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The potential of precision spectroscopy as a tool in systematic searches for effects of Lorentz and CPT
violation is investigated. Systems considered include hydrogen, antihydrogen, deuterium, positronium, and
hydrogen molecules and molecular ions. Perturbative shifts in energy levels and key transition frequencies
are derived, allowing for Lorentz-violating operators of arbitrary mass dimensions. Observable effects are
deduced from various direct measurements, sidereal and annual variations, comparisons among species,
and gravitational responses. We use existing data to place new and improved constraints on nonrelativistic
coefficients for Lorentz and CPT violation, and we provide estimates for the future attainable reach in
direct spectroscopy of the various systems or tests with hydrogen and deuterium masers. The results reveal
prospective sensitivities to many coefficients unmeasured to date, along with potential improvements of a
billionfold or more over certain existing results.
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I. INTRODUCTION

Hydrogen spectroscopy has been intimately linked with
precision tests of the foundations of relativity since the
exact solution of the Dirac equation for hydrogen [1,2]
matched relativistic quantum mechanics with experiments.
Indeed, a famous classic test of special relativity, the Ives-
Stilwell experiment confirming time dilation [3], was first
performed using a hydrogen clock. Another classic experi-
ment, Gravity Probe A [4], verified the relativistic fre-
quency shift in a gravitational field using a hydrogen maser
launched on a suborbital rocket.
The underlying symmetry of relativity, Lorentz invari-

ance, can naturally be broken in some approaches to the
unification of gravity with quantum physics such as string
theory [5]. This possibility opens the door to the exper-
imental detection of new physics emerging from the Planck
scaleMP ≃ 1019 GeV, and it has led to numerous sensitive
tests of relativity using techniques from various subdisci-
plines of physics [6]. In the present work we further this
program, studying the prospects for signals of Lorentz
violation using spectroscopy of hydrogen, antihydrogen,
and related systems, including deuterium, positronium, and
hydrogen molecules and molecular ions.
The methods of effective field theory offer a powerful

and general approach to describing physical phenomena at
accessible scales when the fundamental theory at a larger
scale is unknown [7]. The general realistic effective field
theory for Lorentz violation, the Standard-Model Extension
(SME) [8,9], is built from general relativity and the
Standard Model of particle physics by adding to the
action all coordinate-independent contractions of Lorentz-
violating operators with controlling coefficients. Operators
of larger mass dimension d can be viewed as higher-order
effects in a large-distance expansion of the underlying
physics. Since CPT violation in effective field theory

breaks Lorentz symmetry [8,10], the SME also provides
a general description of CPT violation. The limit of the
SME restricted to operators with d ≤ 4 is called the
minimal SME, and it is power-counting renormalizable
in Minkowski spacetime [11,12].
The minimal-SME terms generate striking effects in the

spectra of hydrogen and antihydrogen, including CPT-
violating signals and shifts in the hyperfine and 1S-2S
transitions that depend on sidereal time [13]. Published
searches for these effects have measured the hyperfine
splitting using a hydrogen maser [14–16] and compared the
1S-2S transition in atomic hydrogen to a cesium fountain
clock [17,18]. Related experiments with antihydrogen are
being developed [19–22], and experiments with hydrogen
molecules and molecular ions have been proposed as well
[23]. In the context of the minimal SME, theoretical
modifications to the spectra of hydrogen and antihydrogen
have been widely studied [13,24–31], while spectral shifts
are also known to arise from specialized nonminimal SME
interactions with d ¼ 5 [32] and from d ¼ 6 terms origi-
nating in noncommutative quantum field theory [33,34].
The minimal SME also introduces CPT-violating effects in
positronium decay [35,36].
Here, we investigate the prospects for spectroscopic

searches for Lorentz and CPT violation using hydrogen,
antihydrogen, deuterium, positronium, and hydrogen mol-
ecules and molecular ions. We focus on effects that arise
from general Lorentz and CPT violation in the propagators
of electrons, protons, neutrons, and their antiparticles. An
analysis of this type has recently become feasible following
the detailed classification and enumeration of Lorentz-
violating modifications to the Dirac equation at arbitrary d
[37], which includes operators of both renormalizable and
nonrenormalizable dimensions. Operators of higher d are
of crucial interest in several contexts including, for
example, foundational perspectives such as causality and
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stability [38,39] or the underlying pseudo-Riemann-Finsler
geometry [40,41], practical issues such as the mixing of
operators of different d through radiative corrections [42],
and phenomenological effects arising in certain theories
such as supersymmetric Lorentz-violating models [43] or
noncommutative quantum electrodynamics [33,34,44]. The
spectroscopic experiments proposed here therefore have
potential to bear on many aspects of Lorentz and CPT
violation.
Dimensional analysis reveals that operators with larger d

can be expected to produce signals growing with energy,
whereas the spectroscopic experiments of interest here
typically involve nonrelativistic species. Remarkably, how-
ever, the nonrelativistic observables for Lorentz violation
turn out to be combinations of operators of arbitrary d [37],
while spectroscopic methods can achieve high sensitivity,
so the experiments proposed here are competitive with
other techniques. Our treatment disregards possible
Lorentz-violating interactions, as these produce suppressed
effects. For instance, the dominant contributions to the
various spectra obtained below are independent of the
internal electromagnetic four-vector potential in Coulomb
gauge, while any applied external electromagnetic fields
are minuscule compared to the electron and proton masses
and so their Lorentz-violating effects are heavily sup-
pressed. This approach is consistent with other studies
of both minimal and nonminimal effects in conventional
and muonic atoms [45–47]. We also disregard possible
flavor-changing effects, which involve simultaneous
lepton- or baryon-number violation with Lorentz violation
and so can reasonably be taken as smaller than the effects
considered here.
Including the present introduction, the main text of the

paper is divided into eight sections. In Sec. II, we initiate
the explicit discussion of Lorentz and CPT violation in
hydrogen by presenting the underlying theoretical calcu-
lations required to analyze spectroscopic experiments.
Some basic background information about perturbation
theory involving operators of arbitrary d is provided in
Sec. II A, followed by a discussion in Sec. II B establishing
the coefficients for Lorentz violation relevant for hydrogen
spectroscopy. Section II C contains the derivation of the
matrix elements for the calculation of the perturbative
energy shift due to Lorentz and CPT violation, including
both general results and analytical expressions for special
cases. In Sec. II D, we address the modifications arising
from the presence of an external magnetic field, including
the key equations underlying the resulting sidereal and
annual variations of the Lorentz- and CPT-violating
energy-level shifts.
With the theory in hand, the analysis of various exper-

imental scenarios for hydrogen spectroscopy becomes
feasible. This is addressed in Sec. III. We first consider
the case of free hydrogen in the absence of applied fields.
The effects of Lorentz and CPT violation on the transition

probabilities and line shapes are discussed in Sec. III A,
along with the prospects for measuring signals. We then
turn in Sec. III B to the hyperfine Zeeman spectroscopy of
hydrogen, presenting the perturbative frequency shift and
studying signals from sidereal variations and from changes
in the orientation of the applied magnetic field, corrections
due to boosts, and the prospects for a space-based mission.
This is followed in Secs. III C and III D by an investigation
of potentially observable effects in various nL-n0L0 tran-
sitions for which precision measurement in hydrogen is
experimentally feasible. Where possible in all these appli-
cations, we use existing data to extract first or improved
constraints on nonminimal coefficients and estimate sensi-
tivities attainable in future experiments.
Following the discussion of hydrogen, we turn our

attention in Sec. IV to searches for Lorentz and CPT
violation using antihydrogen. We begin in Sec. IVAwith an
overview of the perturbation theory and effects on the
spectrum. Signals in hyperfine transitions are the subject of
Sec. IV B, while effects on the 1S-2S and similar transitions
are considered in Sec. IV C. We conclude the treatment of
antihydrogen in Sec. IV D with a discussion of the
prospects for an anomalous gravitational response of
antihydrogen.
Three sections are devoted to signals of Lorentz and

CPT violation in other related systems. Deuterium spec-
troscopy is considered in Sec. V. The perturbative approach
adopted is presented in Sec. VA, followed in Sec. V B by a
discussion of frequency shifts relevant to high-sensitivity
spectroscopy. Observable effects from isotropic coeffi-
cients are considered in Sec. V C, while Sec. V D contains
a discussion of the prospects for hyperfine measurements
using a deuterium maser. Positronium spectroscopy is the
subject of Sec. VI, while spectroscopy of hydrogen
molecules and related species is considered in Sec. VII.
We conclude with a summary in Sec. VIII. Throughout this
paper we follow the notation of Ref. [37], with a few
exceptions noted in the text.

II. THEORY

In this section, we present the general theoretical
framework and calculations for determining the perturba-
tive shifts in the hydrogen spectrum arising from Lorentz
andCPT violation. The basic framework for the calculation
is discussed, and then the symmetries of the system are
used to identify the subset of coefficients for Lorentz and
CPT violation that can contribute to modifications of the
hydrogen spectrum. The general matrix elements of the
perturbative Hamiltonian are calculated, and analytical
expressions for the resulting energy shifts are presented
in simple cases. We finally address generic effects arising in
the presence of an applied magnetic field, including in
particular the time dependence of the energy-level shift due
to sidereal and annual variations.
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A. Basics

The dominant Lorentz-violating perturbations to the
spectrum of hydrogen arise from corrections to the propa-
gators of the electron e and the proton p. Introducing a
flavor index w taking values e and p, the Lagrange density
for the quantum fermion field ψw of mass mw including all
kinetic effects from Lorentz and CPT violation can be
written as [37]

L ⊃
1

2
ψwðγμi∂μ −mw þ Q̂wÞψw þ H:c:; ð1Þ

where Q̂w is the sum of all possible terms formed by
contracting SME coefficients for Lorentz and CPT viola-
tion with derivatives i∂μ. The operator Q̂w is a spinor
matrix. It can be expanded in Dirac matrices, converted to
momentum space, and decomposed in spherical coordi-
nates, which permits the classification and enumeration of
the corresponding effects. At each mass dimension d and
for each flavor w, only certain combinations of coefficients
for Lorentz violation are observable, due to the freedom to
redefine the spinor basis without affecting the physics.
Each of these combinations, called effective coefficients,
controls a physically distinct Lorentz-violating effect.
Spectroscopy of the hydrogenic systems considered in this
work offers access in principle to about half of these
effective coefficients, including some with sensitivities
corresponding to Planck-suppressed signals.
The leading-order perturbation δhH to the free Dirac

Hamiltonian hH for the hydrogen atom can be obtained
from the Lagrange density (1) by adding the Lorentz-
violating contributions from the electron and the proton. In
the center-of-mass frame, the kinetic energies of the
electron and proton are small compared to their masses,
so it suffices to consider the Hamiltonian perturbation in the
nonrelativistic limit,

δhNRH ¼ δhNRe þ δhNRp : ð2Þ

For calculational purposes, the operator δhNRe is understood
to represent the tensor product of an operator acting on e
states with the identity operator acting on p states, and
similarly for δhNRp . Note that the operators δhNRw depend on
the fermion momentum p.
For much of the spectroscopic analysis that follows, it is

useful to perform a spherical decomposition of the
Hamiltonian perturbation δhNRH because tests of rotation
symmetry are the predominant focus of many searches for
Lorentz violation. The perturbation δhNRw can be decom-
posed as [37]

