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Solitons are very effective in transporting energy over great distances and collisions between them can
produce high energy density spots of relevance to phase transformations, energy localization and defect
formation among others. It is then important to study how energy density accumulation scales in
multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved
in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is
proportional to N2, while the total energy of the system is proportional to N. This maximal energy density
can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e.,
is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and
antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential
(kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the
analysis of the exact multisoliton solutions for N ¼ 1; 2, and 3 and on the numerical simulation results for
N ¼ 4; 5; 6, and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal
energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based
on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle,
controllably produce very high energy density. This can have important consequences for many physical
phenomena described by the Klein-Gordon equations.
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I. INTRODUCTION

The celebrated sine-Gordon equation (SGE) [1,2],

ϕtt − ϕxx þ sinϕ ¼ 0; ð1Þ

has emerged in the geometry of surfaces [3] and then it has
long been used in physics to describe propagation of
magnetic flux on an array of superconducting Josephson
junctions [4], to study the interacting mesons and baryons
[5], fermions in the Thirring model [6], the properties of
crystal dislocations [7], dynamics of domain walls in
ferromagnetics [8] and ferroelectrics [9,10], the oscillations
of an array of pendula [11], and others [2,7,12,13].
The SGE is capable of describing the dynamics of

topological solitons such as a kink and an antikink, as
well as their bound state called breather, a feature that
distinguishes it from other continuum models [14].
Multisoliton solutions to Eq. (1) have been derived with
the help of the Bäcklund transformation [15,16] or the
Hirota method [17,18].

However, in addition to its importance in classical
mechanics and also e.g. in condensed matter physics
(see e.g. [19] for a relatively recent example of its use
for the description of the Beresinskii-Kosterlitz-Thouless
vortices in superconductors), it is also an important model
in high energy physics. In the latter context, in addition to
its connection to supersymmetric field theories [20] and
string theory [21], it has also been argued to be related to
exotic structures at the interface of fields and effective
particles, such as oscillons [22] and Skyrmions (when
trapped by vortices) [23], among others. Hence, it remains a
topic of extensive interest not only within nonlinear waves
but also principally within the theme of fields and elemen-
tary particles.
In the present work, we focus on the energy density

arising from the interaction of prototypical nonlinear
structures within the SGE model. The energy density
has a maximum in the kink’s core and vanishes away
from it. A moving kink transports this energy as its center
of mass moves and hence kink collisions can result in an
increase of the energy density. For applications it is
important to know what is the largest energy density that
can be accumulated in multikink collisions. Such mani-
festations of large energy density can be associated with
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rogue events (i.e., the formation of rogue waves; see e.g. the
reviews of [24,25]), which have been of extreme interest in
recent years. More generally, they can be used for targeted
energy localization which is of interest in its own right.
In this paper, we calculate the maximal energy density

that can be achieved in the collision of N slowly moving
sine-Gordon kinks and antikinks for N ≤ 7. The question
is, can the cores of all N colliding solitons merge at one
point, and if yes, what is the maximal energy density at the
collision point? The answers can be readily found in the
concluding Sec. V and the way they were obtained is
described in Sec. III, which follows Sec. II with preliminary
remarks and a description of the simulation method. In
Sec. IV we discuss the effect of perturbations and the effect
of inaccuracy in the initial conditions on the maximal
energy density in multisoliton collisions. The key result of
our considerations is the unexpected scaling of the maximal
energy density (proportional to N2) with the number of
solitons N. Furthermore, conditions (on the structure of the
soliton pattern) and manifestations of the energy localiza-
tion are illustrated in the process.

II. PRELIMINARY REMARKS

During the dynamics of Eq. (1) the total energy is
conserved as

E ¼ K þ P; ð2Þ
which is the sum of the kinetic and potential energies given,
respectively, by

K ¼
Z

∞

−∞

1

2
ϕ2
t dx; P ¼

Z
∞

−∞

�
1

2
ϕ2
x þ 1 − cosϕ

�
dx:

ð3Þ
The kinetic energy density and the potential energy

density of the SGE field are given by the integrands of
Eq. (3),

kðx; tÞ ¼ 1

2
ϕ2
t ; pðx; tÞ ¼ 1

2
ϕ2
x þ 1 − cosϕ; ð4Þ

and the total energy density is

eðx; tÞ ¼ kðx; tÞ þ pðx; tÞ: ð5Þ

The two basic soliton solutions to SGE (1) are the kink
(antikink)

