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We analyze the response of the gravitational wave detector to a scalar massive plane gravitational wave.
We give the compact form of the response and discuss its angular and frequency characteristics. The
derivations are carried out in the conformal and the synchronous gauges, and the equivalence of the two
approaches is shown. In a particular example of the massive Brans–Dicke theory, we show as well the
equivalence of the two gauges on the level of the solution of the linearized field equation.
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I. INTRODUCTION

Alternatives to the general theory of relativity (GR) were
present already in the early times of its birth and subsequent
periods of its development, but they have been drawing
particular attention in the last two decades. The early
attempts (see Ref. [1] and references therein) aimed at
founding a theoretical framework for the ongoing weak-
field, low-energy experiments in the Earth and the Solar
System gravitational environments, strong-field astrophysi-
cal observations like those of pulsars and compact binary
systems, and then future gravitational wave detection
experiments [2] exploring the dynamical, strong-field
regime of gravity. The principal theoretical motivation
for studying extensions of GR have been the unification
of gravity with the rest of the Standard Model (SM)
interactions [3] and the formulation of the consistent
quantum theory of gravity—both issues still await fully
satisfactory solutions. Nevertheless, the studies of high-
energy unification models (string theory, supergravity,
effective theories emerging from quantum gravity, brane-
world models, extradimensional models, theories with
noncommutative geometries, and theories based on
deformed Lorentz symmetries) predict deviations from
GR at some high-energy level and in a lower-energy limit
lead to a number of competing effective theories. But can
we expect modifications of GR at the low-energy scale as
well? This cannot be excluded; although GR so far has
passed safely most of the local weak-field and strong-
field astrophysical tests, it is well known that it needs an
additional hypothetical contribution known as a dark matter
to explain the galactic and cluster scale observations of the
rotation profiles [4,5]. Recently, the new motivations have
come from cosmology: observations of the Supernovae
Type Ia [6] and cosmic microwave background radiation
anisotropies [7] revealed the accelerated expansion of the
Universe favoring the Lambda cold dark matter (ΛCDM)
model with another “dark” component dubbed dark energy.
It is also well known that modified gravity can play a role in
the early-time cosmology. The first inflationary scenario
was proposed in the Starobinsky fðRÞ ¼ Rþ R2=6M2

model [8]; the improvement of the chaotic inflation through
the nonminimal coupling ζΦ2R of gravity and matter was
proposed in Ref. [9]; and an interesting example of the
unified picture of the gravity and SM particle physics was
given in Ref. [10], where it was argued that the SM Higgs
field H strongly nonminimally coupled to gravity, ζHH†R,
ζ ≫ 1, can give rise to inflation. (For a review of modified
gravity in cosmology, see, e.g., Ref. [11]). Furthermore,
one expects that working ground-based gravitational wave
detectors such as the Advanced Laser Interferometer
Gravitational Observatory [12] or the planned next-
generations ET [13] and space-based evolved Laser
Interferometer Space Antenna (eLISA) [14] will give a
unique opportunity to test GR and possibly to find some
interesting observational challenges pointing to a new
gravitational physics. In this respect, it is quite important
to know the signals at the detector to discern between
competing theories.
In this paper, we analyze the response of the gravitational

wave interferometer to gravitational wave signals that arise
in scalar-tensor (ST) theories (see, e.g., Ref. [15]). In those
theories, gravitational interactions are mediated by a non-
minimally coupled massless helicity 2 field and a scalar
field. In the most studied example, the Brans–Dicke (BD)
theory [16], the scalar field was massless, but recently the
massive scalar fields have been investigated for a potential
role they can play in the early- and late-time cosmology and
in astrophysics [17–19]. It was also recognized that the
Brans–Dicke theory with the BD parameter ωBD equal to
zero contains as a subclass the so-called extended theories
of gravity with gravitational action defined by some
function fðRÞ of the scalar curvature [19,20]. In both those
theories, matter fields are coupled minimally to the tensor
field gμν. Dynamics of the metric field, however, differs
from the dynamics in GR due to the nontrivial interaction
of the metric with the scalar field in the ST theories and due
to the modified field equations in the case of extended
theories. For the gravitational waves, this shows up as an
additional, in general massive, spin-zero mode of the
wave that potentially can be detected by interferometers.

PHYSICAL REVIEW D 92, 063013 (2015)

1550-7998=2015=92(6)=063013(11) 063013-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.063013
http://dx.doi.org/10.1103/PhysRevD.92.063013
http://dx.doi.org/10.1103/PhysRevD.92.063013
http://dx.doi.org/10.1103/PhysRevD.92.063013


Gravitational waves were also studied in other generalized
theories. Recently, an exact plane wave solution was found
in Ref. [21] for a class of Horndeski theory [22], which can
be considered as a generalization of the scalar-tensor
Brans–Dicke theory, and in Ref. [23] in the case of the
nonlinear massive dRGT gravity model [24].
The nonrelativistic sector of gravitational interactions in