δhNRw ¼ hw0 þ hwrσ · ϵ̂r þ hwþσ · ϵ̂− þ hw−σ · ϵ̂þ; ð3Þ

where σ ¼ ðσ1; σ2; σ3Þ is the vector of Pauli matrices. The
unit basis vectors ϵ̂r ¼ p̂≡ p=jpj, ϵ̂� ¼ ðθ̂� iϕ̂Þ= ffiffiffi

2
p

are

defined by introducing the usual unit vectors θ̂ and ϕ̂ for
the polar angle θ and azimuthal angle ϕ in momentum
space, so that p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. The com-
ponent Hamiltonians hw0, hwr, hw� can be expanded in a
series of terms involving products of powers of j pj, spin-
weighted spherical harmonics sYjmð p̂Þ of spin weight s,
and nonrelativistic spherical coefficients for Lorentz
violation. This permits a quantitative distinction among
physical effects resulting from different magnitudes and
orientations of the particle momenta. For the spin-
independent term the expansion gives

hw0 ¼ −
X
kjm

j pjk0Yjmðp̂ÞVw
NR
kjm; ð4Þ

while for the spin-dependent terms the result is

hwr ¼ −
X
kjm

j pjk0Yjmðp̂ÞT w
NRð0BÞ
kjm ;

hw� ¼
X
kjm

j pjk�1Yjmðp̂ÞðiT w
NRð1EÞ
kjm � T w

NRð1BÞ
kjm Þ: ð5Þ

The quantities Vw
NR
kjm and T w

NRðqPÞ
kjm , where the superscripts

qP take the values 0B, 1B, 1E, are the nonrelativistic
spherical coefficients for Lorentz violation, which we
denote generically by Kw

NR
kjm. Each of these can be

separated into two pieces, controlling either CPT-even
or CPT-odd effects [37],

Vw
NR
kjm ¼ cwNRkjm − awNRkjm;

T w
NRðqPÞ
kjm ¼ gw

NRðqPÞ
kjm −Hw

NRðqPÞ
kjm ; ð6Þ

following the standard convention [8] in which a- and
g-type coefficients are associated with CPT-odd operators
and c- and H-type coefficients with CPT-even ones.
Expressions involving antiparticles can therefore be
obtained by reversing the sign of the a- and g-type
coefficients. The reader is cautioned that the a- and
H-type coefficients contain contributions only from
operators of odd mass dimensions d, while the c- and
g-type coefficients contain ones only from operators of
even d. Note that the mass dimension of each nonrelativ-
istic coefficient is 1 − k.
A primary target of spectroscopic experiments is mea-

surements of the nonrelativistic spherical coefficients (6).
These coefficients are linear combinations of the complete
set of spherical coefficients for Lorentz violation, given in
Eqs. (111) and (112) of Ref. [37]. The allowed range of the
indices k, j, m and the counting of independent coefficient
components are provided in Table IV of Ref. [37]. The
subscript index k is used in the present work instead of n to
avoid confusion with the principal quantum number of the
atom. Note that the indices j, m determine the rotational
behavior of the spin-weighted spherical harmonics and
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hence of the corresponding operators for Lorentz violation,
so these indices are distinct from the angular-momentum
quantum numbers J, M associated with the atomic states.
The basic properties of the spin-weighted spherical har-
monics are presented in Appendix A of Ref. [48]. The usual
spherical harmonics are recovered when s ¼ 0, so
Yjmðθ;ϕÞ≡ 0Yjmðp̂Þ.
For the special index choices jm ¼ 00 the corresponding

physical effects are isotropic, and following Eq. (114) of
Ref. [37] it is convenient to adopt a ring-diacritic notation
for the associated coefficients. For the applications in this
work, it suffices to define

awNRk00 ≡
ffiffiffiffiffiffi
4π

p
a
∘NR
w;k; cwNRk00 ≡

ffiffiffiffiffiffi
4π

p
c
∘NR
w;k: ð7Þ

We emphasize that the isotropic nonrelativistic coefficients

a
∘NR
w;k and c

∘NR
w;k contain isotropic spherical coefficients a

∘ ðdÞ
k

and c
∘ ðdÞ
k of arbitrarily large d. For example, using Eqs. (93)

and (111) of Ref. [37] gives

a
∘NR
w;0 ¼ a

∘ ð3Þ
0 þm2

wa
∘ ð5Þ
0 þm4

wa
∘ ð7Þ
0 þ � � � ;

a
∘NR
w;2 ¼ a

∘ ð5Þ
0 þ 2m2

wa
∘ ð7Þ
0 þ � � � þ a

∘ ð5Þ
2 þm2

wa
∘ ð7Þ
2 þ � � � ; ð8Þ

and

c
∘NR
w;0 ¼ mwc

∘ ð4Þ
0 þm3

wc
∘ ð6Þ
0 þm5

wc
∘ ð8Þ
0 þ � � � ;

c
∘NR
w;2 ¼

1

2mw
c
∘ ð4Þ
0 þ 3

2
mwc

∘ ð6Þ
0 þ 5

2
m3

wc
∘ ð8Þ
0 þ � � �

þ 1

mw
c
∘ ð4Þ
2 þmwc

∘ ð6Þ
2 þm3

wc
∘ ð8Þ
2 þ � � � : ð9Þ

The dominant Lorentz-violating perturbative shifts in the
spectrum of atomic hydrogen are obtained by calculating
the matrix elements of the perturbation Hamiltonian (2)
with respect to the unperturbed states of the system.
Lorentz-violating effects involving transitions between
different states appear at higher order in this scheme.
We take the unperturbed states to be the Schrödinger-
Coulomb eigenstates for a reduced mass mr ≡memp=
ðme þmpÞ, coupled to Pauli spinors for each particle.
When the perturbative shifts are smaller than the hyperfine
structure, the total angular momentum J of the electron and
the total angular momentum F of the atom are good
quantum numbers. Other relevant quantities for the system
include the principal quantum number n and the orbital
angular momentum L.
The scales of the perturbative frequency shifts are

controlled by the nonrelativistic coefficients Kw
NR
kjm. The

latter can be viewed as background fields in the chosen
inertial frame, which in the above equations for δhNRw is the
zero-momentum frame for the hydrogen atom. However, an
Earth-based laboratory for spectroscopic experiments is
poorly suited to report coefficient measurements because it

represents a noninertial frame due to the Earth’s rotation
about its axis and its revolution around the Sun. Instead, a
specified inertial frame can be used, widely chosen to be
the canonical Sun-centered frame [6,49]. This frame adopts
coordinates T; X; Y; Z with the origin of the time T chosen
as the vernal equinox 2000, the X axis pointing towards the
vernal equinox, and the Z axis aligned along the Earth’s
axis of rotation. The Sun-centered frame is inertial to an
excellent approximation on the timescale of laboratory
experiments, so it provides a standard and conveniently
accessible frame for reporting and comparing experimental
results.
The nonrelativistic spherical coefficients Kw

NR
kjm can

reasonably be taken as uniform and constant on the scale
of the solar system [8,9] and hence are constants when
expressed in the Sun-centered frame. The Earth’s rotation
and revolution therefore introduces variations with sidereal
time in many coefficients expressed in the laboratory frame,
which implies time variations in physical signals [50].
Since the Earth’s orbital speed β⊕ ≃ 10−4 is small, the
orbital motion can be disregarded for experimental analyses
focusing on searches for rotation violations. The trans-
formation between the Sun-centered and laboratory frames
then reduces to a simple rotation, so the spherical decom-
position summarized above offers definite calculational
simplifications. Suppose for convenience the laboratory
frame coordinates x; y; z are specified with the z axis
pointing towards the zenith and the x axis lying at an
angle ϕ measured east of south. Then, the coefficients
Kw

NR;lab
kjm in the laboratory frame are related to the coef-

ficients Kw
NR;Sun
kjm in the Sun-centered frame by

Kw
NR;lab
kjm ¼

X
m0

eim
0ω⊕T⊕þimϕdjmm0 ð−χÞKw

NR;Sun
kjm0 ; ð10Þ

where ω⊕ ≃ 2π=ð24 h 56 mÞ is the Earth’s sidereal fre-
quency, T⊕ is the local Earth sidereal time, and χ is the
colatitude of the experiment. The little Wigner matrices
djmm0 are defined in Eq. (136) of Ref. [48]. The result (10)
reveals that the sidereal dependence of the transition
frequencies is controlled by the azimuthal indices on the
coefficients contributing to the perturbation.

B. Coefficient selection rules

Before calculating explicitly the matrix elements of δhNRH
in the unperturbed states, it is useful to study the sym-
metries of the system. We show here that various sym-
metries imply vanishing values for many matrix elements
of operators in the decomposition (3)–(5). This identifies a
subset of effective spherical coefficients that are inacces-
sible at leading order via spectroscopy.
A first observation is that the unperturbed states are

parity eigenstates. It follows that only even-parity pertur-
bations can contribute to the energy shift at first order.
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Since all operators in the decomposition (3)–(5) have
definite parity [37], it is straightforward to identify the
inaccessible coefficients. For the coefficients awNRkjm, cw

NR
kjm,

which are associated with the usual spherical harmonics, j
must be even to contribute, which turns out to imply that k

must be even as well. For the coefficients gw
NRðqPÞ
kjm ,

Hw
NRðqPÞ
kjm , the parity is even if k is even and either P ¼

E with even j or P ¼ B with odd j.
A second observation is that the sums over j in Eqs. (4)

and (5) can be truncated according to the angular momenta
of the unperturbed state of interest. The key to implement-
ing this truncation is the following proposition: if Tjm

transforms as a spherical-tensor operator under the trans-
formation generated by an angular-momentum operator K
with associated quantum numbers K and mK , then the
matrix element hKm0

KjTjmjKmKi vanishes unless j ≤ 2K.
This result is a direct consequence of the triangular
condition jj1 − j2j ≤ j3 ≤ j1 þ j2 of the Clebsch-Gordan
coefficients hj1m1j2m2jj3m3i and the Wigner-Eckart
theorem [51].
To illustrate the use of this proposition to truncate the

sums over j, consider first the spin-independent terms in
Eq. (4). These operators transform as spherical operators
with K identified as L, J, or F. Now, if K is a good quantum
number, then a matrix element in the unperturbed state can
be expressed as a linear combination of matrix elements in
the states jKmKi with K fixed. As a result, if the matrix
elements in the states jKmKi vanish, then so does the
matrix element in the unperturbed state. For K ¼ J, the
proposition then implies that only operators satisfying
the inequality j ≤ 2J can contribute to the energy shift.
Since 2J is an odd number and since only even values of j
contribute to the energy shift as noted above, we can
express the condition on j for the caseK ¼ J as j < 2J. For
K ¼ L or K ¼ F, no stronger constraints on the allowed
values of j are obtained. For example, if F ¼ J − 1=2 then
j ≤ 2F ¼ 2J − 1, which is equivalent to j < 2J because j
is an integer. To summarize, among the spin-independent
operators only those satisfying the condition j < 2J can
contribute to the energy shift of a state with angular
momentum J. A similar argument applies to the spin-
dependent terms with B-type parity, leading to the con-
clusion that among this set of terms only those satisfying
j ≤ 2F − 1 can contribute to the energy shift of a state with
total angular momentum F.
Invariance under time reversal is another symmetry of

the system. This symmetry can be used along with the
Wigner-Eckart theorem to show that the spin-dependent
terms with E-type parity in Eq. (5) cannot contribute to the
energy shift at first order in perturbation theory. To see this,
we begin by considering a spin-dependent operator of E-
type parity having fixed j and m ¼ 0, which takes the
schematic form

