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We present a new approach to the vacuum Bianchi IX model by combining affine coherent state
quantization with Born-Oppenheimer-type adiabatic approximation in the analogy with quantummolecular
physics. The analytical treatment is carried out on both quantum and semiclassical levels. Our quantization
method by itself generates a specific repulsive potential that resolves the classical singularity. The
quantized oscillatory degrees of freedom behave as radiation energy density. The Friedmann-like lowest-
energy eigenstates of the system are found to be dynamically stable against small anisotropy perturbations,
in contrast to the classical case.
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I. INTRODUCTION

The Friedmann-Robertson-Walker model is successfully
used to describe the data of observational cosmology (see
e.g., [1,2]). Nevertheless, the isotropy of space is dynami-
cally unstable towards the big bang singularity [3]. On the
other hand, if the present Universe originated from an
inflationary phase, then the preinflationary universe is
supposed to have been both inhomogeneous and anisotropic.
As evidence suggests (see [4,5]), the dynamics of such a
universe backwards in time becomes ultralocal, that is,
approximately identical with the homogeneous but aniso-
tropic one at each spatial point. In any case, quantization of
the isotropic models alone appears to be insufficient. Hence,
the quantum version of an anisotropic model, comprising the
Friedmannmodel as a particular case, is expected to be better
suited for describing the earliest Universe.
The mixmaster universe exhibits complex behavior [6].

As it collapses, the Universe enters chaotic oscillations
producing an infinite sequence of distortions from its
spherical shape [7]. Those distortions essentially corre-
spond to the level of anisotropy and may be viewed as the
effect of a gravitational wave evolving in an isotropic
background [8]. The dynamics of this wave is nonlinear,
and its interaction with the isotropic background fuels the
gravitational contraction. Not surprisingly, the quantization
of the Bianchi IX model is a difficult task. Some for-
mulations can be found in the literature, including the
Wheeler-DeWitt equation [6] or, more recently, a formu-
lation based on loop quantum cosmology [9,10]. However,
the search for solutions within these formulations is quite
challenging [11,12] leaving the near big bang dynamics
largely unexplored. To our knowledge, the most recent
published developments, e.g., [13], do not address the
singularity resolution.
In this article we advocate a new approach to quantum

cosmology, which employs the affine coherent state (ACS)

quantization. The idea of exploiting the affine group
representation in quantum gravity was already discussed
in [14,15]. We enhance this idea by combining it with
coherent states, which are used both in defining the
quantum model and in developing a semiclassical descrip-
tion. The existence of the semiclassical phase space portrait
in full consistency with the quantization itself is a major
advantage of our method. Our approach was already
applied to the Friedmann models in [16] (see also [17]
for a related work). In those works, it was shown that the
occurrence of a new term in the quantum Hamiltonian is the
natural consequence of our quantization method. It pro-
duces a repulsive force counteracting the contraction of the
Universe.
Presently, we expand our approach to the quantization of

the vacuum Bianchi type IX geometry, the mixmaster
universe. As before, we exploit the affine group and the
associated ACS. In order to solve the dynamics in the
present, more complex setting, we implement the adiabatic
approximation widely utilized in quantum molecular phys-
ics [18,19]. This idea is a novelty in the study of the
singularity problem, and it enables us to identify a
resoluble, deeply quantum sector of this model with
relevant physics. The known adiabatic approximation in
quantum gravity, e.g., discussed in [20], is of a different
nature and was not devised for the study of the singularity
problem.
The main result is a semiclassical Friedmann-like equa-

tion obtained from the expectation values in ACS, a
description peculiar to our approach. In that equation,
devoted exclusively to the quantized geometry, the expan-
sion of the Universe is governed by two terms of quantum
origin. The first one is proper to the quantum mixmaster
model and corresponds to the energy of the gravity wave in
an eigenstate. It is proportional to the energy level number.
The other one, which is more universal, corresponds to
the repulsive potential preventing the singularity. The
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lowest-energy eigenstates of this system are interpreted as
the quantum Friedmann universe supplemented with vac-
uum fluctuations of the anisotropy.
We find that the quantum dynamics exhibits two novel