these theories is also modified. For example, if the scalar
field in massive BD theory satisfies the Klein–Gordon
equation with the mass parameter m, one expects that the
effective Newtonian gravitational potential in the near zone
of a source will be modified by the Yukawa-type correc-
tions, ∼ exp ð−mrÞ. These corrections would manifest
themselves as a deviation from Keppler’s third law and
can be investigated by observing the dynamics of the
planets of the Solar System [25]. The uncertainty of those
measurements can be interpreted as providing the upper
bounds on the mass parameter. The strongest upper bound,
m < 4.4 × 10−22 eV, comes from the observations of Mars
[26]. But whatever the Solar System bounds might be, one
must take notice that in theories predicting massive scalar
waves the mass parameter may have a dynamical origin.
For example, in massive ST theories, it is defined by the
local minimum of some potential VðϕÞ which determines
the dynamics of ϕ. However, one can also consider
potentials having a number of local extrema which,
depending on the external conditions and directly on the
value of the scalar field, could lead to different dynamically
generated masses. This would not be an unusual scenario,
and in fact it is analogous to the SM Higgs mechanism for
spontaneous mass generation. The desired nonperturbative
effect in ST theory would be the scalarization phenomenon
in neutron stars where nontrivial configurations of a large
scalar field can appear [27]. Another example comes from
Einstein–Aether theory, which predicts gravitational waves
of different polarizations and different propagation speeds
although all modes are massless; i.e., their frequencies are
proportional to wave vectors [28]. These examples illustrate
that the relativistic, strong-field domain may have quite
distinctive features compared to those predicted or extrapo-
lated from the nonrelativistic and low-energy ranges and
show that the gravitational waves may be good probes in
exploring this regime.
The response of the gravitational wave detectors to the

scalar mode was investigated already in Refs. [29–32],
and the detection capability together with astrophysical
and cosmological application were presented in
Refs. [31,33–35]. Here, we continue these efforts and
further analyze the detector response. We present the
compact form of the detector response for massive scalar
perturbations that straightforwardly reveals the angular and
frequency characteristics of the antenna in the whole
frequency domain. The detector response is obtained by
analyzing the motion of the emitter, detector, and laser light
in the conformal gauge and synchronous gauge. Working in

the synchronous gauge in which the free motion of test
particles (thus, e.g., emitters, beam splitters of a freely
falling gravitational wave detectors) can be easily com-
puted is particularly convenient for space-based interfer-
ometers where the high-frequency domain of the detector
response usually plays an important role. Furthermore, we
show the equivalence of the two gauges by giving the
explicit gauge transformation for the massive scalar wave
solutions. This result is also generalized to theories in
which a scalar field can have modified dispersion relations.
The paper is organized as follows. In Sec. II, we

recount the massive Branse–Dicke theory. In Sec. III, we
investigate the detector response in the conformal gauge,
and in Sec. IV, we investigate the response in the
synchronous gauge. In Sec. V, we give the angular and
frequency characteristics of the one-arm one-way detector.
In Appendix A, we recall the definitions of the scalar
polarization tensors; in Appendix B, we derive the vacuum
plane wave solution in the linearized massive Brans–Dicke
theory, working directly in the synchronous gauge; in
Appendix C, we show the equivalence of the two gauges
by explicitly giving the gauge transformation.
Greek letters denote spacetime indices and take the values

0, 1, 2, 3; Latin letters i; j; k denote space indices and take the
values 1, 2, 3; coordinates ðx0; x1; x2; x3Þ are denoted also as
ðt; x; y; zÞ; colon “∶” denotes contraction of tensors..

II. MASSIVE BRANS–DICKE GRAVITY

In this section, we give a brief account of the theory in
which the gravitational interaction is mediated by two
fields, the standard metric tensor field and the massive
scalar field. We rederive solutions of the linearized field
equations for the general gravitational wave comprising
two massless tensor modes and one massive scalar mode.
We recall that a class of massive scalar-tensor theories

described by the action

S½gμν;ϕ;ψm� ¼ Sg½gμν;ϕ� þ Sm½gμν;ψm�; ð2:1Þ

Sg½gμν;ϕ�¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR−

ωðϕÞ
ϕ

∂μϕ∂μϕþVðϕÞ
�
;

ð2:2Þ

Sm½gμν;ψm� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm½ψm; gμν�; ð2:3Þ

where gμν is a metric field, ϕ is a scalar field, and ψm

denotes collection of matter fields, were introduced in
Refs. [36] and [37]. Here, ω and V are two coupling
functions, and R is the scalar curvature of the metric. The
effects of the function ω on the dynamics of compact
binaries have been extensively studied in Refs. [38–41]
or in the cosmological context in Ref. [42]. The self-
interaction potential V in turn can play a role of the
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cosmological constant and give rise to a mass term in the
linearized theory.
In what follows, we consider the massive Brans–Dicke

theory in which the coupling parameter ω is given by the
constant Brans–Dicke parameter, ωðϕÞ ¼ ωBD. The field
equations obtained by varying the action S½gμν;ϕ� with
respect to the metric gμν and the scalar field ϕ are given
by [15]

Rμν −
1

2
gμνR −

VðϕÞ
ϕ

¼ 8πTμν

ϕ
þ ωBD

ϕ2

�
ϕ;μϕ;μ −

1

2
gμνϕ;α

;α

�
þ ϕ;μν −□gϕ

ϕ
;

□gϕþ ϕV 0ðϕÞ − 2VðϕÞ
3þ 2ωBD

¼ 8πT
3þ 2ωBD

; ð2:4Þ

where Rμν is the Ricci tensor, □g ≡
ð−gÞ−1=2∂μð−gÞ1=2gμν∂ν, Tμν ≡ 2ffiffiffiffi−gp δS

δgμν
, T ≡ gμνTμν, and

V 0 ≡ dV
dϕ. We consider small perturbations over the back-

ground configuration of the Minkowski metric ημν and a
constant field ϕðxÞ ¼ ϕ0,

gμν ¼ ημν þ hμν; ϕ ¼ ϕ0 þ δϕ;

jhμνj ≪ 1; jδϕj ≪ 1: ð2:5Þ

To preserve the asymptotic flatness of solutions and
to neglect higher-order self-interaction terms for the
scalar field beside the mass term, we assume [18]
VðϕÞ ¼ 1