TE
j0 ¼

ffiffiffi
2

p X
k

jpjkT NRð1EÞ
kj0 þ1Yj0ðp̂Þðσ2 cosϕ − σ1 sinϕÞ:

ð11Þ

Under time reversal p → −p and σ → −σ, so the operator
transforms as TE

j0 → ð−1Þjþ1TE
j0. Also, states transform as

jFmFi → jFð−mFÞi up to a phase factor, which implies

hFmFjTE
j0jFmFi ¼ ð−1Þjþ1hFð−mFÞjTE

j0jFð−mFÞi:
ð12Þ

The Wigner-Eckart theorem and the properties of the
Clebsch-Gordan coefficients permit the replacement
−mF → mF on the right-hand side of this equation,
accompanied by a phase factor ð−1Þj. We thus obtain
the equality

hFmFjTE
j0jFmFi ¼ −hFmFjTE

j0jFmFi; ð13Þ

revealing that all the matrix elements of Tj0 vanish.
Using the Wigner-Eckart theorem again, this result
can be extended to the general matrix elements
hFm0

FjTE
jmjFmFi via the identity

hFm0
FjTE

jmjFmFi ¼
hFFjTE

j0jFFi
hFFj0jFFi hFmFjmjFm0

Fi; ð14Þ

because the Clebsch-Gordan coefficient hFFj0jFFi
always differs from zero when 2F ≥ j. We can thus confirm
that hFm0

FjTE
jmjFmFi vanishes and hence that the spin-

dependent terms with E-type parity in Eq. (5) cannot
contribute to perturbative energy shifts.
While the various constraints above restrict the sums

over j in the decomposition (3)–(5), the sums over k remain
unconstrained. Evaluation of the matrix elements of oper-
ators j pjk with k > 4 reveals that they diverge when n and
L are small. This technical problem might be resolved by a
suitable regularization. However, on dimensional grounds
the size of the matrix elements is governed by a factor
ðαmrÞk, where α is the fine-structure constant. This factor
heavily suppresses the resulting energy shifts even for
sizeable coefficients for Lorentz violation. For instance, a
large k ¼ 6 coefficient of order 1 GeV−5 produces a
spectroscopic frequency shift of only about a nanohertz.
We therefore limit our attention to k ≤ 4 in this work. This
choice further restricts the allowed values of j [37], with the
maximum allowed value jmax given as jmax ¼ k for the
spin-independent terms and jmax ¼ kþ 1 for the spin-
dependent terms of B-type parity.
Combining all the results in this subsection, we can

identify the subset of nonrelativistic spherical coefficients
of interest for spectroscopic experiments. Table I summa-
rizes the situation for each type of coefficient. The first
column of the table lists coefficients that in principle can
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contribute at first order in perturbation theory to a spectral
shift of a state with quantum numbers F and J. The second
column shows the allowed values of the triplet kjm of
indices, where −j ≤ m ≤ j as usual. The third column
gives the total number of independent components for each
type of coefficient. Since there are two flavors for each
coefficient for hydrogen, w ¼ e and w ¼ p, a total of 356
independent nonrelativistic spherical components are
measurable in principle via spectroscopic experiments on
hydrogen, with each corresponding to a distinct physical
effect. The fourth column lists the constraint on j for a
measurement involving a state of angular momentum J or
F. The final three columns display the C, PT, and CPT
handedness of the corresponding operators.
Note that among the listed coefficients only the eight

with jkm ¼ 200 or jkm ¼ 400 govern isotropic effects that
are spectroscopically observable. They correspond to the

coefficients a
∘NR
w;2, a

∘NR
w;4, c

∘NR
w;2, and c

∘NR
w;4 given by the defi-

nitions (7). The coefficients with jkm ¼ 000, which satisfy
all the above criteria, have been omitted from Table I
because they produce only constant energy shifts in a given
frame and hence are undetectable via spectroscopy.
Detecting them might be feasible, for example, by studying
anisotropies of the dispersion relation for hydrogen in a
boosted frame, but investigating this lies outside our
present scope. They also become detectable in principle
in the presence of interactions such as gravity [9]. This
issue is revisited in the context of studies of the gravita-
tional response of antihydrogen in Sec. IV D below.

C. Matrix elements

In this subsection, we present some explicit results for
matrix elements of the perturbation Hamiltonian δhNRH
introduced in Eq. (2). For each nonrelativistic spherical
operator in δhNRH , a given matrix element can be decom-
posed as the product of two pieces, one depending on the
principal quantum number n and the other independent of
it. In what follows, we provide general expressions for each
of these two pieces. For free-atom states with arbitrary total
quantum number F, the energy shift cannot be expressed in
closed form due to the algebraic complexities of degenerate
perturbation theory. However, we can obtain an analytical

result for the cases F ¼ 0 and F ¼ 1. The situation in the
presence of an applied magnetic field is discussed in
Sec. II D.

1. General case

The piece of the matrix element that depends on the
principal quantum number n is given by the expectation
value of the operator jpjk in the unperturbed states. For the
cases k ¼ 0, 2, and 4 of interest here, we find

hjpj0inL ¼ 1;

hjpj2inL ¼
�
αmr

n

�
2

;

hjpj4inL ¼
�
αmr

n

�
4
�

8n
2Lþ 1

− 3

�
: ð15Þ

The first of these equations reflects the normalization of the
unperturbed states. Note that only the case k ¼ 4 depends
on the angular-momentum quantum number L.
The second piece of the matrix element is independent of

n. Using the spherical decomposition, it can be expressed in
terms of the Clebsch-Gordan coefficients.
To illustrate this fact, we begin by considering the spin-

independent term (4). Denoting the unperturbed states by
the ket jnFJLmFi, a calculation of the expectation value of
the usual spherical harmonics gives

hnFJLmFj0Yjmðp̂ÞjnFJLmFi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4π

r X
mLmJ

X
m1m2

hL0jmjL0ihLmLjmjLmLi

×

�
1

2
m1LmLjJmJ

�
2
�
JmJ

1

2
m2jFmF

�
2

: ð16Þ

Note that the result is independent of the flavor w. In this
equation, the Clebsch-Gordan coefficients involving J and
F arise from the addition of orbital and spin angular
momenta. The other Clebsch-Gordan coefficients originate
in the triple integral of the spherical harmonics. This result
and the Wigner-Eckart theorem in the generic form (14)
can be combined to derive the spin-independent matrix
elements in the fixed-F subspace. We find

TABLE I. Contributing nonrelativistic spherical coefficients.

Kw
NR
kjm kjm Number Condition C PT CPT

awNRkjm 200, 22m, 400, 42m, 44m 21 j ≤ 2J − 1 − þ −
cwNRkjm 200, 22m, 400, 42m, 44m 21 j ≤ 2J − 1 þ þ þ
gw

NRð0BÞ
kjm

01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 þ − −

gw
NRð1BÞ
kjm

01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 þ − −

Hw
NRð0BÞ
kjm

01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 − − þ
Hw

NRð1BÞ
kjm

01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 − − þ
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hnFJLm0
Fjhe0 þ hp0jnFJLmFi

¼ −
X
wkjm

Vw
NR
kjmhjpjkinLhFmFjmjFm0

Fi

×
hFJLFj0Yj0ðp̂ÞjFJLFi

hFFj0jFFi ; ð17Þ

which demonstrates that the calculation of the matrix
elements for the spin-independent term can be reduced
to a determination of Clebsch-Gordan coefficients. A
similar result holds for the spin-dependent term.
More generally, the above methods can be used to

determine the matrix elements of the full perturbation
δhNRH . Explicitly, after some calculation we find

hnFJLm0
FjδhNRH jnFJLmFi ¼

X
jm

AjmhFmFjmjFm0
Fi;

ð18Þ

where the weights AjmðnFJLÞ are given by

Ajm ¼ −
X
wk

hjpjkinL
�
Λð0EÞ
j Vw

NR
kjm þ Λð0BÞ

j

2J þ 1
T w

NRð0BÞ
kjm

−Λð1BÞ
j

�
δwe

2ðL − JÞ þ
δwP

2ðJ − FÞ
�
T w

NRð1BÞ
kjm

�
; ð19Þ

with δab ¼ 1 if a ¼ b and δab ¼ 0 otherwise. In this
expression, the factors ΛðqPÞ

j are related to the ratio of
the expectation value of the operator and the corresponding
Clebsch-Gordan coefficient. This can be verified for the
spin-independent term by comparing Eqs. (17) and (19).
Note that the weights obey the identity

A�
jm ¼ ð−1ÞmAjð−mÞ; ð20Þ

by virtue of the properties of the coefficients for Lorentz
violation [37].

The factors ΛðqPÞ
j can be expressed explicitly in terms of

the quantum numbers of the state involved. For the factors

Λð0EÞ
0 ðF; JÞ associated with the spin-independent terms, we

find

Λð0EÞ
0 ðF; JÞ ¼ 1ffiffiffiffiffiffi

4π
p ð21Þ

when j ¼ 0, and

Λð0EÞ
j ðF; JÞ ¼ ij

j − 1

22j

�
1 − 2j

F − J
2J þ 1

� ðJ − j=2Þ!
ðJ þ j=2Þ!

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2F þ jþ 1Þ!
πð2F þ 1Þð2F − jÞ!

s
ð22Þ

when j ¼ 2 or j ¼ 4. For the factors Λð1BÞ
j ðFÞ associated

with the spin-dependent terms, we obtain

Λð1BÞ
j ðFÞ

¼
�
1

2
ðj − 1Þ

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−jÞ=2

j!!

s
Λð0BÞ
j ðFÞ

¼ ij−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!!ð2jþ 1ÞðF þ 1

2
ðjþ 1ÞÞ!ð2F − jÞ!!

