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The light-trajectory in the gravitational field of N extended bodies in arbitrary motion is determined in
the first post-Newtonian approximation. According to the theory of reference systems, the gravitational
fields of these massive bodies are expressed in terms of their intrinsic multipoles, allowing for the arbitrary
shape and inner structure of these bodies. The results of this investigation aim towards a consistent general-
relativistic theory of light propagation in the Solar System for high-precision astrometry at the sub-
microarcsecond level of accuracy.
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I. INTRODUCTION

The primary objective of astrometry is the determination
of the positions and motions of celestial objects, like stars
or Solar system objects, from angular observations, that is
to say to trace a light ray detected by an observer back
to the celestial light source. Consequently, one fundamental
assignment in relativistic astrometry concerns the precise
description of the trajectory of a light signal, which is
emitted by the celestial object and propagates through the
gravitational field of the Solar system towards the observer.
The growing accuracy of observations and new observa-
tional techniques have made it necessary to take subtle
relativistic effects into account. In this respect, a break-
through in astrometric precision has been achieved by the
space-mission Hipparcos (launch: 8 August 1989) of
European Space Agency (ESA), which has accomplished
an astrometric precision of up to 1 milliarcsecond (mas) in
measuring the positions of stars [1,2]. The next milestone in
astrometry is established by the ESA astrometry mission
Gaia (launch: 19 December 2013), where the positions of
celestial objects can be determined within an accuracy of
several microarcseconds (μas) in the ideal case (bright
stars) [3].
While microarcsecond astrometry has been realized both

theoretically and technologically within the Gaia mission,
the dawning of sub-microarcsecond (sub-μas) or even
nanoarcsecond (nas) astrometry is going to pass into the
strategic focus of astronomers. For instance, NEAT [4,5]
has been proposed to ESA as a candidate for one of the
M-size missions within the Cosmic Vision 2015–2025, and
is intended to reach a precision of about 50 nas. To achieve
such accuracy, NEAT utilizes a pair of spacecraft that
would fly in formation at a separation of 40 meters. This
provides the long focal length necessary to generate high
angular resolution to detect Earth-like planets. Further
space missions like ASTROD [6,7], LATOR [8,9],
ODYSSEY [10], SAGAS [11], or TIPO [12] are under

discussion by ESA which require the knowledge of light
propagation through the Solar System at the sub-μas or
even at the nas level of accuracy. These missions are
designed for a highly precise measurement of the spatial
distance between two spacecrafts in order to determine the
gravitational field within the Solar System. Also feasibility
studies of earth-bound telescopes are presently under
consideration which aim at an accuracy of about 10 nas
[13]. In view of these technological advancements, a
corresponding development in the theory of high-precision
astrometry and especially in the theory of light propagation
is indispensable.
In the limit of geometrical optics the path of a light signal

(photons) is a null geodesic, governed by the geodesic
equation which is valid in any coordinate system and reads
in the exact form [14,15]:

d2xαðλÞ
dλ2

þ Γα
μν
dxμðλÞ
dλ

dxνðλÞ
dλ

¼ 0; ð1aÞ

gαβ
dxαðλÞ
dλ

dxβðλÞ
dλ

¼ 0; ð1bÞ

where (1a) represents the geodesic equation, while the
so-called isotropic condition (1b) must be imposed as
additional constraint for null geodesics; xαðλÞ are the
four-coordinates of the photon which depend on the affine
curve parameter λ, and the Christoffel symbols are func-
tions of the metric of curved spacetime,

Γα
μν ¼

1

2
gαβ
�∂gβμ
∂xν þ ∂gβν

∂xμ −
∂gμν
∂xβ

�
; ð2Þ

where gαβ and gαβ are the contravariant and covariant
components of the metric tensor, respectively.
Facing the fact that in the Solar System the gravitational

fields are weak, GMA
c2RA

≪ 1, and the orbital velocities of the
bodies are slow, vA

c ≪ 1, one is allowed for utilizing the
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post-Newtonian (PN) approximation for the metric tensor
gαβ which is based on both of these assumptions [16]; here
MA, RA, and vA being mass, radius, and velocity, respec-
tively, of some massive Solar System body (e.g., A ¼ Sun,
planets, moons, planetoids). This so-called weak-field
slow-motion approximation admits an expansion of the
metric of Solar System in powers of these small parameters,
that means in inverse powers of the speed of light, e.g. [17]:

gαβ ¼ ηαβ þ hð2Þαβ þ hð3Þαβ þ hð4Þαβ þOðc−5Þ; ð3Þ

where ηαβ ¼ diagð−1;þ1;þ1;þ1Þ is the metric tensor of

flat Minkowski spacetime, and hðnÞαβ ≪ 1 are small pertur-

bations of it, which scale as follows, hðnÞαβ ∼Oðc−nÞ, while
their detailed structure will be considered later.
In doing so one has to bear in mind that such a post-

Newtonian expansion assumes from the very beginning that
all retardations are small. Therefore, the expansion in (3) is
only valid inside the so-called near zone of the Solar
System, jxj ≪ λgr, characterized by the length of gravita-
tional waves, λgr, emitted by the Solar System [14,18–20].
To get an idea about the magnitude, one can relate this
wavelength to a typical orbital period Torbit of the Solar
System bodies by λgr ∼ cTorbit ∼ 1017 meter, where we
have considered as orbital period one revolution of
Jupiter around the Sun. Hence, the boundary of the near
zone, jxj ≪ 1017 meter, is still beyond the most outer
border of the Solar System and especially encompasses
all Solar System objects.
Since one can define the position of any object only with

respect to a concrete reference system, such description
necessarily implies to introduce global coordinates which
cover the entire curved spacetime and in respect to which
the positions of the massive bodies, celestial objects and
photons along their trajectories can be well defined.
According to the recommendations of the International
Astronomical Union (IAU) [21,22], the standard global
reference system adopted in modern astrometry is the
Barycentric Celestial Reference System (BCRS) with
coordinates ðct; xÞ, where t is the coordinate time and x
are Cartesian-like spatial coordinates from the origin of the
global system (barycenter of the Solar System) to some
field point.
In BCRS coordinates the exact light trajectory from the

light source through the Solar System towards the observer,
that means the exact solution of geodesic equation (1a), can
be written as follows,

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δxðt; t0Þ; ð4Þ

where x0 ¼ xðt0Þ is the position of the light source at the
moment t0 of emission of the light signal, σ ¼ _xð−∞Þ

c is the
unit-direction of the light ray at past-null infinity, and Δx
are gravitational corrections to the unperturbed light

trajectory. These corrections are complicated expressions
which depend on all parameters which characterize the
metric of the Solar System. According to the post-
Newtonian expansion (3), the gravitational corrections to
the unperturbed light trajectory admit a corresponding
expansion,

Δx ¼ Δx1PN þ Δx1.5PN þ Δx2PN þOðc−5Þ; ð5Þ

where the terms Δx1PN, Δx1.5PN, and Δx2PN are of the order
Oðc−2Þ, Oðc−3Þ, and Oðc−4Þ, respectively.
As mentioned, today’s astrometric accuracy has reached

a level of a few microarcseconds in angular observations,
and the next scale of precision is the sub-microarcsecond
level; for an historical survey see [23]. In order to analyze
such highly precise astrometric data, a comprehensive
and systematic relativistic procedure of data reduction is
required [15,24]. Among several aspects of modern astrom-
etry, two specific issues have carefully to be treated:
(A) First, the most fundamental concept in astrometric

data reduction concerns the accurate definition of a set of
several reference systems plus the coordinate transforma-
tions among them. In particular, for the determination of the
light trajectory through the Solar System (N-body system),
the following N þ 1 coordinate systems are of primary
importance: one global reference system (BCRS) with
coordinates ðct; xÞ and N local coordinate systems with
coordinates ðcTA;XAÞ, one for each massive body
(A ¼ 1;…; N) and comoving with it. These N þ 1 refer-
ence systems are fully defined by the form of their metric
tensor. Furthermore, it is well known that the global
metric (3) of an N-body system in the region exterior
to the massive bodies admits a decomposition into two
families of global multipoles, namely global mass multi-
poles mL and global spin multipoles sL [20,25–28]:

hðnÞαβ ¼ hðnÞαβ ðmL; sLÞ; for n ¼ 2; 3; 4: ð6Þ

These global multipoles describe the multipole structure
of the entire Solar System as a whole. On the other side,
from the theory of reference systems and in accordance
with the IAU resolutions [21,22], it is clear that physically
meaningful multipole moments of some massive body A
have to be defined in the body’s local reference system,
namely local (also called intrinsic) mass multipoles MA

L
and local spin multipoles SAL. These intrinsic multipoles
describe the multipole structure of each individual body
separately. Consequently, the problem arises about how to
express the global metric (3) in terms of local multipoles:

hðnÞαβ ¼ hðnÞαβ ðMA
L; S

A
LÞ; for n ¼ 2; 3; 4: ð7Þ

In this respect, there are two advanced approaches in
the relativistic theory of reference systems: the
Brumberg-Kopeikin formalism (BK) [15,19,29–32] and
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theDamour-Soffel-Xu (DSX) approach [33–36]. Both these
approaches coincide for all practical problems in celestial
mechanics and astrometry [37] and have become a part of
the IAU resolutions [21,22]. Thus it appears that the

explicit form of the metric perturbations hð2Þαβ , h
ð3Þ
αβ , and

hð4Þ00 in (7) are well-established expressions in celestial
mechanics and modern astrometry, while the spatial com-

ponents hð4Þij in (7) deserve special attention in the case of
extended bodies with full multipole structure and is
presently an active field of research [38–41]; note that

hð4Þ0i ¼ 0.
(B) Second, the Solar System can be described as an

isolated N-body system, where the bodies move under the
influence of their mutual gravitational interaction, there-
with associated are orbital motions of the bodies which are
highly complicated. One has to be aware that the metric (3)
and, therefore, the light trajectory (4) are functions of these
complicated world lines xAðtÞ of the massive bodies. In
order to simplify this problem, one might want to expand
the world line of some body A around some time moment
tA as follows,

xAðtÞ ¼ xA þ vA
1!

ðt − tAÞ þ
aA
2!

ðt − tAÞ2 þOð _aAÞ; ð8Þ

where xA ¼ xAðtAÞ, vA ¼ vAðtAÞ and aA ¼ aAðtAÞ are the
position, velocity and acceleration of body A at time
moment tA, respectively, which are constant parameters.
While terms like vA=c are beyond 1PN approximation in
the geodesic equation, one has to realize that the above
series expansion is not an expansion in powers over c, thus
all terms in (8) will contribute in 1PN approximation to the
light ray metric, at least as long as no further assumptions
like aA ∼ G are asserted; cf. text below Eq. (80). In
principle, the expression in (8) can be implemented into
the metric tensor of the Solar System in (3). But such an
approach leads rapidly to involved integrals when solving
the geodesic equation in (1a), and implies an infinite series
of integrals that apparently cannot be summed. Also the
time-moment tA is actually an open parameter and remains
uncertain without further assumptions. Consequently,
instead to apply for such an approximative expansion in
(8), it is much preferable to find a solution for the light
trajectory in terms of arbitrary world lines xAðtÞ. The actual
world line of some massive body can finally be concretized
by means of Solar System ephemerides; e.g. the JPL
DE421 [42]. Accordingly, an important point which has
to be carefully considered concerns the arbitrary motion of
the massive bodies.
In this investigation we will account for both of these

fundamental aspects addressed above: issue (A) is incor-
porated by the DSX approach, while issue (B) is accounted
for by integration by parts of geodesic equation plus the
evidence that the remnants of this procedure represent

terms beyond 1PN approximation. In this way, a systematic
approach is developed in order to determine the light
trajectory in the Solar System in (4) in the first post-
Newtonian (1PN) approximation,

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δx1PNðt; t0Þ þOðc−3Þ; ð9Þ

where the global metric of the Solar System is described
from the very beginning in terms of intrinsic multipoles of
the extended bodies in arbitrary motion. Such a systematic
formalism is an imperative prerequisite for extending the
model to higher-order terms in the post-Newtonian expan-
sion in (5).
The article is organized as follows: In Sec. II we will

motivate the inevitability for an analytical solution of
light trajectory in the field of N arbitrarily moving bodies
with full multipole structure in post-Newtonian order for
sub-microarcsecond astrometry. In Sec. III the geodesic
equation in 1PN approximation and the initial-boundary
conditions are introduced which determine a unique sol-
ution of the geodesic equation. The metric of the Solar
System in terms of intrinsic multipoles in accordance with
the IAU resolutions is given in Sec. IV. In order to simplify
the integration procedure, new variables for space and time
and the corresponding transformation of geodesic equation
and metric tensor are presented in Sec. V. In Sec. VI the first
integration of geodesic equation is performed, while in
Sec. VII some specific cases (arbitrarily moving monop-
oles, dipoles, quadrupoles, and one body at rest with full
multipole structure) are considered. It will be demonstrated
that in the limit of bodies at rest the results are in agreement
with known results in the literature. In Sec. VIII the second
integration of the geodesic equation is represented, while
some specific cases (arbitrarily moving monopoles,
dipoles, quadrupoles, and one body at rest with full
multipole structure) are considered in Sec. IX. In the limit
of bodies at rest an agreement with known results in the
literature is shown. Expressions for the observable relativ-
istic effects of time delay and light deflection are given in
Sec. X. A summary and outlook can be found in Sec. XI.

A. Notation of impact vectors

It appears to be considerate to introduce the notation in
use regarding the impact vectors, while further notations
are shifted to Appendix A.
While the exact light ray xðtÞ in (4) is a complicated

function, the unperturbed light ray in flat Minkowski
spacetime is just given by a straight line,

xNðtÞ ¼ x0 þ cðt − t0Þσ; ð10Þ

where the subscript N stands for Newtonian limit. One may
introduce the following impact vector:

ξ ¼ σ × ðxNðtÞ × σÞ ¼ σ × ðx0 × σÞ; d ¼ jξj: ð11Þ
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The impact-vector in (11) points from the origin of the
global system (BCRS) towards the point of closest
approach of the unperturbed light ray to that origin. The
impact vector in (11) is time independent, both in the case
of massive bodies at rest as well as in the case of massive
bodies in motion.

1. Massive bodies at rest

Massive bodies at rest means their positions to be
constant with respect to the global system: xA ¼ const.
We will make use of the following notation for the vector
from the massive body at rest towards the photon propa-
gating along the exact light trajectory,

rA ¼ xðtÞ − xA; ð12Þ

with the absolute value rA ¼ jrAj. The vector from the
massive body at rest towards the photon along the unper-
turbed light trajectory reads

rNA ¼ xNðtÞ − xA

¼ x0 þ cðt − t0Þσ − xA; ð13Þ

with the absolute value rNA ¼ jrNA j, and obviously
rA ¼ rNA þOðc−2Þ. We also need the vector from the
massive body at rest towards the photon at the moment
of signal emission,

r0A ¼ x0 − xA; ð14Þ

with the absolute value r0A ¼ jr0Aj. Note that in the case of
massive bodies at rest there will be no time argument in rA
and rNA , irrespective of the fact that the distance between the
photon and the body actually depends on time due to the
propagation of the photon. In the case of massive bodies at
rest, we introduce the following impact vector:

dA ¼ σ × ðrNA × σÞ; dA ¼ jdAj: ð15Þ

The impact-vector in (15) is time independent, _dA ¼ 0, and
points from the origin of local coordinate system of massive
body A towards the unperturbed light ray at the time of
closest approach to that origin, defined later by Eq. (33).
Notice that the term “weak gravitational field” implies
dA ≫ GMA

c2 .

2. Massive bodies in motion

In the case of massive bodies in motion, their positions
become time dependent: xAðtÞ. Then we will make use of
the following notation for the vector from the massive body
towards the photon propagating along the exact light
trajectory:

rAðtÞ ¼ xðtÞ − xAðtÞ; ð16Þ

with the absolute value rAðtÞ ¼ jrAðtÞj. The vector from the
massive body in motion towards the photon along the
unperturbed light trajectory reads

rNAðtÞ ¼ xNðtÞ − xAðtÞ
¼ x0 þ cðt − t0Þσ − xAðtÞ; ð17Þ

with the absolute value rNAðtÞ ¼ jrNAðtÞj and obviously
rAðtÞ ¼ rNAðtÞ þOðc−2Þ. We also will need the vector from
the massive body towards the photon at the time moment of
emission of the light signal, given by

rNAðt0Þ ¼ x0 − xAðt0Þ; ð18Þ

with the absolute value rNAðt0Þ ¼ jrNAðt0Þj. In the case of
massive bodies in motion we introduce the following
impact vector:

dAðtÞ ¼ σ × ðrNAðtÞ × σÞ; dAðtÞ ¼ jdAðtÞj: ð19Þ

The impact vector in (19) is time dependent, _dA ≠ 0, and
points from the origin of local coordinate system of massive
body A towards the unperturbed light ray at the time of
closest approach to that origin. The time dependence of
the impact vector in (19) is solely caused by the motion
of the massive body, that means a time derivative of (19)
is proportional to the orbital velocity of this body,
_dAðtÞ ¼ σ × ðσ × vAðtÞÞ. The term “weak gravitational
field” implies dAðt�AÞ ≫ GMA

c2 for the time of closest
approach of the light ray to the massive body, which will
be defined later; see Eq. (33).