2
V 00ðϕ0Þδϕ2. Substituting (2.5) into the field

equations (2.4) and introducing the mass of the scalar field
m2 ≡ − ϕ0

3þ2ωBD
V 00ðϕ0Þ, one finds

Rð1Þ
μν −

1

2
gμνRð1Þ ¼ −Φ;μν þ ημν□ηΦ ð2:6Þ

□ηΦ ¼ m2Φ; ð2:7Þ

where □η ≡ ημν∂μ∂ν, Φ≡ − δϕ
ϕ0

and we denote Rð1Þ
μανβ, R

ð1Þ
μν ,

and Rð1Þ as the linearizations of the Riemann tensor, Ricci
tensor, and Ricci scalar to first order in hμν, respectively

(the explicit form of the Rð1Þ
μανβ is given in Ref. [43] and

recalled in Appendix B).
One way to obtain the solutions of the linearized field

equations (2.6), (2.7) (see, e.g., Ref. [30]) is to define

θμν ≡ hμν − ημν

�
1

2
h − Φ

�
; h ¼ ημνhμν ð2:8Þ

and to use the gauge freedom hμν → h0μν, ϕ → ϕ0,

h0μνðxÞ ¼ hμνðxÞ − ζðμ;νÞ; jζμj ≪ 1

ϕ0ðxÞ ¼ ϕðxÞ; ð2:9Þ

with the gauge parameter ζμ satisfying

□ηζμ ¼ θμν
;ν; ð2:10Þ

to impose on θμν the Lorentz gauge condition (we omit
primes in the transformed fields)

θμν;ν ¼ 0: ð2:11Þ

In this gauge, the field equations have the form of the wave
and the Klein–Gordon equations in the flat spacetime,

□ηθμν ¼ 0; ð2:12Þ

□ηΦ ¼ m2Φ; ð2:13Þ

describing the (superpositions) of the plane monochromatic
waves

θμν ¼ Aμνe−ikμx
μ
; kμ ¼ ðω;kÞ;

ω ¼ jkj; kμAμν ¼ 0 ð2:14Þ

Φ ¼ Ae−ilμx
μ
; lμ ¼ ðω; lÞ; ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

p
;

ð2:15Þ

which can be written as

θμν ¼ Aμνeiωðt−Ω·xÞ; Ω ¼ k=jkj ð2:16Þ

Φ ¼ Aeiωðt−
Ω·x
vðωÞÞ; Ω ¼ l=jlj; ð2:17Þ

where Ω’s are unit vectors along the wave propagation and

v is the ω-dependent phase velocity, vðωÞ ¼ jωjffiffiffiffiffiffiffiffiffiffi
ω2−m2

p , of the

scalar field. (The phase velocity diverges when ω tends
to m. This is because the wavelength λ ¼ 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
grows then to infinity; in the limit ω ¼ m, the solutions
of Eqs. (2.16) and (2.17) are therefore proportional to
space-independent oscillations eimt.) At this step, we have
hμν ¼ θμν − ημνð12 θ − ΦÞ, where θ ¼ ημνθμν but the Lorentz
condition (2.11) is preserved under the supplementary
gauge transformation (2.9) with ζμ satisfying

□ηζμ ¼ 0; ð2:18Þ

ζμ;μ ¼ −
1

2
θ; ð2:19Þ

rendering the trace of θμν equal to zero and giving
hμν ¼ θμν þ Φημν. The residual gauge freedom
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□ηζμ ¼ 0; ð2:20Þ

ζμ;μ ¼ 0 ð2:21Þ

is exactly the same as the gauge freedom that is left after
specifying the Lorentz condition and imposing traceless-
ness on the metric perturbation in GR and can be used to
transform θμν to the transverse-traceless (TT) form [43]. We
call the resulting gauge the conformal gauge since it allows
us to represent an arbitrary gravitational wave in the theory
as a sum,

hμνðt;xÞ ¼ Aμνðt;xÞ þ Φðt;xÞημν; ð2:22Þ

of the TT wave Aμν satisfying Aμ0 ¼ 0, Aij
;j ¼ 0, Ai

i ¼ 0,
and the scalar wave conformal to the Minkowski metric,
Φðt;xÞημν. For the plane wave propagating in the −z
direction, Eq. (2.22) simplifies to

hμνðt; zÞ ¼ Aþðtþ zÞϵþμν þ A×ðtþ zÞϵ×μν þ Φðt; zÞϵsμν;
ð2:23Þ

with the polarization tensors

ϵs ¼

0
BBB@

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA;

ϵþ ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

1
CCCA;

ϵ× ¼

0
BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCA: ð2:24Þ

In Appendix B, we derive the solutions to the linearized
vacuum field equations (2.6), (2.7) directly in the gauge
hμ0 ¼ 0.

III. DETECTOR RESPONSE IN THE
CONFORMAL GAUGE

In this section, we investigate the motion of a free test
mass in the background field of the plane, massive scalar
gravitational wave in the conformal gauge. The result will
be next used in deriving the response of the laser interfer-
ometer in this gauge; here, we make use of the derivation
given in Refs. [29] and [31] for the massless scalar field.

