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Full-sky maps of the cosmic microwave background temperature reveal a 7% asymmetry of fluctuation
power between two halves of the sky. A common phenomenological model for this asymmetry is an overall
dipole modulation of statistically isotropic fluctuations, which produces particular off-diagonal correlations
between multipole coefficients. We compute these correlations and construct corresponding estimators for
the amplitude and direction of the dipole modulation. Applying these estimators to various cut-sky
temperature maps from Planck and WMAP data shows consistency with a dipole modulation, differing
from a null signal at 2.5σ, with an amplitude and direction consistent with previous fits based on the
temperature fluctuation power. The signal is scale dependent, with a statistically significant amplitude at
angular scales larger than 2°. Future measurements of microwave background polarization and gravitational
lensing can increase the significance of the signal. If the signal is not a statistical fluke in an isotropic
universe, it requires new physics beyond the standard model of cosmology.
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I. INTRODUCTION

The statistical isotropy of the cosmic microwave back-
ground (CMB) at large angular scales has been questioned
since the first data release of the WMAP satellite [1].
Independent studies performed on different WMAP data
releases [2–4] show that the microwave temperature sky
possesses a hemispherical power asymmetry, exhibiting
more large-scale power in one half of the sky than the other.
Recently, this finding has been confirmed with a significance
greater than 3σ with CMB temperature maps from the first
data release of the Planck experiment [5]. The power
asymmetry has been detected using multiple techniques,
including spatial variation of the temperature power spec-
trum for multipoles up to l ¼ 600 [6] and measurements of
the local variance of the CMB temperature map [7,8]. For
l > 600, the amplitude of the power asymmetry drops
quickly with l [8–10].
A phenomenological model for the hemispherical

power asymmetry is a statistically isotropic sky Θðn̂Þ times

a dipole modulation of the temperature anisotropy
amplitude,

~Θðn̂Þ ¼ ð1þ n̂ ·AÞΘðn̂Þ; ð1Þ

where the vector A gives the dipole amplitude and sky
direction of the asymmetry [11]. This phenomenological
model has been tested on large scales (l < 100) with both
WMAP [12,13] and Planck [6] (hereafter PLK13) data,
showing a dipole modulation with the amplitude jAj≃ 0.07
along the direction ðl; bÞ≃ ð220°;−20°Þ in galactic coor-
dinates,with a significance at a level≥ 3σ. Further analysis at
intermediate scales 100 < l < 600 shows that the amplitude
of the dipole modulation is also scale dependent [14].
If a dipole modulation in the form of Eq. (1) is present, it

induces off-diagonal correlations between multipole com-
ponents with differing l values. Similar techniques have
been employed to study both the dipole modulation
[14–17] and the local peculiar velocity [18–21]. In this
work, we exploit these correlations to construct estimators
for the Cartesian components of the vector A as a function
of the multipole. These estimators are then applied to*sia21@pitt.edu
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publicly available, foreground-cleaned Planck CMB tem-
perature maps. We constrain the scale dependence over a
multipole range of 2 ≤ l ≤ 600, as well as determine the
statistical significance of the observed geometrical con-
figuration as a function of the multipole. Throughout this
analysis, we adopt realistic masking of the galactic con-
tamination. We test our findings against possible instru-
mental systematics and residual foregrounds.
In Sec. II, we derive estimators for the dipole modulation

components and their variances for a cosmic-variance
limited CMB temperature map. Section III presents and
tests a pipeline for deriving these estimators from observed
maps, showing how to correct for partial sky coverage.
Using simulated CMB maps, we estimate the covariance
matrix of the components of the dipole vector, as well as
test for possible systematic effects. Section IV describes the
Planck temperature data we use to obtain the results in
Sec. V. We estimate the components of the dipole modu-
lation vector and assess their statistical significance, finding
departures from zero at the 2σ–3σ level. The best-fit dipole
modulation signal is an unexpectedly good fit to the data,
suggesting that we have neglected additional correlations in
modeling the temperature sky. We also perform a
Monte Carlo analysis to estimate how the dipole modula-
tion depends on angular scale, confirming previous work
showing the power modulation becoming undetectable for
angular scales less than 0.4°. Finally, Sec. VI gives a
discussion of the significance of the results and possible
implications for models of primordial perturbations.