ϕðx; tÞ ¼ �4 arctanfexp½δkðx − VktÞ�g; ð6Þ
and the breather

ϕðx; tÞ ¼ 4 arctan
η sin½δbωðt − VbxÞ�
ω cosh½δbηðx − VbtÞ�

; ð7Þ

where Vk is kink velocity; Vb, ω are the breather velocity
and frequency; and

δk;b ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
k;b

q ; η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
: ð8Þ

The upper (lower) sign in Eq. (6) corresponds to the kink
(antikink). The breather solution Eq. (7) can be regarded as
a kink-antikink bound state [26–28].
A collision between two kinks having velocities �Vk is

described by the following solution to Eq. (1):

ϕðx; tÞ ¼ 4 arctan
Vk sinhðδkxÞ
coshðδkVktÞ

: ð9Þ

For the collision between kink and antikink having
velocities �Vk one has the exact solution

ϕðx; tÞ ¼ 4 arctan
Vk coshðδkxÞ
sinhðδkVktÞ

: ð10Þ

Substituting Eq. (6) and Eq. (7) into Eq. (2) one finds the
total energies of the kink and breather

Ek ¼ 8δk; Eb ¼ 16δkη: ð11Þ

We are not interested in the relativistic effects and only
slow solitons (Vk ≪ 1, Vb ≪ 1) will be considered so that
δk ≈ 1 and δb ≈ 1. Only low-frequency breathers (ω ≪ 1)
will be discussed so that η ≈ 1. Then, we can write
approximately that Ek ≈ 8 and Eb ≈ 16.
Even though the analytical expressions for multisoliton

solutions to SGE are available [15–17] their complexity
increases rapidly with the number of solitons, N. That is
why for N ≥ 4 wewill do calculations numerically. For this
we discretize Eq. (1) as follows:

d2ϕn

dt2
−

1

h2
ðϕn−1 − 2ϕn þ ϕnþ1Þ

þ 1

12h2
ðϕn−2 − 4ϕn−1 þ 6ϕn − 4ϕnþ1 þ ϕnþ2Þ

þ sinϕn ¼ 0; ð12Þ

where h is the lattice spacing; n ¼ 0;�1;�2;…; and
ϕnðtÞ ¼ ϕðnh; tÞ. To minimize the effect of discreteness,
the term ϕxx in Eq. (1) is discretized with the accuracy
Oðh4Þ, which has been used previously [7,13,29]. The
equations of motion in the form of Eq. (12) were integrated
with respect to the time using an explicit scheme with the
time step τ and the accuracy of Oðτ4Þ. The simulations
reported in Sec. III were carried out for h ¼ 0.1, h ¼ 0.05
and τ ¼ 0.005.
Before we start the presentation of the main results the

following remark should be made. Two kinks (or two
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antikinks) repel each other as quasiparticles having the
same topological charge. When they collide, they bounce
off each other, their cores do not merge and, consequently,
the maximal energy density does not grow. This is
illustrated by Fig. 1, where for the solution Eq. (9) with
Vk ¼ 0.1 we show (a) the regions of the ðx; tÞ plane where
the total energy density eðx; tÞ > 2 and (b) the maximal
over x densities of kinetic (blue line) and potential (red line)
energies. The kinks collide at t ¼ 0, x ¼ 0. One can see that
kmaxðtÞ is nearly zero (due to the small kink velocity and the
quadratic dependence on it), while pmaxðtÞ ≈ 4, and these
values are not affected by the collision.
On the contrary, kink and antikink are mutually attractive

quasiparticles. Their cores merge during collision and the
maximal energy density increases at the collision point.
This can be seen in Fig. 2 where the kink-antikink solution
Eq. (10) is presented for Vk ¼ 0.1. Far from the collision
(t ¼ 0, x ¼ 0) we have kmaxðtÞ ≈ 0 and pmaxðtÞ ≈ 4.
However, at t ¼ 0 pmax drops to zero, while kmax rises
up to nearly 8, and so does the maximal total energy density
emax (not shown in the figure).
In Fig. 3 similar results are shown for the breather

solution Eq. (7) with Vb ¼ 0 and ω ¼ 0.1. It was already
mentioned that the low-frequency breather can be envi-
sioned as a kink-antikink bound state, and when the
subkinks collide, pmax drops to zero and kmax reaches
the value of nearly 8, as does emax. In the breather case,
instead of this happening once (as in Fig. 2) the phenom-
enology periodically repeats itself, due to the time perio-
dicity of the state.
For the three-kink solutions it has been demonstrated that

the cores of all three kinks can merge only if they collide in

the spatial arrangement kink-antikink-kink (or antikink-
kink-antikink) [30]. This is understandable because in the
combinations such as kink-kink-kink or kink-kink-antikink
the solitons having the same topological charge repel each
other because between them there is no soliton of the
opposite charge. In the following we will consider the
multisoliton solutions with alternating kinks and antikinks.
In this case each kink (or antikink) attracts the nearest
neighbors of the opposite charge and all of them can collide
at one point, as it will be demonstrated in the following
section. These types of configurations promote the energy
exchange, contrary to what is the case for configurations
bearing adjacent waves of the same type.

