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The latest Planck results reconfirm the existence of a slight but chronic tension between the best-fit
cosmic microwave background (CMB) and low-redshift observables: power seems to be consistently
lacking in the late universe across a range of observables (e.g. weak lensing, cluster counts). We propose a
two-parameter model for dark energy where the dark energy is sufficiently like dark matter at large scales to
keep the CMB unchanged but where it does not cluster at small scales, preventing concordance collapse
and erasing power. We thus exploit the generic scale-dependence of dark energy instead of the more usual
time-dependence to address the tension in the data. The combination of CMB, distance and weak lensing
data somewhat prefer our model to ΛCDM, at Δχ2 ¼ 2.4. Moreover, this improved solution has
σ8 ¼ 0.79� 0.02, consistent with the value implied by cluster counts.
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I. INTRODUCTION

The recent Planck cosmology results [1,2] provide stun-
ning support for theΛCDM “standard model” of cosmology.
One of the few results that are not in quite as excellent
agreement with the parameter constraints from the measure-
ments of the anisotropies in the cosmic microwave back-
ground (CMB) is the determination of the amplitude of
cosmological perturbations at late times on small scales. This
slight tension is most apparent when comparing to weak
lensing measurements as provided by CFHTLenS, which
prefers lower values of σ8 (Ref. [2], Fig. 18) and also the
lower-than-expected cluster abundances (Ref. [3], Fig. 10
and [4]). In addition, dark matter growth rates, proportional
to σ8, tend to fall on the low side of the concordance values,
even if they are not inconsistent [2], Fig. 16. Although it is
well possible that these discrepancies come from systematic
effects in the analysis of the data in the low-redshift universe,
it is also the case that late-universe measurements of σ8
consistently imply a smaller value than that obtained by
processing the initial amplitude of perturbations observed in
the CMB through concordance gravitational collapse.
One possible resolution of this conflict is to suppress the

clustering at low redshift through a new physical mecha-
nism active only at late times. For example, heavy neutrinos
could play such a role for clusters [5,6]. However, the latest
data do not seem to support this [2].
Somewhat more exotically, dark energy could be

dynamical, changing the evolution of the universe at late
times. However, the analysis in [7], Fig. 4, shows that
distance data from baryon acoustic oscillations (BAO)
constrains the usual quintessencelike models too much
to significantly improve the possible fits to weak lensing
data. More general models of modified gravity (MG) in the
quasistatic limit that do not contain ghosts typically serve to

increase growth rates [8–15], although a temporary sup-
pression around redshift z ≈ 1 is also typical [16] and could
possibly be exploited with some tuning.
There is another possibility: dynamical dark energy

could affect dark-matter clustering in a scale-dependent
manner. The CMB is mostly a large-scale observable, while
galaxy weak lensing has only been measured on small
scales; clusters are also small-scale phenomena. A model
where DE causes the dark matter to cluster slower at small
scales than at large without significantly modifying the
background expansion history could produce the desired
phenomenology.
We propose a mechanism to achieve this: we exploit the

dark degeneracy [17] to trade some of the dark matter for
dark energy. Provided the two are similar enough, observ-
ables remain unchanged with respect to ΛCDM. We
investigate a very minimal extension of the concordance
cosmological model: we allow the dark energy to be a
perfect fluid with constant pressure and a constant nonzero
sound speed. This keeps the expansion history exactly the
same as ΛCDM. Such a choice allows us to concentrate on
investigating the effect of changing the properties of the
perturbations of dark energy while keeping the back-
ground, which is already very well constrained, fixed.
If the dark energy has exactly zero sound speed, then the

dark degeneracy also ensures that the linear perturbations in
the metric are unchanged with respect to ΛCDM.
Effectively, the dark energy component that replaces part
of the dark matter also clusters like that missing dark
matter. However, if the sound speed is nonzero then the
dark energy clusters less than the missing dark matter on
scales inside its sound horizon. We show that this model, as
a result of this change in the behavior of DE at its sound
horizon, indeed goes some way to relieve the tension
between the early and late universe and is favored over
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ΛCDM when the combination of CMB and weak lensing
data are used. Moreover, the best-fit model has a lower
value of σ8 which should help with the tension with cluster
number counts.