II. DIPOLE-MODULATION-INDUCED
CORRELATIONS AND ESTIMATORS

Assuming the phenomenological model described by
Eq. (1), the dipole dependence on direction can be
expressed in terms of the l ¼ 1 spherical harmonics as

n̂ ·A ¼ 2

ffiffiffi
π

3

r
ðAþY1−1ðn̂Þ − A−Y1þ1ðn̂Þ þ AzY10ðn̂ÞÞ; ð2Þ

with the abbreviation A� ≡ ðAx � iAyÞ=
ffiffiffi
2

p
. Expanding the

temperature distributions in the usual spherical harmonics,

Θðn̂Þ ¼
X
lm

almYlmðn̂Þ; ~Θðn̂Þ ¼
X
lm

~almYlmðn̂Þ; ð3Þ

with the usual isotropic expectation values

ha�lmal0m0 i ¼ Clδll0δmm0 : ð4Þ

The coefficients must satisfy a�lm ¼ ð−1Þmal−m and ~a�lm ¼
ð−1Þm ~al−m because the temperature field is real. The
asymmetric multipoles can be expressed in terms of the
symmetric multipoles as

~alm ¼ alm þ 2

ffiffiffi
π

3

r X
l0m0

al0m0 ð−1Þm
Z

dn̂Yl−mðn̂ÞYl0m0 ðn̂Þ

× ½AþY1−1ðn̂Þ − A−Y1þ1ðn̂Þ þ AzY10ðn̂Þ�: ð5Þ

The integrals can be performed in terms of the Wigner 3j
symbols using the usual Gaunt formula,

Z
dn̂Yl1m1

ðn̂ÞYl2m2
ðn̂ÞYl3m3

ðn̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3
m1 m2 m3

��
l1 l2 l3
0 0 0

�
: ð6Þ

Because l3 ¼ 1 for each term in Eq. (5), the triangle
inequalities obeyed by the 3j symbols show that the only
nonzero terms in Eq. (5) are l0 ¼ l or l0 ¼ l� 1. For these
simple cases, the 3j symbols can be evaluated explicitly.
Then it is straightforward to derive

h ~a�lþ1m�1 ~almi ¼ ∓ 1ffiffiffi
2

p A�ðCl þ Clþ1Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mþ 2Þðl�mþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
; ð7Þ

h ~a�lþ1m ~almi ¼ AzðCl þ Clþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mþ 1Þðlþmþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
:

ð8Þ

These off-diagonal correlations between multipole coeffi-
cients with different l values are zero for an isotropic sky.
This result was previously found by Ref. [15] and repre-
sents a special case of the bipolar spherical harmonic
formalism [22].
It is now simple to construct estimators for the compo-

nents ofA from products of multipole coefficients in a map.
Using Ax ¼

ffiffiffi
2

p
ReAþ and Ay ¼

ffiffiffi
2

p
ImAþ, we obtain the

following estimators:

½Ax�lm ≃ −2
Cl þ Clþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 3Þð2lþ 1Þ

ðlþmþ 2Þðlþmþ 1Þ

s

× ðRe ~alþ1mþ1Re ~alm þ Im ~alþ1mþ1Im ~almÞ; ð9Þ

½Ay�lm ≃ −2
Cl þ Clþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 3Þð2lþ 1Þ

ðlþmþ 2Þðlþmþ 1Þ

s

× ðRe ~alþ1mþ1Im ~alm − Im ~alþ1mþ1Re ~almÞ; ð10Þ
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½Az�lm ≃ 1

Cl þ Clþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 3Þð2lþ 1Þ

ðlþmþ 1Þðl −mþ 1Þ

s

× ðRe ~alþ1mRe ~alm þ Im ~alþ1mIm ~almÞ; ð11Þ

where the values for ~alm are calculated from a given
(real or simulated) map and the values for Cl are estimated
from the harmonic coefficients of the isotropic map
Cl ¼ ð2lþ 1Þ−1P jalmj2. We argue that for small values
of the dipole vector A and (more importantly) for a nearly
full-sky map,