To this end, we first consider an arbitrary conformal
wave moving in the direction −z with the velocity v,
hsðt; zÞ ¼ hsðtþ z=vÞ [so, e.g., it can be one of a Fourier
modes of the Eq. (2.17)], in which case the background
geometry has the form

ds2 ¼
�
1þ hs

�
tþ z

v

��
ημνdxμdxν: ð3:1Þ

The free motion of a test body can be obtained from the
Lagrangian

Lðx; _xÞ ¼ 1

2

�
1þ hs

�
tþ z

v

��
ð−_t2 þ _x2 þ _y2 þ _z2Þ;

where the dot stands for the proper time derivative,

_xμðτÞ≡ dxμðτÞ
dτ . The equations of motion read

d
dτ

½ð1þ hsÞ_t� ¼ −
1

2
hs;tð−_t2 þ _x2 þ _y2 þ _z2Þ ð3:2Þ

d
dτ

½ð1þ hsÞ_xi� ¼
1

2
hs;ið−_t2 þ _x2 þ _y2 þ _z2Þ;

i ¼ 1; 2; 3: ð3:3Þ

We assume that in the absence of gravitational wave the test
body was at rest with respect to the coordinates, and hence
we seek for the leading-order solution having the form
_t ¼ 1þ Ath, _xi ¼ Aih. From Eqs. (3.3), it follows that, as a
first step, we can specify Ax ¼ Ay ¼ 0. Using the (leading-

order) identities hs;t ¼ _hs and hs;z ¼ _hs=v from Eqs. (3.2)
and (3.3), it then follows that At ¼ − 1

2
, Az ¼ − 1

2v, and we
get

xðtÞ ¼ x0 ð3:4Þ

yðtÞ ¼ y0 ð3:5Þ

zðtÞ ¼ z0 −
1

2v

Z
t

∞
hs½t0 þ zðt0Þ=v�dt0

¼ z0 −
1

2v

Z
tþz0

v

∞
hsðvÞdv ð3:6Þ

τðtÞ ¼ tþ 1

2

Z
tþz0

v

∞
hsðvÞdv; ð3:7Þ

where vðt0Þ ¼ t0 þ zðt0Þ=v and x0, y0, z0 are the initial
positions set at t → −∞. To have the motion of the test
particle in the case of the plane wave propagating along
the unit vector Ω ¼ ð− cosϕ sin θ;− sinϕ sin θ;− cos θÞ,
one rotates the frame,
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0
B@

xnew
ynew
znew

1
CA ¼

0
B@

cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ

1
CA
0
B@

x

y

z

1
CA;

ð3:8Þ

to get in the new coordinates (we omit the subindex new),

xðtÞ ¼ x0 þ
Ω
2v

Z
t−Ω·x0

v

−∞
hsðvÞdv ð3:9Þ

τðtÞ ¼ tþ 1

2

Z
t−Ω·x0

v

−∞
hsðvÞdv; ð3:10Þ

with x0 ¼ ðx0; y0; z0Þ and Ω · x0 ¼ −x0 cosϕ sin θ−
y0 sinϕ sin θ − z0 cos θ.
To obtain the detector response, we place the freely

moving emitter and the detector initially at the points xE0
and xD0 ¼ xE0 þ LnED, respectively, where nED is the unit
vector from the emitter to the detector and L is the length of
the detector arm both defined with respect to the three-
dimensional Euclidean metric δij. We assume that clocks
that measure the proper times along the trajectories of the
emitter and detector were synchronized in the absence of
the wave. Then the time of flight of the light signal from E
toD,ΔτEDðtÞ≡ τDðtÞ − τE½t − δtðtÞ�, where t and t − δtðtÞ
are the coordinate times of the emission and the detection,
respectively, is a coordinate-independent quantity; in fact, it
enters the detector response of all the gravitational wave
laser interferometers. Namely, if we compare a laser signal
AE ¼ ALeiωLτE with angular frequency ωL sent from the
emitter to the detector with the identical template laser
signal AD ¼ ALeiωLτD at the detector, the change in the
phase will be proportional to ΔτED:

ADðτDðtÞÞ − AE½τEðt − δtðtÞÞ�
≃ ALiωL½τDðtÞ − τE½t − δtðtÞ��: ð3:11Þ

In the background given by Eq. (3.1), light travels along the
null lines of the Minkowski metric ημν thus to the leading
order

δtðtÞ ¼ jxDðtÞ − xEðt − LÞj

¼
����xD0 − xE0 þ

Ω
2v

Zt−Ω·xD0
v

t−L−Ω·xE0
v

hsðvÞdv
����

≃ Lþ Ω · nED

2v

Zt−Ω·xD0
v

t−L−Ω·xE0
v

hsðvÞdv

and using (3.10)

ΔτEDðtÞ≃ tþ 1

2

Zt−Ω·xD0
v

∞

hsðvÞdv

−
�
t − L −

Ω · nED

2v

Zt−Ω·xD0
v

t−L−Ω·xE0
v

hsðvÞdv

þ 1

2

Zt−L−Ω·xE0
v

∞

hsðvÞdv
�

¼ Lþ 1

2

�
1þ Ω · nED

v

� Zt−Ω·xD0
v

t−L−Ω·xE0
v

hsðvÞdv:

ð3:12Þ

In Eq. (3.6), we have parametrized the constant phase
surfaces v’s with the coordinate time t0 along the particle
trajectory. Now, we change the parametrization and will
use a parameter λ along the laser ray. To this end, we
notice that the trajectory ½t0ðλÞ;x0ðλÞ� of the laser ray from
xE0 to xD0 [end points are needed only in the zeroth
order in the argument of the integrand hs of Eq. (3.12)] is
given by

t0ðλÞ ¼ λ; x0ðλÞ ¼ xD0 − nEDðt − λÞ; ð3:13Þ

thus, changing the variables, vðλÞ ¼ t0ðλÞ −Ω · x0ðλÞ=v,
one finds

ΔτEDðtÞ ¼ Lþ 1 − ðΩ·nED
v Þ2

2

Zt

t−L

hs½vðλÞ�dλ

¼ Lþ 1 − ðΩ · nEDÞ2 þ ð1 − 1
v2ÞðΩ · nEDÞ2

2

×
Zt

t−L

hs½vðλÞ�dλ

¼ Lþ nED ⊗ nED∶½ϵst þ ð1 − 1
v2Þϵsl�

2

×
Zt

t−L

hs½vðλÞ�dλ; ð3:14Þ

where the 3 × 3 matrices, ϵst and ϵsl, are defined in
Appendix A. They play the role of the two (spatial)
polarization tensors of the scalar transversal and scalar
longitudinal modes of which the components in the
synchronous gauge and in the source frame read
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ϵst ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; ϵsl ¼