2ðj−1Þ=2πð2F þ 1ÞðF − 1
2
ðjþ 1ÞÞ!ð2F þ jÞ!!

s

ð23Þ

for j ¼ 1, 3, 5. In these expressions, the double-factorial
symbol !! is defined as usual by N!! ¼ NðN − 2Þ…1 for
odd N and N!! ¼ NðN − 2Þ…2 for even N.
For convenience, Table II presents the numerical values

for some instances of the factors ΛðqPÞ
j . The table lists the

numerical values of the factors for energy levels with
orbital angular momentum L ≤ 2. The left-hand side of the

table concerns the factors Λð0EÞ
j ðF; JÞ associated with the

spin-independent perturbation, displaying their values for
j ¼ 2, 4, J ¼ 3

2
; 5
2
, and F ¼ 1, 2, 3. The right-hand side

gives values of the factors Λð0BÞ
j ðFÞ and Λð1BÞ

j ðFÞ for
spin-dependent effects, for the ranges j ¼ 1, 3, 5 and
F ¼ 1, 2, 3.
To illustrate the methods described in this subsection, we

construct the matrix element for the perturbative energy
shift in the F ¼ 1 subspace of the ground state J ¼ 1=2.
Inspecting Table I reveals that only the spin-independent
terms with j ¼ 0 and the spin-dependent terms with j ¼ 1
can contribute, while k can take the values 0, 2, and 4. From
the general expression (18), the matrix element δhðm0

F;mFÞ
in the F ¼ 1 subspace takes the form

δhðm0
F;mFÞ ¼ A00δm0

FmF
þ
X
m

A1mh1mF1mj1m0
Fi: ð24Þ

To determine the weight A00ð11 1
2
0Þ using Eq. (19), we

need the expectation values (15) evaluated at n ¼ 1 and

TABLE II. Some numerical values of the factors ΛðqPÞ
j .

j J F Λð0EÞ j F Λð0BÞ Λð1BÞ

2 3
2

1 − 1

2
ffiffiffiffi
2π

p 1 1
ffiffiffiffi
2
3π

q ffiffiffiffi
2
3π

q
2 − 1

2

ffiffiffiffiffiffi
7

10π

q
2 3

5

ffiffi
2
π

q
3
5

ffiffi
2
π

q
5
2

2 −2
ffiffiffiffiffiffi
2

35π

q
3 6

7
ffiffi
π

p 6
7
ffiffi
π

p

3 − 2
7

ffiffi
3
π

q
3 2 − 6

5

ffiffi
2
π

q
− 2

5

ffiffi
3
π

q
4 5

2
2 1ffiffiffiffiffiffi

14π
p 3 −2

ffiffiffiffi
6
7π

q
− 2ffiffiffiffi

7π
p

3 1
7

ffiffiffiffi
11
2π

q
5 3 10

7

ffiffi
3
π

q
2
7

ffiffi
5
π

q
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L ¼ 0 and the factor Λð0EÞ
0 ð1; 1

2
Þ obtained from Eq. (21). To

calculate the weight A1mð11 1
2
0Þ requires the values of

Λð0BÞ
1 ð1Þ and Λð1BÞ

1 ð1Þ obtained from Table II. Collecting all
the pieces, we find

A00

�
11

1

2
0

�
¼

X2
q¼0

−ðαmrÞ2qð1þ 4δq2Þ
X
w

Vw
NR
ð2qÞ00ffiffiffiffiffiffi
4π

p

ð25Þ

for the spin-independent weight, and

A1m

�
11

1

2
0

�
¼ 1ffiffiffiffiffiffi

6π
p

X2
q¼0

−ðαmrÞ2qð1þ 4δq2Þ

×
X
w

ðT w
NRð0BÞ
ð2qÞ1m þ 2T w

NRð1BÞ
ð2qÞ1m Þ ð26Þ

for the spin-dependent one.

2. Analytical energy shifts for F ¼ 0 and F ¼ 1

Since the unperturbed hydrogen energy levels are
ð2F þ 1Þ-fold degenerate, the perturbative corrections to
the energy levels for fixed F are obtained by the eigen-
values of a ð2F þ 1Þ × ð2F þ 1Þ matrix, which is specified
by Eq. (18). In general, these eigenvalues are determined by
the roots of a polynomial of degree 2F þ 1 corresponding
to the secular equation of the matrix (18). This implies that
a closed-form expression for the energy shifts at arbitrary F
is unattainable. However, for the special cases F ¼ 0 and
F ¼ 1 the secular polynomial can be solved in closed form.
An analytical expression for the energy shifts can therefore
be found, as we demonstrate next. For simplicity, we
suppress the arguments nFJL of the weights AjmðnFJLÞ
in what follows.
Consider first the energy shift δϵðn; LÞ for the case

F ¼ 0. Since this energy state is nondegenerate, the shift
can be obtained directly from Eq. (18). The result is

δϵðn; LÞ ¼ A00 ¼ −
X
wk

hjpjkinL
Vw

NR
k00ffiffiffiffiffiffi
4π

p : ð27Þ

From Eqs. (19) and (21), we can infer that the weight A00

depends only on the quantum numbers n and L. In fact, this
feature holds for any F and J because the identity
hFmF00jFm0

Fi ¼ δmFm0
F

implies that the contribution
involving the isotropic coefficients with jm ¼ 00 to the
matrix element of the perturbation in the fixed-F subspace
is given by A00 times the identity matrix. The energy shift
can therefore always be expressed as the sum of contri-
butions from the isotropic coefficients with ones from the
anisotropic coefficients, with the former being given by
A00ðnLÞ independent of the values of F and J. One
consequence of this observation is that isotropic

coefficients can only contribute to frequency shifts for
transitions with Δn ≠ 0 or ΔL ≠ 0.
The expression for the F ¼ 1 case is more involved

because it is obtained from the solution of a cubic equation.
The energy shift δϵðn; L; J; ξÞ for this case takes the form

δϵðn; L; J; ξÞ ¼ A00 þ
1 − iξ

ffiffiffi
3

p

9ξ2 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
2

3

vuut

þ 1þ iξ
ffiffiffi
3

p

9ξ2 − 3

Δ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1−

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1
−4Δ3

0

p
2

3

q ; ð28Þ

where ξ ¼ −1; 0; 1. The quantities Δ0 and Δ1 can be
written in terms of the weights Ajmðn1JLÞ and Clebsch-
Gordan coefficients. The expression for Δ0,

Δ0 ¼
9

2

X
jm

AjmA�
jm

2jþ 1
; ð29Þ

explicitly shows that it is a rotational scalar because Ajm
transforms dually to A�

jm under observer rotations.
Similarly, we can conclude from the structure of Δ1,

Δ1 ¼ −
X
jm3

X
m1m2

27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þð2jþ 3Þp
2 × 5j−1=2

hjm1jm2j2m3i

× h2m32ð−m3Þj00iAjm1
Ajm2

A2ð−m3Þ; ð30Þ

that it too is a rotational scalar. One way to understand this
is to notice that the weights Ajm transform under observer
rotations like hjmj, and the equation for Δ1 can be viewed
as the sum of singlets h00j obtained by the angular-
momentum coupling of hjm1jwith hjm2j and then to h2m3j.
The result (28) holds for both allowed values of J.

However, its complexity reduces significantly for J ¼ 1=2.
As can be seen from Table I, the j ¼ 2 coefficients provide
no contribution for J ¼ 1=2 and so the weight A2m
vanishes. This implies that Δ1 ¼ 0, thereby reducing
Eq. (28) to

δϵ

�
n; L;

1

2
; ξ

�
¼ A00 þ

1ffiffiffi
2

p ξA; ð31Þ

where A≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
mA

�
1mA1m

p
. The contribution from the

anisotropic coefficients to the energy shift thus takes the
form of a linear Zeeman shift, where ξ can be interpreted as
the eigenvalues of the component of the total angular
momentum F in the direction of the pseudovector A�

1m. In
terms of the unperturbed state jn1 1

2
LmFi, the correspond-

ing eigenvectors jnL 1
2
ξi take the form

V. ALAN KOSTELECKÝ AND ARNALDO J. VARGAS PHYSICAL REVIEW D 92, 056002 (2015)

056002-8



				nL 1

2
0

�
¼ 1

A

X
m

A1m

				n1 12Lm
�
;

				nL 1

2
ð�1Þ

�
¼ 1

N�

�
A�
11ðA10 ∓ AÞ2

				n1 12Lð−1Þ
�

þ 2ðA10 ∓ AÞjA11j2
				n1 12L0

�

þ 2A11jA11j2
				n1 12Lðþ1Þ

��
; ð32Þ

where the factors N� are normalizations.
In the expressions (27), (28), and (31) for the energy shifts,

the weights Ajm containing the nonrelativistic coefficients
for Lorentz violation appear only in combinations that are
observer rotation scalars. This is a general feature of energy
shifts for any F, which can be understood as follows. Recall
that an observer transformation amountsmerely to changing
a basis, without changing the physics [8,9]. However, to
specify completely a quantum observer transformation
requires also defining its effect on the basis of states in
the Hilbert space. The definition can be chosen freely, and it
is convenient for the argument here to require quantum
observer rotations to leave the basis states jnFJLmFi
invariant. This choice has similarities to the adoption of
the Heisenberg picture in quantummechanics. By construc-
tion, the operator δhNRH is a scalar under observer rotations.
The matrix elements hnFJLm0

FjδhNRH jnFJLmFi then
explicitly form a rotation scalar, consistent with the notion
that the perturbed energy of the atom should be invariant
under observer rotations. However, the weights Ajm with
jm ≠ 00 transform nontrivially under observer rotations, so
in the final expression for the energy shift they can appear
only in combinations that are rotational scalars. In fact, the
combinations are also scalars under particle rotations, which
transform the system while leaving unchanged the coeffi-
cients for Lorentz violation. As a result, neither observer nor
particle rotations affect the expressions for the energy shifts.
The physical manifestation of Lorentz violation appears as
the lifting of the degeneracy of the unperturbed energy levels
of the free atom, reflected in the appearance of the parameter
ξ, with the size of the splitting determined by the magnitude
of the coefficients for Lorentz violation.

D. Applied magnetic field

The complications in calculating the spectral shifts for
free hydrogen arise in part from the rotational symmetry of
the unperturbed states. Applying an additional known
perturbation to the system can break this symmetry and
can thereby considerably simplify the analysis. As an
example with crucial relevance to many experimental
situations, we study here some consequences of applying
a constant uniform magnetic field. We assume the asso-
ciated energy shift is small compared to the scale of
the hyperfine structure but large compared to any

Lorentz-violating shifts. In this scenario, the applied
magnetic field lifts the ð2F þ 1Þ-fold degeneracy, so non-
degenerate perturbation theory can be used to determine the
overall energy shifts.
Choosing for convenience the laboratory frame so that

the applied magnetic field is aligned with the z axis, the
energy shifts δϵðnFJLmFÞ of the Zeeman levels are
determined by the diagonal components of the matrix
elements (18), which have m0

F ¼ mF. This gives

δϵðnFJLmFÞ ¼
X
j

Aj0ðnFJLÞhFmFj0jFmFi; ð33Þ

where the weights Aj0 are defined in Eq. (19). Only weights
with m ¼ 0 contribute, as the Clebsch-Gordan coefficients
hFmFjmjFmFi vanish unless m ¼ 0.
The Clebsch-Gordan coefficients hFmFj0jFmFi are

even functions of mF for even j and are odd functions
of mF for odd j. This implies that hF0j0jF0i ¼ 0 for odd
values of j. However, a glance at Table I shows that the only
Lorentz-violating operators with even j producing spectro-
scopic contributions are spin independent. As a result, spin-
dependent Lorentz-violating terms cannot contribute at
leading order to the shift of any energy level with
mF ¼ 0. This means, for example, that the transition
frequency for any two levels with mF ¼ 0 can at most
depend on spin-independent terms.
A key feature of an applied magnetic field is that it sets a

definite orientation for the experimental system. Since
nonzero coefficients for Lorentz violation imply a fixed
orientation in the background, generic changes of direction
of the magnetic field alter its alignment with the coef-
ficients and so can produce corresponding changes in the
perturbative energy shifts. Possible origins of a changing
magnetic-field orientation relative to the coefficients
include the rotation of the Earth, the revolution of the
Earth around the Sun, and any effects in the laboratory due,
for example, to placing the apparatus on a turntable. In the
laboratory frame, these appear as a consequence of time-
dependent coefficients for Lorentz violation, as outlined in
Sec. II A. The motion of the Earth thus naturally produces
sidereal and annual variations in some energy levels and
hence in certain spectroscopic frequencies. Next, we
present some general considerations for these variations.
More explicit experimental applications are presented in
Sec. III.

