, therefore, what Theorem 3.1 is doing is super-
posing the Levi-Civita solution (3.8) on the seed metric.
Remark 3.2.—In the Riemannian (i.e. positive definite)

signature, the transformation

α → 1 − α ð3:10Þ

u → − u ð3:11Þ

only interchanges the role of ϕ and t in (3.7). These two
geometries would therefore be indistinguishable locally.

A. Group properties, symmetry and solution space

To appreciate the special nature of our transformation,
we discuss obtaining parameter-dependent new solutions
from old ones by the superposition u ¼ u0 þ αu1 further.
One can imagine the whole space of solutions of (2.2)–(2.4)
being mapped into itself under the influence of some
“external” field αu1, with α measuring its strength. The
linearity of (2.2) means α can take any value, so the
resulting ðu; kÞ from ðu0; k0Þ would represent an infinite
family of solutions—a curve in the space of solutions
parametrized by α with α ¼ 0 being the seed solution
ðu0; k0Þ. One would thus have a Lie point symmetry of
(2.2)–(2.4) for any choice of the external field u1. However,
to write down a metric one also needs to know k explicitly.
For a fixed u1 the k corresponding to u ¼ u0 þ αu1
depends on the functional form and the derivatives of u0
and requires integration of (2.3) and (2.4). Trying this for
some simple choices of u1 one can see that the resulting k
does not generally depend on u0 in a prescribed functional
way. It appears Ernst proceeded by trying this for u ¼
u0 þ αz and noticed that the addition of αz to u0 creates
additive terms for k0 that can be obtained via the simpler
equation (3.1). What we found in this paper is that if one
instead takes the external field to be u1 ¼ ln ρ, one obtains
an explicit algebraic prescription for k without having to
solve any associated set of equations.2The special case ð−u0; k0Þ will come up in Sec. IV.
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The explicitness of our transformation (3.5) makes it
easy to check its group properties directly. Denoting
our transformation by Tα, one can check closure,
Tα2 ∘Tα1 ¼ Tα1þα2 , since successive transformations with
α1 and α2 take ðu0; k0Þ to ðu0 þ ðα1 þ α2Þ ln ρ; kþ
2ðα1 þ α2Þu0 þ ðα1 þ α2Þ2 ln ρÞ. The seed metric is the
solution at the identity α ¼ 0 (in fact any metric within the
family can be taken to be at α ¼ 0) and the existence of the
inverse is immediate with ½Tα�−1 ¼ T−α.
We note here that the scale transformation (3.4) also

gives a Lie group (written multiplicatively) by restricting β
to values in R − f0g with Tβ2 ∘Tβ1 ¼ Tβ1β2 , β ¼ 1 as the
identity and ½Tβ�−1 ¼ T1=β. With slightly more careful
calculations, and without actually having to solve for F,
it is possible to verify that the Ernst prescription, treated as
a transformation Tc acting on the seed ðu0; k0Þ, is also a Lie
group with c ∈ R—just like our transformation Tα above.
Contrasting with the closely related vacuum stationary

system—in which there exists a discrete map producing a
new solution from an old one [cf. Eq. (34.37) in [3]]—a
one-parameter symmetry in the static vacuum case means
the whole solution space of the axisymmetric static vacuum
Einstein system can be divided into equivalence classes of
families that do not intersect under the action of the group.
One naturally wonders if there are other explicit trans-
formations that could possibly connect these families. Note
that z and ln ρ are the only one-variable functions possible
here. Experimentation with other simple harmonic func-
tions soon frustrates any hope of getting lucky. What is
required is a systematic and careful symmetry analysis of
the system; this is work in progress.

B. Warped form

Despite the economical way Weyl coordinates express
axially symmetric metrics, many physically and mathemati-
cally interesting solutions with two commuting hypersur-
face-orthogonal Killing vector fields come in different
coordinates and/or signatures, and may not possess axial
symmetry. The Schwarzschild metric, for example, despite
having axial symmetry, is best described in its original
spherical coordinates. Interestingly, our symmetry (3.5) can
be rewritten as transforming the general warped product

ds2 ¼ �g11ðziÞdx2 � g22ðziÞdy2 þ gijðziÞdzidzj;
i; j ¼ 3; 4; ð3:12Þ

with two line fibers corresponding to the two Killing vectors
∂
∂x and

∂
∂y, in a nice way:

Theorem 3.2: For every Ricci-flat metric of the form

ds2 ¼ �g11dx2 � g22dy2 þ gijdzidzj; ð3:13Þ

where all metric components are functions of zi with
i; j ¼ 3; 4,

ds2 ¼ �ðg22Þγðg11Þγg11dx2 � ðg22Þ−γðg11Þ−γg22dy2
þ ðg22Þγðγ−1Þðg11Þγðγþ1Þgijdzidzj ð3:14Þ

is Ricci flat for γ ∈ ð−∞;∞Þ.
One need not verify this by direct computation of the Ricci

tensor of (3.14) subject to the vanishing of the Ricci tensor
of (3.13) since this is just a rewrite of Theorem 3.1 with ρ
written as

ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
and α ¼ γ (and other coordinates accord-

ingly identified). (One can also view Theorem 3.2 as
embodying the point made in Remark 3.1.) The advantage
of working in this form is that one can write down the
generalized metric without having to work out the u and k in
Weyl coordinates. On the other hand, theWeyl form provides
us with the powerful, if sometimes misleading [3,24], tool of
considering solutions in terms of Newtonian potentials.
Note that the metric components gij in (3.13) and (3.14)

can assume arbitrary signatures; thus Theorem 3.2 can
accommodate all possible semi-Riemannian metrics
adapted to the two Killing vectors. The slightly elaborate
form of the metric components in (3.14) is deliberate, to
make the exponent structure manifest. Denoting by Tγ the
action that produces (3.14) from (3.13), with very little
algebra one can check that Tγ2 ∘Tγ1 ¼ Tγ1þγ2 , and ½Tγ�−1 ¼
T−γ etc. and verify the group properties of the trans-
formation in these coordinates.

IV. EXAMPLES EXTENDING SCHWARZSCHILD,
C-METRIC AND THE MINKOWSKI METRIC

We now apply our symmetry transformation to obtain
some new exact solutions. There are plenty of other
solutions, including cylindrical gravitational wave solu-
tions, on which this can be applied equally easily and which
we do not explore here.

A. The Schwarzschild metric

Applying Tγ to the Schwarzschild metric

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ dr2

1 − 2m
r

þ r2ðdθ2 þ sin2θdϕ2Þ;

ð4:1Þ
we obtain

ds2 ¼ −r2γðsin θÞ2γ
�
1 −

2m
r

�
γþ1

dt2

þ r2γ
2−2γðsin θÞ2γ2−2γ

�
1 −

2m
r

�
γ2þγ−1

dr2

þ r2γ
2−2γþ2ðsin θÞ2γ2−2γ

�
1 −

2m
r

�
γ2þγ

dθ2

þ r2−2γðsin θÞ2−2γ
�
1 −

2m
r

�
−γ
dϕ2: ð4:2Þ
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This metric was not, as far as we know, written down
before; it clearly has a more compact form than the
generalization of Schwarzschild found by Kerns and
Wild [21] using Ernst’s prescription. Again, one could
check that (4.2) is indeed Ricci flat by direct computation
for γ ∈ ð−∞;∞Þ. For γ ¼ 0 the spacetime symmetry group
expands and one gets codimension-two spherical sym-
metry. There is obviously a number of ways to write (4.2),

including that the roles of t and ϕ can be interchanged with
simultaneous signature change etc.

B. The C-metric

We obtain the following generalization of the C-metric
(γ ¼ 0 being the C-metric):

ds2 ¼ −
�
−1þ y2 − 2may3

ðxþ yÞ2
�

γþ1
�
1 − x2 − 2max3

ðxþ yÞ2
�

γ

dt2

þ
�
1 − x2 − 2max3

ðxþ yÞ2
�

γðγ−1Þ�−1þ y2 − 2may3

ðxþ yÞ2
�

γðγþ1Þ
ð1 − x2 − 2max3Þ−1ðxþ yÞ−2dx2

þ
�
1 − x2 − 2max3

ðxþ yÞ2
�

γðγ−1Þ�−1þ y2 − 2may3

ðxþ yÞ2
�

γðγþ1Þ
ð−1þ y2 − 2may3Þ−1ðxþ yÞ−2dy2

þ
�
−1þ y2 − 2may3

ðxþ yÞ2
�−γ�1 − x2 − 2max3

ðxþ yÞ2
�−γþ1

dz2: ð4:3Þ

This is clearly distinct from the generalized C-metric
obtained by Ernst [20].

C. The Minkowski metric

We could apply the transformation to the Minkowski
metric in various coordinates. However, the result will just
be a coordinate transformation of the Levi-Civita metric
(3.8), which we obtained above. One can see this as
follows. The coordinates must give a form (3.13). One
can transform from the standard Minkowski coordinates to
the assumed form, apply Theorem 3.2, and then reverse the
coordinate transformation.
One might also hope that by applying Theorem 3.2

successively to two different choices of coordinates in
which the metric has the form (3.13), one could obtain a
two-parameter solution. However, this fails because the
first transformation will give the form (3.8). Then for any
choice of coordinates in which the metric takes the form
(3.13), g11g22 will just be a function of the original ρ and
only a metric equivalent to (3.8) can result.