P j ~almj2 →
P jalmj2. This assumption has

been tested for the kinematic dipole modulation induced in
the CMB due to our proper motion, showing that the bias
on the estimated power spectrum is much smaller than the
cosmic variance error for nearly full-sky surveys [21]. Such
estimators, derived under the constraint of constant dipole
modulation, can be safely used for the general case of a
scale-dependent dipole vector A by assuming that
AðlÞ≃Aðlþ 1Þ. This requirement is trivially satisfied
by a small and monotonically decreasing function AðlÞ.
To compute the variance of these estimators, assume a

full-sky microwave background map which is dominated
by cosmic variance; the Planck maps are a good approxi-
mation to this ideal. Then alm is a Gaussian random
variable with variance σ2l ¼ Cl. The real and imaginary
parts are also each Gaussian distributed, with a variance
half as large. The product x ¼ Re ~alþ1mþ1Re ~alm, for exam-
ple, will then have a product normal distribution with
probability density

PðxÞ ¼ 2

πσlσlþ1

K0

�
2jxj
σlσlþ1

�
; ð12Þ

with variance σ2x ¼ σ2l σ
2
lþ1=4, where K0ðxÞ is a modified

Bessel function [23]. By the central limit theorem, a sum of
random variables with different variances will tend to a
normal distribution with variance equal to the sum of the
variances of the random variables; in practice, the sum of
two random variables, each with a product normal dis-
tribution, will be very close to normally distributed, as can

be verified numerically from Eq. (12). Therefore, we can
treat the sums of pairs of ~alm values in Eqs. (9)–(11) as
normal variables with variance σ2l σ

2
lþ1=2, and obtain the

standard errors for the estimators as

½σx�lm ¼ ½σy�lm ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 3Þð2lþ 1Þ
2ðlþmþ 2Þðlþmþ 1Þ

s
; ð13Þ

½σz�lm ≃ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 3Þð2lþ 1Þ

2ðlþmþ 1Þðl −mþ 1Þ

s
; ð14Þ

with the approximation Clþ1 ≃ Cl.
For a sky map with cosmic variance, each estimator of

the components of A for a given value of l and m will have
a low signal-to-noise ratio. Averaging the estimators with
inverse variance weighting will give the highest signal-to-
noise ratio. Consider such an estimator for a component of
A, which averages all of the multipole moments between
l ¼ a and l ¼ b:

½Ax�≡ σ2x
Xb
l¼a

Xl

m¼−l

½Ax�lm
½σx�2lm

; ð15Þ

½Ay�≡ σ2y
Xb
l¼a

Xl

m¼−l

½Ay�lm
½σy�2lm

; ð16Þ

½Az�≡ σ2z
Xb
l¼a

Xl

m¼0

½Az�lm
½σz�2lm

; ð17Þ

which have standard errors of

σx ¼ σy ≡
�Xb
l¼a

Xl

m¼−l
½σx�−2lm

�−1=2

¼
�
2

3
ðbþ aþ 2Þðb − aþ 1Þ

�
−1=2

; ð18Þ

σz ≡
�Xb
l¼a

Xl

m¼0

½σz�−2lm
�−1=2

¼
�
4ðb − aþ 1Þ½að2bþ 3Þðaþ bþ 4Þ þ ðbþ 2Þðbþ 3Þ�

3ð2aþ 1Þð2bþ 3Þ
�
−1=2

: ð19Þ

The sum overm for the z estimator and error runs from 0 to
l instead of −l to l because ½Az�l−m ¼ ½Az�lm, but the values
are distinct for the x and y estimators.
While the Cartesian components are real Gaussian

random variables, such that for isotropic models
h½Ax�i ¼ h½Ay�i ¼ h½Az�i ¼ 0, the amplitude of A is not
Gaussian distributed. Instead, it is described by a chi-square
distribution with 3 degrees of freedom, which implies
hjAj2i ≠ 0 and pðjAj2 ¼ 0Þ ¼ 0, even for an isotropic

sky. For this reason, we consider the properties of the
dipole vector A as a function of the multipole, considering
each Cartesian component separately.

III. SIMULATIONS AND ANALYSIS PIPELINE

The estimators in Eqs. (9)–(11) are clearly unbiased
when applied on full-sky CMB maps. However, residual
foreground contaminations along the galactic plane as well
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as point sources may cause a spurious dipole modulation
signal, which can be interpreted as cosmological. Such
highly contaminated regions can be masked out, at the cost
of breaking the statistical isotropy of the CMB field and
inducing off-diagonal correlations between different
modes. The effect of the mask, which has a known
structure, can be characterized and removed (for a general
treatment see Ref. [24]).