1. Sidereal variations

First, consider effects arising from the Earth’s rotation
about its axis. In the laboratory frame with the magnetic
field along the z direction as above, the relevant non-
relativistic spherical coefficients Kw

NR;lab
kjm have m ¼ 0 and

vary with sidereal time due to the rotation. The relationship
between the coefficients Kw

NR;Sun
kjm in the Sun-centered
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frame and the coefficients Kw
NR;lab
kj0 in the laboratory frame

is given by

Kw
NR;lab
kj0 ¼

X
m

eimω⊕T⊕dj0mð−ϑÞKw
NR;Sun
kjm : ð34Þ

This differs from Eq. (10) due to the choice of the
laboratory frame coordinates. In particular, the angle ϑ is
now the relative angle between the applied magnetic field
and the Earth’s axis of rotation. A possible constant phase
factor shifting ω⊕T⊕ has been chosen by setting the
orientation of the magnetic field in the XZ plane of the
Sun-centered frame at T⊕ ¼ 0.
Combining Eqs. (33) and (34) yields the energy shift

δϵðnFJLmFÞ in the presence of an applied magnetic field
expressed in the Sun-centered frame. We find

δϵðnFJLmFÞ ¼
X
jm

dðjÞ
0jmjð−ϑÞhFmFj0jFmFi

× ½ReASun
jjmj cos ðjmjω⊕T⊕Þ

− ImASun
jjmj sin ðjmjω⊕T⊕Þ�; ð35Þ

where the weights ASun
jm ðnFJLÞ are defined in the Sun-

centered frame by an expression of the same form as the
weights (19).
The sidereal variations (35) induce oscillations of

the spectroscopic lines as a function of sidereal time.
The frequencies of these oscillations are harmonics mω⊕
of the Earth’s sidereal frequency ω⊕, where −jmax ≤ m ≤
jmax and jmax is the maximum j value for the two energy
levels involved in the transition. As shown in Sec. II B, jmax
is determined by the quantum numbers J and F. Denoting
by Kmax the maximum among F and J for both energy
levels, the harmonics that appear are given by−2Kmaxþ1≤
m≤2Kmax−1.
The above result for the harmonic frequencies of

spectroscopic lines holds for general Lorentz violation.
However, as discussed in Sec. II B, we are limiting our
attention in the present work to terms with k ≤ 4. This
corresponds to the restriction j ≤ 5, as can be confirmed
from Table I, and hence involves only harmonic frequen-
cies ω ≤ 5ω⊕. An example generating fifth-harmonic
oscillations is the transition 2S1=2 − 3DF¼3

J¼5=2, which is
one of a family of transitions considered in Sec. III D
below. Higher harmonics are also signals of Lorentz
violation and could be sought experimentally, but they
involve more suppressed effects.

2. Annual variations

The transformation (34) between the Sun-centered frame
and the laboratory frame holds at zeroth order in the
laboratory speed. However, the orbital motion of the
Earth around the Sun offers another source of variations

for tests of Lorentz and CPT symmetry, which to date has
been used to extract constraints on SME coefficients in
comparatively few analyses [18,49,52]. Next, we consider
some leading-order boost effects.
The instantaneous Lorentz transformation from the Sun-

centered frame to the laboratory frame can be viewed as the
combination of a boost from the Sun-centered frame to a
frame comoving with the instantaneous laboratory frame,
followed by a rotation to align the latter two frames [49].
The required boost velocity β is the vector sum β¼ β⊕þβL
of the instantaneous Earth orbital velocity β⊕ in the
Sun-centered frame and the instantaneous velocity βL of
the laboratory frame relative to the Earth’s rotation axis.
The Earth’s orbital speed β⊕ ≃ 10−4 is much greater
than the typical rotation speed βL ≈ r⊕ω⊕ sin χ ≃ 10−6

for a laboratory at colatitude χ ≃ 45°, but both motions
are considered here as they yield distinct phenomenological
effects. To a sufficient approximation the Earth’s orbit can
be taken as circular, so the velocity β⊕ can be written as

β⊕ ¼ β⊕ sinΩ⊕TX̂ − β⊕ cosΩ⊕Tðcos ηŶ þ sin ηẐÞ;
ð36Þ

where Ω⊕ ≃ 2π=ð365.26 dÞ is the Earth’s orbital fre-
quency, T is the time in the Sun-centered frame, and η≃
23.4° is the angle between the XY plane and the Earth’s
orbital plane. Similarly, the velocity βL takes the form

βL ¼ −βL sinω⊕T⊕X̂ þ βL cosω⊕T⊕Ŷ; ð37Þ

where T⊕ is the local Earth sidereal time. Note that the
difference T − T⊕ is merely a phase that physically
represents a convenient choice of local time zero for a
specified tangential velocity.
One advantage to considering boost effects arises

because the boost and parity operators fail to commute,
implying that parity-even operators in the laboratory frame
incorporate parity-odd ones in the Sun-centered frame. The
connection between the two sets of operators is provided by
the boost velocity, which changes sign under parity. The
experimental sensitivity to parity-odd Lorentz violation is
therefore suppressed by at least a factor of 10−4, but as
shown below the observable signals are distinct. Another
advantage arises because in addition to mixing operators of
different parity, the transformation between the two frames
also mixes the irreducible rotation representations. This can
enrich the expected signals for Lorentz violation. For
example, laboratory measurements of an isotropic
Lorentz-violating effect can also test anisotropic effects
in the Sun-centered frame, which then appear combined
with the boost velocity. The mixing of irreducible rotation
representations does, however, imply a significant calcula-
tional issue for boost effects because performing the
spherical decomposition is no longer natural, yielding
cumbersome transformation rules for the spherical
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operators. To avoid this issue, we work here with the
Cartesian basis, for which calculations are more direct.
In the context of the applications discussed in Sec. III

below, two types of parity-even laboratory observables are
of particular interest: scalars and axial 3-vectors. For
example, the former is relevant for the 1S-2S transition,
while the latter is relevant to hyperfine Zeeman transitions.
Consider first the simplest case involving the laboratory-
frame measurement of a parity-even observer rotational
scalar Slab such as the weight A00ðnLÞ in Eq. (33). The
scalar Slab can be expressed in the Sun-centered frame as

Slab ¼ SSun þ VJβJ; ð38Þ
where VJ is defined in the Sun-centered frame and trans-
forms as a vector under observer rotations. Note that VJ can
receive only contributions from anisotropic parity-odd
Lorentz-violating operators in the Sun-centered frame.
Substituting for βJ using Eq. (36) then reveals that in
the laboratory frame the measurement of S exhibits annual
variations. Similarly, Eq. (37) predicts sidereal variations of
S. The two effects have distinct experimental signatures and
are sensitive to different combinations of the components of
VJ in the Sun-centered frame. As a result, experiments
performing a boost analysis on a scalar observable can
achieve interesting and distinctive sensitivities to coeffi-
cients for Lorentz violation.
Next, we consider a measurement of the z component Az

of an observer axial 3-vector AJ in the laboratory frame,
such as the weight A10ðnFJLÞ in Eq. (33). At first order in
βJ and in terms of quantities in the Sun-centered frame, Az

can be written as

Az ¼ RzJASun;J þ RzJβKTJK; ð39Þ
where TJK is defined in the Sun-centered frame and
transforms as a rank-2 pseudotensor under spatial rotations.
The quantity RzJ is the zth row of the rotation matrix RjJ

between the boosted frame and the laboratory frame, with
entries given by

RzX ¼ sinϑ cos ðω⊕T⊕ þ φÞ;
RzY ¼ sinϑ sin ðω⊕T⊕ þ φÞ;
RzZ ¼ cosϑ; ð40Þ

where as before ϑ is the angle between the magnetic field
and the Earth’s rotation axis. The phase φ is the angle
between the X axis and the projection of the magnetic field
on the XY plane at T⊕ ¼ 0. A useful perspective is to view
RzJ as a unitary vector pointing in the direction of the
applied magnetic field.
The first term in Eq. (39) is just the j ¼ 1 component

of the right-hand side of Eq. (35), expressed in the
Cartesian basis. This produces sidereal signals as discussed
in Sec. II D 1, so it suffices here to consider the second term

RzJβKTJK in Eq. (39). To compare the pseudotensor TJK to
the spherical decomposition, it is convenient to decompose
TJK into irreducible rotation representations. This decom-
position gives

RzJβKTJK ¼ 1

3
RzJβJTKK þ RzJβKT ½JK�

þ RzJβK
�
TðJKÞ −

1

3
δJKTLL

�
; ð41Þ

where indices in brackets and parentheses indicate anti-
symmetrization and symmetrization, respectively, both
with a factor of 1=2.
The first term in Eq. (41) contains the trace TKK ,

which in the spherical basis corresponds to combinations
of nonrelativistic coefficients of B-type parity with
jm ¼ 00. Its contribution is proportional to RzJβJ, so the
corresponding signals can be altered significantly by
manipulating the direction of the magnetic field. For
example, if the magnetic field is chosen orthogonal to
βL, then RzJβJL ¼ 0 and only annual variations arise from
this term. If instead the magnetic field is parallel to βL, then
RzJβJ ¼ βL þ RzJβJ⊕. For more generic orientations the
signal can be complicated, with coupled sidereal and
annual variations.
The contribution in Eq. (41) involving the antisymmetric

representation T ½JK� contains nonrelativistic spherical coef-
ficients of E-type parity with j ¼ 1. This term can be
viewed as being contracted with a factor Rz½JβK�, which
represents the components of the cross product of the vector
RzJ with the velocity βK. If the magnetic field is parallel to
βL, then the contributions from SRzJβKT ½JK� vary only at
the annual frequencyΩ⊕. If the magnetic field is parallel to
the Earth’s rotation axis, then the configuration is insensi-
tive to the combination of coefficients contained in
ϵZJKTJK . Generic orientations of the magnetic field again
lead to coupled sidereal and annual variations.
The final term in Eq. (41) involves the traceless sym-

metric part of the pseudotensor, which corresponds to
nonrelativistic spherical coefficients of B-type parity with
j ¼ 2. If the magnetic field is chosen along the Earth’s
rotation axis, the term of order β⊕ exhibits only annual
variations and the experiment is sensitive to the combina-
tions of coefficients contained in TðZJÞ and TJJ. In this
configuration, the term of order βL involves only the
fundamental frequency ω⊕. For other orientations of the
magnetic field, the signal also incorporates variations at
the second harmonic 2ω⊕.