D. A historical link: Buchdahl’s first transformation

As was mentioned in the Introduction, it was Hans
Buchdahl who pioneered obtaining new solutions from old
“without solving the field equations.” In the 1950s [25,26]
he showed that if a Ricci-flat metric (i.e. a solution of the
vacuum Einstein equations) is “static” in one of its
coordinates one can obtain another distinct Ricci-flat metric
from it by what he called a “reciprocal transformation” that
takes the d-dimensional metric,

ds2 ¼ gikðxjÞdxidxk þ gaaðxjÞðdxaÞ2; ð4:4Þ

to the following d-dimensional metric,

ds2¼ðgaaÞ2=ðd−3ÞðxjÞgikdxidxkþðgaaÞ−1ðxjÞðdxaÞ2: ð4:5Þ

Either metric, as Buchdahl termed, is “xa-static,” and it is
easy to verify that if (4.4) is Ricci flat so is (4.5), by direct
computation. By applying the transformation to (4.5) one
gets back the original metric (4.4).
It is easy to see that Buchdahl’s reciprocal transformation

in four dimensions is the α ¼ γ ¼ 1 case of Theorems 3.1
and 3.2 with the roles of t and ϕ interchanged (cf. Remark
3.2 with α ¼ 0). It is also the β ¼ −1 case of the scaling
symmetry (3.4) in Weyl coordinates.
Application: In his very first paper [25], Buchdahl

applied this transformation on

ds2 ¼ −ðdx2 þ dy2 þ dz2Þ þ x2dt2; ð4:6Þ

and obtained the following Ricci-flat solution:

ds2 ¼ −x4ðdx2 þ dy2 þ dz2Þ þ x−2dt2; ð4:7Þ

which is isometric to Taub’s solution given as (15.29) in
[3]. Applying his transformation to the Schwarzschild
metric (4.1), static in its t coordinate, he obtained

ds2 ¼ −
dt2

1 − 2m
r

þ
�
1 −

2m
r

�
dr2

þ r2
�
1 −

2m
r

�
2

ðdθ2 þ sin2θdϕ2Þ; ð4:8Þ

which, upon the coordinate transformation R ¼ r − 2m, is
again the Schwarzschild metric but with mass −m.
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Buchdahl expanded on the implication of his transforma-
tion for gravitational energy and showed that this is a
special case of the component of a certain tensorial
quantity, related to the Hamiltonian derivative of the
Gaussian curvature, changing sign [25]. Buchdahl noted
that more general solutions “can be formed by means of a
succession of reciprocal transformations, starting with the
line element of a flat space.” However, he did not apply this
observation until much later [27], in 1978, when he
obtained from the all-positive version of (4.6), i.e. from
the flat space metric

ds2 ¼ ðdx2 þ dy2 þ dz2Þ þ x2dt2; ð4:9Þ

at the ðn − 1Þth step of alternately taking the static
coordinate xa to be t and z for the transformation, the
solution

ds2 ¼ x2nðn−1Þðdx2þdy2Þþ x2ndz2þ x−2ðn−1Þdt2: ð4:10Þ

This is readily recognized as again being of the Kasner
form (3.9) (and thus Ricci flat for all real n), with

p ¼ a ¼ nðn − 1Þ; b ¼ n; c ¼ −ðn − 1Þ;

and the same as (3.8) apart from signature.
As a second set of nontrivial Ricci-flat solutions,

Buchdahl obtained from another form of the flat metric,

ds2 ¼ dx2 þ dy2 þ y2dz2 þ x2dt2; ð4:11Þ

the following one-parameter family:

ds2 ¼ x2nðn−1Þy2ðn−1Þðn−2Þðdx2 þ dy2Þ
þ x2ny2ðn−1Þdz2 þ x−2ðn−1Þy−2ðn−2Þdt2; ð4:12Þ

which was known from the work of Harris and Zund [28].
In summary, no new solutions were found by Buchdahl by
this generation technique.
However, in all these calculations, what Buchdahl over-

looked is that the Schwarzschild metric has another hyper-
surface-orthogonal Killing vector field, ∂