II. MOTIVATION

Before representing our approach, it is most appropriate
to review in brief the recent advancements in the theory of
light propagation in the weak gravitational field of N
massive bodies. It is clear that in a short review like the
present, it is impossible to consider all articles written on
the subject during the last decades, and many important
calculations must remain unmentioned. Instead, the brief
survey is enforced to be focussed on those results, which
are of upmost relevance for our considerations.
As mentioned in the introductory section, the BCRS

metric of Solar System admits an expansion in terms of
multipoles. By inserting the decomposition of the metric in
terms of global multipoles (6) into the geodesic equa-
tion (1a) one obtains a corresponding decomposition of the
light-ray perturbation (5) in terms of global multipoles:

Δx ¼
X∞
l¼0

ΔxðmL; sLÞ þOðc−5Þ: ð20Þ
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Likewise, inserting the decomposition of the metric in
terms of local multipoles (7) into the geodesic equation (1a)
one obtains a corresponding decomposition of the light-ray
perturbation (5) in terms of local multipoles:

Δx ¼
X∞
l¼0

ΔxðMA
L; S

A
LÞ þOðc−5Þ: ð21Þ

In the subsequent survey it will be carefully distinguished
whether a decomposition in terms of global multipoles (20)
or in terms of local multipoles (21) is meant. Let us
gradually consider these individual terms, depending on
the accuracy of the astrometric measurements.

A. Astrometry at the milliarcsecond level of accuracy

For astrometry on milliarcsecond (mas) level of accuracy
it is sufficient to approximate all Solar System bodies
as spherically symmetric objects. In the case of N monop-
oles at rest, the corresponding correction term in (21)
reads [15]

ΔxM1PNðt; t0Þ ¼−
2G
c2
XN
A¼1

MA

×

�
dA

rNA −σ · rNA
−

dA
r0A−σ · r0A

−σ ln
rNA −σ · rNA
r0A−σ · r0A

�
;

ð22Þ

where the sum in (22) runs over all massive bodies of the
Solar System. For a comparison of (22) with [15] it might

be useful to recall: ln rNA−σ·r
N
A

r0A−σ·r
0
A
¼ − ln rNAþσ·rNA

r0Aþσ·r0A
. The magnitude

of light deflection for grazing rays amounts to 1.75 × 103

mas for the Sun, 16.3 mas for Jupiter, 5.8 mas for Saturn,
2.1 mas for Uranus, and 2.5 mas for Neptune [43].
Since in reality these massive bodies are moving, the

question arises about how to implement the time depend-
ence of the positions of these gravitating bodies. This
particular issue has thoroughly been solved in [44] in first
post-Minkowskian (1PM) approximation, and will be one
aspect in the following section.

B. Astrometry at the microarcsecond level of accuracy

Meanwhile, modern space-based astrometry has accom-
plished the step from milliarcsecond level to the micro-
arcsecond level of accuracy [23]. In order to determine the
light trajectory at the μas level of accuracy, some further
subtle relativistic effects of light propagation need to be
accounted for in addition to the monopole term in (22).
These include the following:

(i) the quadrupole structure of the massive bodies,
(ii) the motion of the massive bodies,
(iii) the post-post-Newtonian monopole term.

The fundamentals of the corresponding theoretical model
of light propagation have been worked out in [15,17,43,45],
and later be refined in [46,47]. The results of these
investigations have been adopted as one of two model
for the Gaia data reduction and which is called the Gaia
relativistic model (GREM). Another approach has been
developed in [48–52], which is the second model in use for
Gaia data reduction and which is called the relativistic
astrometric model (RAMOD). Both these models are
designed for relativistic astrometry at the microarcsecond
level of accuracy and allow for an independent check of
their results. Let us consider in more detail each of these
three subtle effects which are listed above.

1. Impact of the quadrupole field on light trajectory

The analytical solution for the light trajectory in a
quadrupole field of a body at rest and in post-Newtonian
approximation has been determined in [45], where the time
dependence of the coordinates of the photon and the
solution of the boundary value problem for the geodesic
equations has been obtained at the first time. These results
were later confirmed by different approaches in [53–55].
The formula for the quadrupole light deflection in 1PN
approximation can be found in [17,43,45] and should be
given here in its complete form:

ΔxQ1PNðt;t0Þ¼
G
c2
XN
A¼1

1

d2A
½αAðUA−U0

AÞ

þβAðVA−V0
AÞþγAðFA−F 0

AÞþδAðEA−E0
AÞ�:
ð23Þ

The sum in (23) runs over all massive bodies of the Solar
System. In [47] it has been shown that all terms in the
second line of Eq. (23) are negligible for μas astrometry, but
this fact is not of much relevance in our investigation here.
The time-independent vectorial coefficients in (23) are
given by

αkA ¼ −MA
i1i2

dkAσ
i1σi2 þ 2MA

i1k
di1A − 2MA

i1i2
di2Aσ

i1σk

−
4

d2A
MA

i1i2
di1Ad

i2
Ad

k
A; ð24Þ

βkA ¼ þMA
i1i2

σi1σi2σk − 2MA
i1k
σi1

þ 4

d2A
MA

i1i2
di2Ad

k
Aσ

i1 −
2

d2A
MA

i1i2
di1Ad

i2
Aσ

k; ð25Þ

γkA ¼ þMA
i1i2

di1Ad
i2
Ad

k
A −MA

i1i2
d2Ad

k
Aσ

i1σi2

þ 2MA
i1i2

di2Ad
2
Aσ

i1σk; ð26Þ

δkA ¼ −MA
i1i2

di1Ad
i2
Aσ

k þMA
i1i2

d2Aσ
i1σi2σk

þ 2MA
i1i2

di2Ad
k
Aσ

i1 ; ð27Þ
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with intrinsic mass quadrupole moments MA
i1i2

. The time-
dependent scalar functions in (23) are given by

UA ¼ 1

rNA

rNA þ σ · rNA
rNA − σ · rNA

; U0
A ¼ 1

r0A

r0A þ σ · r0A
r0A − σ · r0A

; ð28Þ

VA ¼ σ · rNA
rNA

; V0
A ¼ σ · r0A

r0A
; ð29Þ

FA ¼ 1

ðrNAÞ3
; F 0

A ¼ 1

ðr0AÞ3
; ð30Þ

EA ¼ σ · rNA
ðrNAÞ3

; E0
A ¼ σ · r0A

ðr0AÞ3
: ð31Þ

The light deflection for grazing rays at giant planets due to
their quadrupole-structure amounts to 240 μas for Jupiter,
95 μas for Saturn, 8 μas for Uranus, and 10 μas for
Neptune [43], which clearly indicate that the effect of
quadrupole light deflection must be taken into account for
astrometry at the microarcsecond level of accuracy.

2. Impact of the motion of massive
bodies on light trajectory

One of the most sophisticated challenges in relativistic
astrometry concerns the problem of the motion of massive
bodies and its impact on the light trajectories. While the
solutions in (22) and (23) are valid for bodies at rest,
xA ¼ 0, in reality the global coordinates of the bodies
depend on time, xAðtÞ, which is a highly complicated
function in an N-body system due to the mutual gravita-
tional interaction of the massive bodies. These complicated
world lines of the massive bodies in the Solar System can
be series expanded [17,43],

xAðtÞ ¼ xA þ vAðt − tAÞ þOðaAÞ; ð32Þ

where xA and vA can be thought of as the actual position and
velocity of body A taken from an ephemeris for some
instant of time tA. Let us underline here that the impact of
the term vA in (32) on the light trajectory is of 1PN order,
besides the fact that this term is proportional to the velocity
of the body; recall that on the other side terms proportional
to vA=c are of 1.5PN order in the theory of light
propagation; cf. text below Eq. (80).
An analytical integration of light trajectory in the field of

an uniformly moving body (32) has been derived in closed
form in 1PN approximation in [56] and later also in 1PM
approximation by means of a suitable Lorentz transforma-
tion of the light trajectory [57]. As long as one considers
uniformly moving bodies, the instant of time tA in the
expansion (32) remains an open parameter, but by all
means heuristic arguments can be put forward for a
meaningful choice for it. Perhaps the most fruitful

suggestion was that given in [58], where it was supposed
to accept that this parameter coincides with the time of
closest approach of the light ray to the massive body, t�A,
given by an implicit relation,

t�A ¼ t0 −
σ · ðx0 − xAðt�AÞÞ

c
þOðc−2Þ; ð33Þ

¼ t1 −
σ · ðx1 − xAðt�AÞÞ

c
þOðc−2Þ; ð34Þ

where x0 ¼ xðt0Þ is the global spatial coordinate of the
source at the moment of emission of the light signal and
x1 ¼ xðt1Þ is the global spatial coordinate of the space-
based observer at the moment of observation of the light
signal; cf. Eq. (5.13) in [17]. As a result, in the light
propagation formulas (22) and (23) one would have to
insert xAðt�AÞ. That educated guess was triggered by the idea
that the biggest influence on the light ray the body exerts
when the photon passes nearest to it. But a unique
justification of this suggestion has not been evidenced at
that time. Further arguments have later been put forward
that partially justify the computation of the parameters of
the linear model (32) to match the real position and velocity
of the body at the moment of closest approach between the
light ray and the real trajectory of the body [59].
A rigorous solution of the problem of light propagation

in the field of arbitrarily moving pointlike monopoles and
in the first post-Minkowskian approximation has been
found in [44], where advanced integration methods have
been applied that were originally been introduced in [53]
for stationary fields and further developed in [60] for time-
dependent fields. According to the solution in [44], the
positions of the bodies have to be computed at the retarded
instant of time, tretA , given by the implicit relation

tretA ¼ t −
jxðtÞ − xAðtretA Þj

c
: ð35Þ

The expression (35) is valid for an arbitrary time, e.g. either
t ¼ t0 or t ¼ t1. With the aid of this rigorous approach in
[44] it has been shown that if the positions and velocities of
the bodies are taken at tretA then the effects of acceleration
and the effects due to time dependence of velocity of the
bodies are much smaller than 1 micro-arcsecond. The
numerical accuracy of various approaches have been
investigated in [59], where it was demonstrated for the
monopole term that for an accuracy of 1 μas it is sufficient
to take the 1PN solution of a motionless body in (22), if the
position xA of body A is taken at either t�A or tretA .

3. The post-post-Newtonian monopole term

Actually, corrections of post-post-Newtonian (2PN)
order to the light ray in (5) will not be on the scope of
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the present investigation, but should briefly be mentioned
here for reasons of completeness about μas astrometry.
While several post-post-Newtonian effects of light

deflection due to a monopole at rest have been determined
a long time ago [61–66], the determination of the explicit
time dependence of the photons coordinate is mandatory in
the data reduction for highly sophisticated astrometry
missions like Gaia. In general, such 2PN corrections to
the light ray caused by the monopole structure of one
massive body are proportional to the square of its massMA,
that means

ΔxM2PNðt; t0Þ ¼
G2

c4
XN
A¼1

M2
AðCA − C0

AÞ: ð36Þ

In this respect, an important progress has been made in
[67], where a 2PN solution for the light trajectory in the
Schwarzschild field as a function of coordinate time in a
number of coordinate gauges was obtained; see also
[15,17]. From the 2PN solution in [15,17,67], given in
an iterative form, one can deduce the expicit form of the
vectorial function CA in Eq. (36) (see Appendix B),

CA ¼ 4
dA
rNA

1

rNA − σ · rNA
− 4

σ

rNA

σ · rNA
rNA − σ · rNA

þ 1

4

rNA
ðrNAÞ2

− 4
dA
rNA

1

rNA − σ · rNA
ln ðrNA − σ · rNAÞ

− 4
σ
rNA

ln ðrNA − σ · rNAÞ −
15

4

σ
dA

arctan
σ · rNA
dA

−
15

4
dA

σ · rNA
d3A

�
π

2
þ arctan

σ · rNA
dA

�
; ð37Þ

and C0
A is deduced from (37) by the replacements rNA → r0A

and rNA → r0A. Generalizations of that 2PN solution for the
case of the parametrized post-post-Newtonian metric have
been given in [46], where the numerical magnitudes of the
post-post-Newtonian terms have been estimated and a
practical algorithm for highly effective computation of
the post-post-Newtonian effects has been formulated.
Two alternative approaches to the calculation of propa-

gation time and direction of the light rays have been
formulated recently. Both approaches allow one to avoid
explicit integration of the geodesic equations for light rays.
The first approach in [68,69] is based on the use of Synge’s
world function. Another approach is based on the eikonal
concept and has been developed in [70] in order to
investigate the light propagation in the field of a spherically
symmetric body.
In order to get an idea about the magnitude of 2PN

effects, let us recall the well-known fact that the 2PN
monopole correction for grazing light rays at the Sun is
about 11 μas [15,17,61–66]. In the concrete case of ESA
astrometry-mission Gaia there is a sun shield which is tilted

at a 45 degree angle to the Sun, so that the telescopes
observe a space region where the post-post-Newtonian
effects of the Sun become negligible. However, while the
Gaia mission will not observe close to the Sun, it will
observe very close to the surface of giant planets. A
corresponding detailed investigation in [46] has recovered
the remarkable fact, that post-post-Newtonian corrections
become relevant for light rays grazing the surface of the
giant planets. As outlined in [46], the reason for this
fact is the inevitable occurrence of coordinate-dependent
enhanced terms, because real astrometric measurements
incorporate the use of concrete global coordinate systems
and inherit the choice of coordinate-dependent impact
parameters, see also [71].

C. Astrometry at the sub-microarcsecond
level of accuracy

In order to determine the light trajectory with an
unprecedented accuracy at the sub-μas level of accuracy,
many further subtle relativistic effects in the theory of light
propagation have to be accounted for. Let us deploy just a
minimal set of corresponding requirements which need to
be considered:

(i) full set of mass multipoles,
(ii) spin-dipole,
(iii) some higher spin multipoles,
(iv) motion of arbitrarily moving massive bodies,
(v) post-post-Newtonian effects.

Of course, what is really necessary to implement into the
final relativistic model depends on what is actually meant
by the term “sub-μas level” of accuracy. For instance, for a
model aiming at an accuracy of 0.1 μas level, there is no
need to take into account any higher spin multipoles in
1.5PN approximation, while a model at the 0.01 μas level
necessitates such terms. Let us look at the present situation
in the theory of light propagation at the sub-μas level of
accuracy by considering each of these five issues
mentioned.

1. Impact of higher mass multipoles on light trajectory

Keeping the magnitude of quadrupole light deflection by
giant planets in mind, it can easily be foreseen that a light
propagation model at the sub-μas level needs to take into
account the impact of higher mass multipoles beyond the
well-known mass quadrupole term in (23).
A systematic approach to the integration of light geo-

desic equations in the stationary gravitational field of a
localized source at rest, xA ¼ const, located at the origin of
coordinate system and having time-independent local
multipole structure, MA

L and SAL, has been worked out in
[53] in 1PN and 1.5PN approximation. In particular,
sophisticated integration methods have been introduced
in [53] allowing for analytical integrations of geodesic
equations in the complex field of multipoles to arbi-
trary order.
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Furthermore, the case of light propagation in the field of
a localized source at rest which is characterized by time-
dependent multipoles has been investigated in [72,73] in
1PM approximation. This solution can be interpreted in two
different ways:

(i) Either the localized source is thought of to be
composed of N arbitrarily moving bodies, but then
the time-dependent multipoles have to be interpreted
as global multipoles, mLðtÞ and sLðtÞ, which char-
acterize the entire N-body system as a whole.

(ii) Or the localized source is thought of as being just
one body A at rest with intrinsic multipoles, MA

LðtÞ
and SALðtÞ, which characterize that single body.

But neither of these two interpretations allow one to
consider the solution in [72,73] to be valid for the case of
arbitrarily moving bodies, xAðtÞ, and with local multipoles
MA

LðtÞ and SALðtÞ characterizing each individual body A of
the N-body system.
The influence of time-independent intrinsic mass multi-

poles of higher order on a light ray by an isolated
axisymmetric body at rest has also been investigated in
[54], using a different approach based on the multipole
expansion of time transfer function. Explicitly, a formula
for the bending of light due to any order of multipole
moments has been derived and numerical estimates have
been presented. For instance, it has been found in [54] that
the light deflection due to the mass octupole structure
amounts to 0.016 μas, and due to the mass hexadecupole
structure it amounts to 9.6 μas for grazing rays at Jupiter.
Recently, in [74] the light propagation in the field of an

uniformly moving axisymmetric body has been determined
in terms of the full multipole structure of the body.
Furthermore, an analytical formula for the time delay
caused by the gravitational field of a body in slow and
uniform motion with arbitrary multipoles has been derived
in [75].
Assessment: According to these investigations in the

literature, the 1PN solution Δx1PNðt; t0Þ in (9) in the
gravitational field of N arbitrarily moving bodies, xAðtÞ,
and with time-dependent intrinsic mass multipoles, MA

LðtÞ,
has not been determined thus far, but appears to be an
inevitable requirement for sub-μas astrometry.

2. Light propagation in the field of spin-dipoles

The next term beyond μas astrometry which is certainly
required at sub-μas level is the impact of rotational motion
of massive bodies on the light propagation; note that such a
term is already of 1.5PN order. For instance, the light
deflection due to rotational motion of Solar System bodies
amounts to 0.7 μas for the grazing ray at the Sun, 0.2 μas
for the grazing ray at Jupiter, and 0.04 μas for the grazing
ray at Saturn [43,45].
The first solution of the light trajectory ΔxS1.5PNðt; t0Þ in

the gravitational field of massive bodies at rest possessing
a time-independent intrinsic spin dipole, SA, has been

obtained in [45]. This solution provides all the details of
light propagation, especially the time dependence of the
coordinates of the photon and the solution of the corre-
sponding boundary value problem.
Utilizing advanced integration methods, a solution for

the light trajectory in the field of one body at rest and
having time-independent local spin-dipole, SA, has also
been obtained in [53] in 1.5PN approximation. Moreover,
an analytical solution in 1PM approximation for the case of
light propagation in the field of an arbitrarily moving
pointlike spin-dipole, sðtÞ (expressed in terms of a global
spin-tensor) has been derived in [76].
Assessment: In view of these few investigations available

in the literature, the task remains to determine the light
trajectory ΔxS1.5PNðt; t0Þ in the gravitational field of an
arbitrarily moving body, xAðtÞ, carrying a time-dependent
intrinsic spin-dipole, SAðtÞ.