0
B@

0 0 0

0 0 0

0 0 1

1
CA: ð3:15Þ

IV. DETECTOR RESPONSE IN THE
SYNCHRONOUS GAUGE

In the synchronous gauge, the metric is given by

g ¼ −dt2 þ ðδij þ hijÞdxidxj: ð4:1Þ

The condition hμ0 ¼ 0 implies that the motion of test bodies
is trivial: one can assume that the emitter and detector stay
at fixed coordinates, xiðtÞ ¼ const., and the coordinate time
t is equal to the proper times along their trajectories,
τEðtÞ ¼ τDðtÞ ¼ t. The time of flight is then equal to the
difference in the coordinate times of the detection and
emission and is given by the integral

ΔτEDðtÞ ¼ tðλDÞ − tðλEÞ ¼
Z
γED

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij½tðλÞ;xðλÞ�

dxi

dλ
dxj

dλ

r
dλ;

ð4:2Þ

where ½tðλÞ; γEDðλÞ� ¼ ½tðλÞ;xðλÞ� parametrizes the null
geodesic of the light ray from the emitter to the detector
with the arrival time at the detector tðλDÞ ¼ t. In the
synchronous coordinates, trajectories of photons in the
perturbed background (4.1) differ in general from straight
lines, but as was shown by Finn [44] (see also Refs. [45]
and [46]), the integral on the right-hand side of Eq. (4.2)
is unchanged when computed along the unperturbed
trajectory

t0ðλÞ ¼ λ; x0ðλÞ ¼ xD − nEDðt − λÞ: ð4:3Þ

This gives to the leading order

ΔτEDðtÞ ¼ Lþ nED ⊗ nED

2
∶

Zt

t−L

h½t0ðλÞ;x0ðλÞ�dλ

¼ Lþ nED ⊗ nED∶ ϵp

2

Zt

t−L

hp½vðλÞ�dλ; ð4:4Þ

where in the last line of Eq. (4.4) we have specified the
p-polarized plane wave having the (spatial) polarization
tensor ϵp propagating along the vector Ω with the velocity
v, hðt;xÞ ¼ ϵphpðt −Ω · x=vÞ, and we have defined
vðλÞ ¼ t0ðλÞ −Ω · x0ðλÞ=v.
Comparison of Eqs. (4.4) and (3.14) suggests that the

scalar wave defined in the conformal gauge corresponds to
a superposition of scalar transversal and scalar longitudinal

waves defined in the synchronous gauge (and in the frame
in which the wave propagates in the −z direction) as

ds2 ¼ −dt2 þ hst

�
tþ z

v

�
ðdx2 þ dy2Þ þ hsl

�
tþ z

v

�
dz2;

ð4:5Þ

with

hst ¼ hs; hsl ¼
�
1 −

1

v2

�
hs: ð4:6Þ

This is indeed the case, and in Appendix C, we give the
gauge transformation that connects both gauges. There, it is
shown that a more general result holds: given a scalar mode
hsðt; zÞ that in the conformal gauge satisfies the field
equation ∂2

t hs ¼ F½∂z�hs, the corresponding synchronous
gauge wave is given by

hðt; zÞ ¼ diag

�
0; hsðt; zÞ; hsðt; zÞ;

F½∂z� − ∂2
z

F½∂z�
hsðt; zÞ

�
:

ð4:7Þ

Beside the massive Brans–Dicke and fðRÞ theories, this
result includes also theories with a modified dispersion
relation [47] that can arise, e.g., as the effective level of
some approaches to quantum gravity or in Lorentz-
symmetry violating theories [48–50]. We note here that
usually the effects of modification of the dispersion
relations are considered to be suppressed by the Planck
scale, but Refs. [51] and [52] indicated the possibility of
their enhancement when the renormalization is taken into
account in Lorentz symmetry breaking models.

V. SENSITIVITY OF ONE-ARM
INTERFEROMETER

Integration of the right-hand side Eq. (4.4) for the scalar
monochromatic p-polarized wave hðt:xÞ ¼ h0peiωðt−

Ω·x
v Þ

(p ¼ sl; st) leads to the following result for the time-
dependent part of the time of flight:

sEDðtÞ≡ ΔτEDðtÞ
T

¼ FpðnEDÞT ðx; cEDÞhðt;xDÞ; ð5:1Þ

where cED ≡ Ω·nED
v , x≡ Lω, FpðnEDÞ ≔ 1

2
nED ⊗ nED∶ϵp

is the (one-arm) antenna pattern function, and T ðx; cEDÞ≡
sinc½xð1−cEDÞ

2
�e−ixð1−cEDÞ

2 is the frequency response of the (one-
arm and one-way) detector.
It was already observed in Ref. [53] that the frequency-