A. Characterization of the mask

For a masked sky, the original alm are replaced with their
masked counterparts:

ālm ¼
Z

dΩΘðn̂ÞWðn̂ÞY�
lm; ð20Þ

where Wðn̂Þ is the mask, with 0 ≤ Wðn̂Þ ≤ 1. In this case,
Eq. (4) does not hold, meaning that even for a statistical
isotropic but masked sky, the estimators in Eqs. (9)–(11) will
have an expectation value different from zero. This con-
stitutes a bias factor in our estimation of the dipole
modulation.
If we expand Eqs. (9)–(11) using the definition of the

harmonic coefficients in Eq. (5), it is clear that if a
primordial dipole modulation is present, the mask transfers
power between different Cartesian components. Under the
previous assumption AðlÞ≃Aðlþ 1Þ, the Cartesian com-
ponents i; j ¼ x; y; z of the dipole vector can be written as

½Āj�lm ¼ Λji;lmAi;l þMj;lm ð21Þ
where ½Āj�lm is the estimated dipole vector for the masked
map, and Λji;lm and Mj;lm are Gaussian random numbers
determined by the ālm, so they are dependent only on the
geometry of the mask. For unmasked skies, these two
quantities satisfy hΛji;lmi ¼ δij and hMj;lmi ¼ 0, ensuring
that the expectation value of our estimator converges to the
true value.
Using Eq. (21), we can define a transformation to recover

the true binned dipole vector from a masked map,

½Ai� ¼ Λ−1
ji ð½Āj� −MjÞ; ð22Þ

where ½Āj� is the binned dipole vector estimated from a
map, and Λji and Mj are the expectation values of Λji;lm
and Mj;lm, binned using the prescription in Eqs. (15)–(17).
For each Cartesian component, we divide the multipole
range in 19 bins with uneven spacing, Δl ¼ 10 for
2 ≤ l ≤ 100, Δl ¼ 100 for 101 ≤ l ≤ 1000. For a given
mask, the matrix Λji and the vectorMj can be computed by
using simulations of isotropic masked skies. We use an
ensemble of 2000 simulations, and we adopt the apodized
Planck U73 mask, following the procedure adopted by
PLK13 for the hemispherical power asymmetry analysis.
For the rest of this work, all estimates of the dipole vector
are corrected for the effect of the mask using Eq. (22).

B. Simulated skies

We generate 2000 randommasked skies for both isotropic
and dipolemodulated cases. For the latter, we assume a scale-
independent model with amplitude jAj ¼ 0.07, along the
direction in galactic coordinates ðl; bÞ ¼ ð220°;−20°Þ. We
adopt a resolution corresponding to the HEALPix [25,26]
parameter NSIDE = 2048, and we include a Gaussian
smoothing of FWHM = 50 to match the resolution of the
available maps. The harmonic coefficients ~alm are then

rescaled by
ffiffiffiffiffi
~Cl

q
, where the power spectrum is calculated

directly from themaskedmap. These normalized coefficients
(for both isotropic and dipole modulated cases) are then used
to estimate the components of the dipole vector.
These simulations also serve the purpose of estimating

the covariance matrix C. From Eqs. (9)–(11), we expect
different Cartesian components to be nearly uncorrelated,
even for models with a nonzero dipole modulation, for full-
sky maps. We confirm this numerically with simulations of
unmasked skies. For masked skies, Fig. 1 shows the
covariance matrices. The left panel shows the case for
isotropic skies with no dipole modulation. The presence of
the mask induces correlations between multipole bins at
scales 100≲ l≲ 500, and also between the largest scales
l≲ 40 with all the other multipole bins. However, because
of the apodization applied to the mask, the correlation
between bins never exceeds 25%. For comparison, we also
show the difference between the correlation matrices for the
case of dipole modulated and isotropic skies (right panel).
This is consistent with random noise, which demonstrates
that the covariance matrix does not depend significantly on
the amplitude of the dipole modulation.