3. Impact of higher spin multipoles on light trajectory

As mentioned above, a solution for the light trajectory in
the stationary gravitational field of a localized source at
rest, xA ¼ const, with time-independent local multipoles,
MA

L and SAL, has been determined in 1.5PN approximation
in [53]. Furthermore, the light trajectory in the field of a
localized source with time-dependent global multipoles,
mLðtÞ and sLðtÞ, has been obtained in [72,73] in 1PM
approximation. As has been noticed already, the results in
[72,73] can be considered a solution for the light trajectory
in the field of either a system ofN arbitrarily moving bodies
characterized by global multipoles or in the field of one
body A at rest characterized by local multipoles, but not as
solution for the light trajectory in the field of arbitrarily
moving bodies characterized by intrinsic multipoles.
Recent calculations [77] have revealed, that the light

deflection due to spin-octupole structure of massive bodies
at rest amounts to about 0.015 μas for Jupiter and about
0.006 μas for Saturn for grazing rays. Therefore, a model at
the sub-μas level has to take into account at least the spin-
octupole term which is of 1.5PN order in the theory of light
propagation.
Assessment: According to these facts, the 1.5PN solution

Δx1.5PNðt; t0Þ in (5) in the gravitational field of N arbitrarily
moving bodies, xAðtÞ, and with time-dependent intrinsic
spin multipoles, SALðtÞ, has not been determined so far and
remains an unavoidable task in order to achieve an
astrometric accuracy at the sub-μas level.

4. Impact of the motion of the bodies on light trajectory

The Solar System bodies are moving along their indi-
vidual world lines, xAðtÞ, which are complicated func-
tions of time due to the mutual interaction among the
bodies, implying that the metric and the light trajectory
become also complicated functions of time. As explicated
in Sec. II B 2, for astrometry this highly sophisticated
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problem can be treated by using the standard 1PN solutions
of motionless bodies, xA ¼ const, as long as the positions
of the bodies are taken at either their retarded times tretA or at
their time of closest approach to the light ray t�A.
However, in the investigation [59] it has been shown that

for an astrometric astrometry better than 0.2 μas one needs
to take into account the motion of the bodies. In particular,
it is not sufficient to apply for a simple series-expansion of
the bodies world line, xAðtÞ ¼ xA þ vAðt − tAÞ, as given by
Eq. (32). Instead, one has to determine the light trajectory
in the field of arbitrarily moving bodies xAðtÞ. For the case
of arbitrarily moving monopoles such a solution has been
provided in [44], and for the case of arbitrarily moving
bodies with quadrupole structure such a solution has been
found in [78]. But for arbitrarily moving bodies with higher
intrinsic multipoles there are no solutions available so far.
Assessment: As a result, for sub-μas astrometry the

approximative expansion in (32) is not applicable, instead
of that one has to find a solution for the light trajectory in
terms of arbitrary world lines xAðtÞ. The real world lines of
the massive bodies can finally be implemented into the
model by means of Solar System ephemerides [42].

5. Post-post-Newtonian effects

The most intricate issue in the theory of sub-microarc-
second astrometry will be the post-post-Newtonian effects
Δx2PNðt; t0Þ in (5). Such 2PN corrections to the light ray
will not be on the scope of this investigation, but some
remarks should be in order.
The largest perturbation term is of course the monopole

term, ΔxM2PNðt; t0Þ, which in the case of pointlike bodies at
rest, xA ¼ const, has been calculated for the first time in
[67]; see also [15,17]. In reality, the bodies are moving, and
one has to treat the problem of moving monopoles in post-
post-Newtonian approximation where, however, only very
limited results are available thus far. In particular, in [79]
the light deflection in 2PN approximation in the field of two
moving point-like bodies has been determined, using two
essential approximations: (i) both the light source and the
observer are assumed to be located at infinity in an
asymptotically flat space, and (ii) the relative separation
distance of the bodies is assumed to be much smaller than
the impact parameter of incoming light ray. These approx-
imations are of interest in the case of studying light
propagation in the field of a binary pulsar, but they are
not applicable for real astrometric observations in the Solar
System.
Presently it remains unknown, how large the impact of

higher mass multipoles on light deflection in post-
post-Newtonian order is. In order to tackle this problem,
an extension of the DSX metric [33,34] towards postlinear
order is mandatory; see text below Eq. (7). There are
several preliminary and promising efforts to extend rela-
tivistic astrometry to post-post-Newtonian order for light
rays, especially to focus on the 2PN gravitational field of
arbitrarily moving bodies endowed with arbitrary intrinsic

mass- and spin-multipole moments. There have been
several attempts to solve this problem [38–40], but they
are far from being complete. Problems, that have been
ignored in these articles are related with the internal
structure of extended bodies. For a single body at rest
these problems are well understood for both the post-
Newtonian [25,26] and the post-Minkowskian case [27,28],
where many structure-dependent terms appear in inter-
mediate calculations that cancel exactly by virtue of the
local equations of motion or can be eliminated by corre-
sponding gauge transformations. However, in post-
post-Newtonian order the situation is still unclear. For a
spherically symmetric body the complete derivation of the
metric in the exterior of the massive body (Schwarzschild
metric) was recently solved in [41], where it has been
shown how such structure-dependent terms cancel so that
one finally ends up with the well-known Schwarzschild
solution in harmonic gauge. This work allows in principle
to determine the light trajectory in the field of a spherically
symmetric and extended massive body at rest in 2PN
approximation.
Assessment: So far, the light trajectory in 2PN approxi-

mation, Δx2PNðt; t0Þ in (5), is only known for pointlike
monopoles at rest. Moreover, the DSX metric in postlinear
approximation has to be determined, in order to ascertain
the impact on light deflection of terms in second post-
Newtonian order beyond the monopole term, either numeri-
cally or analytically.

III. GEODESIC EQUATION IN
1PN APPROXIMATION

The description of the metric of the Solar System
becomes more complex the more accurate the astrometric
measurements are and one has to resort on approximation
schemes to solve the geodesic equation (1a). Since the
gravitational fields of Solar System are weak and the
motions of the massive bodies are slow, we can utilize
the so-called post-Newtonian expansion (weak-field slow-
motion approximation) for the metric as given by Eq. (3).
The main objective of this investigation is an analytical
solution for the light trajectory in 1PN approximation, see
Eq. (9). As a result, terms of the order Oðc−2Þ in the metric
tensor are required for such an approximation:

gαβðt; xÞ ¼ ηαβ þ hð2Þαβ ðt; xÞ þOðc−3Þ: ð38Þ
Inserting (38) into (1a) by virtue of (2) yields the geodesic
equation in 1PN approximation, which can be rewritten in
terms of global coordinate time (cf. Refs. [15,17,59] and
especially the first four terms in Eq. (A.4) in [59]),

ẍiðtÞ
c2

¼ þ 1

2
hð2Þ00;i − hð2Þ00;j

_xiðtÞ
c

_xjðtÞ
c

− hð2Þij;k
_xjðtÞ
c

_xkðtÞ
c

þ 1

2
hð2Þjk;i

_xjðtÞ
c

_xkðtÞ
c

þOðc−3Þ; ð39Þ
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where hð2Þαβ;i ¼ ∂hð2Þαβ =∂xi, while a dot denotes a derivative
with respect to coordinate time. In order to find a unique
solution of the geodesic equation in (39), so-called
mixed initial-boundary conditions must be imposed,
which have extensively been used in the literature, e.g.
[15,17,46,53,60,67,72]:

x0 ¼ xðt0Þ; ð40Þ

σ ¼ lim
t→−∞

_xðtÞ
c

: ð41Þ

The first condition (40) defines the spatial coordinates of
the photon at the moment t0 of emission of light. The
second condition (41) defines the unit-direction ðσ · σ ¼ 1Þ
of the light ray at past null infinity, that means the unit-
tangent vector along the light path at infinite distance in the
past from the origin of the global coordinate system.
The metric perturbations in (39) are functions of the

coordinates of the global reference system (BCRS). It is,
however, important to realize that in the geodesic equation
this coordinate dependence has always to be understood as
being the coordinates of the photon xðtÞ at time t, which
means

hð2Þαβ ¼ hð2Þαβ ðt; xÞjx¼xðtÞ: ð42Þ

Consequently, the spatial derivatives in (39) are taken along
the light ray:

hð2Þαβ;i ¼
∂hð2Þαβ ðt; xÞ

∂xi
����
x¼xðtÞ

: ð43Þ

The geodesic equation in (39) has usually been solved by
an iteration procedure. In the first iteration the right-hand
side in (39) vanishes, ẍi ¼ 0, and the integration of this
differential equation yields the unperturbed light ray in
Eq. (10). The exact light trajectory xðtÞ deviates from the
Newtonian approximation by terms of the order Oðc−2Þ,
which means

xðtÞ ¼ xNðtÞ þOðc−2Þ: ð44Þ

Solving the geodesic equations (39) by iteration implies
that _xðtÞ can be replaced by its Newtonian approximation,
_xNðtÞ ¼ cσ, which follows by time-derivative of (10), so
that the geodesic equation in (39) simplifies as follows:

ẍiðtÞ
c2

¼ þ 1

2
hð2Þ00;i − hð2Þ00;jσ

iσj − hð2Þij;kσ
jσk

þ 1

2
hð2Þjk;iσ

jσk þOðc−3Þ: ð45Þ

In 1PN approximation, the metric perturbations in (45)
have to be taken at the spatial coordinates of the unper-
turbed light ray given by (10), which means

hð2Þαβ ¼ hð2Þαβ ðt; xÞjx¼xNðtÞ; ð46Þ

and in (45) one has first to differentiate with respect to
spatial coordinates and afterwards one inserts the unper-
turbed light ray, that means

hð2Þαβ;i ¼
∂hð2Þαβ ðt; xÞ

∂xi
�����
x¼xNðtÞ

: ð47Þ

In our investigation wewill solve the geodesic equation (45)
in 1PN approximation, that means the exact light trajectory
xðtÞ is determined up to terms of the order Oðc−3Þ:

xðtÞ ¼ x1PNðtÞ þOðc−3Þ: ð48Þ

The first and second integral of geodesic equations (45)
in 1PN approximation can formally be written as
follows [15]:

_x1PNðtÞ ¼ cσ þ Δ_x1PNðtÞ; ð49Þ

x1PNðtÞ ¼ xðt0Þ þ cσðt − t0Þ þ Δx1PNðt; t0Þ; ð50Þ

where Δx1PN are small perturbations of the unperturbed
light trajectory, and Δ_x1PN is the time derivative of these
small perturbations.

IV. THE METRIC OF THE SOLAR SYSTEM

In order to describe and to interpret observational data in
astrometry correctly, a set of several reference systems and
the transformation laws among their coordinates must be
introduced. In this respect, two standard reference systems
are of fundamental importance, which are adopted by the
IAU resolution B1.3 (2000) [21]: the Barycentric Celestial
Reference System (BCRS) with coordinates ðct; xÞ and the
Geocentric Celestial Reference System (GCRS) with coor-
dinates ðcT;XÞ. Furthermore, for any massive body A of
the Solar System a so-called GCRS-like reference system
with coordinates ðcTA;XAÞ can be introduced. In this
section we will give a summary about how to combine
these systems to a global metric tensor in terms of local
multipoles, which is the physically adequate reference
system for modeling of light trajectories through the
Solar System.

A. BCRS

The harmonic coordinates of BCRS are denoted by
xμ ¼ ðct; xiÞ, where t ¼ TCB is the BCRS coordinate time,
and cover the entire spacetime and can therefore be used to
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model light trajectories from distant celestial objects to the
observer. The origin of the BCRS is located at the bary-
center of the Solar System, and the IAU Resolution B2
(2006) [22] recommends the spatial axes of BCRS to be
oriented according to the spatial axes of the International
Celestial Reference System (ICRS) [80]. According to IAU
resolution B1.3 (2000) [21], the Solar System is assumed to
be isolated and the spacetime is asymptotically flat, that
means the BCRS metric gμνðt; xÞ at spatial infinity reads

lim
jxj→∞

gμνðt; xÞ ¼ ημν: ð51Þ

The BCRS is completely characterized by the form of its
metric tensor, up to order Oðc−3Þ given by [21]

g00ðt; xÞ ¼ −1þ 2wðt; xÞ
c2

þOðc−4Þ; ð52Þ

g0iðt; xÞ ¼ Oðc−3Þ; ð53Þ

gijðt; xÞ ¼
�
1þ 2wðt; xÞ

c2

�
δij þOðc−4Þ: ð54Þ

The scalar gravitational potential in (52) and (54) is given
by the integral

wðt; xÞ ¼ G
c2

Z
d3x0

t00ðt; x0Þ
jx − x0j þOðc−2Þ; ð55Þ

which runs over the entire Solar System, and where t00

is the time-time component of the energy-momentum
tensor tμν in global BCRS coordinates; recall the compo-
nents of the energy-momentum tensor scale as follows:
t00 ¼ Oðc2Þ; t0i ¼ Oðc1Þ; tij ¼ Oðc0Þ.
The global gravitational potential in (55) admits an

expansion in terms of global STF multipoles, which
characterize the multipole structure of the Solar System
as a whole [25–27]: [81]:

wðt; xÞ ¼ G
X∞
l¼0

ð−1Þl
l!

mLðtÞ∂L
1

r
þOðc−2Þ; ð56Þ

where ∂L ¼ ∂
∂xa1 …

∂
∂xal . The global mass multipoles in (56)

are Cartesian symmetric and trace-free (STF) tensors, in
Newtonian approximation given by (cf. Eq. (2.34a) in [26])

mLðtÞ ¼
Z

d3xx̂L
t00ðt; xÞ

c2
þOðc−2Þ; ð57Þ

where the integral runs over the entire Solar System. The
global mass monopole, i.e. l ¼ 0 in Eq. (57), is just the total
(Newtonian) mass, M ¼ const, of the entire Solar System,
while the global mass-dipole term vanishes, i.e. mi ¼ 0,

because the origin of BCRS is located at the barycenter of
the Solar System.
A further comment should be in order about a possible

retarded time argument of the energy-momentum tensor in
Eq. (55); cf. text below Eqs. (17) in [21]. One may easily
recognize that such retarded time argument would be
beyond 1PN approximation for the light rays. In particular,
in terms of multipole expansion, one may demonstrate the
following relation,

wðt; xÞ ¼ G
X∞
l¼0

ð−1Þl
l!

mLðtÞ∂L
1

r
þOðc−2Þ

¼ G
X∞
l¼0

ð−1Þl
l!

∂L
mLðtretÞ

r
þOðc−2Þ; ð58Þ

where the retarded time has been defined by Eq. (35). If one
expands the retarded multipoles [second line in Eq. (58)] in
inverse powers of c, then one finds that all terms propor-
tional to 1=c cancel against each other. This cancellation is
important, because terms of odd powers 1=c would violate
the time-reversal symmetry, cf. the corresponding state-
ment in the text below Eq. (17) in the IAU resolutions [21].
The time-reversal symmetry is violated because of the
gravitational radiation emitted by the Solar System which
is, however, an effect much beyond 1PN approximation.
The expansion in (56) has two specific characteristics,

which prevent a direct use for our intentions:
(1) As emphasized in [25–28], the expansion in (57) is

valid outside a sphere which encloses the complete
N-body system, see also [82]. However, for a
description of light rays inside the Solar System
(light trajectories between the massive bodies) one
has to apply a metric tensor which is also valid inside
this sphere, i.e. in space-regions between these
massive bodies; cf. text on p. 3298 in [33].

(2) From the theory of relativistic reference systems it is
clear that physically meaningful multipole moments
of some body A have to be defined in the body’s
local reference system ðcTA;XAÞ.

For these reasons, in our approach we will have to
express the gravitational potential in (56) by local (intrin-
sic) mass multipoles MA

L, which are defined in the local
coordinate system ðcTA;XAÞ of the corresponding massive
body. This crucial issue will be the subject in what follows.