FIG. 1 (color online). Collision of two kinks having velocities
Vk ¼ �0.1 according to Eq. (9). (a) Trajectories of the soliton
cores are shown by the regions where total energy density
eðx; tÞ > 2. (b) Maximal over spatial coordinate kinetic (blue)
and potential (red) energy densities as the functions of time.
Maximal energy density does not grow during collision of
solitons having the same topological charge because they repel
each other and their cores do not merge.

FIG. 2 (color online). Same as in Fig. 1 but for the collision of a
kink and an antikink given by Eq. (10) with subkink velocities
Vk ¼ �0.1. Cores of the mutually attractive solitons merge at the
collision point and total energy density at the collision point
eðx; 0Þ ¼ kðx; 0Þ þ pðx; 0Þ rises up to about 8.

FIG. 3 (color online). Same as in Fig. 1 but for the breather
given by Eq. (7) with Vb ¼ 0 and ω ¼ 0.1. When the subkinks
collide, the potential energy density is almost zero and the kinetic
energy density is about 8.
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III. MAXIMAL ENERGY DENSITY OF
MULTISOLITON SOLUTIONS TO THE SGE

A. Case N ¼ 1

For a standing kink, Eq. (6) with Vk ¼ 0, the kinetic
energy is zero. Then, the total energy density can be found
from Eqs. (4)–(5) in the form

eðxÞ ¼ pðxÞ ¼ 8

�
ex

1þ e2x

�
2

þ 1− cosð4 arctanexÞ: ð13Þ

This function has a maximum at x ¼ 0, which is the
coordinate of the kink’s center. The value of the maximal
energy density of the standing kink is

eð1Þmax ¼ pð1Þ
max ¼ 4: ð14Þ

B. Case N ¼ 2

The breather solution (7) for Vb ¼ 0 in the limit ω → 0,
and the kink-antikink solution (10) in the limit Vk → 0 both
approach the same separatrix two-soliton solution

ϕðx; tÞ ¼ 4 arctan
t

cosh x
: ð15Þ

This solution describes the kink and antikink that after the
collision at t ¼ 0 move apart and their velocities vanish as
t → ∞. The solution is depicted in Fig. 4 where, as before,
in (a) the points of the ðx; tÞ plane with eðx; tÞ > 2 are
shown and in (b) the maximal—over the spatial coordinate
x—values of kinetic (blue) and potential (red) energy
densities are presented as functions of time. We now
calculate the exact value of the maximal energy density
by substituting Eq. (15) into Eqs. (4)–(5). The calculation
can be simplified by noting that at t¼ 0 one has ϕðx;0Þ≡ 0

and thus, at the collision point the energy of the kink-
antikink pair is in the form of kinetic energy,

eðx; 0Þ ¼ kðx; 0Þ ¼ 8

cosh2x
: ð16Þ

The energy density has a maximum at the collision point
x ¼ 0:

eð2Þmax ¼ kð2Þmax ¼ 8: ð17Þ

C. Case N ¼ 3

The kink-breather (three-soliton) solution to SGE reads

ϕðx; tÞ ¼ 4 arctanðexpBÞ þ 4 arctan
ηY
ωZ

;

Y ¼ 2ωðsinhD − cosC sinhBÞ
þ 2δbδkðVk − VbÞ sinC coshB;

Z ¼ 2ηðcosCþ sinhD sinhBÞ
− 2δbδkð1 − VkVbÞ coshD coshB;

B ¼ δkðx − VktÞ;
C ¼ −ωδbðt − VbxÞ; D ¼ ηδbðx − VbtÞ: ð18Þ

In the limit Vk → 0, Vb → 0, and ω → 0, this solution
assumes the following form [see Eq. (26) of Ref. [31]]:

ϕðx; tÞ ¼ 4 arctanex þ 4 arctan
x cosh x − t2 sinh x

t2 þ cosh2x
: ð19Þ

This separatrix solution describes the antikink standing at
x ¼ 0 and two kinks that after the collision with the
antikink at t ¼ 0 move apart and their velocities vanish
as t → 0. The solution is presented in Fig. 5 using a
visualization similar to the previous figures.

FIG. 4 (color online). Same as in Fig. 1 but for the separatrix
two-soliton solution of Eq. (15). When the kink and antikink
collide the potential energy density is equal to zero and kinetic
energy density is exactly 8.