III. APPLICATIONS

This section discusses observable experimental signals
for Lorentz and CPT violation that could appear in
spectroscopic studies of hydrogen. We begin by addressing
the case of free hydrogen in the absence of applied fields,
characterizing the resulting level splitting and possible
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experimental signals. Experiments with hyperfine Zeeman
transitions are treated next. We obtain the energy-level and
frequency shifts due to Lorentz and CPT violation and
study several types of time variations in experimental
signals, including sidereal and annual modulations together
with turntable and orbital effects. Existing experimental
data are used to place constraints on nonrelativistic coef-
ficients. Two subsections treat spectroscopy involving the
transitions nL-n0L0, including in particular the 1S-2S
transition. We obtain the associated frequency shifts and
discuss new constraints and the future reach available via a
self-consistent analysis or via sidereal and annual
variations.

A. Signals without background fields

In the absence of applied fields, the physical manifes-
tation of Lorentz violation in free atomic hydrogen is a
splitting of otherwise degenerate energy levels. In the Sun-
centered frame, the perturbed states can be constructed by
diagonalizing the Lorentz violation in the degenerate sub-
space. For example, as discussed in Sec. II C 2, Lorentz
violation causes the ground state of free hydrogen to split
into four sublevels in a pattern analogous to hyperfine
Zeeman splitting, despite the absence of a magnetic field.
At leading order, the ground states are eigenstates of the
operator A · F restricted to the corresponding subspace,
where A is the vector formed from the A1m coefficients in
Eq. (31) and F is the total angular momentum. In this
subsection, we consider prospects for experimental inves-
tigations of this degeneracy lifting.

1. Transition probabilities

In the Sun-centered frame, the splitting of the energy
levels in free hydrogen is time independent because the
coefficients for Lorentz and CPT violation can be taken as
constant in this frame. Suppose an experiment is designed
to excite transitions between these states using a laser with
a fixed polarization in the laboratory frame. In the Sun-
centered frame, the laboratory is rotating due to the Earth’s
spin and the laser polarization rotates with it. The relative
orientation between the polarization of the laser and the
split hydrogenic states therefore changes as a function of
sidereal time, affecting the transition probabilities. This
represents a unique signal of Lorentz violation.
To see more explicitly the effect, we restrict our attention

to the comparatively simple case with J ¼ 1=2. Suppose
the laser has linear polarization aligned along the laboratory
z axis, and suppose we want to excite the transition between
the eigenstates F ¼ 0 and F ¼ 1, ξ ¼ 0 with energies fixed
by Eq. (31). Using the dipole approximation, the transition
probability is proportional to the squared magnitude
of the dipole matrix element T fi between the initial state
jii and the final state jfi, jT fij2 ∝ jhijzjfij2. In terms of the
basis states jnFJLmFi and the weights (26) introduced in
Sec. II C, we have

jii ¼
				n0 12L0

�
; jfi ¼ 1

A

X
m

A1m

				n01 12L0m
�
: ð42Þ

These expressions are valid in any frame. The basis
jnL 1

2
FmFi can be taken as quantum observer invariant

under frame transformations, as discussed in Sec. II C 2,
but the weights A1m transform under rotations. In the
laboratory frame, the squared magnitude of the dipole
matrix element becomes

jT fij2 ∝ jhijzjfij2 ¼ jAlab
10 j2
A2

				
�
nL

1

2
00jzjn0L0 1

2
10

�				2:
ð43Þ

We assume here an adiabatic rotation so that the perturba-
tion method is valid. This is reasonable as the Earth’s
sidereal period is much greater than the timescale for
photon absorption. Finally, converting this result to the
Sun-centered frame using Eq. (10) reveals the time varia-
tion of the transition probabilities at harmonics of the
sidereal frequency ω⊕.
An interesting insight obtained from Eq. (43) is that the

sidereal variation of the transition probability can be an
unsuppressed effect, as it depends only on the ratio of
coefficients for Lorentz and CPT violation rather than their
absolute values. This distinctive feature has no parallel in
typical experiments performed in applied fields, such as the
observations of Zeeman hyperfine transitions discussed in
Sec. III B below. The catch here is that an experiment
measuring the unsuppressed transition probabilities must
be able to resolve the energy splitting due to the Lorentz
and CPT violation, which itself is a suppressed effect.

2. Line shapes

Since the transition probabilities vary with sidereal time,
so do the observed line shapes. To illustrate this, we assume
that the Lorentz-violating splitting is detectable and that an
ensemble of particles in the state F ¼ 1, ξ ¼ 0 can be
produced. If this system is exposed to an oscillating
magnetic field B ¼ B0 cosωt, the time-dependent pertur-
bation can be taken as

ΔhðtÞ ¼ μBðgeSe · B0 þ gpSp · B0Þ cosωt; ð44Þ

where μB is the Bohr magneton and gw is to the gyro-
magnetic ratio of the particle of flavor w. The time t
coincides with the local Earth sidereal time T⊕ up to a
phase. Note that the frequency for the transition ΔF ¼ −1,
Δξ ¼ 0 is unaffected by Lorentz violation, so it coincides
with the ground-state hyperfine-splitting frequency ω0.
Suppose now the oscillation frequency ω of the magnetic

field is tuned near resonance, ω ¼ ω0 þ Δω, where
Δω ≪ ω0. For generic orientations of the field, the setup
can then be approximated as a two-state system. Using the
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rotating-field approximation [53], the transition probability
is given by

PðtÞ ¼ γ2

γ2 þ Δω2
sin2

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ Δω2

q
t

�
; ð45Þ

where γ ¼ ðge − gpÞðB · ÂÞ. The magnetic field rotates
with the laboratory and the Earth at angular frequency
ω⊕, so in the Sun-centered frame the product B · Â
and hence γ depends on sidereal time. The explicit
dependence is

B̂ · Â ¼ A10 cosϑ −
ffiffiffi
2

p
sinϑReA11 cosðω⊕T⊕ þ ϕ0Þ

þ
ffiffiffi
2

p
sin ϑImA11 sinðω⊕T⊕ þ ϕ0Þ; ð46Þ

where ϑ is the angle between the magnetic field and the
rotation axis of the Earth. The phase ϕ0 is the azimuthal
angle of the magnetic field in the Sun-centered frame at
time T⊕ ¼ 0. Substituting this expression into Eq. (45)
determines the line shape for the transition, including its
variation with sidereal time.
The two-state approximation used above fails for con-

figurations with orthogonal or near-orthogonal B and A
because the probability of the stimulated transition with
Δξ ¼ 0 then becomes smaller and comparable to other
allowed transitions. None of the transitions are on reso-
nance in this scenario, so the probability for a stimulated
transition can be disregarded. For example, if A10 cos ϑ is
negligible compared to the other terms in Eq. (46), then
B̂ · Â fluctuates to zero and back, implying that the signal
for Lorentz violation includes peaks and valleys in the
transition probability as a function of the sidereal time.

3. Prospects

The vector A is determined by the coefficients for
Lorentz and CPT violation. Assuming this vector is non-
zero and known, the amusing possibility arises that a
hydrogen maser could be created based on the Lorentz-
violating level splitting. Constructing the oscillating mag-
netic field B to be aligned with A would generate an
approximate two-state system without the need for the
usual applied external field to break the system degeneracy.
The necessary population inversion could be produced, for
example, by overlapping the Lorentz-violating background
field with an inhomogeneous magnetic field to select the
states seeking low field. A possible advantage of a Lorentz-
violation maser is that the vector A is expected to be highly
homogeneous because the coefficients for Lorentz violation
can be assumed uniform and constant in the Sun-centered
frame [8], so the issues for conventional masers arising
from the inhomogeneity of the applied magnetic field
would be irrelevant. However, realizing a Lorentz-violation
maser in an Earth-based laboratory would face the chal-
lenge of overcoming the effective sidereal oscillation of A

in the laboratory due to the Earth’s rotation. This tends to
skew its alignment with B and hence would permit the
excitation of transitions between the ground state and the
levels F ¼ 1, ξ ¼ �1, destroying the two-state approxi-
mation and reducing the emission of coherent microwaves.
More generally, the similarities between the Lorentz-

violating splittings and conventional linear Zeeman shifts
provide an intuitive guide to prospective experimental
options. For example, transitions between the different
F ¼ 1 sublevels could be investigated using tools like those
adopted for studies of F ¼ 1 Zeeman transitions in the
presence of a uniform magnetic field. Current sensitivities
to the F ¼ 1 Lorentz-violating splittings have attained
about 1 mHz using measurements of hyperfine Zeeman
transitions [14–16], so we can assume the resonance
frequency between the F ¼ 1 levels lies below this value.
One option to improve the sensitivity might be to prepare
an ensemble of atoms in the F ¼ 1 state and probe them
with a magnetic field oscillating at a frequency below
1 mHz. Assuming a mechanism to monitor induced
transitions can be implemented, then sweeping over
decreasing frequencies could lead to better sensitivities
to the coefficients for Lorentz violation. Note, however,
that for J > 1=2 the Lorentz-violating splitting lacks a
Zeeman-type structure, so studies of the various associated
transitions would require developing the corresponding
phenomenology.
Another possibility is to search for line separation or

broadening arising from the Lorentz-violating level split-
tings. Suppose a transition between two states with J ¼
1=2 is studied. Ideally, the Lorentz-violating splitting
would be detected in the form of multiple resonance peaks.
Even if individual peaks cannot be resolved, the modified
line shapes could be calculated and the minimum value of
the effect leading to resolvable peaks within the particular
experimental scenario could be determined. This would
correspond to a constraint on the coefficients for Lorentz
violation. Note that the parallel to the Zeeman hyperfine
splitting implies that the putative signal for Lorentz
violation can be approximated experimentally by applying
to the ensemble of hydrogen atoms a uniform external
magnetic field rotating with sidereal frequency. Moreover,
the Lorentz violation also produces line broadening, which
could be studied directly. Consider, for example, the
transitions F ¼ 0 to F ¼ 1 under the assumption that
levels with all values of ξ are excited with equal probability.
An estimate of the Lorentz-violating line broadening ΔE
can be found by calculating the statistical deviation arising
from the availability of levels of different ξ. Ignoring the
natural linewidth, this gives

ðΔEÞ2 ¼ 1

3
jAj2: ð47Þ

The result indicates that the Lorentz-violating broadening is
related to the magnitude of the vector A.

LORENTZ AND CPT TESTS WITH HYDROGEN, … PHYSICAL REVIEW D 92, 056002 (2015)

056002-13



B. Hyperfine Zeeman transitions

In this subsection, we consider effects of Lorentz and
CPT violation on the hyperfine levels of hydrogen in the
presence of a weak magnetic field. The 1S1=2 level in
hydrogen is split into two sublevels, a ground state with
total atomic angular momentum F ¼ 0 and an excited state
with F ¼ 1. Applying a weak magnetic field further splits
the F ¼ 1 hyperfine level into three Zeeman sublevels with
energies determined by the eigenvalue mF of the compo-
nent of F along the magnetic field. We determine the
frequency shifts from Lorentz and CPT violation, and we
discuss some signals involving sidereal variations, changes
of the orientation of the magnetic field, and boosts. Signals
in space-based missions and in other hydrogenic systems
are also described.