C. Bias estimates

We determine the mean bias in reconstructing the dipole
modulation vector A from a masked sky by computing the
mean value of all three Cartesian components reconstructed
from 2000 simulations, for both isotropic and dipole-
modulated skies. In both cases, the residual bias vector
has components Ai > 0, with an amplitude of the first bin
of each Cartesian component below 6 × 10−3. For the
isotropic case, the amplitude of the bias is strongly
decreasing with multipole (jAðl ¼ 60Þj ¼ 3.8 × 10−4), cor-
responding to 0.5% to 2% of the cosmic variance error for
the entire multipole range considered. Therefore, the
analysis procedure on masked skies does not introduce a
statistically significant signal which could be mistaken for
dipole modulation.
In the case of dipole-modulated simulations with dipole

amplitude A ¼ 0.07 consistent with PLK13 (see Sec. III C),
the amplitude of the bias for each Cartesian component is a
constant for all multipoles. This indicates that the bias
follows the underlying model, and the determination of the
scale dependence of the true dipole vector will not be
affected by such a bias. For this specific case, the amplitude
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is always ≤ 0.8σ when compared to the cosmic variance,
specifically ≤ 0.1σ for l ≤ 100. However, this simulated
case is unrealistic. We do not expect such a big amplitude
for the dipole vector at small scales, so the simulated case
overestimates the actual bias.

IV. MICROWAVE SKY DATA

We consider a suite of six different foreground-cleaned
microwave background temperature maps [27]: SMICA,
NILC, COMMANDER-Ruler H, and SEVEM from the first
Planck data release [28], and two others processed with the
LGMCA [29] component separation technique fromRef. [30].
The LGMCA-PR1 and LGMCA-WPR1 are based on Planck
data only and Planck+WMAP9 data, respectively, allowing
a nontrivial consistency test between these two experiments.
Each of these maps uses a somewhat different method for
separating the microwave background component from
foreground emission, allowing us to quantify any depend-
ence on the component separation procedure.
Asymmetric beams and inhomogeneous noise may

create a systematic dipolar modulation in the sky. In order
to test this possibility, we analyze the 100 publicly available
FFP6 single-frequency simulated maps released by the
Planck team. Specifically, we process the simulations for
the 100, 143, and 217 GHz channels with our analysis
code. The maximum likelihood analysis shows a bias on
small scales, although the values are always less than 0.6
times the cosmic variance for each multipole bin.
Considering only the first 15 bins (lmax ¼ 600) gives a
result consistent with the isotropic case, with a p-value
larger than 0.1. The source of the small-scale bias is not yet
known, but we simply ignore multipoles l > 600 in the
present analysis of Planck data.

V. RESULTS

Figure 2 shows the measured values of the Cartesian
components of the dipole vector, using the SMICA map.
Similar results are found for the other foreground-cleaned
maps, and a direct comparison is shown in Sec. VA.
Figure 3 displays the amplitude of the dipole vector
compared with the mean value (black dashed line) obtained
from isotropic simulations; as pointed out in Sec. II, the
expectation value of the amplitude of the dipole vector is
different from zero even for the isotropic case.
The data clearly show two important features:
(i) The amplitudes of the components of the estimated

dipole vector are decreasing functions of the multi-
pole l.

(ii) The x and y components have a negative sign, which
persists over a wide range of multipoles; the z
component is consistent with zero. This indicates
that the vector is pointing in a sky region
ð180° < l < 270°; b≃ 0Þ, in agreement with pre-
vious analyses.

We further characterize these basic results in the remainder
of this section.

A. Geometrical test

First, we test how likely the observed geometrical
configuration of the dipole vector is in an isotropic
universe. To achieve this goal, we need to define a quantity
which preserves the information on the direction of the
dipole vector (i.e., statistics linear in the variables Ai). In
addition, the Cartesian components have to be weighted by
the cosmic variance, ensuring that our statistics is not
dominated by the first bins. Therefore, we define the
following quantity,

FIG. 1 (color online). Correlation matrices for the Cartesian components of the dipole vector. These matrices are estimated using 2000
randomsimulated skiesmaskedwith the apodized PlanckU73mask. The ordering of the components follows the convention defined for the
dipolevector. (Left panel) Isotropic skies (A ¼ 0). (Right panel) Difference between the correlationmatrices formodulated skies, generated
using a constant dipole vector across multipoles of magnitude jAj ¼ 0.07 and direction ðl; bÞ ¼ ð220°;−20°Þ, and isotropic skies.
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α ¼
X3N
i¼1