B. GCRS

The harmonic coordinates of GCRS are denoted by
Xμ ¼ ðcT; XiÞ, where T ¼ TCG is the GCRS coordinate
time. According to IAU resolution B1.3 (2000) [21], the
origin of GCRS is comoving with the Earth and located at
the barycenter of the Earth, and is adequate to describe
physical processes in the vicinity of the Earth. The spatial
axes of GCRS are kinematically nonrotating with respect to
BCRS; i.e., they are locally noninertial. The GCRS is
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completely characterized by the form of its metric tensor,
up to order Oðc−3Þ given by [21,33,34]

G00ðT;XÞ ¼ −1þ 2WðT;XÞ
c2

þOðc−4Þ; ð59Þ

G0iðT;XÞ ¼ Oðc−3Þ; ð60Þ

GijðT;XÞ ¼
�
1þ 2WðT;XÞ

c2

�
δij þOðc−4Þ: ð61Þ

The scalar gravitational potential in (59) and (61) can
uniquely be separated into two terms: a local potential,
Wloc, which originates from the body A itself and an
external potential, Wext, which is associated with inertial
effects (due to the accelerated motion of the local system)
and tidal forces (caused by the other bodies of the Solar
System) [21,33,34]:

WðT;XÞ ¼ WlocðT;XÞ þWextðT;XÞ: ð62Þ

Explicit expressions for the external potential Wext are
given in [33,34], while the potential Wloc is defined by the
following integral,

WlocðT;XÞ ¼
G
c2

Z
VE

d3X0 T
00ðT;X0Þ
jX − X0j þOðc−2Þ; ð63Þ

which runs over the entire volume VE of the Earth, and
where T00 is the time-time component of the energy-
momentum tensor Tμν of the isolated Earth and expressed
in GCRS coordinates; recall the components of energy-
momentum tensor scale as follows: T00 ¼ Oðc2Þ;
T0i ¼ Oðc1Þ; Tij ¼ Oðc0Þ. The local potential (63) is
generated by the Earth and can be expanded into a
series of local STF multipole moments, which characterize
the multipole structure of the Earth as an isolated body
[21,25–28,33]:

WlocðT;XÞ ¼ G
X∞
l¼0

ð−1Þl
l!

MLðTÞDL
1

R
þOðc−2Þ; ð64Þ

where DL ¼ ∂
∂Xa1 …

∂
∂Xal .

The local mass monopole, i.e. l ¼ 0 in Eq. (64), is just
the (Newtonian) mass of the Earth, M ¼ const. Actually,
the origin of the GCRS is assumed to be located at the
barycenter of the Earth; hence, the dipole term in (64)
vanishes: Mi ¼ 0. But in real measurements of celestial
mechanics the center-of-mass of massive Solar System
bodies can usually not be determined exactly, so it is
meaningful to keep this term and to assume Mi ≠ 0 in
general. The STF mass multipolesML in (64) in Newtonian
approximation are given by

MLðTÞ ¼
Z
VE

d3XX̂L
T00ðT;XÞ

c2
þOðc−2Þ: ð65Þ

According to the theory of reference systems,
[15,21,29–36], the GCRS is the standard reference system
to define local multipoles of the Earth. However, as it has
been noted in [21], the detailed form of mass multipoles in
(65) is not needed for practical astrometry or celestial
mechanics, since these terms are related to observational
quantities. That means, the gravitational potentials can be
expanded in terms of vector spherical harmonics and the
coefficients of such an expansion are equivalent to the local
multipoles; see Appendix A in [21].

C. Metric of Solar System in terms of intrinsic
multipoles in the DSX framework

Physically meaningful multipoles of the massive bodies
can only be defined in their local reference systems. On
these grounds, for each massive body A of the Solar System
a GCRS-like reference system with coordinates ðcTA;XAÞ
and comoving with the body A is introduced, to permit the
definition of local multipoles of this body. Hence, for an
N-body system, there are in total N þ 1 reference systems,
one global chart ðct; xÞ andN local charts ðcTA;XAÞ, which
are linked to each other via coordinate transformations,
which allow the construction of one global reference
system in terms of local multipoles MA

L of the massive
bodies A ¼ 1;…; N. That reference system is valid in the
entire near zone of the Solar System, and combines the
advantage of locally defined multipoles and is well defined
in space-regions between the massive bodies; cf. text above
Eq. (6.9a) in [33]. Such a system is also physically adequate
for modeling the light trajectory from a light source through
the near zone of the Solar System towards the observer. The
corresponding framework has been elaborated within the
DSX theory [33–36], which has originally been established
for celestial mechanics and for deriving the equations of
motion of a N-body system. This framework has later be
reformulated in terms of PPN formalism in [83], aiming at
several tests of relativity in celestial mechanics, e.g. tests of
equivalence principle. One main result of the DSX for-
malism are these transformation rules for the coordinates
ðct; xÞ⟷ðcTA;XAÞ and for the metric potentials w⟷WA.
According to [33,34], the global coordinates ðct; xÞ and the
local coordinates ðcTA;XAÞ of some body A are related by
the following coordinate transformation; cf. Eq. (2.8a) in
[33] (for the inverse transformation, we refer to [21]),

xμ ¼ xμAðTAÞ þ eμaðTAÞXa
A þOðc−2Þ; ð66Þ

where xμA is the world line of body A in BCRS coordinates
(i.e. a selected point associated with body A) and eμa are
tetrads along the world line of this body (cf. Eqs. (2.16)
in [33]),
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e0aðTAÞ ¼
_xaAðTAÞ

c
þOðc−3Þ; ð67Þ

eiaðTAÞ ¼ δai þOðc−2Þ; ð68Þ

where in (67) a dot means derivative with respect to TA;
thus _xaAðTAÞ are the spatial components of the three-
velocity of body A in the global system and given in terms
of the body’s local coordinate time TA. Without going
into the details, using the tensorial transformation rule
for metric tensors in different coordinate systems (cf.
Eq. (4.11) in [33]), it has been demonstrated in [33] that
the global potential can be expressed in terms of local
(intrinsic) STF multipoles MA

L as follows (for the inverse
transformation we refer to [21]):

wðt; xÞ ¼
XN
A¼1

wAðt; xÞ; ð69Þ

wAðt; xÞ ¼ G
X∞
l¼0

ð−1Þl
l!

MA
LðTAÞDA

L
1

RA
þOðc−2Þ; ð70Þ

where in (69) the sum runs over all bodies of the N-body
system, RA ¼ jXAj is the spatial distance from the origin of
local coordinate system to some field point located outside
the massive body, and DA

L ¼ ∂
∂Xa1

A
… ∂

∂Xal
A
. The local STF

mass multipoles MA
L in (70) in Newtonian approximation

are given by

MA
LðTAÞ ¼

Z
VA

d3XAX̂
A
L
T00
A ðTA;XAÞ

c2
þOðc−2Þ; ð71Þ

where the integration runs over the volume VA of the
massive body A under consideration, and where T00

A , is the
time-time component of the energy-momentum tensor Tμν

A
of the isolated massive body A and expressed in the
coordinates of the local reference system of that envisaged
body.
In order to complete the transformation, also the partial

derivatives in (70) have to be transformed, which follow
from the coordinate transformations (66) and read explic-
itly (cf. Eqs. (2.10) by virtue of Eqs. (2.16) in [33])

∂
∂cTA

¼ ∂
∂ctþ

vaAðTAÞ
c

∂
∂xa þOðc−2Þ; ð72Þ

∂
∂Xa

A
¼ ∂

∂xa þ
vaAðTAÞ

c
∂
∂ctþOðc−2Þ: ð73Þ

Let us note already here that the second term in (72)
and (73) yields terms of the order Oðc−4Þ in the global
metric; hence, these terms do not finally appear in Eq. (77).
Furthermore, we note that from (66) follows the relation
[19,21,33,34]

RA ¼ jx − xAðtÞj þOðc−2Þ; ð74Þ

where according to (46) the field point x in (74) will later be
replaced by the photon’s light trajectory. The coordinate
time in the global and local systems is related via
[19,21,33,34]:

TA ¼ tþOðc−2Þ: ð75Þ

Actually, a constant b0A could be added on the right-hand
side in (75), which would indicate different initial times of
the clocks in the global and local systems (cf. Eq. (4) in
[84]), but has been omitted in favor of simpler notation and
could formally be added at any stage of the calculations;
concerning the general problem of clock synchronization in
the gravitational field of the Solar System, we refer to [85].
From (75) we conclude

MA
LðTAÞ ¼ MA

LðtÞ þOðc−2Þ; ð76Þ

where the neglected terms in (76) are beyond 1PN
approximation for light rays. By inserting (72)–(76) into
(69)–(70), we arrive at the global gravitational potential in
terms of local mass multipoles MA

L,

wAðt; xÞ ¼ G
X∞
l¼0

ð−1Þl
l!

MA
LðtÞ∂L

1

rAðtÞ
þOðc−2Þ; ð77Þ

where rAðtÞ ¼ jx − xAðtÞj, and ∂L ¼ ∂
∂xi1 …

∂
∂xil are partial

derivatives in the global system. In summary of this section,
the metric perturbation in the near zone of the Solar System
and expressed in terms of local multipoles is given by

hð2Þ00 ðt; xÞ ¼
XN
A¼1

hð2ÞA00 ðt; xÞ; ð78Þ

hð2ÞA00 ðt; xÞ ¼ 2G
c2
X∞
l¼0

ð−1Þl
l!

MA
LðtÞ∂L

1

rAðtÞ
; ð79Þ

hð2Þij ðt; xÞ ¼ δijh
ð2Þ
00 ðt; xÞ; ð80Þ

where the sum in (78) runs over all massive bodies of the
Solar System and the metric perturbation caused by one
individual body is given by (79). The metric perturbation in
(78)–(80) has to be implemented into the geodesic equation
in (45).
At this stage let us underline again that an implementa-

tion of the infinite series expansion (8) into (79) via
rAðtÞ ¼ jx − xAðtÞj, would more explicitly elucidate the
fact that an arbitrary world line of the body, xAðtÞ,
implicitly generates terms in the metric tensor (79) which
are proportional to the velocity and acceleration of the
body. However, such terms would be proportional either to
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vAðt − tAÞ or aAðt − tAÞ2, but neither to vA=c nor aA=c;
hence, they would not be beyond 1PN approximation for
the light rays. From this consideration it becomes obvious
that an arbitrary world line xAðtÞ implies a summation
over all terms in the series expansion (8) and, therefore, a
solution of the geodesic equation in terms of arbitrary
world lines xAðtÞ is much preferable compared to a solution
in terms of approximative world lines (8).

V. TRANSFORMATION OF
GEODESIC EQUATION

According to Eqs. (46)–(47), the geodesic equation in
(45) has to be integrated along the unperturbed light
trajectory (10). In view of this fact, it is meaningful to
express the geodesic equation, i.e. the metric tensor and the
derivatives, in terms of new parameters which characterize
the unperturbed light trajectory from the very beginning of
the integration procedure. In this respect, the investigations
in [60,72,73] have recovered the remarkable efficiency of
the following two independent variables τ and ξ:

cτ ¼ σ · xNðtÞ; cτ0 ¼ σ · xNðt0Þ; ð81Þ

ξi ¼ Pi
jx

j
NðtÞ; ð82Þ

where Pi
j ¼ Pij ¼ Pij is the operator of projection onto the

plane perpendicular to the vector σ,

Pij ¼ δij − σiσj: ð83Þ

The three-vector ξ ¼ σ × ðxNðtÞ × σÞ ¼ σ × ðx0 × σÞ in
(82) is the impact vector of the unperturbed light ray,
see also Eq. (11). In particular, ξ is time independent and
directed from the origin of global coordinate system to the
point of closest approach of the unperturbed light trajec-
tory; its absolute value is denoted by d ¼ jξj.
While some detailed explanations and geometrical

elucidations can be found in [60], two comments should
be in order about these new variables.

(i) First, one can easily recognize that (81) can
also be written in the form cτ ¼ cðt − t�Þ and
cτ0 ¼ cðt0 − t�Þ, where

t� ¼ t0 −
σ · x0
c

; ð84Þ

is the time of closest approach of unperturbed light
ray to the origin of the global coordinate system;
note that (84) differs from (33) which is the time of
closest approach of the light ray to the origin of the
local coordinate system of some massive body A.
With the aid of these new variables ξ and τ, the
mixed initial-boundary conditions (40) and (41) take
the form

x0 ¼ xðτ0 þ t�Þ; ð85Þ

σ ¼ lim
τ→−∞

_xðτ þ t�Þ
c

; ð86Þ

where a dot means derivative with respect to variable
τ. In terms of the new variables the interpretation of
these initial-boundary conditions remains the same:
the first condition (85) defines the spatial coordi-
nates of the photon at the moment of emission of
light, while the second condition (86) defines the
unit-direction (σ · σ ¼ 1) at infinite past and infinite
distance from the origin of global coordinate system,
that means at the so-called past null infinity.

(ii) Second, it is important to mention that with the aid
of the new variable (81) and (82), the unperturbed
light ray in (10) transforms as follows [86]:

xNðτ þ t�Þ ¼ ξ þ cτσ: ð87Þ

In these new variables, the vector from the arbitrarily
moving body and the light trajectory in (16) transforms as
follows:

rAðτ þ t�Þ ¼ xðτ þ t�Þ − xAðτ þ t�Þ; ð88Þ

with the absolute value rAðτ þ t�Þ ¼ jrAðτ þ t�Þj, while
the distance between the unperturbed light ray and the
arbitrarily moving body in (17) now reads

FIG. 1. A geometrical representation of the light trajectory
through the Solar System in terms of the new variables ξ and τ.
The impact vector ξ is defined by Eq. (82) and points from
the origin of global system to the point of closest approach of the
unperturbed light ray to that origin, and is time independent. The
impact vector dAðτ þ t�Þ is defined by Eq. (90) and points from
the origin of local system of body A towards the point of closest
approach of unperturbed light ray to that origin, and is time
dependent due to the motion of the body. Furthermore, xðτ þ t�Þ
and xNðτ þ t�Þ are the global spatial positions of the photon of the
exact light trajectory and unperturbed light trajectory, respec-
tively. The world line of massive body A in the global system is
given by xAðτ þ t�Þ, and rAðτ þ t�Þ points from the origin of local
system towards the exact position of the photon, while rNAðτ þ t�Þ
points from the origin of local system towards the unperturbed
light ray.
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rNAðτ þ t�Þ ¼ xNðτ þ t�Þ − xAðτ þ t�Þ
¼ ξ þ cτσ − xAðτ þ t�Þ; ð89Þ

with the absolute value rNAðτ þ t�Þ ¼ jrNAðτ þ t�Þj, and we
note rAðτ þ t�Þ ¼ rNAðτ þ t�Þ þOðc−2Þ. The impact param-
eter in (19) for arbitrarily moving bodies in these new
variables reads

dAðτ þ t�Þ ¼ σ × ðrNAðτ þ t�Þ × σÞ; ð90Þ
with the absolute value dAðτ þ t�Þ ¼ jdAðτ þ t�Þj. For an
illustration of the expressions in Eqs. (82) and (87)–(90)
see Fig. 1.
Furthermore, it has been outlined in [60,76] that by

means of the new variables (81) and (82), the following
relation is valid for a smooth function Fðt; xÞ (cf. Eq. (33)
in [60] or Eq. (C4) in [76]):� ∂

∂xi þ σi
∂
∂ct
�
Fðt; xÞjx¼xNðtÞ

¼
�
Pij ∂

∂ξj þ σi
∂
∂cτ
�
Fðτ þ t�; ξ þ cτσÞ: ð91Þ

It is important to realize that on the left-hand side in (91) one
has first to differentiate with respect to the fieldpoint x and
global coordinate time t and afterwards one has to substitute
the unperturbed light ray xNðtÞ ¼ x0 þ cðt − t0Þσ, while on
the right-hand side in (91) one has first to substitute τ þ t�
and xNðτ þ t�Þ ¼ ξ þ cτσ and afterwards to perform the
differentiation with respect to ξ and τ.
From now on, the smooth function Fðt; xÞ in relation

(91) is considered to be one of the components of the metric

perturbation hð2Þαβ ðt; xÞ. Then, the derivatives with respect to
variable ct on the left-hand side of relation (91) yield only
terms of higher-order beyond 1PN approximation,

∂hð2Þαβ ðt; xÞ
∂ct

����
x¼xNðtÞ

¼ Oðc−3Þ; ð92Þ

because they are proportional to either _MA
L=c or vA=c; for

the same reason, there is no time derivative in the geodesic
equation either [see (39) or (45)]. However, one has to keep
the differentiation with respect to variable cτ in the right-
hand side of relation (91), because that derivative does not
only act on the multipoles MA

Lðτ þ t�Þ and spatial coor-
dinates of the massive bodies xAðτ þ t�Þ, but also on the
unperturbed light ray ξ þ cτσ. Therefore, in 1PN approxi-
mation the relation (91) simplifies as follows:

∂hð2Þαβ ðt; xÞ
∂xi

����
x¼xNðtÞ

¼
�
Pij ∂

∂ξj þ σi
∂
∂cτ
�
hð2Þαβ ðτ þ t�; ξ þ cτσÞ þOðc−3Þ:

ð93Þ

If the derivative with respect to variable cτ in (93) acts on
the multipoles or spatial coordinates of the massive bodies,
then terms will be generated which are beyond 1PN
approximation, namely terms proportional to either
_MA
L=c or vA=c, respectively, which, however, can easily

be identified.
By means of relation (93), the geodesic equation in 1PN

approximation in (45) transforms as follows:

ẍiðτ þ t�Þ
c2

¼ þ 1

2
Pij ∂

∂ξj h
ð2Þ
00 −

1

2
σi

∂
∂cτ h

ð2Þ
00

þ 1

2
σkσlPij ∂

∂ξj h
ð2Þ
kl þ 1

2
σiσjσk

∂
∂cτ h

ð2Þ
jk

− σj
∂
∂cτ h

ð2Þ
ij þOðc−3Þ; ð94Þ

where the double-dot on the left-hand side in (94) means
twice of the total derivative with respect to the new variable
τ. By taking into account (80), the geodesic equation
further simplifies:

ẍiðτ þ t�Þ
c2

¼ Pij ∂
∂ξj h

ð2Þ
00 − σi

∂
∂cτ h

ð2Þ
00 þOðc−3Þ: ð95Þ

In the next step, the metric perturbations in (78)–(80) have
to be transformed in terms of these new variables ξ and τ.
Since the metric perturbations in (79) contain spatial
derivatives, ∂Lr−1A ðtÞ, we will have to transform these
differential operators in terms of these new variables.
For that one might want to use relation (91), which is
valid for any smooth function, but a possible time deriva-
tive on the left-hand side of (91) generates only terms
beyond 1PN approximation,

∂
∂ct

1

rAðtÞ
����
x¼xNðtÞ

¼ Oðc−1Þ: ð96Þ

Therefore, like in (93), we may use the simpler relation,

∂
∂xi

1

rAðtÞ
����
x¼xNðtÞ

¼
�
Pij ∂

∂ξjþ σi
∂
∂cτ
�

1

rNAðτþ t�ÞþOðc−1Þ;

ð97Þ

where we have taken into account that the derivative with
respect to cτ in the right-hand side of (97) must be kept
because of [cf. relation (F6)]

∂
∂cτ

1

rNAðτ þ t�Þ ¼ −
σ · rNAðτ þ t�Þ
ðrNAðτ þ t�ÞÞ3 þO

�
vA
c

�
: ð98Þ

The outcome of (97) and (98) is, that the metric perturba-
tion in (79) for one massive body A and in terms of these
new variables ξ and τ is given by
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hð2Þ00 ðτ; ξÞ ¼
XN
A¼1

hð2ÞA00 ðτ; ξÞ; ð99Þ

hð2ÞA00 ðτ; ξÞ ¼ 2G
c2
X∞
l¼0

ð−1Þl
l!