1. Frequency shift

The Lorentz-violating energy shifts of the hyperfine
Zeeman sublevels for J ¼ 1=2, L ¼ 0 or 1, and any n can
be obtained from Eq. (33) along with the expression (19)
for the weights A00ðn1 1

2
LÞ. The result is

δϵðmFÞ¼−
X2
q¼0

�
αmr

n

�
2q
�
1þ

�
8n

2Lþ1
−4

�
δq2

�

×
X
w

�Vw
NR
ð2qÞ00ffiffiffiffiffiffi
4π

p þ mF

2
ffiffiffiffiffiffi
3π

p ðT w
NRð0BÞ
ð2qÞ10 þ2T w

NRð1BÞ
ð2qÞ10 Þ

�
;

ð48Þ

where the quantities Vw
NR
ð2qÞ00, T w

NRð0BÞ
ð2qÞ10 , T w

NRð1BÞ
ð2qÞ10 are

expressed in terms of nonrelativistic spherical coefficients
by Eq. (6). Note that this extends the known result for the
minimal SME [13] to include contributions from the d ¼ 4
coefficients gλμν along with ones involving operators of
arbitrary d.
The frequency shifts for the hyperfine Zeeman transi-

tions of the ground state follow from this result. Denoting
by ΔmF the difference between the values of mF for the
initial sublevel and the final one, we obtain

2πδν ¼ −
ΔmF

2
ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ

×
X
w

½gwNRð0BÞð2qÞ10 −Hw
NRð0BÞ
ð2qÞ10 þ 2gw

NRð1BÞ
ð2qÞ10

− 2Hw
NRð1BÞ
ð2qÞ10 �: ð49Þ

Note that the isotropic coefficients, which are contained in
VNR
k00 and modify the energies according to Eq. (48), are

absent from this frequency shift. This agrees with the result
obtained in Sec. II C 2 that isotropic coefficients only
contribute to transitions with Δn ≠ 0 or ΔL ≠ 0. Note also

that the result (49) contains the minimal-SME limit via the
restriction

gw
NRð0BÞ
010 þ 2gw

NRð1BÞ
010 −Hw

NRð0BÞ
010 − 2Hw

NRð1BÞ
010

→ 2
ffiffiffiffiffiffi
3π

p
½bw3 −mwdw30 −Hw

12 −mwg
wðAÞ
3 þmwg

wðMÞ
120 �;

ð50Þ

where the superscripts (A) and (M) indicate the irreducible
axial and irreducible mixed-symmetry combinations of the
minimal-SME coefficients gwκλν, respectively [81,82]. The
frequency shift (49) thereby matches the result reported in
Ref. [13] with only bwμ , dwμν, and Hw

μν contributing at leading
order, which neglects the g-type minimal-SME coefficients
as suppressed by the necessary accompanying breaking of
the electroweak SUð2Þ × Uð1Þ symmetry [8].
The expression (49) reveals that only transitions with

ΔmF ≠ 0 are sensitive to Lorentz violation at leading order,
independent of the operator mass dimension d. One
implication of this observation is that the standard tran-
sition used in hydrogen masers, F ¼ 0 → F ¼ 1 with
ΔmF ¼ 0, is insensitive to Lorentz violation. The
Lorentz violation considered in this work involves only
propagator effects, which cannot shift the standard tran-
sition frequency because the reduced density matrices for
the spin singlet and entangled triplet are identical and so
yield identical expectation values for any operator that acts
on only one subsystem.

2. Sidereal variations

At zeroth order in the boost, the nonrelativistic spherical
coefficients in the laboratory frame can be expressed in
terms of coefficients in the canonical Sun-centered frame as

Kw
NR;lab
k10 ¼ Kw

NR;Sun
k10 cosϑ

−
ffiffiffi
2

p
ReKw

NR;Sun
k11 sinϑ cosω⊕T⊕

þ
ffiffiffi
2

p
ImKw

NR;Sun
k11 sin ϑ sinω⊕T⊕; ð51Þ

which is a special case of Eq. (34). As before, ω⊕ is the
Earth’s sidereal rotation frequency, T⊕ is the sidereal time,
and ϑ is the angle between the applied magnetic field and
the Earth’s rotation axis. Together with the expression (49)
for the frequency shift, the above relation predicts that the
hyperfine Zeeman transition frequencies oscillate with
frequency ω⊕ in the presence of Lorentz violation.
This result is in agreement with the discussion in
Sec. II D 1, with the identification Kmax ¼ F ¼ 1 and
hence obtaining jmmaxj ¼ 2Kmax − 1 ¼ 1.
An experiment performed with a maser located at the

Harvard-Smithsonian Center for Astrophysics searched for
sidereal variations of the hyperfine Zeeman transitions
with F ¼ 1 and ΔmF ¼ �1, finding no signal to within
�0.37 mHz at one standard deviation [14–16]. Using the
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frequency shift (49) for colatitude χ ≃ 48°, this implies the
bound

				X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ
X
w

½gwNRð0BÞð2qÞ10 −Hw
NRð0BÞ
ð2qÞ10

þ 2gw
NRð1BÞ
ð2qÞ10 − 2Hw

NRð1BÞ
ð2qÞ10 �

				
< 9 × 10−27 GeV; ð52Þ

which constrains a subset of the nonrelativistic spherical
coefficients in the Sun-centered frame.
Intuition about the implications of this constraint can be

gained by adopting the assumption that only one coefficient
is nonzero at a time and extracting the resulting limits.
Table III presents the constraints on individual nonrelativ-
istic spherical coefficients obtained in this way. The results
hold equally for electron and proton coefficients. Note that
several of these lie well below the level at which Planck-
scale signals might be expected to arise in some models.
We emphasize that this type of measurement bounds the

effects of certain Lorentz-violating operators at arbitrary d,
even though only the subset of nonrelativistic spherical
coefficients with k ≤ 4 and j ¼ 1 is accessible. This is
because a nonrelativistic spherical coefficient with j ¼ 1 is
a linear combination of an infinite subset of the basic
spherical coefficients with d ≥ 3 [37]. Note also that in
terms of the basic spherical coefficients the experiment has
greater reach for protons than for electrons due to the mass
factors that enter the relevant linear combinations. For
example, the sensitivity to the basic spherical coefficient at
mass dimension d and with k ¼ 0 is numerically that of the
corresponding nonrelativistic spherical coefficient sup-
pressed by a factor of ð0.94Þ3−d=3 for the proton and a
factor of ð5.1 × 10−4Þ3−d=3 for the electron.

3. Changes of magnetic-field orientation

The bound (52) is insensitive to nonrelativistic spherical
coefficients with m ¼ 0 in the Sun-centered frame because

these coefficients enter the frequency (51) without the
dependence on T⊕ necessary for the experimental signal.
However, Eq. (51) predicts that these coefficients do
change with the angle ϑ between the magnetic field and
the Earth’s rotation axis. An experiment involving a
changing magnetic-field orientation is therefore of interest.
One possibility along these lines would be to place the
apparatus on a rotating turntable.
For simplicity, suppose the rotation axis of the turntable

points towards the zenith and the magnetic field is
perpendicular to it. Defining the laboratory-frame z axis
to lie along the magnetic field, the laboratory-frame
coefficients are given in terms of Sun-frame coefficients by

Kw
NR;lab
k10 ¼ −Kw

NR;Sun
k10 sin χ cosTrωr

−
ffiffiffi
2

p
ReKw

NR;Sun
k11 cos χ cosωrTr cosω⊕T⊕

þ
ffiffiffi
2

p
ImKw

NR;Sun
k11 cos χ cosωrTr sinω⊕T⊕

þ
ffiffiffi
2

p
ReKw

NR;Sun
k11 sinωrTr sinω⊕T⊕

þ
ffiffiffi
2

p
ImKw

NR;Sun
k11 sinωrTr cosω⊕T⊕; ð53Þ

where χ is the colatitude of the experiment and ωr is the
angular rotation frequency of the turntable. For conven-
ience, we have introduced a time Tr shifted relative to T⊕,
with the origin Tr ¼ 0 chosen to be the time when the
magnetic field points south. In this scenario, the coeffi-
cients with m ¼ 0 in the Sun-centered frame are indepen-
dent of the sidereal frequency, producing variations at the
turntable angular frequency ωr of the coefficients in the
laboratory frame and hence of the measured transition
frequencies. The attainable sensitivity tom ¼ 0 coefficients
in an experiment of this type is expected to be similar to the
sensitivities presented in Table III for the corresponding
m ¼ 1 coefficients.

4. Annual variations

As described in Sec. II D 2, the inclusion of boosts in the
analysis implies the appearance of contributions from
parity-odd operators. The frequency shift in the laboratory
frame transforms as the z component of a vector, so for
present purposes we denote it as δνz. Its expression in the
Sun-centered frame takes the generic form (39) at first order
in the boost velocity β,

2πδνz ¼ 2πRzJδνSun;J þ ΔmF

X
df

RzJTðdÞJK
w ðβK⊕ þ βKL Þ;

ð54Þ

where β⊕, βL, and RzJ are defined in Eqs. (36), (37), and

(40), respectively. The form of the pseudotensor TðdÞJK
w

depends on the operator mass dimension d and the particle
flavor w.

TABLE III. Constraints on the moduli of the real and imaginary
parts of electron and proton nonrelativistic coefficients deter-
mined from hyperfine Zeeman transitions in hydrogen using
Eq. (52).

Coefficient Constraint on
K jReKj, jImKj
HNRð0BÞ

011 , gNRð0BÞ011
<9 × 10−27 GeV

HNRð1BÞ
011 , gNRð1BÞ011

<5 × 10−27 GeV

HNRð0BÞ
211 , gNRð0BÞ211

<7 × 10−16 GeV−1

HNRð1BÞ
211 , gNRð1BÞ211

<4 × 10−16 GeV−1

HNRð0BÞ
411 , gNRð0BÞ411

<9 × 10−6 GeV−3

HNRð1BÞ
411 , gNRð1BÞ411

<5 × 10−6 GeV−3
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Table IV provides explicit expressions for TðdÞJK
w with

3 ≤ d ≤ 8 in terms of the particle rest masses mw, the fine-
structure constant α, the reduced mass mr of the system,
and the effective Cartesian coefficients for Lorentz viola-
tion defined in Eqs. (27) and (28) of Ref. [37]. Only
leading-order nonrelativistic contributions from each coef-
ficient are included. In the table, parentheses around sets of
n indices indicate total symmetrization with respect to all
indices enclosed, including a factor of 1=n!.
Examining Eq. (54) and Table IV reveals that only the

first index of each effective Cartesian coefficient is con-
tracted with the rotation matrix. This feature arises because
only the first two indices of the g- and H-type effective
Cartesian coefficients are coupled to the particle spin via
contraction in the original Lagrange density [37]. The
applied magnetic field interacts with the magnetic dipole
moment of the particle and so fixes the particle’s spin
orientation in the laboratory frame. The spin follows any
adiabatic rotation of the magnetic field, which thereby
changes the value of the contraction between the coef-
ficients and the spin. However, the g- and H-type effective
Cartesian coefficients are antisymmetric on the first two
indices, so the result can always be interpreted as a rotation
associated with the first index on any coefficient.
The Cartesian basis is convenient for boost corrections.