ðC−1Þij½A�j¼1;…;3N; ð23Þ

where (C−1Þij are the components of the inverse of the
covariance matrix calculated in Sec. III B, and ½A�j¼1;…;3N
are the three Cartesian components of the binned dipole
vector (up to the Nth bin) estimated either from a simulated
map or measured data. For an isotropic universe, we expect
the three Cartesian components to sum up to zero, such that
hαi ¼ 0 for any choice of lmax. This will not be the case if
the underlying model is not isotropic (i.e., the expectation
values of the Cartesian components are different from
zero). In Fig. 4, we plot the values of the α parameter as a

function of the maximum multipole considered in the
analysis lmax, rescaled by the standard deviation σðαÞ
determined from the simulations of isotropic skies. The
left panel shows the comparison between the CMB data for
all six foreground-cleaned maps, and the simulations
for the isotropic case. The measured rescaled α parameter
has a value that is discrepant from α ¼ 0 at a level of
2σ ≲ α < 3σ. This discrepancy is maximized for
l≲ 70–80, which corresponds to what has been previously
probed by PLK13.
The right panel of Fig. 4 compares the measured signal

with simulations of dipole modulated skies, using the
covariance matrix C calculated from the anisotropic simu-
lations. This test confirms that the signal averaged over

FIG. 3 (color online). Measured amplitude of the dipole vector from the SMICA Planck map. The black dashed line shows the model
for the statistical isotropic case A ¼ 0. The 1σ errors are estimated from the 16th and 84th percentiles of the distribution of the dipole
vector amplitudes, calculated from sky simulations processed the same way as the data.

FIG. 2 (color online). Measured Cartesian components of the dipole vector from the SMICA Planck map as a function of the central
bin multipole lcenter. The amplitudes are multiplied by

ffiffi
l

p
to enhance visibility of the signal at higher multipoles. The 1σ errors are the

square roots of the covariance matrix diagonal elements. Data at l > 600 are not used in our statistical analyses.
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multipoles ≲70 is consistent with the model proposed by
PLK13 (assumed in our anisotropic simulations). However,
the results are not consistent with a scale-independent dipole
modulation, and the amplitude of the dipole modulation
vector must be strongly suppressed at higher multipoles.

B. Model fitting

Consider a simple power-law model for the Cartesian
components of the dipole modulation vector defined by
four parameters:

Ath
x ¼ A

�
l
60

�
n
cos b cosl; ð24Þ

Ath
y ¼ A

�
l
60

�
n
cos b sinl; ð25Þ

Ath
z ¼ − A

�
l
60

�
n
sin b; ð26Þ

where A is the amplitude of the dipole vector at the pivot
scale of l ¼ 60, n is the spectral index of the power law, b is
the galactic latitude, and l is the galactic longitude. We use
a Gaussian likelihood L, such that

lnL ¼ −
1

2
χ2

¼ −
1

2
ð½Ai� − ½Ai�thÞTðC−1Þijð½Aj� − ½Aj�thÞ; ð27Þ

where ½Ai� are the estimated components from the Planck
SMICA map, ½Ai�th are the components of the assumed
model properly binned using Eqs. (15)–(17), and C is the
covariance matrix for a masked sky displayed in Fig. 1. The
parameter space is explored using the Markov chain
Monte Carlo sampler emcee [31,32], assuming flat priors

over the ranges fA; ng ¼ f½0; 1�; ½−2; 2�g. Table I displays
the results for different thresholds of lmax.
In the restricted case considering only low multipoles

l < 60 and a flat spectrum n ¼ 0, our best-fit model agrees
at the 1σ level with previous analysis by PLK13, for both
amplitude and direction.
If n is allowed to vary, the amplitude A of the dipole