∂ϕ, which could be
used to obtain a different Ricci-flat metric,

ds2 ¼ −r4sin4θ
�
1 −

2m
r

�
dt2 þ r4sin4θ

dr2

1 − 2m
r

þ r6sin4θdθ2 þ 1

r2sin2θ
dϕ2: ð4:13Þ

This would have been a new solution, which, unlike
its t-counterpart (4.8), is not related to the original
Schwarzschild metric (4.1). Better yet, alternating between
t and ϕ, as he did in his 1978 paper [27] to reproduce only
the known solutions (4.10) and (4.12) from the flat metric,
it is conceivable that Buchdahl could have arrived at our

metric (4.2) more than 30 years ago. This would have
provided him with a bona fide family of new solutions
generalizing the Schwarzschild metric.3

In addition, and perhaps more importantly, Buchdahl did
not give an explanation of why for two static coordinates
the discrete exponents produced by alternate transforma-
tions also work fine for continuous values. Obviously, this
question and its answer were hidden in the Lie point
symmetry of the vacuum solutions of the Einstein equations
with two commuting hypersurface-orthogonal Killing
vector fields that we addressed here.

V. RICCI FLOW AND RICCI SOLITONS

We now discuss a straightforward application of the
above symmetry of the vacuum Einstein equations and
produce new self-similar solutions of the Ricci flow with
two commuting hypersurface-orthogonal Killing vector
fields. For this we only review the basic definitions and
readers are referred to standard references for more
details [29,30].
Ricci flow is an intrinsic geometric flow in which the

metric gμν on a manifold Mnþ1 evolves by its Ricci
curvature tensor

∂gμν
∂η ¼ −2Rμν ð5:1Þ

along the flow parameter η, often referred to as “time.” It
entered concurrently into the mathematics and physics
communities through the works of Richard Hamilton
[31] and Dan Friedan [32] in the early 1980s and has
been used in mathematics to study the interplay between
geometry and topology of Riemannian manifolds. It was
successfully applied to prove the long-standing Poincaré
conjecture and Thurston’s geometrization conjecture (in
three dimensions).
The simplest solutions of the Ricci flow are its fixed

points

∂gμν
∂η ¼ 0; ð5:2Þ

which are the Ricci-flat metrics, Rμν ¼ 0. The next simplest
are the self-similar solutions in which the metric evolves
only by rescalings and diffeomorphisms:

gμνðηÞ ¼ σðηÞψ�
ηðgμνð0ÞÞ: ð5:3Þ

It is easy to show that (5.3) implies, and is implied by, the
following equation for the initial metric (henceforth gμν)
[29]:

3If one applies Theorem 3.2 on (4.13), one obtains the same
family, differing from (4.2) only in the sign of m after changes of
coordinates.

M. M. AKBAR AND M. A. H. MACCALLUM PHYSICAL REVIEW D 92, 063017 (2015)

063017-6



Rμν −
1

2
LXgμν ¼ κgμν ð5:4Þ

with σðηÞ ¼ 1þ 2κη the scaling and YðηÞ ¼ 1
σðηÞXðxÞ the

vector generating ψη diffeormorphisms.
A Ricci soliton is a manifold with metric and a vector

field ðMnþ1; gμν; XÞ solving (5.4). The soliton is called
“steady” if κ ¼ 0, “expander” if κ < 0, and “shrinker” if
κ > 0. A local Ricci soliton is one that solves (5.4) on an
open region that might not cover a complete manifold with
the soliton metric. A soliton is called gradient if X ¼ ∇f,
where f is a scalar function on Mnþ1, and thus (5.4)
becomes

Rμν −∇μ∇νf ¼ κgμν: ð5:5Þ
For X ¼ 0, or Killing, Ricci solitons (5.4) are just Einstein
metrics and hence trivial. The Cigar soliton, or Witten’s
black hole, is an example of a simple but nontrivial Ricci
soliton, where

ds2 ¼ dx2 þ dy2

1þ x2 þ y2
; ð5:6Þ

and X ¼ 2ðx ∂
∂x þ y ∂

∂yÞ. It is a steady soliton on R2 solving

(5.4) with κ ¼ 0 and is gradient with f ¼ x2 þ y2.

A. Ricci solitons and static metrics

It is well known [3,33,34] that if

ds2 ¼ �e2udt2 þ e−
2u
n−2gijdxidxj ð5:7Þ

is Ricci flat in ðnþ 1Þ-dimensions in which ∂
∂t is a

hypersurface-orthogonal Killing vector field—i.e. (5.7) is
static in t—then ðu; gijÞ solves the Einstein scalar field
equations in n-dimensions:

Rij −
n − 1

n − 2
∇iu∇ju ¼ 0; ð5:8Þ

Δu ¼ 0: ð5:9Þ

A precise relationship between Ricci solitons and Einstein-
scalar field theory with a possible cosmological constant
was given recently [15] in which every solution of the latter
in n-dimensions corresponds to a Ricci soliton in ðnþ 1Þ-
dimensions. In the case of zero cosmological constant this
means every ðnþ 1Þ-dimensional static vacuum solution
(5.7) can be put in one-to-one correspondence with the
following Ricci soliton metric in ðnþ 1Þ-dimensions:

ds2 ¼ e2
ffiffiffiffiffi
n−1
n−2

p
udt2 þ gijdxidxj ð5:10Þ

with X ≔ −2
ffiffiffiffiffiffi
n−1
n−2

q
gij∇iu

∂
∂xj. That steady solitons gener-

ated this way are necessarily incomplete in four dimensions

follows from the inability of the Einstein-scalar system
(5.8) and (5.9) to admit any complete nonflat solution [33].
For any axisymmetric vacuum solution of the Einstein

equations in Weyl coordinates

ds2 ¼ �e2uðρ;zÞdt2 þ e−2uðρ;zÞ½e2kðρ;zÞðdρ2 þ dz2Þ þ ρ2dϕ2�
ð5:11Þ

we therefore have the following local Ricci soliton:

ds2 ¼ �e2
ffiffi
2

p
udt2 þ ½e2kðρ;zÞðdρ2 þ dz2Þ þ ρ2dϕ2�

ð5:12Þ

with X ¼ −2
ffiffiffi
2

p
e−2kðρ;zÞð∇ρu ∂

∂ρ þ∇zu ∂
∂zÞ.

B. One-parameter Ricci solitons

Using the correspondence above and the Lie point
symmetry (3.5) we finally obtain the following one-
parameter family of local steady Ricci solitons:

ds2 ¼ �e2
ffiffi
2

p
uρ2

ffiffi
2

p
αdt2

þ ½e2kðρ;zÞþ4αuðρ;zÞρ2α2ðdρ2 þ dz2Þ þ ρ2dϕ2� ð5:13Þ

with X¼−2
ffiffiffi
2

p
e−2kðρ;zÞþ2αuðρ;zÞþα2 lnρ

�
α
ρ
∂
∂ρþ∇ρu ∂

∂ρþ∇zu ∂
∂z
�

for every static axisymmetric vacuum solution of the
Einstein equations (2.1).

VI. CONCLUSION

The primary motivation behind most solution-generation
techniques has been to advance exact solutions, often
starting from a particular solution, and all require some
form of integration. We found that the vacuum Einstein
equations with two commuting hypersurface-orthogonal
Killing vector fields, which includes the axisymmetric
system (2.2)–(2.4), admits a nontrivial exact Lie point
symmetry (3.5) in explicit algebraic form. Being a sym-
metry of the system, this can be applied to generate one-
parameter extended families equally from known exact
and nonexact solutions of the system (and thus can guide
both analytical and numerical studies). The new solutions
can be seen as superposition of the seed metric with
the Levi-Civita solution. The explicit nature of the pre-
scription means we do not have to solve any associated
set of differential equations, and using it in the warped
product form, Theorem 3.2, means we do not have to
convert to Weyl coordinates. This work interestingly
connects to, and explains, some aspects of the very first
generation technique given more than 60 years ago—and
revisited from time to time for another two decades—by
Hans Buchdahl.
One can apply Theorem 3.1 or 3.2 to generalize any

axisymmetric static or cylindrical gravitational wave sol-
ution and there is a plethora of possibilities. One can further
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combine this symmetry with the scaling symmetry (3.4),
and with Ernst’s prescription (3.1), to write down more
general multiparameter families of metrics. In this paper,
we limited ourselves to finding (new) generalizations of the
Schwarzschild metric and the C-metric using this sym-
metry alone. As mentioned in the Introduction, the initial
motivation for looking into this well-studied system came
from the recently found correspondence between Ricci
flow and static metrics [15]. The symmetry in the static
system generalizes the corresponding Ricci solitons
simultaneously.
One would naturally like to generate more solutions,

study their properties, interpret and use them in relation to
other known solutions. However, the more important
message that we believe comes from the existence of
explicit symmetries like ours is that looking vigorously
and systematically for further hidden symmetries of the
static system, and obtaining a clearer picture of the

geometry of the solution space, would be worthwhile.4

A detailed and systematic study of symmetries would fall
within the purview of the very developed field of symmetry
analysis of nonlinear partial differential equations [35,36].
The related stationary system with two commuting vector
fields, as we mentioned earlier, has been one of the most
vigorously studied systems in relativity and may suggest
methods, indicate symmetries, and help us understand
the geometry of the solution space in general terms for
the static case. Even though the static system is simpler, the
connection is far less obvious. This is work in progress.
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