MA
Lðτ þ t�Þ∂L

1

rNAðτ þ t�Þ ;

ð100Þ

where, by means of binomial theorem, the spatial deriv-
atives in (100) in terms of new variables can be written in
the following form (cf. Eq. (24) in [53]):

∂L ¼
Xl
p¼0

l!
ðl − pÞ!p! σ

i1…σipPipþ1jpþ1…Piljl

×
∂

∂ξjpþ1
…

∂
∂ξjl

� ∂
∂cτ
�

p
: ð101Þ

The insertion of metric perturbation (99)–(100) into the
geodesic equation (95) finally yields the geodesic equation
for light rays which propagate in the gravitational field of
one arbitrarily moving body A:

ẍi Aðτ þ t�Þ
c2

¼ þ 2G
c2

Pij ∂
∂ξj
X∞
l¼0

ð−1Þl
l!

MA
Lðτ þ t�Þ∂L

1

rNAðτ þ t�Þ

−
2G
c2

σi
∂
∂cτ

X∞
l¼0

ð−1Þl
l!

MA
Lðτ þ t�Þ∂L

1

rNAðτ þ t�Þ
þOðc−3Þ; ð102Þ

where the derivative operator ∂L is given by (101).
Equation (102) completes the transformation of geodesic
equation in 1PN approximation and for the case of one
arbitrarily moving massive body having arbitrary shape and
structure. Due to the linearity of post-Newtonian equations,
the case of N arbitrarily moving bodies is easily obtained
by a summation over all massive bodies A ¼ 1; 2;…; N.
In the limit of (i) one massive body at rest, (ii) time-

independent multipoles, and (iii) assuming that the center
of mass is located at the origin of the global coordinate-
system, the geodesic equation (102) agrees with the
geodesic equation given in [53]; recall that there are no
spin-multipole terms in (102) because they contribute to the
order Oðc−3Þ.

VI. FIRST INTEGRATION OF THE
GEODESIC EQUATION

The first integral of geodesic equation determines the
coordinate-velocity of the photon and is formally written as
follows [cf. Eq. (49)],

_x1PNðτ þ t�Þ ¼ cσ þ
XN
A¼1

Δ_xA1PNðτ þ t�Þ; ð103Þ

where the corrections to the unperturbed light ray due to
one body A are given by

Δ_xA1PNðτ þ t�Þ
c

¼
Z

τ

−∞
dcτ0

ΔẍA1PNðτ0 þ t�Þ
c2

; ð104Þ

where the integrand is given by Eq. (102). Accordingly, one
obtains for one body A:

Δ_xiA1PNðτ þ t�Þ
c

¼ þ 2G
c2

Pij ∂
∂ξj
X∞
l¼0

ð−1Þl
l!

IAðτ þ t�; ξÞ

−
2G
c2

σi
X∞
l¼0

ð−1Þl
l!

IBðτ þ t�; ξÞ: ð105Þ

The integrals in (105) are defined by (the arguments of
the integrals are omitted)

IA ¼
Z

τ

−∞
dcτ0MA

Lðτ0 þ t�Þ∂ 0
L

1

rNAðτ0 þ t�Þ ; ð106Þ

IB ¼
Z

τ

−∞
dcτ0

∂
∂cτ0 M

A
Lðτ0 þ t�Þ∂ 0

L
1

rNAðτ0 þ t�Þ ; ð107Þ

where the differential operator ∂ 0
L in (106) and (107) is

given by [cf. Eq. (101)]

∂ 0
L ¼

Xl
p¼0

l!
ðl − pÞ!p! σ

i1…σipPipþ1jpþ1…Piljl

×
∂

∂ξjpþ1
…

∂
∂ξjl

� ∂
∂cτ0

�
p
: ð108Þ

In (105) we have taken into account that dt ¼ dτ0 for the
total differentials because t� ¼ const is a constant for each
individual light ray. Also the following integration rule
(recall that τ and ξ are independent variables) for indefinite
integrals along the unperturbed light ray has been used (cf.,
Eq. (4.10) in [72]):Z

dcτ0
∂
∂ξi fðτ

0; ξÞ ¼ ∂
∂ξi
Z

dcτ0fðτ0; ξÞ: ð109Þ

The integral in (106) runs over the unknown world line
xAðtÞ of the massive body A and, therefore, can only be
integrated by parts. Such strategy intrinsically inherits to
demonstrate that the nonintegrated terms of the integration
procedure involve terms which are beyond 1PN approxi-
mation, that means it elaborates on the fact that the
nonintegrated terms imply an additional factor c−1. In this
way, the integral IA is determined by Eqs. (C2)–(C4) in
Appendix C, while the integral IB can immediately be
calculated without integration by parts:
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IBðτ þ t�; ξÞ ¼ MA
Lðτ þ t�Þ∂L

1

rNAðτ þ t�Þ : ð110Þ

Altogether one obtains the first integral of geodesic equation in the gravitational field of one extended body A:

Δ_xA1PNðτ þ t�Þ
c

¼ −
2G
c2
X∞
l¼1

Xl
p¼1

ð−1Þl
ðl − pÞ!p!M

A
Lðτ þ t�Þσi1…σipPipþ1jpþ1…Piljl

∂
∂ξjpþ1

…
∂
∂ξjl

� ∂
∂cτ
�

p−1 dAðτ þ t�Þ
ðrNAðτ þ t�ÞÞ3

−
2G
c2
X∞
l¼0

ð−1Þl
l!

MA
Lðτ þ t�ÞPi1j1…Piljl

∂
∂ξj1 …

∂
∂ξjl

dAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

1

rNAðτ þ t�Þ

−
2G
c2

σ
X∞
l¼0

Xl
p¼0

ð−1Þl
ðl − pÞ!p!M

A
Lðτ þ t�Þσi1…σipPipþ1jpþ1…Piljl

∂
∂ξjpþ1

…
∂
∂ξjl

� ∂
∂cτ
�

p 1

rNAðτ þ t�Þ ; ð111Þ

where we recall the notation MA
L ¼ MA

i1…il
. It should be

underlined that after performing of the differentiations in
(111) one can replace τ þ t� by the global coordinate time t.
Let us also note that the following relations have been used
in order to obtain (111):

Pij ∂
∂ξj

1

rNAðτ þ t�Þ ¼ −
diAðτ þ t�Þ

ðrNAðτ þ t�ÞÞ3 ; ð112Þ

and

Pij ∂
∂ξj ln ½r

N
Aðτ þ t�Þ − σ · rNAðτ þ t�Þ�

¼ diAðτ þ t�Þ
rNAðτ þ t�Þ

1

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ ; ð113Þ

and the relation Pijðξj − xjAðτ þ t�ÞÞ ¼ diAðτ þ t�Þ.

VII. SOME SPECIAL CASES OF
FIRST INTEGRATION

Modern computer algebra systems allow for highly
efficient computation of partial differentiations which occur
in the first integral (111) of geodesic equation. Here, the
first few terms of (111) as instructive examples are
considered and compared with known results in the
literature, namely, arbitrarily moving monopoles, dipoles,
quadrupoles, and the case of one massive body at rest with
full mass-multipole structure. These examples can also
serve as further elucidation about how the formula in
(111) works.

A. Monopoles in arbitrary motion

For the case of light propagation in the gravitational field
of N extended mass monopoles in arbitrary motion, we
have to consider the term l ¼ 0 in (111), which reads

Δ_xMðtÞ
c

¼ −
2G
c2
XN
A¼1

MA

rNAðtÞ
�

dAðtÞ
rNAðtÞ− σ · rNAðtÞ

þ σ

�
; ð114Þ

where τ þ t� has finally been replaced by the global
coordinate time t. We recall that rNAðtÞ ¼ xNðtÞ − xAðtÞ,
with xNðtÞ being the spatial position of the unperturbed
light signal and xAðtÞ the spatial position of the arbitrarily
moving massive monopole.
By taking the limit of monopoles at rest xA ¼ const in

(114), one may easily recognize an agreement of (114) with
Eq. (3.2.14) in [15] and with Eq. (28) in [43], where the
mass monopoles are displaced by some constant vector xA
from the origin of the global coordinate system.
In [44] the light trajectory in the field of N arbitrarily

moving pointlike monopoles has been determined in 1PM
approximation. The 1PM approximation is a weak-field
approximation, that means the pointlike monopoles could
even be in ultra-relativistic motion, while (114) is for
extended monopoles but in 1PN approximation, which is a
weak-field slow-motion approximation. By expansion of
the 1PM solution (Eqs. (32) and (34) in [44]) in powers of
vA=c, one may show an agreement with our solution in
(114) up to terms of the order OðvA=cÞ.

B. Dipoles in arbitrary motion

Let us consider the dipole term, given by the term l ¼ 1
in (111). Inserting the derivatives given by Eqs. (F4)–(F6)
in Appendix F, we obtain
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Δ_xiDðtÞ
c

¼ þ 2G
c2
XN
A¼1

MA
i ðtÞ

rNAðtÞ
1

rNAðtÞ − σ · rNAðtÞ
þ 2G

c2
XN
A¼1

σi1MA
i1
ðtÞ

rNAðtÞ
�

diAðtÞ
ðrNAðtÞÞ2

−
σi

rNAðtÞ − σ · rNAðtÞ
−
σiðσ · rNAðtÞÞ
ðrNAðtÞÞ2

�

−
2G
c2
XN
A¼1

di1A ðtÞMA
i1
ðtÞ

ðrNAðtÞÞ2
�

σi

rNAðtÞ
þ diAðtÞ
rNAðtÞðrNAðtÞ − σ · rNAðtÞÞ

þ diAðtÞ
ðrNAðtÞ − σ · rNAðtÞÞ2

�
: ð115Þ

If the origin of the local reference system ðcTA;XAÞ is located exactly at the center of mass of the massive body A, then the
dipole moment of this body vanishes, MA

i1
¼ 0. However, in real high-precision astrometry, the center of mass of, for

instance, a planet like Jupiter cannot be determined precisely. Therefore, for real astrometric measurements,MA
i1
≠ 0; hence,

the light deflection caused by the dipole moment of a massive body has to be taken into account, which is purely a
coordinate effect; see also [19,78].

C. Quadrupoles in arbitrary motion

As further instructive example we consider the case of light propagation in the gravitational field of N arbitrarily moving
quadrupoles, given by l ¼ 2 in (111), which reads

Δ_xiQðτ þ t�Þ
c

¼ −
2G
c2
XN
A¼1

MA
i1i2

σi1Pi2j2
∂

∂ξj2
diA

ðrNAÞ3
−
G
c2
XN
A¼1

MA
i1i2

σi1σi2
∂
∂cτ

diA
ðrNAÞ3

−
G
c2
XN
A¼1

MA
i1i2

Pi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2
diA

rNA − σ · rNA

1

rNA
−
G
c2
XN
A¼1

MA
i1i2

σiσi1σi2
∂
∂cτ

∂
∂cτ

1

rNA

−
2G
c2
XN
A¼1

MA
i1i2

σiσi1Pi2j2
∂

∂ξj2
∂
∂cτ

1

rNA
−
G
c2
XN
A¼1

MA
i1i2

σiPi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2
1

rNA
; ð116Þ

where here for simpler notation the time arguments have been omitted, i.e. rNA ¼ rNAðτ þ t�Þ, rNA ¼ rNAðτ þ t�Þ,
dA ¼ dAðτ þ t�Þ, and MA

i1i2
¼ MA

i1i2
ðτ þ t�Þ. The derivatives in (116) are given in Appendix F, and by inserting

(F7)–(F12) into (116) one obtains the first integral of geodesic equation in the field of N arbitrarily moving quadrupoles:

Δ_xQðtÞ
c

¼ G
c2
XN
A¼1

1

d2AðtÞ
�
αAðtÞ

_UAðtÞ
c

þ βAðtÞ
_VAðtÞ
c

þ γAðtÞ
_FAðtÞ
c

þ δAðtÞ
_EAðtÞ
c

�
; ð117Þ

where τ þ t� has finally been replaced by coordinate time t in (117), i.e. after performance of all differentiations in (116).
Adopting similar notation as used in [45], the vectorial coefficients in (117) are given by

αkAðtÞ ¼ −MA
i1i2

ðtÞdkAðtÞσi1σi2 þ 2MA
i1k
ðtÞdi1A ðtÞ − 2MA

i1i2
ðtÞdi2A ðtÞσi1σk −

4

d2AðtÞ
MA

i1i2
ðtÞdi1A ðtÞdi2A ðtÞdkAðtÞ; ð118Þ

βkAðtÞ ¼ þMA
i1i2

ðtÞσi1σi2σk − 2MA
i1k
ðtÞσi1 þ 4

d2AðtÞ
MA

i1i2
ðtÞdi2A ðtÞdkAðtÞσi1 −

2

d2AðtÞ
MA

i1i2
ðtÞdi1A ðtÞdi2A ðtÞσk; ð119Þ

γkAðtÞ ¼ þMA
i1i2

ðtÞdi1A ðtÞdi2A ðtÞdkAðtÞ −MA
i1i2

ðtÞdkAðtÞd2AðtÞσi1σi2 þ 2MA
i1i2

ðtÞdi2A ðtÞd2AðtÞσi1σk; ð120Þ

δkAðtÞ ¼ −MA
i1i2

ðtÞdi1A ðtÞdi2A ðtÞσk þMA
i1i2

ðtÞd2AðtÞσi1σi2σk þ 2MA
i1i2

ðtÞdi2A ðtÞdkAðtÞσi1 : ð121Þ

The scalar functions in (117) are given by

_UAðtÞ
c

¼ d2AðtÞ
ðrNAðtÞÞ2

1

rNAðtÞ − σ · rNAðtÞ
×

�
1

rNAðtÞ
þ 1

rNAðtÞ − σ · rNAðtÞ
�
; ð122Þ

_VAðtÞ
c

¼ d2AðtÞ
ðrNAðtÞÞ3

; ð123Þ
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_FAðtÞ
c

¼ −3
σ · rNAðtÞ
ðrNAðtÞÞ5

; ð124Þ

_EAðtÞ
c

¼ 1

ðrNAðtÞÞ3
− 3

ðσ · rNAðtÞÞ2
ðrNAðtÞÞ5

: ð125Þ

In the limit of quadrupoles at rest, xA ¼ const, and time-
independent quadrupole moments, MA

i1i2
¼ const, the

expression in (117)–(125) coincides with the corresponding
results in [17,43,45] [cf. Eqs. (23)–(31)].

D. Body at rest with full mass-multipole structure

The light trajectory in the gravitational field of one
massive body A at rest and located at the origin of coordinate
system, xA ¼ 0, has been determined in [53] in post-
Newtonian approximation for the case of time-independent
multipoles. In such situation, we have to make the
following replacements: dAðτ þ t�Þ → ξ, dAðτ þ t�Þ → d,
rNA → r ¼ ξ þ cτσ, rNAðτ þ t�Þ → r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ c2τ2

p
, and

MA
Lðτ þ t�Þ → MA

L. Then, our solution in (111) simplifies
as follows (we omit the monopole and the dipole term,
because the former one has already been considered above,
while the latter one is not determined in [53]):

Δ_xivA¼0ðτ þ t�Þ
c

¼ −
2G
c2
X∞
l¼2

ð−1Þl
l!

MA
LP

i1j1…Piljl
∂

∂ξj1 …
∂
∂ξjl

�
ξi

d2
ð1þ cτ

r
Þ þ σi

r

�

−
2G
c2
X∞
l¼2

Xl
p¼1

ð−1Þl
ðl − pÞ!p!M

A
Lσ

i1…σipPipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl

� ∂
∂cτ
�

p−1 ξi − cτσi

r3
; ð126Þ

where we have used 1
r−cτ ¼ rþcτ

d2 and ð ∂
∂cτÞp 1

r ¼ −ð ∂
∂cτÞp−1 cτ

r3.
The expression in (126) agrees with the time derivative of
Eq. (36) in [53].
Needless to say that one cannot deduce the general

expression in (111) from the specific solution in (126) by
some kind of an inverse replacement procedure, because
such an approach would not be unique. For instance, the
above replacement dA → d is unique, but the inverse
procedure is not unique, because it could either be d →
jξj or d → jdAj. Similar ambiguities would appear in inverse
replacements regarding variables ξ or cτ. In other words:
one cannot deduce the general expression in (111) from the
specific solution given by Eq. (34) in [53].