FIG. 5 (color online). Same as in Fig. 1 but for the separatrix
three-soliton solution Eq. (19). The inset shows the blowup of
the region around t ¼ 0. When the two kinks collide with the
antikink, the kinetic energy density is equal to zero and the
potential energy density is exactly 20.
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To calculate the exact value of the maximal energy
density, we again substitute Eq. (19) into Eqs. (4)–(5). Note
that at t ¼ 0 one has ϕtðx; 0Þ≡ 0 and thus, at the collision
point the energy of the kink-antikink-kink solution is in the
form of potential energy,

eðx; 0Þ ¼ pðx; 0Þ

¼ 8

�
ex

1þ e2x
þ cosh x − x sinh x

cosh2xþ x2

�
2

þ 1 − cos

�
4 arctanex þ 4 arctan

x
cosh x

�
: ð20Þ

The energy density has a maximum at the collision point
x ¼ 0:

eð3Þmax ¼ pð3Þ
max ¼ 20: ð21Þ

D. Case N ¼ 4

The solution to SGE that describes collision of two
breathers (i.e., a four-soliton solution) with velocities V1,
V2 and frequencies ω1, ω2 is given by

ϕðx; tÞ ¼ 4 arctanðSÞ − 4 arctan
η2ðT coshB1 þ sinC1Þ
ω2ðcoshB1 þ T sinC1Þ

;

T ¼ φ
2τ½ðS − PÞð1þ SPÞ −Q2S� − 2βQð1þ S2Þ

φ2½ð1þ SÞð1þ SPÞ þQ2S2� þ ðτ2 þ β2Þ½ðS − PÞ2 þQ2� ;

P ¼ βX þ κY
εZ

; Q ¼ βY − κX
εZ

; S ¼ η1 sinC1

coshB1ω1

;

X ¼ sinhB2 cosC1 − cosC2 sinhB1; Y ¼ coshB2 sinC1 þ sinC2 coshB1;

Z ¼ cosðC1 − C2Þ þ coshðB1 þ B2Þ;
B1;2 ¼ η1;2δ1;2ðx − x1;2 − V1;2tÞ; C1;2 ¼ Δ1;2 − ω1;2δ1;2½t − ðx − x1;2ÞV1;2�;

δ1;2 ¼ ð1 − V2
1;2Þ−1=2; η1;2 ¼ ð1 − ω2

1;2Þ1=2; α ¼ δ2ð1þ V2Þ
δ1ð1þ V1Þ

;

β ¼ α − 1=α; ε ¼ 2α − β þ 2ðω1ω2 − η1η2Þ; τ ¼ 2ðω1η2 − η1ω2Þ;
φ ¼ 2α − β − 2ðω1ω2 þ η1η2Þ; κ ¼ 2ðω1η2 þ η1ω2Þ: ð22Þ

Here x1;2 and Δ1;2 define initial positions and initial
phases of the two breathers, respectively.
It is possible to derive the separatrix solution from

Eq. (22) in the limits V1;2 → 0 and ω1;2 → 0 but the
derivation is tedious and for N > 3 we calculate the
maximal energy density numerically considering collisions
of slow kinks or slow, low-frequency breathers. Parameters
of the colliding solitons are chosen to achieve collision of
all N subkinks at one point. Note that the collisions of two
slow, low-frequency breathers were analyzed earlier in the
study of fractal soliton collisions and the possibility for all
four subkinks to collide at one point was demonstrated
in Ref. [32].
Equations (12) are integrated numerically for h ¼ 0.1,

h ¼ 0.05 and τ ¼ 0.005. Initial conditions are set with the
help of Eq. (22). For simplicity, the collision of symmetric
slow and low-frequency breathers is considered by setting
V1 ¼ −V2 ¼ 0.1, ω1;2 ¼ 0.1, Δ1 ¼ 0 and Δ2 ¼ π. Note
that the out-of-phase (in-phase) breathers collide such that
they attract (repel) each other. To achieve the collision of all
four subkinks at one point one should choose a proper
initial distance between the breathers. In a series of

numerical runs it is found that x2 − x1 ¼ 4.012 gives the
desired result presented in Fig. 6.
It can be seen in Fig. 6 that at the point of collision of the

four subkinks the potential energy density is almost zero
while the kinetic energy density shows a peak with a
height nearly equal to 32. More precisely, for h ¼ 0.1 the
largest energy density we could obtain by varying the
parameter x2 − x1 was 32.21, while for h ¼ 0.05 it was
32.05. With decreasing h the accuracy of simulation
increases. We thus conclude that the total energy density
at the collision point is

eð4Þmax ¼ kð4Þmax ≈ 32: ð23Þ

Note that after the collision breathers have frequencies
and velocities different from the initial values. This is due to
the (weak but still nontrivial in this collision phenomenon)
effect of discreteness, which breaks the integrability of
the model. For more details on the inelasticity of near-
separatrix multisoliton collisions in weakly perturbed SGE
see Refs. [30–32].
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Practically, it is important to see how sensitive the
maximal energy density is to the relative phase of the
breathers, Δ2 − Δ1. The result of this numerical study is
given in Fig. 7. It can be seen from Fig. 7(a) that to keep the
maximal energy density within 10% of the maximal value