II. DARK-ENERGY MODEL

All measurements of the cosmological background
expansion history, such as baryon acoustic oscillations
(BAO) or supernovae (SNe), or even cosmic chronometers,
only measure relative distances or times, which are inte-
grated quantities depending only on the dimensionless
Hubble parameter HðzÞ=H0, where H0 is the Hubble
constant. Thus, provided that the equation of state of the
total dark sector be kept constant (i.e. the sum of CDM and
DE), distance measurements are completely degenerate to
any changes in relative composition between the two
species. This fact was named the dark degeneracy in
Ref. [17] and it implies that background measurements
are incapable of measuring the cold dark matter (CDM)
fraction Ωc0 absent a choice of parametrization for wX.
Measurements of large-scale structure, such as the CMB
anisotropies, can break this degeneracy, but require a model
for the behavior of dark-energy perturbations to be speci-
fied [18,19]. One should really think of the density fraction
of DM as a perturbation variable and not a background
parameter [20]. While wX is frequently parametrized as
constant and the best-fit cosmology prefers values close to
wX ¼ −1 with a good determination of Ωc0 [2], the
indubitable fact is that our universe seems to be close to
one which has a constant pressure at late times, making a
DE component with a constant energy density just one of
the possibilities. As we will show here, this is not just an
academic discussion.
Our only modification to the concordance model is to use

a perfect-fluid dark energy with a constant (rest-frame)
sound speed cs and a particular designer choice of equation
of state wX that ensures that the background expansion
history exactly mimics ΛCDM (i.e. our DE has constant
pressure).

A. Background

In order to maintain a fixed expansion history, we pick
the density fraction of dark energy ΩX such that its sum
with the CDM density fraction remains the same as the sum
of the density fraction of the cosmological constant and
some reference CDM density ΩPlanck

c0 in ΛCDM. We will
refit the data for the values of all the parameters in the
paradigm of our extended model, but for the moment, one
should think of it as the standard Planck value for Ωc0,

ΩXðaÞ þ ΩcðaÞ ¼ ΩΛðaÞ þ ΩPlanck
c ðaÞ; ð1Þ

where a is the scale factor. This relation implies that the
equation of state of the DE satisfies

1þ wXðaÞ ¼
ΔΩc0

ΔΩc0 þ ΩΛ0a3
; ð2Þ

where ΔΩc ≡ΩPlanck
c −Ωc and where the subscript 0

denotes the value today. ΔΩc0 is the only new parameter
introduced at the level of the background and it replaces the
more typical constant parametrization for wX.
Generically, a violation of the null energy condition

leads to instabilities. These are inescapable for null energy
condition-violating perfect fluids (either ghost or gradient
instabilities) [21], but may even exist in more general cases
[22]. We thus only consider ΔΩc > 0, i.e. wX > −1.
We note here that such choices for wX as Eq. (2) are

badly captured by the prevailing parametrizations in use in
the community, such as a constant or the Chevallier-
Polarski-Linder (CPL) parametrization [23,24], which is
one of the origins of our results. It is much more similar to
models with a transition in the equation of state (e.g.
Ref. [25]) or early dark energy (EDE) parametrizations
(e.g. Ref. [26]), since the DE component tracks the CDM
before the acceleration era. Other models with similar wðzÞ
include quintessence coupled to neutrinos [27] or the
generalized Chaplygin gas (GCG) [28].
The evolution of the background is essentially missing

all information about the microphysical content of the DE
model, which is defined through the behavior of perturba-
tions. For example, modeling the GCG perturbations in
various ways gives rise to completely different constraints
[29,30]. We focus on defining the evolution of perturba-
tions next.

B. Linear properties

We start off with a Friedmann-Robertson-Walker (FRW)
metric with small scalar perturbations, with the gauge fixed
to be Newtonian:

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞð1 − 2ΦÞδijdxidxj; ð3Þ

keeping only the scalar perturbations.
By construction, the scalar sector of the linear perturba-

tion equations for the dark energy takes the standard
form for a perfect fluid which we do not give here (see
e.g. [31–33]). Since the background expansion history
mimics ΛCDM, the pressure of the dark energy is constant
and therefore the adiabatic sound speed c2a ¼ 0 exactly.
Therefore the only new parameter that we need to specify is
the sound speed cs which we take to be constant and to lie
in the range 0 < c2s ≤ 1. This is the second and final new
parameter of our model. We can define the (physical) Jeans
scale as

kJðzÞ≡ HðzÞ
ð1þ zÞcs

; ð4Þ
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which we will demonstrate separates two different regimes
of evolution for perturbations.
Provided that the dark energy consists of a single degree

of freedom, and therefore has no additional internal free-
dom, the dynamics of the perturbed cosmology can be
rewritten in a manner much more illustrative than the usual
presentation with fluid variables (see [19], [Eq. (21)]): one
combines the various constraints given by the Einstein
equations to eliminate the DE fluid variables and to form a
single equation of motion for the Newtonian potential
which is coupled to the other matter species,

Φ̈þ 3H _ΦþH _Ψþ ð3H2 þ 2 _HÞΨþ c2s
k2

a2
Φ

¼ −c2s
�
ρmδm
2

−
3

2
ðρm þ pmÞHvm

�
þ δpm

2
ð5Þ

Ψ − Φ ¼ pmπm ð6Þ

where the fluid variables with subscript “m” describe the
total perturbation of the matter sector, including radiation,
baryons, CDM and neutrinos, but not the DE. This system
is closed by supplying the evolution equations for the total
matter energy-momentum tensor, whether by assuming the
matter be a collection of fluids, or by solving some sort of
Boltzmann hierarchy.
Equation (5) should be contrasted with its version in