independent maximum of the frequency transfer function,
T ¼ 1, is achieved when the wave passes through the arm
at the particular angleΩ · nED ¼ cos ϑ ¼ v, and this is only
possible when v ≤ 1; this is illustrated in Fig. 1(a). To see
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the geometrical picture behind that angle, we notice first
that it is zero when v ¼ 1. In this case, as remarked in
Refs. [46] and [45], the one-arm frequency transfer
function T does not depend on frequency. This, together
with nonvanishing antenna pattern function along the
detector’s arm for the scalar longitudinal mode, leads to
the preferable detection feasibility at high frequencies for
that mode. The reason for this is simple: the spacetime
trajectory of the light ray lies on the three-dimensional
hypersurface of the constant phase of the passing plane
gravitational wave, and therefore photons perceive it as a
constant field. The same is true for v < 1, but in this case,
planes of the constant phases of the gravitational wave are
no longer tangent to null cones of the light rays. In the case
of v < 1, the light cone formed by light rays emitted from
xE and the plane of the constant phase passing through xE
intersect, and the null lines of the intersection determine
a set of null trajectories that satisfy Ω · nED ¼ v; see
Fig. 1(b). For v > 1, light cones and planes of the constant
phases do not intersect, and the effect does not arise.
Interestingly, for v < 1, the direction of the maximum has

nonvanishing components parallel and orthogonal to
nED, and thus one expects that all polarization modes of
gravitational waves, transversal and longitudinal, will share
the property of having frequency-independent one-arm
response functions, FpðnEDÞT ðx; cEDÞ, in the directions
determined by Ω · nED ¼ v [see Figs. 2(a) and 2(b)]. In
fact, this feature for the þ and × tensorial modes was
explored in Ref. [53] and used in putting the limits on
the speed of gravitational waves from pulsar timing
and providing a bound on the graviton mass mg ≤
8.5 × 10−24 eV. Here, however, we restrict ourselves from
the beginning to the theories in which the standardþ and ×
modes travel with the speed of light unlike the scalar modes
of which the amplitudes as shown in the previous chapter
are related. Thus, the detector response for the scalar wave
having in the conformal gauge the form ½ð1þ hsðt;xÞ�ημν
with the amplitude hsðt;xÞ ¼ h0seiωðt−Ω·x=vÞ is given by the
Eq. (5.1) with the antenna pattern function that reads

FsðnEDÞ ¼ FstðnEDÞ þ
�
1 −

1

v2

�
FslðnEDÞ

¼ 1

2
−

1

v2
FslðnEDÞ ¼

v2 − ðΩ · nEDÞ2
2v2

; ð5:2Þ

if we use Fst þ Fsl ¼ 1
2
, Fsl ¼ 1

2
ðΩ · nEDÞ2. We notice that

the antenna pattern function Fs must preserve the property
of frequency-independence for the detector response for
the wave coming from the direction determined by
Ω · nED ¼ v since both antenna patterns Fst and Fsl do.
But interestingly, for the particular combination of the
scalar modes which is motivated on the theoretical grounds
by the massive scalar-tensor theories, the net sensitivity is
null for Ω · nED ¼ v, [see Eq. (5.2) and Fig. 2(c)].
Similarly, one can obtain the detector response for the

scalar wave that in the conformal gauge has the form

hsðt;xÞ ¼ h0sϵp cos
�
ωðt −Ω · x

v
Þ þ ϕ0

�
; ð5:3Þ

(a) (b) (c)

FIG. 2. Planar sections of the detector response jFpðnEDÞT ðx; cEDÞj for the st (a), sl (b), and s (c) modes; notation and parameters as
in Fig. 1. In cases a, b, c, responses for the signal coming from 150° are frequency independent; for c, it is zero.

(a) (b)

Ω

FIG. 1. Left: plane section of the frequency transfer function
jT j. The arm nED of the detector is inclined at 0°,
v ¼ Ω · nED ¼ cos π

6
; the arrow represents one of the directions

Ωmax of the maximal sensitivity. The normalized frequencies x ¼
ωL equal zero (dotted), 2 (dashed), 5 (thick), and 10 (thin). Right:
section of the null cone and the hypersurface of the constant
phase passing through the emitter.
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it is given by [the real part of Eq. (5.1)

sEDðtÞ ¼ sinc

�
xð1 − cEDÞ

2

�
FsðnEDÞh0s

× cos

�
ω

�
t −

Ω · xE

v

�
−
x
2
ð1þ cEDÞ þ ϕ0

�
:

ð5:4Þ
We see that, due to the relation (4.6) between the scalar
transversal and longitudinal modes, the initial phase ϕ0

of the hst and hsl signals is the same. From the one-arm
response, one can construct in a standard way other
responses; e.g., the Michelson interferometer based on
nED1

and nED2
is defined as

MðtÞ ¼ sED1
ðt − LÞ þ sD1EðtÞ − sED2

ðt − LÞ − sD2EðtÞ:
ð5:5Þ

Furthermore, we see that the long-wavelength (LW)
limit defined as the leading x term of the response (5.4)
is given by

sLWED ðtÞ ¼ FsðnEDÞh0s cos
�
ωðt −Ω · xE

v
Þ þ ϕ0

�
; ð5:6Þ

so the corresponding Michelson interferometer MLW will
not discern hs, hst, and hsl signals whatever the orientation
of the two arms nED1

and nED2
is [note that the same is true

for some other responses, e.g., the Sagnac interferometer
SðtÞ¼sED1

ðt−2LÞþsD1D2
ðt−LÞþsD2EðtÞ−sED2

ðt−2LÞ−
sD2D1

ðt−LÞ−sD1EðtÞ]. However, beyond the LW limit, the
responses of the Michelson interferometers M are different
due to the orientation-dependent higher-frequency terms
which potentially enable us to discriminate between the
modes. On the other hand, the difference between the v ¼ 1
and v ≠ 1 cases shows up already in the LW limit, for
instance, in the massive Brans–Dicke theory as the cor-
rections ∼Ω · xEðmωÞ2 in the signal’s phase.