observed for Δ2 − Δ1 ¼ π, one has to control the phase
difference with the accuracy of 0.01π. The initial distance
between breathers that leads to the maximal energy density
depends on the phase difference as shown in Fig. 7(b). It is
clear that the maximal energy density that can be attained in
the breather-breather collisions depends not only on their
relative phase but also on the initial distance between them.
Since the sine-Gordon kinks do not possess an internal
phase, it is easier to achieve high energy density spots by
colliding kinks and antikinks and controlling their initial
positions only. This setting is used in Sec. IV C to further
investigate the sensitivity of the maximal energy density in
multikink collisions to the initial conditions.

E. Case N ¼ 5

Here we set initial conditions using the individual kink
(antikink) solution of Eq. (6) [rather than an extremely
cumbersome five-soliton solution]. As shown in Fig. 8(a),
the initial positions and velocities of the five solitons are
chosen such that initially they do not overlap and so that
they collide at one point. As it was already mentioned, each
soliton should attract its nearest neighbors and thus, it
should have the topological charge opposite to that of its
neighbors. In our case solitons 1, 3, and 5 are kinks and 2
and 4 are antikinks. The kink 3 is located at the origin
and it is at rest, x3 ¼ 0 and V3 ¼ 0. The antikinks 2 and 4
have velocities V2 ¼ −V4 ¼ 0.025 and initial positions
x2 ¼ −x4 ¼ −12.0. By symmetry the solitons 2, 3, and 4

FIG. 6 (color online). The result of the numerical simulation of
the collision of two breathers (four subkinks). Initial conditions
are set with the help of Eq. (22) with V1 ¼ −V2 ¼ 0.1,
ω1;2 ¼ 0.1, Δ1 ¼ 0 and Δ2 ¼ π, and x2 − x1 ¼ 4.012. (a) The
soliton cores shown by the regions where eðx; tÞ > 2.
(b) Maximal—over the spatial coordinate x—kinetic (blue)
and potential (red) energy densities as functions of time. The
inset shows the curves near t ¼ 0. At the collision point, potential
energy density is practically zero, while the kinetic energy
density increases up to nearly 32.

FIG. 8 (color online). Collision of five kinks/antikinks at one
point. The choice of initial conditions is described in the text. As
before, in (a) the regions of the ðx; tÞ plane with energy density
eðx; tÞ > 2 are shown. In (b) the maximal, over x, kinetic and
potential energy densities are shown as functions of time by the
blue and red lines, respectively. At the collision point the
potential energy density features the maximum of about approx-
imately 52, while the kinetic energy density is almost zero. The
inset shows the details of the curves near t ¼ 0. Note that the
solitons are numbered in (a) before the collision. Odd quasipar-
ticles are kinks and even ones are antikinks.

FIG. 7. (a) Maximal energy density in breather-breather colli-
sions as the function of the relative phase of the breathers
ðΔ2 − Δ1Þ=π. (b) Initial distance between breathers to achieve
maximal energy density as a function of ðΔ2 − Δ1Þ=π. The
breathers have frequencies ω1;2 ¼ 0.1 and velocities
V1 ¼ −V2 ¼ 0.1.
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collide at one point. For the kinks 1 and 5 we take two times
larger velocities V1 ¼ −V5 ¼ 0.05 and choose their initial
coordinates to achieve the collision of five solitons at
one point. This happens for x1 ¼ −x5 ¼ −24.376549.
Although the exactly coincident collision does not happen
for exactly double initial distances (from the origin) for
double initial velocities, the latter is a reasonable rule of
thumb for preparing the initial conditions of the multi-
soliton configuration; a slight subsequent refinement may
then be needed (such as the slight displacement of the outer
kinks from x1 ¼ −x5 ¼ 24 to x1 ¼ −x5 ¼ −24.376549).
As it can be seen from Fig. 8(b), when the five solitons

collide, the maximal kinetic energy density is close to zero,
while the maximal potential energy density is 50.93 for
h ¼ 0.1 and 51.85 for h ¼ 0.05. We conclude that

eð5Þmax ¼ pð5Þ
max ≈ 52: ð24Þ

A relevant additional remark here is that the significant role
of weak asymmetries (in the preparation of our initial
condition) can be observed to be exacerbated in the
outcome of the collisional dynamics of Fig. 8. In particular,
the figure showcases a visibly asymmetric result of the
dynamics featuring, in addition to two outer nearly sym-
metric kinks, a breather (involving the antikink of soliton 2
and the kink of soliton 3) and a “stray” kink (the antikink of
soliton 4). Once again here, the nonintegrability of the
underlying numerical scheme is deemed to be responsible
for the observed asymmetry, although the energy density
accumulation at x ¼ t ¼ 0 is expected to persist even for an
integrable discretization.