vector at the pivot scale of 60, as well as the spectral index
n, is perfectly consistent for three different lmax thresholds.
The amplitude is different from the isotropic case A ¼ 0 at
a level of 2σ, and the scale-invariant case n ¼ 0 with
lmax ¼ 400 is excluded at greater than 3σ significance. The
value of the galactic longitude l is stable to a very high
degree, whereas the value of the galactic latitude b
increases (although not statistically significant) as we
include higher multipoles in the likelihood analysis. This
indicates that the pointing direction of the dipole vector
moves from the southern hemisphere to the northern one, as
we expect from the effect of the kinematic dipole modu-
lation induced by the proper motion of the solar system
with respect to the microwave background rest frame
[10,18,33]. This effect has been detected by Planck [20]
and results in a dipole modulation in the direction ðl; bÞ ¼
ð264°; 48°Þ detectable at high l.
The dipole model is a better fit to the data than isotropic

models. Both the Aikake information criterion (AIC) and
the Bayes information criteron (BIC) [34] show sufficient
improvement in the fit to justify the addition of four extra
parameters in the model. In the specific case of the AIC, the
dipole model is always favored. The improvement is
calculated by the relative likelihood of the isotropic model
with respect to the dipole modulated case. This is defined
as expððAICmin − AICA¼0Þ=2Þ, where the AIC factor is
corrected for the finite sample size, and it corresponds to
0.48,0.083,0.13,0.18,0.013, and 0.011 for the models
considered in Table I. In the case of the BIC, the

FIG. 4 (color online). The αparameter from Eq. (23), scaled by the standard deviation σðαÞ, as a function of the maximum multipole
considered lmax. The colored solid lines are the results from CMB data, showing remarkable consistency between different foreground
cleaning methods. (Left panel) The shaded bands are estimated using simulations of isotropic masked skies. The distribution αparameter
is Gaussian with hαi ¼ 0. (Right panel) The shaded bands are estimated using simulations of dipole modulated masked skies. The dipole
modulation model is A ¼ 0.07, ðl; bÞ ¼ ð220°;−20°Þ. The confidence regions (colored band) are estimated using percentiles, such that
�1σ ¼ ½15.87th; 84.13th�, �2σ ¼ ½2.28nd; 97.72th�, and �3σ ¼ ½0.13st; 99.87th�.
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corresponding values are BICmin − BICA¼0 ¼ −0.5;−0.4;
1.0; 2.1;−2.8, and −2.8. The BIC indicates that the dipole
modulation is favored only for the cases with lmax > 400,
where the parameters are better constrained. According to
Ref. [35], the improvement, even though positive, is not
strong because −6 < BICmin − BICA¼0 < −2.
For the dipole-modulated model, the value of χ2 is

substantially lower than the degrees of freedom. This
suggests that either the error bars are overestimated or
the data points have correlations which have not been
accounted for in the simple dipole model. Since the errors
are mostly due to cosmic variance on the scales of interest,
the error bars cannot have been significantly overestimated.
Therefore, our results may point to additional correlations
in the microwave temperature pattern beyond those induced
by a simple dipole modulation of Gaussian random
anisotropies. The correlations are unlikely to be due to
foregrounds, since the results show little dependence on
different foreground removal techniques.

VI. CONCLUSIONS

The microwave sky seems to exhibit a departure from
statistical isotropy, due to half the sky having slightly more
temperature fluctuation power than the other half. This
work shows that the temperature anisotropies are consistent
with a dipolar amplitude modulation, which induces
correlations with multipole coefficients with l values
differing by 1. At angular scales of a few degrees and
above, the correlations define a dipole direction which
corresponds to the orientation of the previously known
hemispherical power asymmetry, while at smaller scales the
direction migrates to that of the kinematic dipole. Our
results show that a dipole modulation is phenomenologi-
cally a good description of the power asymmetry, but that
the modulation must be scale dependent, becoming neg-
ligible compared to the kinematic dipole correlations
[18,20] on angular scales well below a degree.
The statistical significance of these multipole correla-

tions is between 2σ–3σ compared to an isotropic sky, with
the error dominated by cosmic variance. The maximum

signal appears at scales l≲ 70, as seen previously by
PLK13. We also find an unusually low scatter in the dipole
component estimates as a function of scale, given the
cosmic variance of an unmodulated Gaussian random field,
suggesting that the microwave temperature sky may have
additional correlations not captured by this simple model.
On the largest scales of the universe, simple models of