VI. SUMMARY

The analysis of the response of the laser interferometer
to passing gravitational waves is a starting point in the
gravitational waves detection experiments. Especially at the
present moment of awaiting the first detection by the
advanced detectors, there is a good opportunity to routinely
confront GR with the alternative theories testing gravity in
the new dynamical, relativistic regime [54]. The theoretical
framework for the classification of waves in alternative
theories was given in Ref. [2] under the assumption of the
minimal coupling of gravity to matter fields and with the
restriction that the waves must travel at exactly the speed
of light. The present paper deals with theories where the
former assumption is fulfilled but the later restriction is

relaxed. The detectability of gravitational wave signals in
the massless scalar-tensor theory of Brans and Dicke where
both modes, scalar and tensor, move with the speed of light
was studied in Ref. [55] for inspiralling compact binaries.
In Ref. [29], the detectability of massless scalar waves was
investigated in the case of gravitational collapse, and the
analysis of the detector response for those modes was also
given. In this context, finding the detection methods to
discern between the scalar and tensor waves and thorough
analysis of the signals in the detector was desirable. With
this aim, the rigorous examination of the frequency
response and the antenna sensitivity pattern for the mass-
less scalar waves was performed in Ref. [31] in the whole
frequency domain; in Ref. [30], the detector response was
analyzed in the conformal and in the synchronous gauges in
the long wavelength limit, and the equivalence of the two
approaches was demonstrated.
In the paper, we studied these basic issues in the case of

the massive scalar wave. These kinds of perturbations can
arise in a number of alternative theories; in particular, they
can be realized in the massive Branse–Dicke theory or in a
class of the fðRÞ extended theories of gravity [33,56]. The
detector response for this case was studied in Ref. [30] in the
long wavelength limit and in Ref. [33] for the full frequency
spectrum. Here, we carry out the analysis of the response of
the laser interferometer to the scalar wave in the conformal
gauge and in the synchronous gauge for all frequencies, and
we show the equivalence of the two approaches. We show as
well the equivalence of these two gauges on the level of the
solutions of the linearized field equations of the massive
Brans–Dicke theory.We present basic angular and frequency
characteristics of the gravitational wave antenna. The
response of the detector written in the synchronous gauge
is particularly useful since in these coordinates the free
motion of test bodies (like the beam splitter, mirrors, etc.) is
simple. Thus, although the response was explicitly given for
the static interferometer, the motion of the detector can
straightforwardly be taken into account. This analysis can be
applied to currently working Earth-based detectors and, in
particular, to the future, next-generation experiments like the
Einstein telescope or space-based missions like eLISAwhere
it may be also essential to go beyond the long-wavelength
approximation of the interferometer response, which is
usually assumed when working in the local Lorentz frame.
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APPENDIX A: SCALAR POLARIZATION MODES

Let the orthonormal basis fex; ey; ez ≡ Ωg represents the
source frame and n be the unit vector along the detector
arm; then,
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ϵsl ¼ ez ⊗ ez ¼ Ω ⊗ Ω

ϵst ¼ ex ⊗ ex þ ey ⊗ ey; ðA1Þ

and thus

n ⊗ n∶ ϵsl ¼ ðn · ΩÞ2
n ⊗ n∶ ϵst ¼ ðn · exÞ2 þ ðn · eyÞ2 ¼ 1 − ðn · ΩÞ2: ðA2Þ

We can now identify arbitrary Cartesian coordinates having
fex; ey; ez ≡Ωg as an orthonormal basis with the spatial
part of our synchronous coordinate system. We can aslo
relate vectors and covectors in the canonical way:
Ωi ¼ Ωjδij ¼ Ωi. Therefore, in arbitrary synchronous
coordinates, the spatial tensors ϵst, ϵsl can be written as

ϵsl ¼ ΩiΩjdxidxj

ϵst ¼ ðδij −ΩiΩjÞdxidxj: ðA3Þ

APPENDIX B: GRAVITATIONAL WAVES IN
THE MASSIVE BRANS–DICKE THEORY

IN THE SYNCHRONOUS GAUGE

In this Appendix, we obtain the solution of the linearized
field equations (2.6), (2.7) in the gauge hμ0 ¼ 0. To this

end, we recall the explicit form of Rð1Þ
μανβ [43]:

Rð1Þ
μανβ ¼

1

2
½hμβ;να þ hνα;μβ − hμν;αβ − hαβ;μν�: ðB1Þ

Now, we choose the gauge hμ0 ¼ 0, and we assume the
plane wave solutions hijðt; zÞ, Φðt; zÞ for a wave propa-
gating along the z direction; taking the spatial trace of the
field Eqs. (2.6) and using Eq. (2.7), we obtain

−□2h11 −□2h22 þ h33;tt þ 3m2Φ ¼ 0;

where □2 ≡ −∂2
t þ ∂2

z : ðB2Þ

Substituting h33;tt obtained in Eq. (B2) to “11” and “22”
components of Eqs. (2.6), one gets

□2h11 ¼ m2Φ ðB3Þ

□2h22 ¼ m2Φ; ðB4Þ

with the solutions h11 ¼ Φþ h011 and h22 ¼ Φþ h022,
where h011 and h022 solve the homogeneous wave equation;
in turn, the “00” component of (2.6),

−
1

2
h11;zz −

1

2
h22;zz þm2Φþ Φtt ¼ 0; ðB5Þ

imposes the trace-free condition for the homogeneous
solutions, hþ ≡ h011 ¼ −h022. From the “33” part of the
system (2.6), using Eqs. (B2) and (B4), one obtains

h33;tt ¼ −m2Φ; ðB6Þ

whereas the “12” part gives

□2h12 ¼ 0; ðB7Þ

the remaining equations (2.6) are identities or show that
h13 ¼ h23 ¼ 0. Thus, the full set of modes consists
of two standard massless helicity 2 states hþ, h× ≡ h12,
and two massive modes (but 1 degree of freedom),
hst ¼ Φ, hsl ≡ h33.