F. Case N ¼ 6

Referring to Fig. 9(a), note that the solitons 1, 3, and 5
are kinks and 2, 4, and 6 are antikinks. Initial soliton
positions and velocities to achieve their collision at
one point are x1 ¼ −x6 ¼ −34.90395, V1 ¼ −V6 ¼ 0.1,
x2 ¼ −x5 ¼ 19.37864, V2¼−V5¼0.05, x3¼−x4¼−7,
V3 ¼ −V4 ¼ 0.025. Once again, the velocities have been
selected using factors of 2, while the positions have been
refined (from the corresponding factors of 2) to ensure that
the collision occurs for all solitons at the same point.
From Fig. 9(b) it is clear that at the collision point the

maximal, over x, potential energy density is nearly zero
while the maximal kinetic energy density reaches its
highest attainable value. The height of the maximum is
72.62 for h ¼ 0.1 and 72.08 for h ¼ 0.05. Thus,

eð6Þmax ¼ kð6Þmax ≈ 72: ð25Þ

Here, solitons 2 and 3, as well as 4 and 5, merge in the
symmetric aftermath of the collision into breather states (a
feature that once again would be avoided in the realm of
fully integrable dynamics).

G. Case N ¼ 7

In the initial configuration, odd solitons in Fig. 10(a) are
the kinks and even are the antikinks. They collide at one
point provided that their initial coordinates and velocities
are chosen as follows: x1 ¼ −x7 ¼ −39.541867403,
V1 ¼ −V7 ¼ 0.1, x2 ¼ −x6 ¼ −24.29923, V2 ¼
−V6 ¼ 0.05, x3 ¼ −x5 ¼ −12, V3 ¼ −V5 ¼ 0.025, and
x4 ¼ 0, V4 ¼ 0. Looking at Fig. 10(b) we note that at
the collision point the maximal over x kinetic energy
density is extremely small, while the maximal potential
energy density features a maximum of 94.90 for h ¼ 0.1
and 99.56 for h ¼ 0.05. It can then be stated that

FIG. 9 (color online). Same as in Fig. 8 but for the six-soliton
collision. Initial conditions ensure the collision of all six kinks/
antikinks at one point (see the text for the details). When the
kinetic energy density reaches the maximal value of about 72, the
potential energy density is almost zero.

FIG. 10 (color online). Same as in Fig. 8 but for the seven-
soliton collision. All seven kinks/antikinks collide at one point
due to proper choice of the initial conditions (see the text for the
details). When the potential energy density reaches the maximal
value of about 100, the kinetic energy density is almost zero.
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eð7Þmax ¼ pð7Þ
max ≈ 100: ð26Þ

The case of Fig. 10 is once again one of a pronounced
asymmetric outcome, as we have generally observed odd N
cases to be (cf. Fig. 8). Three breathers are observed to form
(solitons 2–3, 4–5, and 6–7), while the first soliton moves
to the right in an isolated trajectory.

IV. EFFECT OF PERTURBATIONS AND
SENSITIVITY TO INITIAL CONDITIONS

So far the integrable SGE was analyzed. In many
applications various perturbative terms should be taken
into account and thus, it is important to see how the results
presented in Sec. III are modified by nonintegrable
perturbations. There exist two major classes of the pertur-
bations, the Hamiltonian (i.e., energy conserving) and non-
Hamiltonian (e.g., dissipative) ones. We have seen that the
maximal energy density is in the form of kinetic (potential)
energy for the collisions of even (odd) number of kinks and
antikinks. Taking into account this qualitative difference,
we will consider the effect of perturbations on the three-
and four-kink collisions.
The initial conditions are as follows. For the three-kink

collisions we simulate a kink with zero velocity V2 ¼ 0
located at the origin (x2 ¼ 0) and the two antikinks with the
velocities V1;3 ¼ �0.1 coming from the initial positions
x1;3 ¼ ∓9, respectively. For the four-kink collisions we
consider a kink-antikink pair with the velocities V2;3 ¼
�0.05 and initial positions x2;3 ¼ ∓6, and another
antikink-kink pair with velocities V1;4 ¼ �0.1 coming
from x1;4 ¼ ∓ð12þ δÞ, where a small parameter δ is
chosen to achieve maximal energy density at the collision
point. Only weak perturbations are analyzed so that the
exact kink and kink-antikink solutions to the integrable
SGE are employed for setting initial conditions.