inflation predict that the amplitude of any dipole modula-
tion due to random perturbations in a statistically isotropic
universe should be substantially smaller than that observed.
This departure from statistical isotropy may require new
physics in the early Universe. One possible mechanism is a
long-wavelength mode of an additional field that couples to
the field generating perturbations [36–65]. If the mode has
a wavelength longer than the current Hubble length, an
observer sees its effect as a gradient. The field gradient
modulates background physical quantities, such as the
effective inflaton potential or its slow-roll velocity. The
required coupling between long- and short-wavelength
modes can be accomplished in the context of squeezed-
state non-Gaussianity [56–59]. This mechanism requires a
nontrivial, scale-dependent non-Gaussianity.
Apart from the hypothesis of new physics, foreground

contamination and instrumental systematics can break the
statistical isotropy of the microwave background temper-
ature map. However, these possibilities can be tested with
the available data. Our estimates of the Cartesian compo-
nents of the dipole vector, as functions of angular scale, are
consistent for different foreground-cleaned temperature
maps. The masking adopted in this analysis removes most
contaminations from diffuse galactic emission and point
sources, and our analysis procedure controls possible biases
introduced by this procedure. In addition, realistic instru-
ment simulations provided by the Planck Collaboration
exclude instrumental effects as the source of the observed
isotropy breaking at the angular scales of interest. While
this work was in preparation, the Planck team made
available the results of a similar analysis using the 2015
temperature maps (PLK15) [66]. Our estimates of the
amplitude and direction of the dipole modulation vector

TABLE I. Best-fit values of the amplitude A, spectral index n and direction angles ðl; bÞ for the dipole vector, as a function of the
maximum multipole lmax. The best-fit values correspond to the 50th percentile of the posterior distribution marginalized over the other
parameters. The errors correspond to the 16th and 84th percentiles. For the first case, we consider a model with spectral index n ¼ 0 and
lmax ¼ 60, which can be compared with PLK13 findings. Values of the χ2 corresponding to the best-fit model, as well as to the isotropic
case, are also displayed with a corresponding number of degrees of freedom ν.

lmax A n b½°� l½°� χ2minðνÞ χ2A¼0ðνÞ
60 0.063þ0.028

−0.030 � � � −10þ21
−21 þ218þ24

−24 10.3 (15) 19.5 (18)
200 0.034þ0.014

−0.016 −0.54þ0.38
−0.22 −7þ16

−16 þ211þ19
−19 16.4 (29) 30.8 (33)

300 0.029þ0.012
−0.014 −0.68þ0.26

−0.19 −11þ18
−16 þ211þ20

−20 18.1 (32) 31.4 (36)
400 0.027þ0.012

−0.014 −0.74þ0.22
−0.18 −9þ19

−18 þ212þ22
−21 19.3 (35) 31.9 (39)

500 0.031þ0.012
−0.013 −0.61þ0.23

−0.15 −4þ13
−13 þ207þ16

−16 22.5 (38) 40.2 (42)
600 0.031þ0.011

−0.012 −0.64þ0.19
−0.14 −1þ13

−14 þ209þ16
−15 23.9 (41) 41.9 (45)
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on large scales (lmax ¼ 60) are consistent with PLK15
analysis based on bipolar spherical harmonics. The PLK15
analysis does not provide a constraint on the scale depend-
ency, although it shows (as for the PLK13 analysis) that the
amplitude must decrease at higher multipoles. PLK15
shows that the amplitude of the dipole vector differs from
the isotropic case at a level of 2σ–3σ when calculated in
cumulative multipole bins ½2; lmax� for lmax up to 320. This
result can be compared with our geometrical test in Fig. 4,
for which similar results are found.
Additional tests of the dipole modulation will be possible

with high-sensitivity polarization maps covering significant
portions of the sky (see, e.g., Refs. [67,68]). In the standard
inflationary cosmology, microwave polarization and tem-
perature are expected to be only partially correlated, giving
an additional independent probe of a dipole modulation; a
cosmic-variance limited polarization map will likely double
the statistical significance of the signal studied here.
Gravitational lensing of the microwave background over
large sky regions provides another nearly independent
probe which will be realized in the near future. We will

consider these possibilities elsewhere. If these probes
substantially increase the statistical significance of the
dipolar modulation signal, we will be forced into some
significant modification to the inferred physics of the early
Universe.
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