VIII. SECOND INTEGRATION OF
GEODESIC EQUATION

The second integral of geodesic equation governs the
trajectory of the photon and is formally written as follows
[cf. Eq. (50)]:

x1PNðτ þ t�Þ ¼ ξ þ cτσ þ
XN
A¼1

ΔxA1PNðτ þ t�; τ0 þ t�Þ;

ð127Þ

where the corrections to the unperturbed light ray due to
one body A are given by

ΔxA1PNðτ þ t�; τ0 þ t�Þ ¼
Z

τ

τ0

dcτ0
Δ_xA1PNðτ0 þ t�Þ

c
; ð128Þ

where the integrand in given by Eq. (111). How one goes
about performing the second integration is not much
different in principle from the first integration represented
in Sec. VI. Using relations (112) and (113) we obtain the
following expression for the second integration of geodesic
equation for the light trajectory in the gravitational field of
one extended body A in arbitrary motion:

ΔxiA1PNðτ þ t�; τ0 þ t�Þ ¼ þ 2G
c2

Pij ∂
∂ξj
X∞
l¼1

ð−1Þl
ðl − 1Þ! σ

i1Pi2j2…Piljl
∂

∂ξj2 …
∂
∂ξjl IC

þ 2G
c2

Pij ∂
∂ξj
X∞
l¼2

Xl
p¼2

ð−1Þl
ðl − pÞ!p! σ

i1…σipPipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl ID

−
2G
c2

Pij ∂
∂ξj
X∞
l¼0

ð−1Þl
l!

Pi1j1…Piljl
∂

∂ξj1 …
∂
∂ξjl IE −

2G
c2

σi
X∞
l¼0

ð−1Þl
l!

Pi1j1…Piljl
∂

∂ξj1 …
∂
∂ξjl IC

−
2G
c2

σi
X∞
l¼1

Xl
p¼1

ð−1Þl
ðl − pÞ!p! σ

i1…σipPipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl IF: ð129Þ
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In order to obtain the form of the first two terms and of
the last two terms in (129), the summation over l; p has
been separated as follows:

X∞
l¼1

Xl
p¼1

Fðl; pÞ ¼
X∞
l¼1

Fðl; p ¼ 1Þ þ
X∞
l¼2

Xl
p¼2

Fðl; pÞ;

ð130Þ

X∞
l¼0

Xl
p¼0

Fðl; pÞ ¼
X∞
l¼0

Fðl; p ¼ 0Þ þ
X∞
l¼1

Xl
p¼1

Fðl; pÞ:

ð131Þ

In (129) we encounter four kinds of integrals:

IC ¼
Z

τ

τ0

dcτ0
MA

Lðτ0 þ t�Þ
rNAðτ0 þ t�Þ ; ð132Þ

ID ¼
Z

τ

τ0

dcτ0MA
Lðτ0 þ t�Þ

� ∂
∂cτ0

�
p−1 1

rNAðτ0 þ t�Þ ; ð133Þ

IE ¼
Z

τ

τ0

dcτ0MA
Lðτ0 þ t�Þ

× ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�; ð134Þ

IF ¼
Z

τ

τ0

dcτ0MA
Lðτ0 þ t�Þ

� ∂
∂cτ0

�
p 1

rNAðτ0 þ t�Þ ; ð135Þ

which are determined in Appendix D. These integrals run
over the unknown world line xAðtÞ of massive body A, and
can also be integrated by parts, that means the procedure it
essentially based upon the fact that the nonintegrated
remnants are beyond 1PN approximation, because they
imply an additional factor c−1.
Then, inserting the solutions of these four integrals,

given by Eqs. (D2), (D4), (D8) and (D9), into Eq. (129)
and performing the differentiations with respect to
Pij ∂

∂ξj, the second integration of the geodesic equation

for the light trajectory in the field of one body A is
given by

ΔxA1PNðτ þ t�; τ0 þ t�Þ
¼ ΔxA1PNðτ þ t�Þ − ΔxA1PNðτ0 þ t�Þ; ð136Þ

where the contribution of one body A is given by

ΔxA1PNðτ þ t�Þ ¼ −
2G
c2
X∞
l¼1

ð−1Þl
ðl − 1Þ!M

A
Lðτ þ t�Þσi1Pi2j2…Piljl

∂
∂ξj2 …

∂
∂ξjl

dAðτ þ t�Þ
rNAðτ þ t�Þ

1

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

−
2G
c2
X∞
l¼2

Xl
p¼2

ð−1Þl
ðl − pÞ!p!M

A
Lðτ þ t�Þσi1…σipPipþ1jpþ1…Piljl

∂
∂ξjpþ1

…
∂
∂ξjl

� ∂
∂cτ
�

p−2 dAðτ þ t�Þ
ðrNAðτ þ t�ÞÞ3

−
2G
c2
X∞
l¼0

ð−1Þl
l!

MA
Lðτ þ t�ÞPi1j1…Piljl

∂
∂ξj1 …

∂
∂ξjl

dAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ 2G
c2

σ
X∞
l¼0

ð−1Þl
l!

MA
Lðτ þ t�ÞPi1j1…Piljl

∂
∂ξj1 …

∂
∂ξjl ln ½r

N
Aðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
2G
c2

σ
X∞
l¼1

Xl
p¼1

ð−1Þl
ðl − pÞ!p!M

A
Lðτ þ t�Þσi1…σipPipþ1jpþ1…Piljl

∂
∂ξjpþ1

…
∂
∂ξjl

� ∂
∂cτ
�

p−1 1

rNAðτ þ t�Þ ;

ð137Þ

where we recall the notation MA
L ¼ MA

i1…il
. In order to obtain (137), the relations (112) and (113) and

Pij ∂
∂ξj ðr

N
Aðτ þ t�Þ þ σ · rNAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�Þ ¼ diAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ ; ð138Þ
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have also been used. The expression in (137) represents
the solution for the second integration of geodesic
equation in 1PN approximation, in the field of one
arbitrarily moving body A and to any order of intrinsic
mass multipoles. Like in the first integral in (111), after
the differentiations in (137) the replacement of τ þ t� by
the global coordinate time t can be performed. One may
easily check that the time differentiation of (137) yields
immediately the first integral in (111) up to terms of
higher-order beyond 1PN approximation. So the solution
in (137) is consistent with the solution in (111).

IX. SOME SPECIAL CASES OF
SECOND INTEGRATION

Like in the case of first integration, let us consider the
very first few terms of (137) as instructive examples, and
compare them with research findings in the literature,
namely: arbitrarily moving monopoles, dipoles, quadru-
poles, and the case of one massive body at rest with full
mass-multipole structure.

A. Monopoles in arbitrary motion

For the monopole term ðl ¼ 0Þ, we obtain from (136) and (137):

ΔxMðt; t0Þ ¼ −
2G
c2
XN
A¼1

MA

 
dAðtÞ

rNAðtÞ − σ · rNAðtÞ
−

dAðt0Þ
rNAðt0Þ − σ · rNAðt0Þ

!
þ 2G

c2
σ
XN
A¼1

MA ln
rNAðtÞ − σ · rNAðtÞ
rNAðt0Þ − σ · rNAðt0Þ

; ð139Þ

where in the final expression we have replaced τ þ t� ¼ t
and τ0 þ t� ¼ t0; recall rNAðtÞ ¼ xNðtÞ − xAðtÞ and
rNAðt0Þ ¼ x0 − xAðt0Þ. The time derivative of (139) yields
immediately (114) up to terms of order OðvA=cÞ.
In the limit of massive bodies at rest, the expression

(139) coincides with Eq. (3.2.13) in [15] and with Eq. (22)
in [43], where the mass monopoles are not located at the
origin of the coordinate-system but displaced by some
constant vector xA; cf. Eq. (22).

In [44] the light trajectory in the field of N arbitrarily
moving pointlike monopoles has been determined in first
post-Minkowskian approximation (1PM), that means
where the pointlike monopoles could even move with
ultra-relativistic speed, while (139) is for extended monop-
oles in 1PN approximation. By expansion of the 1PM
solution (Eqs. (33) and (35) in [44]) in powers of vA=c, one
may show an agreement with our solution in (139) up to
terms of the order OðvA=cÞ.

B. Dipoles in arbitrary motion

From (137) we obtain for the dipole term ðl ¼ 1Þ

ΔxiDðt; t0Þ ¼ ΔxiDðtÞ − ΔxiDðt0Þ;

ΔxiDðtÞ ¼ þ 2G
c2
XN
A¼1

MA
i ðtÞ

1

rNAðtÞ − σ · rNAðtÞ
þ 2G

c2
XN
A¼1

MA
i1
ðtÞ

rNAðtÞ
σi1
�

diAðtÞ
rNAðtÞ − σ · rNAðtÞ

−
σiðσ · rNAðtÞÞ

rNAðtÞ − σ · rNAðtÞ
�

−
2G
c2
XN
A¼1

MA
i1
ðtÞ

rNAðtÞ
di1A ðtÞ

�
σi

rNAðtÞ − σ · rNAðtÞ
þ diAðtÞ
ðrNAðtÞ − σ · rNAðtÞÞ2

�
; ð140Þ

where we have used the derivatives given in Appendix G.
The time derivative of (140) yields immediately (115) up to
terms of order OðvA=cÞ. As mentioned above, if the origin
of the local reference system ðcTA;XAÞ is located exactly at
the center of mass of the massive body A, then the dipole
moment MA

i1
of this body vanishes and there would be no

dipole term. But in reality one cannot determine precisely
the center of mass of a massive body (e.g. giant planets) so
that MA

i1
≠ 0 and one has carefully to take into account the

change in the light trajectory caused by the dipole term,
which is purely a coordinate effect; cf. Ref. [19,78].

C. Quadrupoles in arbitrary motion

Now we consider the light trajectory in the gravitational
field of N arbitrarily moving quadrupoles, given by the
term l ¼ 2 in (137), which reads

ΔxiQðτ þ t�; τ0 þ t�Þ ¼ ΔxiQðτ þ t�Þ − ΔxiQðτ0 þ t�Þ;
ð141Þ

with
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ΔxiQðτ þ t�Þ ¼ −
2G
c2
XN
A¼1

MA
i1i2

σi1Pi2j2
∂

∂ξj2
diA
rNA

1

rNA − σ · rNA

−
G
c2
XN
A¼1

MA
i1i2

σi1σi2
diA

ðrNAÞ2
1

rNA
−
G
c2
XN
A¼1

MA
i1i2

Pi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2
diA

rNA − σ · rNA

þ G
c2

σi
XN
A¼1

MA
i1i2

Pi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2 ln ðr
N
A − σ · rNAÞ

−
2G
c2

σi
XN
A¼1

MA
i1i2

σi1Pi2j2
∂

∂ξj2
1

rNA
−
G
c2

σi
XN
A¼1

MA
i1i2

σi1σi2
∂
∂cτ

1

rNA
; ð142Þ

where here for simpler notation the time arguments have
been omitted, i.e. rNA ¼ rNAðτ þ t�Þ, rNA ¼ rNAðτ þ t�Þ,
dA ¼ dAðτ þ t�Þ, and MA

i1i2
¼ MA

i1i2
ðτ þ t�Þ. The deriva-

tives in the first, fifth, and sixth term in (142) were already
given in Appendix F, while the derivatives of the third and
fourth term in (142) were already given in Appendix G.
After performing these derivatives the replacements have to
be performed: τ þ t� ¼ t and τ0 þ t� ¼ t0. By inserting
relations (F4), (F6), (G3), (G4) into (142), one obtains the
light trajectory in the field of N arbitrarily moving quadru-
poles:

ΔxQðt; t0Þ ¼ ΔxQðtÞ − ΔxQðt0Þ; ð143Þ

with

ΔxQðtÞ ¼
G
c2
XN
A¼1

1

d2AðtÞ
½αAðtÞUAðtÞ þ βAðtÞVAðtÞ

þ γAðtÞFAðtÞ þ δAðtÞEAðtÞ�: ð144Þ

The vectorial coefficients in (144) were given by
Eqs. (118)–(121) and the scalar functions in (144) are
given by

UAðtÞ ¼
1

rNAðtÞ
rNAðtÞ þ σ · rNAðtÞ
rNAðtÞ − σ · rNAðtÞ

; ð145Þ

VAðtÞ ¼
σ · rNAðtÞ
rNAðtÞ

þ 1; ð146Þ

FAðtÞ ¼
1

ðrNAðtÞÞ3
; ð147Þ

EAðtÞ ¼
σ · rNAðtÞ
ðrNAðtÞÞ3

: ð148Þ

The time derivative of (144) yields (117), up to terms of
higher order, i.e., either OðvA=cÞ or Oð _MA

i1i2=cÞ.

In the limit of bodies at rest, xA ¼ const, and time-
independent quadrupole moments, MA

i1i2
¼ const, the

expression in (144)–(148) coincides with the corresponding
results in [17,43,45] [cf. Eqs. (23)–(31)].
One should keep in view that a series expansion

of the vectorial coefficients (118)–(121) does not neces-
sarily create terms beyond 1PN approximation. For
instance, a series expansion of the vectorial coefficients
around some time moment t0 implies a corresponding
series expansion of the impact vector and quadrupole
moment,

dAðtÞ ¼ dAðt0Þþ σ× ðσ× vAðt0ÞÞðt− t0ÞþOðaAÞ; ð149Þ

MA
i1i2

ðtÞ¼MA
i1i2

ðt0Þþ _MA
i1i2ðt0Þðt− t0ÞþOðM̈A

i1i2
Þ; ð150Þ

which are proportional either to vAðt − t0Þ or _MA
i1i2ðt − t0Þ,

but neither to vA=c nor _MA
i1i2=c. Consequently, the indi-

vidual terms in a series expansion of vectorial coefficients
are not necessarily beyond 1PN approximation.
Results for the light trajectory in the field of quadru-

poles in uniform motion, vA ¼ const, were represented in
[52]. In the limit of uniform motion the expression in
(143)—(148) should coincide with the results in [52].
For such a comparison the series-expansion in (32) would
have to be inserted into the solution (143)—(148),
which leads rapidly to cumbersome expressions.
Consequently, such a comparison constitutes a rather
ambitious assignment of a task and spoils the intention of
the investigation.

D. Body at rest with full mass-multipole structure

As it has been mentioned above, the light trajectory in
the gravitational field of one massive body at rest and
located at the origin of coordinate system, xA ¼ 0, has been
determined in [53] in post-Newtonian approximation and
for the case of time-independent multipoles. In such
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situation, we have to make the following replacements: dAðτ þ t�Þ → ξ, dAðτ þ t�Þ → d, rNA → r ¼ ξ þ cτσ,
rNAðτ þ t�Þ → r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ c2τ2

p
, and MA

Lðτ þ t�Þ → MA
L. Then our solution in (137) simplifies as follows (without the

monopole and the dipole term):

ΔxivA¼0ðτ þ t�Þ ¼ −
2G
c2
X∞
l¼2

ð−1Þl
ðl − 1Þ!M

A
Lσ

i1Pipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl

�
ξi

d2
cτ
r
þ σi

r

�

−
2G
c2
X∞
l¼2

Xl
p¼2

ð−1Þl
ðl − pÞ!p!M

A
Lσ

i1…σipPipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl

� ∂
∂cτ
�

p−2
�
ξi − cτσi

r3

�

−
2G
c2
X∞
l¼2

ð−1Þl
l!

MA
LP

i1j1…Piljl
∂

∂ξj1 …
∂
∂ξjl

�
ξi

d2
ðrþ cτÞ þ σi ln ðrþ cτÞ

�
; ð151Þ

which is in agreement with Eq. (36) in [53], and the time
derivative of (151) yields (126). Let us note, that expression
(151) has to be understood in combination with (136), that
means in the first line the term ξi

d2
rþcτ
r has been replaced by

ξi

d2
cτ
r , and also ln r−cτ

r0−cτ0
¼ − ln rþcτ

r0þcτ0
has been used.

It is of course impossible to deduce the general solution
in (137) from the specific solution in (151), by reason that
an inverse replacement procedure would not be unique,
because it could either be d → jξj or d → jdAj; similar
problems concern the variables ξ or cτ. Stated somewhat
differently: one cannot deduce the general expression in
(137) from the specific solution given by Eq. (36) in [53];
cf. text below Eq. (126).

X. OBSERVABLE RELATIVISTIC EFFECTS

Let us consider two observable effects which are of
decisive importance in relativistic astrometry: the time
delay and the deflection of photons propagating through
the Solar System. The observer and the celestial light
source are assumed to be at rest with respect to the global
system.