A. Effect of discreteness

Here we consider the weak discreteness of the medium
as an example of the Hamiltonian perturbation. In fact,
numerical integration results presented in Sec. III already
reflect the effect of discreteness of spatial and temporal
variable. Now we analyze the effect of spatial discreteness
more systematically for the three- and four-kink collisions.
We integrate Eq. (12) for different values of the lattice
spacing h ¼ f0.05; 0.1; 0.15; 0.2g and calculate the maxi-
mal energy density. We have checked that the effect of
temporal discretization with the time step τ ¼ 0.005 can
be neglected in comparison to the effect of the spatial
discreteness with h ≥ 0.05.
The obtained results are presented in Fig. 11 for (a) three-

kink and (b) four-kink collisions. The numerical points
are least squares fitted to the square parabolas: (a) emax ¼
20.07 − 13.7h2 and (b) emax ¼ 32.13þ 3.37h − 7.54h2. At

h ¼ 0 one has emax ¼ 20.07 in three-kink collision which is
very close to the exact result of emax ¼ 20 found in Sec. III
C. Similarly, for the four-kink collision from the fitting
parabola at h ¼ 0 one has emax ¼ 32.13, which is close to
the value of 32 estimated in Sec. III D. Interestingly, for the
three-kink collision emax decreases with increasing h and the
opposite trend is observed for the four-kink collision. This
qualitative difference is not surprising in the light of the fact
that in the former case emax is in the form of potential energy,
while in the latter one, it is in the form of kinetic energy.
We conclude that the energy-conserving perturbation of

the integrable SGE can lead to either a decrease or increase
of the maximal energy density during multisoliton colli-
sions. However, the key finding is that a weak perturbation
results in a small change of the maximal energy density.

B. Effect of damping

To study the effect of a non-Hamiltonian perturbation let
us introduce the damping term γðdϕn=dtÞ in the left-hand
side of the discrete model Eq. (12), where γ is the damping
coefficient. This equation is integrated numerically for
different values of γ, for the lattice spacing h ¼ 0.05
and time step τ ¼ 0.005 using the numerical scheme of
accuracy Oðτ4Þ.
The results are presented in Fig. 12 for (a) three-kink and

(b) four-kink collisions. Numerical data are least squares
fitted to the linear functions: (a) emax ¼ 20.04 − 79.6γ and
(b) emax ¼ 32.31 − 532.6γ. At γ ¼ 0 one has emax ¼ 20.04
in the case of three-kink collision and emax ¼ 32.31 for the
four-kink collision. These values are close to those reported
in Secs. III C and III D, respectively. In both cases emax
decreases linearly with increasing γ and the slope of the line
in the case of the four-kink collision is 1 order of magnitude
larger than in the case of the three-kink collision. This result

FIG. 11 (color online). Effect of weak discreteness on the
maximal energy density in (a) three-kink and (b) four-kink
collisions. Results of numerical integration of the discrete model
Eq. (12) with the time step τ ¼ 0.005 using the numerical scheme
with the accuracy Oðτ4Þ.
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is expected because, again, unlike the three-kink collision,
in the four-kink collision emax is in the form of kinetic
energy when the dashpot damping proportional to the
velocity, considered here, is most efficient.
It can be concluded that weak damping reduces the

maximal energy in multikink collisions proportionally to
the damping coefficient. The effect is much weaker for the
collisions of an odd number of kinks when emax is in the
form of potential energy, in comparison to the case when an
even number of kinks participates in a collision and emax is
in the form of kinetic energy.

C. Sensitivity to initial conditions

Another issue that is important for applications is the
sensitivity of the maximal energy density to the initial
conditions (initial positions and velocities of the kinks and
antikinks). The full width at half maximum of the high
energy density spots can be used as a measure of the
accuracy in the initial positions of the kinks required to
collide at nearly one point. In Fig. 13 the full width at half
maximum of the high energy density spots observed in the
collisions of N kinks is presented in the log-log scale as the
function of N. The results for even (odd) N are shown by
circles (triangles). The slope of the line is −1. We conclude
that W reduces with increasing N as W ∼ N−1. This means
that for a larger number of N the sensitivity to the initial
conditions increases because the width of the high energy
density spots reduces.

V. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we have provided a systematic calculation
of the maximal energy density in the collision of N slow
kinks/antikinks (with N ≤ 7) in the integrable sine-Gordon
model. Our findings are collected in Table I. The first line
gives the number of colliding solitons, N. The second line
gives the exact values of the maximal energy density that
can be achieved in the collision of N kinks/antikinks. These
results are available for N ≤ 3 (see Secs. III A, III B,
and III C). For larger N the results were obtained numeri-
cally and they are presented in the third and fourth lines of
Table I for h ¼ 0.1 and h ¼ 0.05, respectively. In numerical
simulations the kink/antikink velocities are small (no greater
than 0.1) but not equal to zero at t → �∞. For decreasing h
and decreasing initial velocities of the colliding kinks/
antikinks the numerical results converge to the integer
numbers shown in the last two lines of Table I.
The results can be summarized as follows. The maximal

energy density that can be achieved in collision of N slow
kinks/antikinks in SGE is found to be equal to

eðNÞ
max ≈ 2N2 for even N;

eðNÞ
max ≈ 2ðN2 þ 1Þ for odd N: ð27Þ

When an even number of slow kinks/antikinks collides at
one point, the kinetic energy density reaches a maximal