ΛCDM:

Φ̈þ 3H _ΦþH _Ψþ ð3H2 þ 2 _HÞΨ ¼ δpm

2
: ð7Þ

There are three important differences between Eqs. (5)
and (7):

(i) the presence of a sound-horizon (Jeans) term c2s
k2

a2 Φ;
(ii) the sourcing of the potential by the matter perturba-

tions with a coupling c2s ;
(iii) the potentialΦ in our model is in fact an independent

degree of freedom with its own initial conditions.1

In ΛCDM, it is completely constrained and not
independent.

Note that the cosmological horizon does not appear as a
relevant scale here at all; its sound horizon is the only scale
relevant for the DE.
At scales larger than the DE sound horizon, k ≪ kJ, the

quasistatic approximation for the DE cannot be used [35].
The Jeans term on the left-hand side of Eq. (5) is negligible
and the difference with respect to the ΛCDM case is the
new source term coupled with c2s on the right-hand side.
It affects the evolution of the potentials whenever it is
comparable to the pressure perturbation term δpm coming
from radiation, essentially providing a new early integrated

Sachs-Wolfe contribution. For example, around the time of
decoupling, the CDM and radiation density fractions are
comparable, so the new term is negligible when c2s ≪ 1=3.
For such DE sound speeds, the evolution of perturbations in
the metric is the same as in ΛCDM, irrespective of the value
of ΔΩc, i.e. how much CDM has been removed and
replaced with the DE.
This means that, outside of its sound horizon, the DE

clusters just like CDM since it cannot react causally to
create a pressure to arrest the dustlike collapse along
geodesics. The fact that quintessence tracking models
behave in this way at large scales was shown in
Ref. [34] and this is also one of the implications of the
separate-universe approach [36]. Essentially, the part of the
DE energy density that is tracking contributes in the same
way as the CDM dust at these scales and therefore the
model looks like ΛCDM there.
At scales inside the Jeans scale, k ≫ kJ, the Jeans term

makes the evolution equation (5) stiff, leading to the
solution usually known as the quasistatic solution,

k2

a2
Φ ≈ −

ρmδm
2

þ 3

2
ðρm þ pmÞHvm þ δpm

2c2s
: ð8Þ

When the pressure is irrelevant, this recovers the standard
Poisson equation of ΛCDM, with the gravitational potential
driven purely by the comoving density fluctuations of
matter. At these scales, the DE reacts causally and sets up a
pressure profile to prevent its clustering. The gravitational
potential is sourced only by the standard species. Thus
picking aΔΩc > 0 to replace a part of CDMwill reduce the
depth of the potentials and therefore also the growth rate on
scales inside the DE Jeans length.
When the total pressure perturbation is not negligible

compared to the total density perturbation, e.g. at decou-
pling, the final term in Eq. (8) could in principle contribute
for small DE sound speeds. On the other hand, we have to
bear in mind that the angular scale of the DE Jeans scale in
the CMB is proportional to the DE sound speed. We can use
the Limber approximation to estimate that the multipoles at
which the approximation (8) is valid is

l ≫ lJeans ∼ lpeak

ffiffiffi
3

p

cs
; ð9Þ

where lpeak ≈ 200 is the multipole at which the first CMB
peak is centered and therefore the solution (8) is only
possibly relevant to the observed CMB anisotropies
for c2s > 10−2.
We illustrate the effect of our model on the CMB TT

power-spectrum in Fig. 1, where it can be seen that already
for c2s ¼ 0.001, the modification of the ΛCDM curve from
the terms discussed above is negligible when the effects
from the late universe are not included. This can be verified

1Note that in tracker models of DE, the isocurvature modes
decay away [34].
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by comparing a perfect Planck forecast with no late-time
effects included for ΛCDM with our model.
Turning to the late universe, as the mode crosses the DE

sound horizon, the standard ΛCDM-like solution for the
potential Φ valid super-Jeans is modified to (8) as the DE
perturbations are erased. This then modifies the growth
function for that mode at all subsequent times, with the
matter perturbation evolving according to

δ̈m þ 2H _δm −
3

2
H2ð1 −ΩXÞδm ¼ 0: ð10Þ

This is essentially the same equation as in the ΛCDM case,
apart from the fact that even during matter domination
ΩX ≈ ΔΩc0=Ωc0 ≠ 0, which changes the growing mode
evolution during matter domination from δΛCDMm ∝ a to

δm ∝ ap; p ≈ 1 −
3ΩX

5
; ð11Þ

for ΩX ≪ 1. This means that the matter growth functions at
some redshift z during matter domination receives a scale-
dependent correction:

Gðk; zÞ ∝
�
kJðzÞ
k

�3
5
ΩXð1þ zÞ−1; k > kJ ð12Þ

where z is the redshift of observation. Therefore, even for a
fixed amount of dark energy ΔΩc0, a larger sound speed
means that the pivot of the suppression effect lies at smaller
k and therefore the reduction in power is higher for any
particular mode inside the sound horizon (see Fig. 2 for the
effect on the CDM power spectrum or Fig. 3 for an

equivalent presentation of how the CDM power spectrum
amplitude σ8 today depends on the amount and sound
speed of our DE).
We remind the reader that the CDM and gravitational

potential power spectra are not affected for k < kJ, since the
dark energy is clustering and the potential has the full depth
as in ΛCDM.2

In principle, the amplitude of σ8 is closely related to the
rate of formation and mass function of halos. However, we
should note here that two different σ8’s can be defined: one
given by the autocorrelation of the CDM density contrast,
while the other defined from the autocorrelation of the
gravitational potential. In theΛCDM, c2s → 0 limit, they are
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FIG. 2 (color online). The effect on the CDM power spectrum
at z ¼ 0 of replacing roughly a third of the CDM (ΔΩc0 ¼ 0.1)
with our dark energy. For k ≫ H0=cs, the DE does not cluster and
causes the CDM growth rate to decrease after the mode crosses
the DE sound horizon. This suppresses the power spectrum at
small scales in a scale-dependent manner. Scales larger than the
sound horizon are not affected and match ΛCDM.
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FIG. 1 (color online). The effect on the unlensed CMB
anisotropy TT power spectrum of replacing roughly a third of
the CDM (ΔΩc0 ¼ 0.1) with our DE, as a function of its sound
speed c2s . For clarity we show the difference between the power
spectra for a given c2s and the ΛCDM model (c2s ¼ 0), i.e.
ΔCTT

l ¼ CTT
l ðc2sÞ − CTT

l ðc2s ¼ 0Þ. A large sound speed increases
the amplitude of the peaks, since the DE and radiation Jeans
horizons are close and the decay of perturbations is much more
rapid than in ΛCDM. By comparing to a perfect Planck forecast
with no lensing, we have verified that the unlensed power-
spectrum stops being sensitive to DE for sound speeds as large
as c2s ∼ 10−3.

10 12 10 10 10 8 10 6 10 4 0.01 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

cs
2

8 z 0 c0 0.01

z 0 c0 0.05

FIG. 3 (color online). The effect on the normalization of the
CDM power spectrum, σ8, at z ¼ 0 of replacing part of the CDM
with our dark energy. For c2s ≲ 10−6, the power spectrum is
significantly suppressed only on scales smaller than 8 Mpc and
therefore σ8 is not affected by such low sound speeds. As c2s
increases, the power spectrum is erased on increasingly large
scales, reducing σ8.

2At very late times, the comoving horizon shrinks as a result of
the acceleration. Thus modes can in principle exit the DE sound
horizon and have their growth increase back to ΛCDM rates.
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identical. But whenever the DE Jeans length lies at scales
larger than 8 comoving Mpc, the two are different, with the
former larger. On one hand, the forming clusters only know
about the gravitational potential, since the CDM does not
interact in any way but through gravity. On the other hand,
the clusters form in configuration space and locally only the
mass in the CDM perturbations is available to form them.
Which of the definitions is more appropriate requires
further study outside of the scope of this work and we
will use the more usual CDM definition henceforth.
The scale-dependent reduction of the amplitude of the

gravitational potential affects lensing. We plot the lensing
potential in Fig. 4, showing that the suppression is very
strong for large sound speeds and for largeΔΩc0. The effect
of lensing on the CMB was detected by Planck by two
methods: the smoothing of the power spectrum at small
scales and using the trispectrum; and it matches that
predicted by ΛCDM closely (although the power-spectrum
method sees a 2σ excess of lensing in the context of
ΛCDM) [2]. As we have already mentioned and show in
Fig. 5, the CMB at decoupling is only mildly sensitive to
DE sound speeds. It is the reduction of the CMB lensing
effect in the late universe that breaks the degeneracy
between the DE and CDM when c2s > 10−5.
Reference [37] proposed that the integrated Sachs-Wolfe

effect could be used to constrain the sound speed of dark
energy and shows that WMAP data imply c2s < 0.04. Since
the evolution of gravitational potentials at scales k ≪ kJ in
our model is purely determined by the evolution of the
cosmological background, the integrated Sachs-Wolfe
(ISW) effect on the CMB anisotropies also matches
that of ΛCDM for a low-enough sound speed and this
does not provide an interesting constraint. Similarly, cross-
correlations of ISW with galaxy clustering are unlikely