A. Time delay

The classical relativistic effect of time delay when a light
signal propagates through the static gravitational field of a
spherically symmetric massive body (monopole) has been
predicted by Shapiro in 1963 [87] and were detected soon
afterwards [88,89]. The results of these experiments have
been confirmed with increasing accuracy, and the todays
most accurate measurement of Shapiro delay was achieved
in 2003 [90] using Cassini spacecraft. The solution in (127)
allows to determine the time delay of light signals propa-
gating through the gravitational field of a system of N
arbitrarily moving massive bodies.
Let x1 ¼ xðt1Þ be the global spatial coordinate of the

space-based observer at the moment of observation t1 and
x0 ¼ xðt0Þ be the global spatial coordinate of the source at
the moment of emission t0 of the light signal which is

observed at xðt1Þ. In terms of the new variables ξ and τ,
both of these spatial coordinates are given by x1 ¼
xðτ1 þ t�Þ and x0 ¼ xðτ0 þ t�Þ. Furthermore, we introduce
the following vectors:

R ¼ xðτ1 þ t�Þ − xðτ0 þ t�Þ; ð152Þ

k ¼ R
R
; ð153Þ

where R ¼ jRj with R being the vector from the source (at
the moment of emission) to the observer (at the moment of
observation) and k is the corresponding unit direction.
Then, using the same procedure as described in [60], one
obtains from Eq. (127) the following expression for the
relativistic time delay (cf. [43])

cðτ1 − τ0Þ1PN

¼ R −
XN
A¼1

k · ðΔxA1PNðτ1 þ t�;τ0 þ t�ÞÞ; ð154Þ

where the perturbation terms Δx1PN are given by (137);
note that the below standing relation (157) has also been
used. In the case of N arbitrarily moving monopoles
Eq. (154) agrees with formula (51) in [44] up to order
OðvA=cÞ, and in the case of N quadrupoles at rest,
Eq. (154) agrees with formula (23) in [47].
The result in (154) is valid for N slowly moving bodies

with full mass-multipole structure. But even for future
highly precise astrometry missions aiming to determine
relativity within the Solar System (e.g. ASTROD [6,7],
LATOR [8,9], ODYSSEY [10], SAGAS [11], TIPO [12])
only the impact of the very first few multipoles could be
detected. However, the exact determination of these rel-
evant parts of the perturbation terms in (154) implies some
remarkable effort (see for instance [47] for the efficient
computation of the quadrupole term) and is beyond the
scope of our present investigation.
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B. Light deflection

The light deflection at the observer’s position,
x1 ¼ xðt1Þ, which is assumed to be at rest with respect
to the global coordinate system, is defined by the unit
tangent vector of the light ray at the observer’s position:

n1PNðτ1 þ t�Þ ¼ _x1PNðτ1 þ t�Þ
j_x1PNðτ1 þ t�Þj : ð155Þ

Using (103), one obtains

n1PNðτ1þ t�Þ¼ σþ
XN
A¼1

σ×

�
Δ_xA1PNðτ1þ t�Þ

c
×σ

�
; ð156Þ

where the perturbation terms Δ_x1PN are given by (111).
This expression is valid for light sources at far distances. In
the case of N arbitrarily moving monopoles, our result in
(156) agrees with Eq. (69) in [44], and in the case of N
quadrupoles at rest, our result in (156) agrees with Eq. (7)
in [47]. But one has to bear in mind that for astrometry
within the near zone of the Solar System, where the light
sources are at finite distance, one needs to determine the
light deflection as function of k instead of σ, both of which
are related by (cf. [43])

σ ¼ k − 1

R

XN
A¼1

½k × ðΔxA1PNðτ1 þ t�; τ0 þ t�Þ × kÞ�; ð157Þ

which follows from (127) and the definition in (152)
and (153). Inserting (157) into (156) yields the expression
for the light deflection (cf. [43])

n1PNðτ1 þ t�Þ ¼ kþ
XN
A¼1

k×

�
Δ_xA1PNðτ1 þ t�Þ

c
× k

�

− 1

R

XN
A¼1

½k× ðΔxA1PNðτ1 þ t�; τ0 þ t�Þ× kÞ�.

ð158Þ

In the case of quadrupoles at rest, our result in (158) agrees
with Eq. (14) in [47]. Let us notice here that in order to
determine the unit tangent vector of the light ray at the
observer’s position, one needs to ascertain both the term
Δ_x1PN as well as Δx1PN, which are given by (111)
and (137), respectively.
The formulae in (156) and (158) determine the light

deflection in the field ofN arbitrarilymovingmassive bodies
with full mass-multipole structure. Like in the case of time
delay, only the very first few multipoles in (156) or (158)
have to be taken into account for sub-microarcsecond
astrometry. But such an exact determination of the relevant
multipoles implies some considerable amount of effort, see
for instance [47] for the quadrupole part, and will therefore
not be on the scope of the present investigation.

XI. SUMMARY AND OUTLOOK

While the precision of astrometric measurements has
made an advance from the milliarcsecond to microarc-
second in the angle determination of celestial objects,
prospective developments in the nearest future aim at the
sub-microarcsecond or even nanoarcsecond level of accu-
racy. It is clear that such extremely high accuracy implies
the precise determination of the light trajectory xðtÞ from
the celestial object through the Solar System towards the
observer. As a result, two aspects are of specific
importance:
(A) In the region exterior of the massive bodies, the

global metric of the Solar System (BCRS coordinates:
ct; x) can be expressed in terms of two families of global
multipoles [25–28]: global mass multipoles mL and global
spin multipoles sL, which define the multipole structure of
the Solar System as a whole. On the other side, from the
theory of relativistic reference systems follows that the
multipole structure of the gravitational field of some
massive body A can only be defined in a physically
meaningful way within the local reference system
(GCRS-like coordinates: cTA;XA) comoving with that
body. In accordancewith these requirements, highly precise
astrometric measurements appeal for the use of a global
metric expressed in terms of intrinsic mass multipoles MA

L
and intrinsic spin multipoles SAL of each individual body.
Such a metric is provided by the Brumberg-Kopeikin (BK)
formalism [15,19,29–32] as well as by the Damour-Soffel-
Xu (DSX) approach [33–36], originally been introduced for
celestial mechanics, and which have become a part of the
IAU resolutions B1.3 (2000) [21].
(B) Another aspect in the theory of light propagation

concerns the fact that the massive bodies of the Solar
System are moving along their world line xAðtÞ, which is a
highly complicated function because of the mutual inter-
action of the massive bodies. Formally, the world line of
some massive body A can be series-expanded around some
time moment tA,

xAðtÞ ¼ xA þ vA
1!

ðt − tAÞ þ
aA
2!

ðt − tAÞ2 þOð _aAÞ; ð159Þ

where xA, vA and aA are the position, velocity and
acceleration of body A at time moment tA, respectively.
The expansion (159) has some drawbacks:
(i) It implies to introduce an instant of time tA, which

remains an open parameter, as long as no additional
arguments are put forward to identify that parameter
with the time of closest approach (33) or with the
retarded time (35). But so far, a unique justification
of that suggestion exists only for pointlike bodies in
arbitrary motion, but not for extended bodies in
arbitrary motion and expressed in terms of intrinsic
multipoles.
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(ii) If the expansion (159) is implemented into the
metric, it leads to rather cumbersome expressions
when integrating the geodesic equation.

(iii) One has also to realize that (159) is not an expansion
in inverse powers of the speed of light; hence, these
terms are not necessarily beyond 1PN approxima-
tion of geodesic equation.

These facts make it much preferable to determine the light
trajectory as functionof arbitraryworld linesxAðtÞ, thatmeans
to determine the light trajectory in the field of arbitrarily
moving massive bodies. The actual world line of the massive
bodies can finally be concretized and implemented by some
Solar System ephemerides; e.g. the JPL DE421 [42].
As outlined in some detail by a brief survey of recent

advancements in the theory of light propagation, so far
there was no solution derived for the light trajectory in the
gravitational field of arbitrarily shaped bodies in arbitrary
motion and described in terms of their local multipoles.
According to the IAU recommendations [21], in this
investigation the DSX metric has been employed in order
to determine the light trajectory in 1PN approximation in
the gravitational field of N arbitrarily moving massive
bodies with full mass-multipole structure:

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δx1PNðt; t0Þ þOðc−3Þ: ð160Þ

The main results of this investigation are given by Eq. (111)
and Eq. (137). These solutions have taken into account both
of these issues (A) and (B) outlined above: expression
(111) represents the first integration of geodesic equation,
while expression (137) represents the second integration of
geodesic equation, that means the light trajectory in the
gravitational field of N arbitrarily moving and extended
massive bodies and expressed in terms of their intrinsic
multipoles. Furthermore, it has been shown that the results
presented agree in special cases with well-established
results in the literature, namely monopoles, quadrupoles,
and arbitrarily shaped bodies at rest as well as monopoles in
arbitrary motion.
It is clear that a comprehensive model of light propa-

gation at the sub-μas or even at the nas level of accuracy
requires at least the solution of light trajectory in 1.5PN
approximation as well:

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δx1PNðt; t0Þ
þ Δx1.5PNðt; t0Þ þOðc−4Þ: ð161Þ

For instance, the light deflection of a grazing ray at Jupiter
amounts to about nQ1PN ∼ 240 μas [43,45]. Such terms are
already implemented in the 1PN solution. On the other
side, a typical term of 1.5PN approximation would be
nQ1.5PN ∼ nQ1PNvA=c, which in the case of Jupiter
(vA=c ∼ 4.5 × 10−5) yields a light deflection of about
nQ1.5PN ∼ 0.01 μas. Another typical term of 1.5PN approxi-
mation is the light deflection due to the spin of the massive

bodies, which have been determined to be about
nS1.5PN ∼ 0.7 μas; 0.2 μas, and 0.04 μas for grazing light
rays at Sun, Jupiter, and Saturn, respectively [43,45].
Moreover, recent investigations [77] have recovered, that
the light deflection due to the spin-octupole structure of
massive bodies amounts to about 0.015 μas for Jupiter and
about 0.006 μas for Saturn for grazing rays. Therefore, a
model at the sub-μas level has also to account for higher
spin-multipole terms which are of 1.5PN order.
Clearly, the post-Newtonian approach allows for astrom-

etry within the boundary of the near zone of the Solar
System, jxj ≪ λgr ∼ 3 parsec, while light rays which origi-
nate from sources lying far outside of the Solar System are
subject of the far-zone astrometry. The perturbations of the
light trajectory in the far zone of the Solar System are
extremely weak (less than 1 μas in the light deflection), but
might be of relevance for sub-microarcsecond astrometry.
These effects can be investigated by means of a matching
procedure of two asymptotic solutions (near-zone and far-
zone solution) proposed in [17] and further elaborated in
[91], and will be on the scope of a further investigation [92].
A further problem concerns the retardation effect due to

the finite speed at which gravitational action travels. It has,
however, been elucidated by Eq. (58) that the effect of
retardation cannot be taken into account within 1PN
approximation for the light rays. For this fact, the solution
for the light trajectory in 1PN approximation, Eqs. (111)
and (137), are functions of the instantaneous distance
between the photon and massive body, as given by
Eq. (17) or Eq. (89).
Furthermore, the light trajectory in 2PN approximation

reads formally

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δx1PNðt; t0Þ
þ Δx1.5PNðt; t0Þ þ Δx2PNðt; t0Þ þOðc−5Þ: ð162Þ

The most dominant post-post-Newtonian correction is the
monopole term, ΔxM2PN, which is well known for bodies at
rest. Following a suggestion in [57], for the case of
uniformly moving bodies this term can be obtained by
an appropriate Lorentz transformation, while for the case of
arbitrarily moving bodies the solution might be acquired
with the aid of sophisticated integration methods men-
tioned in this article. It might even be that some very few
terms in 2PN approximation beyond the monopole term are
required for nanoarcsecond accuracy. Such terms will
rapidly decrease with increasing impact parameter dA of
the light ray and might only be of relevance for grazing
rays, i.e. where dA equals the radius RA of the body. But for
all that, the final level of ambition must include a rigorous
estimation of such terms, implicating a clear understanding
about whether or not some 2PN terms beyond the monop-
ole term become relevant for astrometry at the nanoarc-
second level.
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APPENDIX A: NOTATIONS

Throughout the article the following notations are in use:
(i) G is the Newtonian constant of gravitation.
(ii) c is the vacuum speed of light in flat Minkow-

ski space.
(iii) Lower case Latin indices a; b;…; i; j;… take

values 1,2,3.
(iv) Lower case Greek indices α; β;…; μ; ν;… take

values 0,1,2,3.
(v) δij ¼ δij ¼ diagðþ1;þ1;þ1Þ is Kronecker delta.
(vi) The three-dimensional coordinate quantities (“three-

vectors”) referred to the spatial axes of the corre-
sponding reference system are set in boldface: a.

(vii) The contravariant components of “three-vectors”
are ai ¼ ða1; a2; a3Þ.

(viii) The contravariant components of “four-vectors”
are aμ ¼ ða0; a1; a2; a3Þ.

(ix) Repeated indices imply the Einstein’s summation
irrespective of their positions (e.g. aibi ¼ a1b1 þ
a2b2 þ a3b3 and aαbα ¼ a0b0 þ a1b1 þ a2b2þ
a3b3).

(x) The absolute value (Euclidean norm) of a “three-
vector” a is denoted as jaj or, simply, a and can be
computed as a ¼ jaj ¼ ða1a1 þ a2a2 þ a3a3Þ1=2.

(xi) The scalar product of any two “three-vectors” a
and b with respect to the Euclidean metric δij is
denoted by a · b and can be computed as
a · b ¼ δijaibj ¼ aibi.

(xii) The vector product of any two “three-vectors” a and
b is designated by a × b and can be computed as
ða × bÞi ¼ εijkajbk, where εijk ¼ ði − jÞðj − kÞðk −
iÞ=2 is the fully antisymmetric Levi-Civita symbol.

(xiii) The global coordinate system is denoted by lower-
case letters: ðct; xÞ.

(xiv) The local coordinate system of a massive body A is
denoted by uppercase letters: ðcTA;XAÞ.

(xv) The photon trajectory is denoted by xðtÞ. In order to
distinguish the photon’s spatial coordinate xðtÞ from
the spatial coordinate x of the global system, the
time dependence of a photon’s spatial coordinate
will everywhere be shown explicitly throughout the
article.

(xvi) The world line of massive body A is denoted by
xAðtÞ or xAðTAÞ.

(xvii) Partial derivatives in the global coordinate system:
∂μ ¼ ∂

∂xμ or ∂i ¼ ∂
∂xi.

(xviii) Partial derivatives in the local coordinate system of
body A: DA

α ¼ ∂
∂Xα

A
or DA

a ¼ ∂
∂Xa

A
.

(xix) n! ¼ nðn − 1Þðn − 2Þ…2 · 1 is the faculty for the
positive integer; 0! ¼ 1.

(xx) L ¼ i1i2…il is a Cartesian multi-index of a given
tensor T, that means TL ≡ Ti1i2…il , and each index
i1; i2;…; il runs from 1 to 3 (i.e. over the Cartesian
coordinate label).

(xxi) Two identical multi-indices imply summation,
e.g.: ∂LTL ≡Pi1…il∂i1…ilTi1…il .

(xxii) The symmetric part of a Cartesian tensor TL is (cf.
Eq. (2.1) in [25])

TðLÞ ¼ Tði1…ilÞ ¼
1

l!

X
σ

Aiσð1Þ…iσðlÞ ; ðA1Þ

where σ is running over all permutations of
ð1; 2;…; lÞ.

(xxiii) The symmetric tracefree (STF) part of a Cartesian
tensor TL (notation: T̂L ≡ STF

L
TL) is (cf. Eq. (2.2)

in [25])

T̂L ¼
X½l=2�
k¼0

alkδði1i2…δi2k−1i2kSi2kþ1…ilÞa1a1…akak
; ðA2Þ

where ½l=2� means the largest integer less than or
equal to l=2, and SL ≡ TðLÞ abbreviates the sym-

metric part of tensor TL. For instance, T
αβ
L means

STF with respect to indices L but not with respect to
indices α; β. The coefficient in (A2) is given by

alk ¼ ð−1Þk l!
ðl − 2kÞ!

ð2l − 2k − 1Þ!!
ð2l − 1Þ!!ð2kÞ!! : ðA3Þ

As instructive examples of (A2), let us consider the
cases l ¼ 2 and l ¼ 3:

T̂ij ¼ TðijÞ −
1

3
δijTss; ðA4Þ

T̂ijk ¼ TðijkÞ −
1

5
ðδijTðkssÞ þ δjkTðissÞ þ δkiTðjssÞÞ:

ðA5Þ

Throughout the article, the “hat” will be omitted for
the multipoles, MA

L ≡ M̂A
L, mL ≡ m̂L, SAL ≡ ŜAL,

sL ≡ ŝL, but kept for spatial coordinates, x̂L.

APPENDIX B: THE POST-POST-NEWTONIAN
TERM IN EQ. (36)

The light trajectory in 2PN approximation in the field of
one monopole at rest reads
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xM2PNðt; t0Þ ¼ x0 þ cðt − t0Þσ
þ ΔxM1PNðt; t0Þ þ ΔxM2PNðt; t0Þ; ðB1Þ

where it has been taken into account that there is no
correction term in 1.5PN order. In order to derive the
expression in (36)–(37), we use the iterative solution in
[15,17,46,67], according to which we have

ΔxM1PNðt; t0Þ þ ΔxM2PNðt; t0Þ

¼ þGMA

c2
½B1ðr1PNA Þ − B1ðr0AÞ�

þ G2M2
A

c4
½B2ðrNAÞ − B2ðr0AÞ�: ðB2Þ

The vectorial functions in (B2) are defined by (cf. Eqs. (50)
and (51) in [46]):

B1ðr1PNA Þ ¼ −2
σ × ðr1PNA × σÞ
r1PNA − σ · r1PNA

þ 2σ ln ðr1PNA − σ · r1PNA Þ;

ðB3Þ

B2ðrNAÞ ¼ þ4
σ

rNA − σ · rNA
þ 4

dA
ðrNA − σ · rNAÞ2

þ 1

4

rNA
ðrNAÞ2

−
15

4

σ
dA

arctan

�
σ · rNA
dA

�

−
15

4
dA

σ · rNA
d3A

�
π

2
þ arctan

�
σ · rNA
dA

��
; ðB4Þ

where the expressions rNA and r1PNA are given by

rNA ¼ x0 þ cðt − t0Þσ − xA; ðB5Þ

r1PNA ¼ x0 þ cðt − t0Þσ − xA − 2
GMA

c2
dA

rNA − σ · rNA

þ 2
GMA

c2
σ ln ðrNA − σ · rNAÞ; ðB6Þ

while r0A is defined by Eq. (14). Accordingly, the expression
(B3) is the source of 1PN and 2PN terms. By inserting (B6)
into (B3), and by inserting (B5) into (B4), one may identify
the 2PN terms uniquely and obtain the 2PN expression
ΔxM2PN in (36)–(37).