FIG. 12 (color online). Effect of weak damping on the maximal
energy density in (a) three-kink and (b) four-kink collisions.
Results of numerical integration of the discrete model Eq. (12)
with the additional damping term γðdϕn=dtÞ in the left-hand side
for the lattice spacing h ¼ 0.05 and time step τ ¼ 0.005 using the
numerical scheme with the accuracy Oðτ4Þ.

FIG. 13. Full width at half maximum for the high energy
density spots as the function of the number of colliding solitons.
Different symbols are used for odd and even N. Slope of the line
in the log-log plot is equal to −1, so that W ∼ N−1.

TABLE I. Summary on maximal energy density in collision of
N solitons for N ≤ 7.

N 0 1 2 3 4 5 6 7

Exact 0 4 8 20 � � � � � � � � � � � �
h ¼ 0.1 32.21 50.93 72.62 94.90
h ¼ 0.05 32.05 51.85 72.08 99.56

2N2 0 � � � 8 � � � 32 � � � 72 � � �
2ðN2 þ 1Þ � � � 4 � � � 20 � � � 52 � � � 100
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value 2N2, while the maximal potential energy density is
nearly equal to zero. On the contrary, when an odd number
of slow kinks/antikinks collides at one point, the potential
energy density has maximal value 2ðN2 þ 1Þ, while the
maximal kinetic energy density is almost zero.
These maximal energy density values can be achieved

when all N kinks/antikinks collide at one point. This
happens when the kinks and antikinks approach the
collision point alternatively (i.e., no two adjacent solitons
are of the same type). Arranged in this way, each soliton
has nearest neighbors of the opposite topological charge.
Such solitons attract each other and their cores can merge
producing a controllably high energy density spot, as we
have demonstrated herein.
As demonstrated in Sec. IV, weak Hamiltonian perturba-

tions can increase or decrease the maximal energy density in
soliton collisions. Damping decreases the maximal energy
density. The effect of damping is relatively weak for the
collisions of an odd number of kinks when the maximal
energy density is in the form of the potential energy and is
much more pronounced for the collisions of an even number
of kinks accompanied by kinetic energy bursts.
According to Eq. (27), the maximal energy density in the

sine-Gordon field that can be realized in N-soliton collisions
increases quadratically with N. At the same time, total
energy of N standing kinks is equal to 8N and thus, is
proportional to N. Naturally, this does not lead to a contra-
diction since the very high energy density is accumulated at a
very narrow region near x ¼ 0, and hence when integrated
over space, still preserves the total energy of 8N. The results
presented in Fig. 13 support this conclusion. Indeed, the
amplitude of the high energy density spot increases asN2 but
its width reduces as N−1, so that its total energy is propor-
tional to N. Furthermore, this very high concentration of
energy density for a very short time interval (around t ¼ 0) is
reminiscent of rogue events in other models (such as the
nonlinear Schrödinger equation and variants thereof, with
their Peregrine soliton and related solutions) [24,25].
However, to the best of our knowledge, no explicit rogue
waveforms have been identified yet in such models. Hence,
our identification of controllably large energy densities in the

SGE model is, arguably, the first example of such a rogue
event in this setting.
Having the results of this work in mind, one can expect

that in the soliton gas model [33,34] unlimited energy
density can be achieved. Of course, the probability of
collision of N alternating kinks and antikinks decreases
rapidly with increasing N (and even then, the probability of
their concurrent collision is very low), but such rare events
can have important consequences, when they do arise.
As for the open problems, it is important to calculate the

maximal energy density that can be achieved in multi-
soliton collisions in other integrable and nonintegrable
systems of different dimensionality. For example, one can
examine similar issues and design such collisions in other
Klein-Gordon field theoretic models (e.g. in the ϕ4 or ϕ6

models [15,35]), as well as in the one-dimensional, self-
defocusing nonlinear Schrödinger equation. It would be
particularly interesting to explore if the relevant phenom-
enology persists therein. It would also be particularly
interesting to explore to attempt to prove the asymptotic
statements inferred herein; although perhaps a direct
approach towards this starting from a multisoliton solution
could be very cumbersome, perhaps a reverse approach,
initializing the system with a suitably large, and highly
localized, energy density at a point and utilizing the inverse
scattering transform to establish that this waveform will
split into N soliton solutions may be more tractable.
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