to constrain this model beyond some minimal sound
speed [38]. For lower sound speeds, the above probes only
test the expansion history.3 The novelty of Planck with
respect to WMAP in this context is that CMB lensing
provides new constraints which push the limits on c2s much
further than large-scale measurements.
The picture we have therefore built up is that, for small

enough DE sound speeds cs, the dark energy perturbations
behave as dust outside of their Jeans scale, making up for
the removed CDM and giving essentially the same pre-
dictions as ΛCDM. Inside the Jeans scale, the DE reacts
and develops a pressure which arrests its collapse, allowing
only the CDM to cluster. This reduces the growth rate at
small scales when compared to large, introducing a new
scale dependence in all the observables. In the limit cs → 0,
the dark energy behaves as dust at all scales, and therefore
is completely degenerate with ΛCDM, despite its equation
of state (see e.g. the Angel Dust model of [40] or mimetic
dark matter of [41,42]).
As a result, the constraints that we obtain from the CMB

are always an upper bound on the DE sound speed. Late-
universe measurements will match the ΛCDM results if
they are performed at scales larger than kJ and will differ if
they are centered on smaller scales. For very low DE sound
speeds, there is total degeneracy. The scale-dependent
growth rate resulting from the Jeans horizon allows us
to alleviate some of the tension of CMB measurements
when the sound speed is dialed up.
It is important to stress that at no point is the effective

Newton’s constant, describing the response of the gravita-
tional potential to the CDM, smaller than its standard value.
Deep inside the Jeans scale, they are exactly equal. Thus we
have achieved a reduction of the growth rate without
introducing some sort of gravity-like repulsive interaction
which would in all likelihood be pathological.

C. Microscopic model

We have purposefully de-emphasized the discussion of
the precise model of dark energy which might produce such
phenomenology as above. Essentially any DE/MG model
which comprises a single degree of freedom and has an
energy-momentum tensor of perfect-fluid form gives this
phenomenology when the solution has the equation of state
(2) and a constant sound speed for the perturbations around
it. Specifying the model allows for a calculation of any
nonlinear effects and for an estimate of the domain of
validity of our linear model.
As an example, the class of k-essence models [43]

provides for such behavior. The action is given by
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FIG. 4 (color online). The effect of replacing a third of the
CDM (ΔΩc0 ¼ 0.1) on the projected gravitational lensing po-
tential power spectrum l4CΦ

l as a function of the DE sound speed
squared c2s . Large values of the sound speed erase the contribution
to the potential from the DE even at the largest scales. As the
sound speed is decreased, the pivot of the damping moves to
higher multipoles, eventually giving the same lensing effect as
ΛCDM. The Planck temperature power spectrum constrains the
amplitude of the lensing signal to about 10%, which allows CMB
lensing to break the dark degeneracy for c2s ≳ 10−5.

3As was argued in Ref. [36], the presence of gravitational slip
changes the evolution of the potential at large scales. Thus the
late-time ISW effect could still be used to constrain it, even for a
fixed expansion history, and therefore test for modifications of
gravity [39].
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Sϕ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
KðX;ϕÞ; X≡−

1

2
gμν∂μϕ∂νϕ: ð13Þ

The equation of state and sound speed by this dark energy
are given by

w ¼ K
2XK;X − K

; c2s ¼
K;X

K;X þ 2XK;XX
ð14Þ

and given some initial conditions for ϕ; _ϕ a suitable K can
be found by integrating the above. An appropriate choice
could in fact be

K ¼ VðϕÞ þM4ðX=M4Þ
ð1þc2s Þ
2c2s ð15Þ

whenever the sound speed is small c2s ≪ 1 and where VðϕÞ
is some sufficiently slowly varying potential, M is a
constant mass scale.
Another way of thinking about this model, which is

completely equivalent at the level of this paper, is that we
are introducing a subcomponent of the dark matter which
exists in a condensate with a nonvanishing sound speed
[44]. In such an interpretation, the acceleration is still being
driven by a cosmological constant.
One should, however, be mindful when taking such

scalar-field superfluid models literally: the behavior of
perturbations when nonlinear deviates from standard fluids,
since the scalar field cannot carry vorticity and therefore
cannot virialize. The perturbations in the DE can become
nonlinear when c2s ≲ 10−6 [45]. At the same time, for sound

FIG. 5 (color online). The constraints on Ωc0, ΔΩc0 and c2s from the CMB anisotropy power spectrum (including CMB lensing) and
distance data (SNeþ BAO). Provided the sound speed be c2s < 10−5, the model is degenerate with ΛCDM for these data. Larger DE
sound speeds are allowed if the admixture of DE is sufficiently small. The constraint on the sound speed is essentially completely
determined by the effect of CMB lensing in the late universe on the observed CMB power spectrum, and not on the shape of the CMB
power spectrum at decoupling.
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speeds c2s ≲ 10−5 the pressure support that the DE can
provide is never quite enough to arrest the collapse and
such a fluid would continue to collapse either until the
breakdown of the effective description or would form a
black hole.