and surprising properties. First, the anisotropic degrees of
freedom remain in their lowest-energy states during the
quantum phase consistent with our approximation. This
implies that the quantum Friedmann-like states, unlike their
classical counterpart, remain stable with respect to the
anisotropy perturbation. Therefore, the classical chaos is
suppressed within the considered domain. Second, during
the contraction the quantum energy of anisotropy grows
much slower than it does on the classical level. Namely, it
effectively gravitates as radiation, leading to a significant
reduction in the overall gravitational pull from anisotropy.

II. CLASSICAL HAMILTONIAN

In this paper we study the vacuum Bianchi IX model.
The Friedmann equation extended to anisotropic vacuum
universes, with c ¼ 1 ¼ 8πG, reads

H2 þ 1

6
3R −

1

6
Σ2 ¼ 0; ð1Þ

where H is the Hubble rate and 3R is the spatial curvature.
The additional term Σ2 is the total shear of the spatial
section and is nonvanishing for anisotropic models. Due to
its negative sign, the shear drives the gravitational collapse
and it eventually dominates the dynamics.
The mixmaster describes the spacetime metric

ds2 ¼ −dt2 þ a2ðe2βÞijσiσj, where a is the averaged scale
factor and σi are differential forms on a three-sphere
(covering group of the rotation group) satisfying
dσi ¼ 1

2
ϵijkσ

j ∧ σk. The diagonal form of the metric is

assumed ðe2βÞij ≔ diagðe2ðβþþ
ffiffi
3

p
β−Þ; e2ðβþ−

ffiffi
3

p
β−Þ; e−4βþÞ,

where β� are distortion parameters [6].
In terms of these variables, the shear is the kinetic energy

of anisotropic distortion, Σ2 ¼ ðp2þ þ p2
−Þ=24a6, where

the momenta p� are canonical conjugates to β�. The
spatial curvature 3R grows due to the overall contraction
of space, but decreases due to the growth of anisotropy.
This last circumstance leads to the backreaction from
the spatial curvature on the shear and, as a result, oscil-
lations in β� occur. As there is no matter content in our
model, β� describe a sort of gravitational wave. The
curvature can be split into isotropic and anisotropic parts:
3R ¼ 3ð1 − VðβÞÞ=2a2, where VðβÞ is the anisotropy
curvature potential [6],

VðβÞ ¼ e4βþ

3
ððe−6βþ − 2 coshð2

ffiffiffi
3

p
β−ÞÞ2 − 4Þ þ 1:

As shown in Fig. 1, this potential has three “open”
C3v symmetry directions. One can view them as three

deep “canyons,” increasingly narrow until their respective
wall edges close up at the infinity, whereas their respective
bottoms tend to zero. Due to its (almost) confining shape, V
is expected to produce a discrete energy spectrum on the
quantum level.
The generalized Friedmann equation (1) may be

rewritten as

H2 þ 1

4a2
¼ 1

6
Σ2 þ VðβÞ

4a2
; ð2Þ

where the isotropic background geometry on the lhs is
pulled by the energy of anisotropic oscillations. The energy
of oscillations scales roughly as a−6. Although the isotropic
curvature term in (2) is subdominant in the vicinity of the
singularity, it is included for the completeness of the
Bianchi IX geometry quantization. Its inclusion leads to
the well-known classical recollapse specific to closed
homogeneous cosmologies [21].
It follows that the Hamiltonian constraint to be quantized

reads in canonical variables as

C ¼ 3

16
p2 þ 3

4
q2=3 −Hq; ð3Þ

where q ¼ a3=2 and p2 ¼ 16_a2a are more suitable to ACS
quantization, and where

Hq ¼
1

12q2
ðp2þ þ p2

−Þ þ
3

4
q2=3VðβÞ ð4Þ

is the anisotropy energy. The closed Friedmann-Robertson-
Walker (FRW) geometry is obtained by putting p� ¼ 0 and
β� ¼ 0, or simply Hq ¼ 0.