APPENDIX C: INTEGRAL IA

The integral IA in (106) reads

IAðτþ t�;ξÞ¼
Z

τ

−∞
dcτ0MA

Lðτ0 þ t�Þ∂ 0
L

1

rNAðτ0 þ t�Þ : ðC1Þ

In order to determine the integral IA, it is useful to
incorporate the operator Pij ∂

∂ξj which stands in front of
this integral according to Eq. (105). Furthermore, using the
expression in (108) for the differential operator ∂ 0

L, the
integral IA can be separated into two kinds of integrals:
integral I1 which contains differentiations with respect to
the time variable (i.e. p ≥ 1) and integral I2 which does not
contain such differentiations (i.e. p ¼ 0), which means

Pij ∂
∂ξj IAðτ þ t�; ξÞ ¼

Xl
p¼1

l!
ðl − pÞ!p! σ

i1…σipPipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl P

ij ∂
∂ξj I1ðτ þ t�; ξÞ

þ Pi1j1…Piljl
∂

∂ξj1 …
∂
∂ξjl P

ij ∂
∂ξj I2ðτ þ t�; ξÞ: ðC2Þ

The integral I1, with the differential operation Pij ∂
∂ξj in front, is given by

Pij ∂
∂ξj I1ðτ þ t�; ξÞ ¼ Pij ∂

∂ξj
Z

τ

−∞
dcτ0MA

Lðτ0 þ t�Þ
� ∂
∂cτ0

�
p 1

rNAðτ0 þ t�Þ

¼ Pij ∂
∂ξj M

A
Lðτ þ t�Þ

� ∂
∂cτ
�

p−1 1

rNAðτ þ t�Þ þO
�

_MA
L

c

�
: ðC3Þ

The integral in (C3) has been integrated by part, using
the integration rule for integrals along the unperturbed
light ray as given by Eq. (4.9) in [72]. It is important to
note that the neglected terms are of the order _MA

L=c and,
therefore, they are beyond 1PN approximation because

they imply an additional factor c−1 which is not canceled
by the factor c in the differential dcτ0 in the nominator.
In view of (C4) the proof of this fact is rather simple.
The integral I2, with the differential operation Pij ∂

∂ξj in
front, is given by
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Pij ∂
∂ξj I2ðτ þ t�; ξÞ

¼ Pij ∂
∂ξj
Z

τ

−∞
dcτ0

MA
Lðτ0 þ t�Þ

rNAðτ0 þ t�Þ

¼ −MA
Lðτ þ t�ÞPij ∂ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

∂ξj

þO
�

_MA
L

c

�
þO

�
vA
c

�
; ðC4Þ

where for the lower integration limit, we have used

lim
τ→−∞

Pij ∂
∂ξj ln ½r

N
Aðτ þ t�Þ − σ · rNAðτ þ t�Þ� ¼ 0: ðC5Þ

Let us note that the physical dimension of a length in the
argument of the logarithm in (C4) is not a problem at all
and has to be treated according to Eq. (113). The integral in
(C4) has been integrated by parts, using

1

rNAðτ0 þ t�Þ ¼ −
∂ ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�

∂cτ0

þO
�
vA
c

�
; ðC6Þ

where the terms proportional to vA=c in (C6) will be given
later; see Eq. (E1). The fact that the neglected terms (C4)
are beyond 1PN approximation is evidenced in
Appendix E.

APPENDIX D: INTEGRALS IC, ID, IE, IF

The four integrals in Eqs. (132)–(135) will be deter-
mined; in what follows, the time arguments τ þ t� and τ0 þ
t� of these integrals are omitted for simpler notation. In the
calculation of the integrals, all terms are neglected which
are proportional to either vA=c or _ML

A=c because they are of
higher order beyond 1PN approximation. The proof for

these assertions will not be given explicitly because they
are very similar to the example elaborated in Appendix E.

1. Integral IC

The integral IC reads

IC ¼
Z

τ

τ0

dcτ0
MA

Lðτ0 þ t�Þ
rNAðτ0 þ t�Þ : ðD1Þ

This integral occurs in the first and fourth term of Eq. (129).

2. Integral IC for the case l ¼ 0

Let us first consider the integral (D1) for the case l ¼ 0,
which occurs in the fourth term in (129). One obtains, by
means of relation (C6), the following solution:

I l¼0
C ¼

Z
τ

τ0

dcτ0
MA

rNAðτ0 þ t�Þ

¼ −MA ln
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ
rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ

þO
�
vA
c

�
: ðD2Þ

3. Integral IC for the case l ≥ 1

Now we consider the integral (D1) for the case l ≥ 1,
which occurs in the first and fourth term in (129). In this
case, we always have the differential operation Pij ∂

∂ξj in
front,

Pij ∂
∂ξj IC ¼ Pij ∂

∂ξj
Z

τ

τ0

dcτ0
MA

Lðτ0 þ t�Þ
rNAðτ0 þ t�Þ : ðD3Þ

For evaluating this integral we can use the result in (C4),
and obtain

Pij ∂
∂ξj IC ¼ −MA

Lðτ þ t�ÞPij ∂ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�
∂ξj

þMA
Lðτ0 þ t�ÞPij ∂ ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�

∂ξj þO
�

_MA
L

c

�
þO

�
vA
c

�
: ðD4Þ

4. Integral ID

According to expression (129), the differential operation Pij ∂
∂ξj is always in front of the integral ID (p ≥ 2), so we may

consider

Pij ∂
∂ξj ID ¼ Pij ∂

∂ξj
Z

τ

τ0

dcτ0MA
Lðτ0 þ t�Þ

� ∂
∂cτ0

�
p−1 1

rNAðτ0 þ t�Þ

¼ þPij ∂
∂ξj M

A
Lðτ þ t�Þ

� ∂
∂cτ
�

p−2 1

rNAðτ þ t�Þ − Pij ∂
∂ξj M

A
Lðτ0 þ t�Þ

� ∂
∂cτ0

�
p−2 1

rNAðτ0 þ t�Þ þO
�

_MA
L

c

�
; ðD5Þ
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which has been solved using integration by parts. The proof
that the correction terms are in fact of the orderOð _MA

L=cÞ is
straightforward.

5. Integral IE

Now we consider the integral (134). According to (129),
the differential operation Pij ∂

∂ξj is always in front of the
integral IE (p ≥ 1), so we consider

Pij ∂
∂ξj IE ¼ Pij ∂

∂ξj
Z

τ

τ0

dcτ0MA
Lðτ0 þ t�Þ

× ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�: ðD6Þ

In order to solve that integral, we may use the following
relation:

ln ðrNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�ÞÞ ¼ ∂½rNAðτ0 þ t�Þ þ σ · rNAðτ0 þ t�Þ ln ðrNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�ÞÞ�
∂cτ0

þO
�
vA
c

�
: ðD7Þ

Like in relation (C6), the form of the expressions proportional to vA=c in (D7) can easily be determined. By inserting
relation (D7) into the integral (D6), one obtains, by integration by part,

Pij ∂
∂ξj IE ¼ þPij ∂

∂ξj M
A
Lðτ þ t�Þ½rNAðτ þ t�Þ þ σ · rNAðτ þ t�Þ ln ðrNAðτ þ t�Þ − σ · rNAðτ þ t�ÞÞ�

− Pij ∂
∂ξj M

A
Lðτ0 þ t�Þ½rNAðτ0 þ t�Þ þ σ · rNAðτ0 þ t�Þ ln ðrNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�ÞÞ�

þO
�

_MA
L

c

�
þO

�
vA
c

�
: ðD8Þ

The proof that the neglected terms are in fact of the order vA=c is very similar to the example elaborated in Appendix E.

6. Integral IF

Now we consider the integral (135). According to (129), at least one differential operation of the form Pij ∂
∂ξj is always in

front of the integral IF (p ≥ 1), so we consider

Pij ∂
∂ξj IF ¼

Z
τ

τ0

dcτ0MA
Lðτ0 þ t�Þ

� ∂
∂cτ0

�
p 1

rNAðτ0 þ t�Þ

¼ þPij ∂
∂ξj M

A
Lðτ þ t�Þ

� ∂
∂cτ
�

p−1 1

rNAðτ þ t�Þ − Pij ∂
∂ξj M

A
Lðτ0 þ t�Þ

� ∂
∂cτ0

�
p−1 1

rNAðτ0 þ t�Þ

þO
�

_MA
L

c

�
; ðD9Þ

which has been solved using integration by parts.

APPENDIX E: ESTIMATION OF NEGLECTED
TERMS: AN EXAMPLE

As a typical example, let us consider the neglected terms
in the solution (C4), where the relation (C6) has been used,
which in its exact form reads (the variables τ0 þ t� will be
suppressed for simpler notation):

1

rNA
¼ −

∂ ln ½rNA − σ · rNA �
∂cτ0 þ 1

rNA

vA
c
·
rNAσ − rNA
rNA − σ · rNA

: ðE1Þ

Inserting this relation into (C4), one obtains an additional
integral proportional to vA=c, namely,

Pij ∂
∂ξj
Z

τ

−∞
dcτ0

MA
L

rNA

vA
c
·

�
σ −

dA
rNA − σ · rNA

�
; ðE2Þ

where rNA ¼ dA þ σðσ · rNAÞ has been used. The first term of
this integral is identical to the integral (C4), except the
additional factor σ · vA=c. So it remains to consider the
second term in (E2); the sign in front is not relevant here,
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IG ¼ Pij ∂
∂ξj
Z

τ

−∞
dcτ0

MA
L

rNA

vA
c
·

dA
rNA − σ · rNA

: ðE3Þ

Using relation (G2), one can rewrite this integral in the
following form:

IG ¼ Pij ∂
∂ξj P

ab ∂
∂ξb

Z
τ

−∞
dcτ0MA

L
vaA
c
ln ½rNA − σ · rNA �:

ðE4Þ

Using relation (D7), this integral can be integrated by parts:

IG ¼ MA
L
vaA
c
Pij ∂

∂ξj P
ab ∂
∂ξb

× ½rNA þ σ · rNA ln ðrNA − σ · rNAÞ�jτ−∞ þOðc−2Þ: ðE5Þ

Performing the differentiations, one finally arrives at

IG ¼ MA
L
vaA
c

1

rNA − σ · rNA

�
Pai −

daAd
i
A

rNAðrNA − σ · rNAÞ
�
; ðE6Þ

up to terms of the order Oðc−2Þ, and the absolute value can
be estimated by

jIGj ≤ 2MA
L
vA
c

1

rNA − σ · rNA
: ðE7Þ

As stated in relation (C4), the expression in (E6) is of the
order vA=c, hence, beyond 1PN approximation. The fact
that in extreme astrometric configurations, σ · rNA → rNA , the
expression in (E6) becomes formally large is not of much
relevance since there are many other terms of the order
vA=c which presumably cancel this term. The proof of such
an assertion is, of course, beyond 1PN approximation and
involves an exact consideration of all terms to that order.

APPENDIX F: PARTIAL DERIVATIVES
FOR THE FIRST INTEGRATION

Throughout this section we will use the following
abbreviated notation, rNA ¼ rNAðτ þ t�Þ, dA ¼ dAðτ þ t�Þ,
and corresponding notation for their absolute values.

1. Example

Let us consider an example of how the differentiation is
meant within the formalism:

Pi1j1
∂

∂ξj1
1

rNA

¼ Pi1j1
∂

∂ξj1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ c2τ2 þ x2A − 2ξ · xA − 2cτσ · xA
p ;

ðF1Þ

where (89) has been used; recall ξ · σ ¼ 0 and
xA ¼ xAðτ þ t�Þ. Inserting the projector (83), one finds

Pi1j1
∂

∂ξj1
1

rNA
¼ −

ξi1 − xi1A þ σi1ðσ · xAÞ
jξ þ cτσ − xAj3

¼ −
ξi1 þ cτσi1 − xi1A − σi1ðcτ − σ · xAÞ

jξ þ cτσ − xAj3
:

ðF2Þ

In view of σ · ξ ¼ 0, the following term in the nominator
can be rewritten as follows: cτ − σ · xA ¼
σ · ðξ þ cτσ − xAÞ ¼ σ · rNA . Then, by using the definition
of impact vector (90), we finally arrive at

Pi1j1
∂

∂ξj1
1

rNA
¼ −

di1A
ðrNAÞ3

: ðF3Þ

All subsequent derivatives have been determined in a
similar way.

2. Partial derivatives for the dipole term

In order to obtain the dipole term in (115), we need the
following derivatives:

Pi1j1
∂

∂ξj1
diA

rNA − σ · rNA

1

rNA

¼ 1

rNAðrNA − σ · rNAÞ

×

�
Pi1i −

di1Ad
i
A

ðrNAÞ2
−

di1Ad
i
A

rNAðrNA − σ · rNAÞ
�
; ðF4Þ

and

Pi1j1
∂

∂ξj1
1

rNA
¼ −

di1A
ðrNAÞ3

; ðF5Þ

∂
∂cτ

1

rNA
¼ −

σ · rNA
ðrNAÞ3

þO
�
vA
c

�
: ðF6Þ

3. Partial derivatives for the quadrupole term

In (116) the derivatives ∂MA
L∂cτ ¼ Oð _MA

L
c Þ and ∂diA∂cτ ¼ OðvAc Þ

are beyond 1PN approximation. Hence, we are left with the
following expressions:

Pi2j2
∂

∂ξj2
diA

ðrNAÞ3
¼ −3

diAd
i2
A

ðrNAÞ5
þ Pii2

ðrNAÞ3
; ðF7Þ

and
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Pi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2
diA

rNA − σ · rNA

1

rNA

¼ −Pi1i2
diA

rNA − σ · rNA

1

ðrNAÞ2
�
1

rNA
þ 1

rNA − σ · rNA

�
−

Pii1

ðrNAÞ2
di2A

rNA − σ · rNA

�
1

rNA
þ 1

rNA − σ · rNA

�

−
Pii2

ðrNAÞ2
di1A

rNA − σ · rNA

�
1

rNA
þ 1

rNA − σ · rNA

�
þ diA
rNA − σ · rNA

di1Ad
i2
A

ðrNAÞ3
�

3

ðrNAÞ2
þ 3

rNAðrNA − σ · rNAÞ
þ 2

ðrNA − σ · rNAÞ2
�
; ðF8Þ

Pi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2
1

rNA
¼ 3

di1Ad
i2
A

ðrNAÞ5
−

Pi1i2

ðrNAÞ3
; ðF9Þ

Pi2j2
∂

∂ξj2
∂
∂cτ

1

rNA
¼ 3

di2A
ðrNAÞ5

ðσ · rNAÞ þO
�
vA
c

�
; ðF10Þ

∂
∂cτ

∂
∂cτ

1

rNA
¼ −

1

ðrNAÞ3
þ 3

ðσ · rNAÞ2
ðrNAÞ5

þO
�
vA
c

�
; ðF11Þ

∂
∂cτ

1

ðrNAÞ3
¼ −3

ðσ · rNAÞ
ðrNAÞ5

þO
�
vA
c

�
; ðF12Þ

where Pi2j2ðξj2 − xj2A Þ ¼ di2A has frequently been used; note that δj1j2P
i1j1Pi2j2 ¼ Pi1i2 .

APPENDIX G: PARTIAL DERIVATIVES FOR THE SECOND INTEGRATION

Throughout this section the abbreviated notation is used: rNA ¼ rNAðτ þ t�Þ and rNA ¼ jrNAðτ þ t�Þj.

1. Partial derivatives for the dipole term

In order to obtain the dipole term in (140), we need the following derivatives:

Pi1j1
∂

∂ξj1
diA

rNA − σ · rNA
¼ 1

rNA − σ · rNA
×

�
Pii1 −

diAd
i1
A

rNAðrNA − σ · rNAÞ
�
; ðG1Þ

Pi1j1
∂

∂ξj1 ln ðr
N
A − σ · rNAÞ ¼

di1A
rNA − σ · rNA

1

rNA
; ðG2Þ

where the last relation has already been given by (113).

2. Partial derivatives for the quadrupole term

In order to obtain the quadrupole term in (141), we need the following derivatives:

Pi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2
diA

rNA − σ · rNA
¼ −

Pii1di2A
rNAðrNA − σ · rNAÞ2

−
Pii2di1A

rNAðrNA − σ · rNAÞ2
−

Pi1i2diA
rNAðrNA − σ · rNAÞ2

þ diAd
i1
Ad

i2
A

ðrNAÞ3ðrNA − σ · rNAÞ2
þ 2

diAd
i1
Ad

i2
A

ðrNAÞ2ðrNA − σ · rNAÞ3
; ðG3Þ

Pi1j1Pi2j2
∂

∂ξj1
∂

∂ξj2 ln ðr
N
A − σ · rNAÞ ¼

Pi1i2

rNAðrNA − σ · rNAÞ
−

di1Ad
i2
A

ðrNAÞ3ðrNA − σ · rNAÞ
−

di1Ad
i2
A

ðrNAÞ2ðrNA − σ · rNAÞ2
: ðG4Þ
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