III. RESULTS

For our analysis we have slightly modified the CAMB/
CosmoMC public codes [46,47] to properly model the
evolution of a perfect fluid with a time-dependent equation
of state (2) and a constant sound speed cs. Unless stated
otherwise, we only let the parameters Ωc0h2;ΔΩc0; c2s and
θMC vary, keeping the others fixed to their ΛCDM Planck
2013 best-fit values [1]. Also, we should mention that we
scan the parameter space in terms of log10ðc2sÞ instead of
simply c2s, in order make it easier for the MCMC code to
sample the subtle effects of the sound speed and recover the
degeneracy for low c2s. For the final combined analysis, we
have freed all parameters.
Whenever possible, we have tried following the relevant

parts of the analysis of [2], although we were only able to
use the Planck likelihoods from the 2013 data release [1].
We first discuss the constraints from the different data sets
in turn and then perform a combined analysis in Sec. III C.
In order to provide a reasonable representation of the

degeneracies, we are always including distance data
together with each of the perturbation-related data sets.
Therefore, we have included the BAO measurements from
CMASS and LOWZ of Ref. [48], the 6DF measurement
from Ref. [49], the MGS measurement from Ref. [50] and
the Union 2.1 SNe Ia catalog from Ref. [51], all readily
available in the CosmoMC code. We do not include any
measurements of the Hubble constant H0, apart from a
uniform prior 0.4 ≤ h ≤ 1.0.
The setup most similar to ours was previously inves-

tigated in [32], albeit the parametrizations for the equations
of state of DE used were different. At the time, WMAP did
not provide strong constraints on the DE sound speed. As
we show here, this is no longer the case in the context of a
fixed background expansion history.

A. Constraints from full CMB

The Planck papers on cosmology [2] and on dark energy
and modified gravity [7] demonstrated that ΛCDM is a
good fit to the data. Given the discussion in Sec. II B, we
expect to recover a perfect degeneracy between Ωc0 and
ΔΩc0 when the sound speed is sufficiently low.
For this fit we are using both the CMB temperature and

low-multipole polarization power spectra from Planck
including of course the lensing of the CMB. We have
not included the lensing information extracted from the
temperature trispectrum.
As expected, Fig. 5 shows that CMB anisotropies

constrain only the sum Ωc0 þ ΔΩc0 ¼ 0.271� 0.004

whenever c2s ≲ 10−5. For small admixtures of DE, much
higher sound speeds are also allowed. The CMB does not
show any preference for having this extra component, but it
cannot rule out its existence either.
As we have previewed already in Sec. II B, this con-

straint on c2s actually comes mainly from CMB lensing,
which takes place in the late universe. We have generated a
perfect Planck forecast without lensing for ΛCDM and our
model and have found that the dark degeneracy cannot be
broken by the CMB power spectrum for c2s ≳ 10−3. The
CMB at decoupling is not very sensitive to clustering
properties of the dark matter.

B. Weak lensing shear

As was noted by Planck [2,7], the data from weak
lensing shear are slightly incompatible with the Planck
ΛCDM analysis: the preferred amplitude of the lensing
potential found by CFHTLeNS at angular scales 1.50 <
θ < 37.90 is lower than that expected when the initial
normalization of perturbations implied by the CMB AS is
extended to smaller scales and evolved forward in ΛCDM
[52]. If AS is kept constant at the Planck best-fit value,
and the distance measurements are in the likelihood, the
optimal solution for weak lensing (WL) has a lower density
fraction Ωc0 þ ΔΩc0 ¼ 0.244� 0.084 and a reduced
amplitude for the gravitational potential sourced by a
matter distribution with σ8 ¼ 0.761� 0.024. Provided that
the sound speed of our DE c2s ≲ 10−7, which ensures that
the data lie at scales outside of the DE Jeans horizon, the
WL data cannot break the dark degeneracy.
However, a new, equally good, solution for the lensing

data appears in the presence of a small amount of our DE
(ΔΩc0 ¼ 0.022� 0.016) with a large sound speed, c2s ≳
2.5 × 10−3 which also allows for a much larger value of the
CDM density fraction Ωc0 ¼ 0.265� 0.055. In such a
scenario, the DE clusters only at largest scales and therefore
the growth rate of the CDM is reduced according to
Eq. (12). This reduces the amplitude of the lensing potential
at late times despite the large Ωc0. We have verified that the
existence of this solution does not strongly depend on the
nonlinear completion used for the matter power spectrum:
just as Planck, for the fits in this paper we use Halofit with
the parameters of Takahashi et al. [53]. However, we have
verified that the constraints are not biased by comparing
them with the ones obtained using the original Halofit
parameters [54] and even by switching off the nonlinear
correction to the matter power spectrum completely. We
have also used the correlation functions from the alternative
CFHTLeNS analysis of Ref. [55], verifying that it would
not significantly influence our results.
In principle, one could have also varied the initial

fluctuation amplitude AS which would have given a much
weaker constraint for Ωc0, compatible with the CMB fits.
However, the CMB measures the initial amplitude very
well and therefore WL does not significantly correct the
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posterior for it. Thus the posteriors presented in Fig. 6
represent better the effective contribution of WL to the
posterior of the combined data. We of course free all the
parameters for the final combined fit.