FIG. 1 (color online). Global picture of the potential VðβÞ near
its minimum. Boundedness from below, confining aspects, and
three canyons are illustrated.

HERVÉ BERGERON et al. PHYSICAL REVIEW D 92, 061302(R) (2015)

061302-2

RAPID COMMUNICATIONS



The Hamiltonian constraint (3) resembles a diatomic
molecular Hamiltonian with the pairs ðq; pÞ and ðβ�; p�Þ
playing the role of the reduced nuclear and electronic
variables, respectively. In molecules, the motion of nuclei is
slow enough in comparison with electrons, so the motion of
electrons may be approximated as becoming immediately
adjusted to varying positions of nuclei. However, the
coupling between the nucleuslike and electronlike degrees
of freedom in the present model differs from the usual
molecular case for which the validity of the approximation
rests upon the smallness of the ratio between the nuclei and
electron masses. In the present case, described by Eqs. (3)
and (4), the “mass” of the degrees of freedom β� evolves as
q2. Thus, it goes to zero near the singularity, q ¼ 0. On the
other hand, the “mass” of the degree of freedom q in Eq. (3)
is constant. Thus, close to singularity, the latter may be
regarded as “heavy” in comparison with the anisotropic
variables that can be treated as “light.”

III. QUANTUM HAMILTONIAN

The six-dimensional phase space of the mixmaster
universe is quantized as follows: (A) The isotropic varia-
bles form the canonical pair ðq; pÞ living in a half-plane.
That half-plane can be viewed as the affine group. We resort
to one of its two unitary irreducible representations,
denoted by U, to build from a suitable fiducial vector
jνi (where ν > 0 is a free parameter) a family of affine
coherent states (i.e., wavelets) jq; pi ≔ Uðq; pÞjνi. These
ACS’s are then used to consistently quantize the isotropic
variables. While the method provides the usual p̂ ¼ −iℏ∂q,
and q̂ defined as the multiplication by q, its interest lies in
the regularization of the Hamiltonian [22]. This approach
together with jνi was introduced for cosmological models
in [16]. Next, we use the ACS’s to obtain a semiclassical
description, which enables us to analyze the effective
dynamics of isotropic variables. (B) For the anisotropic
variables, each canonical pair ðβ�; p�Þ lives in the plane.
Thus, it is natural to proceed with the usual canonical
quantization which yields p̂� ¼ −iℏ∂β� , and β̂� being the
multiplication by β�.
The quantized Hamiltonian corresponding to (3) and

issued from quantizations (A) and (B) above reads

Ĉ ¼ 3

16

�
p̂2 þ ℏ2K1

q̂2

�
þ 3

4
K3q̂2=3 − Ĥq; ð5Þ

where

Ĥq ¼
1

12
K2

p̂2þ þ p̂2
−

q̂2
þ 3

4
K3q2=3Vðβ̂Þ: ð6Þ

TheKi’s are purely positive numerical constants dependent
on the choice of the ACS. With the choice made in our
previous paper [16], all these constants are simple rational

functions of modified Bessel functions KlðνÞ. We note in
(5) the appearance of the repulsive centrifugal potential
term ℏ2K1q̂−2. It is the signature of the ACS quantization,
which is consistent with the half-plane geometry, and it
regularizes the quantum Hamiltonian for small q [22]. As
the Universe approaches the singularity, q → 0, this cen-
trifugal term sharply grows in dynamical significance.
We consider the oscillations of β� fast in comparison

with the contraction of the Universe. It legitimates the
adiabatic approximation, in a way analogous to the Born-
Oppenheimer approximation (BOA) [18,19] widely used in
molecular physics. Due to the confining property of V, the
operator Ĥq at fixed q has a discrete spectrum. In
accordance with the BOA, we assume that the anisotropy
degrees of freedom β� are frozen in some eigenstate of Ĥq

with eigenenergy eðNÞ
q (N ¼ 0; 1;…) evolving adiabati-

cally. Thus, the light degrees of freedom β� can be
averaged leading to the Hamiltonian:

ĈA ¼ 3

16

�
p̂2 þ ℏ2K1

q̂2

�
þ 3

4
K3q̂2=3 − eðNÞ

q : ð7Þ

Focusing on the deep quantum domain, we look at the first
energy levels near the ground state of Ĥq. Therefore, we
essentially investigate the domain near the minimum of
Vðβ̂Þ. Within the harmonic approximation Vðβ̂Þ ≈ 8ðβ̂2þ þ
β̂2−Þ near its minimum β̂� ¼ 0, the eigenenergies are found

to be eðNÞ
q ≃ ℏq−2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2K3

p ðN þ 1Þ with N ¼ nþ þ n−.
The quantum numbers n� correspond to the independent
harmonic oscillations in βþ and β− [23]. The expression for

eðNÞ
q is rather a rough approximation for large values of N,
since Vðβ̂Þ is highly nonharmonic far away from its
minimum. But for small values of N, this expression is
valid at any value of q.

We notice that the discrete spectrum part in Eq. (7), eðNÞ
q ,

becomes a small perturbation at large q, a range for which
the BOA possibly loses its validity, whereas it gains all its
value at small q. From the mass criterion, our approach
based on the BOA is legitimate as q assumes its values near
the singularity q ¼ 0. Furthermore, our procedure of
quantization generates a supplementary repulsive potential
that prohibits the system from accessing the singularity
neighborhood q ∈ ð0; qmÞ with some very small bound
qm > 0, which depends on the initial state.
Furthermore, calculations made in molecular physics

beyond the BOA (the so-called vibronic approximation)
show that the mass criterion is in fact too strong: a
significant breakdown of the BOA only occurs when

different eigenenergy curves q ↦ eðNÞ
q of Ĥq are crossing.

In our approach these crossings do not occur, at least for the
lowest levels of Ĥq.
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This reasoning based on molecular physics is robust, but
qualitative in our case, due to the coupling between the q
and β� degrees of freedom which is not of the molecular
type. In [23] weweaken the adiabatic condition by allowing
the quantized oscillations to be excited by the semiclassical
dynamics of the isotropic background described below, for
a fixedN. We find that the excitation is indeed very limited,
which justifies our approach.

IV. SEMICLASSICAL HAMILTONIAN

Following Klauder [24], we introduce a semiclassical
observable associated with the quantum Hamiltonian (7) as

its expectation value C
̬

Aðq; pÞ ≔ hq; pjĈAjq; pi in the ACS
state jq; pi peaked on the classical phase space point ðq; pÞ
in the half-plane,

C
̬

Aðq; pÞ ¼
3

16

�
p2 þ ℏ2K4

q2

�
þ 3

4
K5q2=3

−
ℏ

q2=3
K6ðN þ 1Þ;

where the Ki’s are positive numerical constants [23]
which are also simple rational functions of modified
Bessel functions KlðνÞ. With our choice of jνi, at large
ν,KiðνÞ ∼ 1, i ≠ 4 andK4ðνÞ ∼ ν=2. For the consistency of
our semiclassical description, we have rescaled the fiducial
vector so that hq; pjq̂jq; pi ¼ q and hq; pjp̂jq; pi ¼ p.
The Hamiltonian constraint imposed at the semiclassical

level, C
̬

Aðq; pÞ ¼ 0, leads to the semiclassical Friedmann-
like equation,

H2 þ 4π2G2ℏ2

c4
K4

a6
þK5

4

�
c
a

�
2

¼ 8πGℏ
3c

ðN þ 1ÞK6

a4
;