APPENDIX C: EQUIVALENCE OF THE
CONFORMAL AND SYNCHRONOUS GAUGES

In this Appendix, we show the equivalence of the two
gauges, the conformal gauge, Eq. (3.1), and the synchro-
nous gauge, Eq. (4.5). Note that under three-dimensional
rigid rotations in the conformal coordinates components of
the gravitational wave tensor hsðt;xÞημν transform as a set
of four scalar fields, whereas in the synchronous gauge, the
diagonal form of the tensor is not preserved, and thus one
expects off-diagonal terms of the scalar modes as well
which will mix with the transverse traceless modes. To
simplify the calculations, we will treat here only the scalar
modes; we will work in the frame in which the wave
propagates in an arbitrary direction Ω;
First, we assume the gravitational wave of the form

hsðt − Ω · x=vÞ. In this case, the transformation of
coordinates

x ¼ x0 þ 1

2
fðt0 −Ω · x0=vÞ; fðt0 −Ω · x0=vÞ

¼ Ω
v

Zt0−Ω·x0
v

−∞

hsðvÞdv;

t ¼ t0 þ 1

2
gðt0 −Ω · x0=vÞ; gðt0 − Ω · x0=vÞ

¼ −
Zt0−Ω·x0

v

−∞

hsðvÞdv ðC1Þ

gives
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dx ¼ dx0 þ Ω
2v

hsðt0 −Ω · x0=vÞdt0

−
Ω
2v2

hsðt0 −Ω · x0=vÞðΩ · dx0Þ

dt ¼ dt0 −
1

2
hsðt0 −Ω · x0=vÞdt0

þ 1

2v
hsðt0 −Ω · x0=vÞðΩ · dx0Þ; ðC2Þ

which leads to

ð1þ hsÞημνdxμdxν ¼ ημνdx0μdx0ν þ hsðdx02 þ dy02Þ

−
ΩiΩj

v2
hsdx0idx0j

¼ ημνdx0μdx0ν þ ϵsths

þ
�
1 −

1

v2

�
ϵslhs; ðC3Þ

according to Eq. (A3).
For a superposition of monochromatic waves eiωðt−Ω·x=vÞ,

hsðt;xÞ ¼
Z

∞

m
dω

Z
S2
dΩeiω½t−Ω·x=vðω;ΩÞ�χðω;ΩÞ;

where the form of a possibly orientation-dependent
dispersion relation vðω;ΩÞ is dictated by the field equa-
tions for hs the generators f, g of the gauge transformation,
Eq. (C1), are given, respectively, by

Ω
2v

Z
∞

m
dω

Z
S2
dΩf½t0 − Ω · x0=vðω;ΩÞ�;

−
Z

∞

m
dω

Z
S2
dΩg½t0 −Ω · x0=vðω;ΩÞ�;

and then the scalar modes in the synchronous gauge read

Z
∞

m
dω

Z
S2
dΩ

�
ϵstðΩÞ þ

�
1 −

1

v2ðω;ΩÞ
�
ϵslðΩÞ

�

× eiω½t−Ω·x=ðvω;ΩÞ�χðω;ΩÞ: ðC4Þ

As an example, let us consider the massive Brans–Dicke
theory; in the conformal coordinates, we have

□hs ¼m2hs; vðωÞ ¼ jωjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p ; 1−
1

v2ðωÞ ¼
m2

ω2
:

The gauge transformation (C1) for the plane wave propa-
gating in the −z direction, hs ¼

R∞
−∞ dωeiωðtþz=vÞχðωÞ, with

f ¼
�
0; 0;

Z
∞

m
dω

i
ωv

eiωðtþz=vÞχðωÞ
�
;

g ¼
Z

∞

m
dω

i
ω
eiωðtþz=vÞχðωÞ ðC5Þ

connects then

hðt; zÞ ¼ diagð−hsðt; zÞ; hsðt; zÞ; hsðt; zÞ; hsðt; zÞÞ ðC6Þ

with

h0ðt0;z0Þ¼diag

�
0;hsðt0;z0Þ;hsðt0;z0Þ;

m2

−∂2
z0 þm2

hsðt0;z0Þ
�
:

ðC7Þ

We see that the scalar mode has the same form as the
solutions to the linearized field equations of the massive
Brans–Dicke model obtained in Appendix B. Note that for
m ¼ 0 the generators of the gauge transformation given in
Eq. (C1) or (C5) reduce to the transformation given in
Ref. [30], Eqs. (B5) and (B6). We stress, however, that the
result given here is more general: for any mode hs that in
the conformal gauge is constrained by the field equation
∂2
t hs ¼ F½∂z�hs, the corresponding synchronous-gauge

form of the wave (in the frame where the wave propagates
along the z axis) reads

hðt; zÞ ¼ diag

�
0; hsðt; zÞ; hsðt; zÞ;

F½∂z� − ∂2
z

F½∂z�
hsðt; zÞ

�
:

ðC8Þ
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