C. Combined constraints

For the combined analysis, we include all the CMB data
in the Planck anisotropy power spectrum and the
CFHTLeNS weak lensing shear. We free all the standard
ΛCDM parameters as well as ΔΩc0 and c2s .

Like in previous cases we find that a dark degeneracy is
recovered in the combined fits for c2s ≲ 10−7, i.e. in the
parameter range as determined by the WL measurement.
This parameter range is equivalent to the concordance
cosmology and offers no improvement in the combined fit.
However, there exists an alternative, superior solution

already mentioned in Sec. III B, which fits the combined
data better than ΛCDM with a Δχ2 ¼ 2.4 while containing
two extra parameters. In order to discuss the posterior of
this solution, we impose a prior to eliminate the part of
infinite logarithmic parameter space where our model is

FIG. 6 (color online). The constraints on Ωc0, ΔΩc0 and c2s from CFHTLeNS weak-lensing data and distance data (SNeþ BAO). WL
data prefer a lower amplitude of perturbations than the CMB. Since we have fixed the initial inflationary amplitude to the Planck Λ best-
fit value, the solution achieves a good fit by reducing the preferred value of CDM density fraction Ωc0 compared to the CMB in Fig. 5.
The dark degeneracy is only recovered for sound speeds c2s ≲ 10−7, compared to 10−5 in the case of the CMB, since the weak lensing
data lie at much smaller scales than the CMB lensing. The WL data also permit an alternative, equally well-fitting, solution: Ωc0 can be
larger provided that there is also a significant amount of DE, ΔΩc0 > 0. This DE must then have a large sound speed which ensures that
its perturbation are erased already at large scales and the gravitational collapse of CDM proceeds more slowly at most subhorizon scales,
according to the growth function (12). Essentially all the points in the posterior presented in the right panel which have a large sound
speed come from this alternative solution.
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completely degenerate with ΛCDM, cutting the chains at
c2s > 10−7. We show this part of the parameter space
in Fig. 7.
Given this cut, the combined data prefer Ωc0 ¼ 0.239�

0.020 together with an admixture of ΔΩc0¼0.017�0.019
of dark energy with a sound speed of log10ðc2s Þ ¼
−4.394� 1.779. The combined density fraction Ωc0 þ
ΔΩc0 is consistent with the Planck 2013 best fit of
Ωc0 ¼ 0.265� 0.011. At small scales, the DE stops to
cluster and recovers the preferred lensing density fraction.
We note that in this alternative solution, the amplitude of

the CDM power spectrum is σ8 ¼ 0.79� 0.02, which lies
within 1σ of the value as implied by clusters in Ref. [3].
However, the power spectrum is quite modified at small

scales and the predictions for nonlinear structures might
not be related to the value of σ8 in the same manner as
in ΛCDM.

IV. DISCUSSION AND CONCLUSIONS

There is a weak but chronic tension between the CMB
measurements of cosmological inhomogeneities and those
obtained from the late universe, which consistently suggest
that there is less power at late times than expected inΛCDM.
There are many systematic effects that could be playing a
role in biasing our interpretations of the low-redshift uni-
verse (baryonic physics, intrinsic alignment, badly modeled
nonlinear physics), but one should ask whether such a

FIG. 7 (color online). The constraints on ΔΩc0 and c2s when using the combination of Planck CMB power-spectrum data and distance
data (BAOþ SNe), together with weak lensing shear data from CFHTLeNS. We have imposed a hard prior c2s > 10−7 in order to
remove the infinite parameter space where our model is completely degenerate with ΛCDM for all the data under consideration. The data
prefer a small admixture of DE with ΔΩc0 ¼ 0.017� 0.019 and a sound speed of log10ðc2s Þ ¼ −4.394� 1.779. This gives a cosmology
which for the purposes of the CMB looks like the standard ΛCDM model, but the clustering is reduced at the scales probed by
galaxy shear.
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phenomenology, if it were to persist, could be evidence of
some sort of dynamics in the dark energy/gravity sector.
The usual approach to solve this is to change the

geometry of the universe at late times (i.e. change w).
However, it is difficult to create a large effect on perturba-
tions without significantly altering distances. The con-
straints from BAOs and SNe are now tight enough that
it is very difficult to create a large effect consistent with
these background data and the CMB. Moreover, the CMB
lensing and the WL are driven by the same physics and the
geometrical kernels lie close together at lower redshifts, so
that it is difficult to produce a significant discrepancy in the
clustering seen by these two probes with the help of a
purely time-dependent effect.
Taking account of the fact that the data in tension (CMB