ð8Þ
where we have restored physical constants and the standard
cosmological variables. In order to determine the effect of
the matter field, which is absent in our model, one can
simply plug effective matter terms into the rhs of the
semiclassical equation (8). For more details, see our
companion paper [23] (Sec. IV B) including the justifica-
tion and the discussion of the correspondence between
Eqs. (2) and (8). For instance, one could add an effective
radiation term ρ ∝ a−4. This term has the same dependence
on a as the quantized anisotropy, so it does not introduce
any qualitative change to the dynamics.
The above semiclassical constraint admits smooth tra-

jectories for all values of N only if ν ∈ ð0; 7.19Þ. For
ν > 7.19, Eq. (8) has no solution for the smallest values
of N. The solution of (8) for a is a periodic function,
a ∈ ½a−; aþ� with a− > 0 and aþ < ∞, and resolves the
cosmological singularity of themixmaster universe. In Fig. 2
we plot a few trajectories in the half-plane ða;HÞ. The

classical closed FRWmodel is recovered at ℏ ¼ 0 and large
values of ν.

V. DISCUSSION

Our semiclassical analysis of the mixmaster universe
leads to the modified Friedmann equation (8). The left-
hand side describes the isotropic part of geometry. The
Hubble parameter squared is accompanied by the repulsive
potential of purely quantum origin, which grows as a−6

during the contraction. At small volumes, it efficiently
counteracts the attraction of common forms of matter,
forcing the collapsing universe to rebound. The third term
is the usual isotropic spatial curvature.
The right-hand side of Eq. (8) describes the quantized

energy of the anisotropy oscillations. The energy is discrete
and increases linearly with integer N, as expected in our
harmonic approximation. Within the adiabatic approxima-
tion, that quantum number is conserved during the evolu-
tion. The energy of the quantum oscillator evolves due to
the a-dependent coefficients in front of its kinetic and
potential terms given in Eq. (6). The ratio between the
coefficients determines the oscillator’s frequency, which is
proportional to a2. The energy of the oscillations at the
quantum level is multiplied by the frequency and, con-
sequently, scales as a−4. (This becomes a poor approxi-
mation for high values of N, due to the breakdown of the
harmonic approximation). It is quite a contrast to the
classical wave, whose total energy is approximately unaf-
fected by its time-dependent frequency and, therefore,
scales as a−6. Thus, the growth of the attractive force
induced by the anisotropy is significantly reduced in the
semiclassical dynamics. This essential dissimilarity
between the classical and semiclassical dynamics is due

1 2 3 4 5
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ub
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H

FIG. 2 (color online). Three periodic semiclassical trajectories
in the half-plane ða;HÞ from Eq. (8). They are smooth plane
curves. We use standard units 8πG ¼ c ¼ ℏ ¼ 1 and choose
ν ¼ 1. Blue dotted curve for N ¼ 0, green dot-dashed for N ¼ 1,
and red dashed for N ¼ 2.

HERVÉ BERGERON et al. PHYSICAL REVIEW D 92, 061302(R) (2015)

061302-4

RAPID COMMUNICATIONS



to the fact that on the quantum level the contraction of space
is driven by a quantum average.
Let us note that the energy of the wave does not vanish

even in the ground state N ¼ 0 due to the zero-point
quantum fluctuations corresponding to the classical state
β� ¼ p� ¼ 0. In [23] we go beyond the adiabatic approxi-
mation to check if there is a significant excitation of the
wave’s energy level during the semiclassical evolution of
the background geometry. The method is essentially the
same as the one used to discuss the generation of primordial
power spectra in inflationary cosmology. We show that the
wave, in fact, remains in its lowest-energy states during the
quantum phase. It confirms that the quantum FRW uni-
verse, unlike its classical version, is dynamically stable

with respect to the small isotropy perturbation. Therefore, it
seems that the quantum closed Friedmann model may be
successfully used to describe the earliest Universe as well,
provided that the corresponding Hamiltonian is supple-
mented with the effect of the zero-point energy generated
by the quantized anisotropy degrees of freedom of the
mixmaster universe.
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