and WL/clusters) probe different scales, we advocate an
alternative approach. We keep the expansion history fixed
and use the DE to make the CDM cluster differently at
small and large scales. We have used a simple perfect fluid
to model this effect. Yet this type of model is relatively
poorly explored as a result of the focus on particular classes
of parametrization of w (CPL). We have instead exploited
the dark degeneracy to freely vary the CDM density
fraction Ωc0 while keeping HðzÞ fixed.
The sort of parametrization we have employed gives a

non-negligible contribution of dark energy at early times.
This does not deform the CMB in an unacceptable manner
because our model strongly violates the quasistatic
approximation typically used in the DE/MG calculations.
Perfect fluids at scales beyond their sound horizons evolve
as dust, irrespective of their equation of state. Thus the
growth rate at largest scales is completely determined by
HðzÞ and perturbation evolution in our model is degenerate
with ΛCDM at large enough scales. This is a known and
generic result for any model with no anisotropic stress [36]
and exploited in the parametrization of Ref. [56].
That being said, CMB lensing, detected in the Planck

power spectrum at 10σ, puts a very strong upper limit on
the DE sound speed. Since the CMB lensing is consistent
with ΛCDM, the DE must cluster as dust on the scales
probed by it. Then there needs to be a rapid transition in the
clustering properties, so that the CDM growth rate is
reduced at the smaller scales probed by WL.
We stress that despite the fact that the CMB is a high-

redshift observable, it constrains our model mostly at low
redshifts. In total, the combination the combination of
CMB and WL data fit the model better than ΛCDM
with a Δχ2 ¼ 2.4. This solution has aΩc0 ¼ 0.239� 0.020
with the presence of a small admixture of DE
ΔΩc0 ¼ 0.017� 0.019. This keeps the CMB anisotropies
unchanged while reducing the amplitude of the gravita-
tional potential inside the Jeans horizon and bringing the
two data sets together.
Our improved solution has reduced σ8 ¼ 0.79� 0.02,

which is closer to the result reported by Planck in 2013

from clusters (σ8 ¼ 0.75� 0.03) [3]. This decrement in
power continues at small scales, which could in principle
help alleviate some of the tension between N-body sim-
ulations of CDM and the observations (e.g. the missing-
satellites problem [57] and Too Big to Fail [58]). It is
interesting to ask whether the nonlinear behavior of CDM
in this scale-dependent model could be mapped from
standard ΛCDM N-body simulation using a method such
as that proposed in [59]. Since in our model at small scales
gravity is not modified and there are no new screening
effects, this might give a simple method for adjusting
calibration in e.g. Halofit for this subclass of DE models
and therefore to predict small-scale lensing and cluster
formation with a better accuracy than we can currently.
We have not used constraints from redshift-space dis-

tortions on the CDM growth rate fσ8. On one hand, we find
that the uncertainty in the most precise measurements to
date [60–62] is still high enough not to affect the posteriors
significantly in the vicinity of the best-fit region of our
scenario. More importantly, we are dealing with a model in
which an evolving scale-dependence of the matter power
spectrum is a key feature. Interpreting the growth-rate data
in such a scenario is somewhat subtle since the growth rates
are scale-dependent [63,64] and we will give this question
the consideration it deserves in a separate work.
We should stress that we have exploited a completely

generic feature of modified gravity. The response of the
gravitational potential to the CDM perturbations depends
on scale in all models apart from ΛCDM, whether because
such a transition is already explicit in the quasistatic
approximation (e.g. fðRÞ gravity where the Compton mass
provides a scale [65], or see Ref. [19]) or because the
quasistatic approximation fails beyond the Jeans scale (in
the scenario discussed here; also see Ref. [35]). This
implies that a scale-dependent modification of the matter
power spectrum is completely generic in dynamical dark
energy/modified gravity models and typically will take
place in a range of modes corresponding to the Jeans/
Compton-mass scale today and mode corresponding to the
Jeans scale at the time that the DE/MG started contributing
to the gravitational potential significantly.
Observations of large-scale structure are performed not

only around a particular redshift, but inside a particular
range of scales probed by the survey. This scale-
dependence can make the interpretation of measurements
complicated, if the measurements are reported assuming a
ΛCDM-like scale-independent behavior, instead of a rawer
form closer to the observation.
The phenomenology of such “cold dark energy” [66]

models featuring low sound speeds as proposed here and
exploiting a scale-dependent phenomenology, but in a more
general context of effective field theory of dark energy
[20,67–70] remains largely unexplored, but is necessary if
we are to build a full understanding of the constraints data
placed on the properties of the dark sector.
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