However, as outlined in Sec. II D 2, we can decompose

TðdÞJK
w in terms of irreducible representations of the rotation

group. These irreducible representations are associated
with spherical coefficients. For example, for mass dimen-
sions d ¼ 3 and d ¼ 4, we obtain

ϵzJKT
ð3ÞJK
w ¼

ffiffiffi
3

π

r
Hw

ð3Þð1EÞ
110 ;

ϵzJKT
ð4ÞJK
w ¼ −mw

ffiffiffi
3

π

r
gw

ð4Þð1EÞ
110 ;

Tð4ÞJJ
w ¼ −mw

ffiffiffi
9

π

r
gw

ð4Þð0BÞ
100 ;

Tð4Þzz
w −

1

3
Tð4ÞJJ
w ¼ −mw

ffiffiffi
5

π

r
gw

ð4Þð0BÞ
120 : ð55Þ

These and similar expressions for d > 4 can be used to
relate results in the Cartesian and spherical bases.
As discussed in Sec. II D 2, orienting the magnetic field

parallel to the Earth’s rotation axis decouples the sidereal
and annual variations of the measured frequency, with
sidereal variations associated to terms of order βL and
annual variations to terms of order β⊕. At first order in the
boost parameter, the frequency shift for this orientation of
the magnetic field is given in the Sun-centered frame by

δνz ¼ δνSun;Z −
ΔmF

2π

X
wd

½TðdÞZZ
w β⊕ sin η cosΩ⊕T

þ TðdÞZY
w ðβ⊕ cos η cosΩ⊕T − βL cosω⊕T⊕Þ

þ TðdÞZX
w ðβL sinω⊕T⊕ − β⊕ sinΩ⊕TÞ�; ð56Þ

where Ω⊕ ≃ 2π=ð365.26 dÞ is the Earth orbital frequency,
η≃ 23.5° is the Earth’s orbital tilt, and χ is the colatitude of
the experiment.
As an illustration of the expected sensitivity of an

experiment in this configuration, suppose a search finds
no signal for the annual variations δνz at the level of
�1 mHz. Then, constraints of order 10−23 GeV would be

implied on TðdÞJK
w . For minimal coefficients, this corre-

sponds to limits of order 10−23 GeV onHTX andHTY in the
electron and proton sectors, limits of order 10−19 on gXYZ,
gYXX, gXYY , gXTT and gYTT in the electron sector, and limits
of order 10−23 on the corresponding coefficients in the
proton sector. For the nonminimal sector, the disparity
between the electron and proton masses implies that the
experiment is more sensitive to proton coefficients. For
example, limits on the d ¼ 8 coefficients proportional to
m5

w would be about 10−23 GeV−4 in the proton sector and
about 10−6 GeV−4 in the electron sector.
For other orientations of the magnetic field, one readily

isolated signal of Lorentz violation associated with the
boost correction is the twice-sidereal variation of the
frequency, which decouples from other variations. We
can express this term as

TABLE IV. Values of the pseudotensors TðdÞJK
w in Eq. (54) for the electron and proton in atomic hydrogen for

3 ≤ d ≤ 8.

d VðdÞJ
w

3 ~HJK
w;eff

4 −2mw ~g
KðTJÞ
w;eff

5 3m2
w
~HJðTKTÞ
w;eff þ ðαmrÞ2 ~HJðKLLÞ

w;eff

6 −4m3
w ~g

JðTTTKÞ
w;eff − 4ðαmrÞ2mw ~g

JðTLLKÞ
w;eff

7 5m4
w
~HJðTTTTKÞ
w;eff þ 10ðαmrÞ2m2

w
~HJðTTLLKÞ
w;eff þ 5ðαmrÞ4 ~HJðKLLMMÞ

w;eff

8 −6m5
w ~g

JðTTTTTKÞ
w;eff − 20ðαmrÞ2m3

w ~g
JðTTTLLKÞ
w;eff − 30ðαmrÞ4mw ~g

JðKTLLMMÞ
w;eff
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δν2ω⊕
¼ 1

4π
βLΔmF sinϑ

×
X
wd

½cos 2ω⊕T⊕ðTðdÞXY
w þ TðdÞYX

w Þ

þ sin 2ω⊕T⊕ðTðdÞYY
w − TðdÞXX

w Þ�; ð57Þ

where ϑ is the angle between the magnetic field and the
Earth’s rotation axis. For simplicity, the direction of the
magnetic field at T⊕ ¼ 0 is taken to lie in the XZ plane in
the Sun-centered frame, which eliminates a phase shift.
Assuming an experimental search establishes no signal for
the second-harmonic sidereal variations δν2ω⊕

at the level
of �1 mHz, then constraints of order 10−21 GeV would be

implied for TðdÞJK
w . For minimal coefficients, this corre-

sponds to sensitivities of order 10−18 to gZXY , gYZX, gZXX

and gZYY in the electron sector and of order 10−21 for the
same coefficients in the proton sector.

5. Space-based experiments

Laboratory measurements of boost effects provide no
control over the orbital and rotational motion of the Earth.
As a result, space-based experiments offer broader options
for studies of the full range of possible boost effects due to
the choice and variability of orbital and rotational motions
for various space platforms. Here, we consider some
prospects for measurements with a space-based hydrogen
maser. For example, the Atomic Clock Ensemble in Space
(ACES) mission [54] incorporates a hydrogen maser in the
payload to be delivered and operated on the International
Space Station (ISS). As discussed in Sec. III B 1, conven-
tional maser transitions with ΔmF ¼ 0 provide no leading-
order sensitivity to effects from Lorentz violation. We
therefore assume the maser is configured instead to achieve
sensitivity to transitions with ΔmF ≠ 0, perhaps using a
double-resonance technique [55] similar to that already
successfully implemented in the laboratory for tests of
Lorentz and CPT invariance [14–16].
In the context of the minimal SME, specifics for

analyzing data from space missions studying Lorentz
violation are discussed in Ref. [56]. In the presence of
nonminimal operators, the expected experimental signals
have the same generic behavior because they too are
governed by the form (39). As a result, using the informa-
tion in Table IV permits the measurement of nonminimal
coefficients as well. Satellite experiments offer a particular
advantage for this purpose because the boost of the space
platform differs from the boost of laboratory experiments
on the Earth. More explicitly, consider the term RzJβKTJK

in Eq. (39). The rotation matrix can be altered by changing
the orientation of the magnetic field in both Earth- and
space-based experiments, producing sensitivity to the
combinations βKTJK. However, space-based experiments
can vary the boost βK more broadly as well, which offers
the potential to disentangle more components of TJK.

For space-based experiments, the frequency shift takes
the same form as Eq. (54) but with modified expressions for
the rotation matrix and boost parameter. For simplicity,
suppose the applied magnetic field is oriented parallel to the
direction of propagation of the satellite relative to the center
of mass of the Earth, and approximate the orbit as circular.
This configuration could in principle be realized in an
experiment on the ISS, for example. We can then view the
instantaneous components RzK of the rotation matrix as
forming a unitary vector parallel to the satellite velocity βs.
It follows that RzJβJs ¼ βs, where βs is the average satellite
speed, and also that ϵJKLRzJβKs ¼ 0. Comparing these
results with Eq. (41) reveals that only the symmetric piece
of TJK varies with the direction of the boost relative to the
Earth. Note that other orientations of the magnetic field
relative to the direction of motion would introduce varia-
tions involving the trace and antisymmetric pieces of TJK .
For the parallel configuration, an explicit calculation

reveals that the term in the frequency that depends on βs
varies only at the second harmonic 2ωs of the mean satellite
orbital angular frequency ωs. The form of this term is

δν2ωs
¼ ΔmF

16π

X
wd

βsðAs
ðdÞ
w sin 2ωsTs þ Ac

ðdÞ
w cos 2ωsTsÞ;

ð58Þ

where Ts is a reference time in the Sun-centered frame
chosen such that Ts ¼ 0 when the satellite crosses the
equatorial plane on an ascending orbit. The amplitudes As
and Ac are given by

As
ðdÞ
w ¼ 4 cos ζ sin 2αðTðdÞXX

w − TðdÞYY
w Þ

− 8 cos ζ cos 2αTðdÞðXYÞ
w − 8 sin ζ cos αTðdÞðZXÞ

w

þ 8 sin ζ sin αTðdÞðYZÞ
w ;

Ac
ðdÞ
w ¼ −2sin2ζðTðdÞXX

w þ TðdÞYY
w − 2TðdÞZZ

w Þ
− 2ð3þ cos 2ζÞ sin 2αTðdÞðXYÞ

w

− ð3þ cos 2ζÞ cos 2αðTðdÞXX
w − TðdÞYY

w Þ
þ 4 sin 2ζ cos αTðdÞðYZÞ

w

− 4 sin 2ζ sin αTðdÞðXZÞ
w ; ð59Þ

where ζ is the angle between the satellite orbital axis and
the Earth’s rotation axis, and α is the azimuthal angle
between the satellite’s orbital plane and the X axis in the
Sun-centered frame.
Direct inspection of the result (58) for the satellite

experiment demonstrates that distinct combinations of
coefficients appear relative to the frequency shift (57)
involving the second harmonic of the sidereal frequency
for an Earth-based experiment. Note that for a ground-
based experiment at colatitude χ the frequency is
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proportional to βL sin χ, which is the tangential speed of the
laboratory relative to the Earth’s axis of rotation. This speed
is an order of magnitude smaller than the speed βs of a
satellite such as the ISS relative to the Earth. This shows
that an experiment realized on a space platform is
more sensitive to this type of variation as well as offering
access to more coefficient components that a ground-based
counterpart.

C. nS1=2-n0S1=2 and nS1=2-n0P1=2 transitions

We next turn our attention to the effects of Lorentz and
CPT violation on high-precision studies of the hydrogen
transitions with J ¼ 1=2 and ΔJ ¼ 0, and in particular the
transitions nS1=2-n0S1=2 and nS1=2-n0P1=2. The most promi-
nent of these is perhaps the 1S-2S transition, which has
recently been measured to a relative uncertainty of 4.2 ×
10−15 [57]. Other transitions of this type that are measured
to high precision include [58] the classical 2S1=2 − 2P1=2

Lamb shift [59], the 1S1=2-3S1=2 transition [60], several
2S1=2-nS1=2 transitions [61–63], and the 2S1=2-4P1=2 tran-
sition [64]. In this subsection, we first present a general
expression for the frequency shifts due to Lorentz and CPT
violation. We then outline the extraction of constraints by
matching theoretical expectations to experimental results
and by studying sidereal and annual variations involving
boosts.

1. Frequency shift

In searching for most effects of Lorentz and CPT
violation, the absolute sensitivity of an experiment is of
more significance than its relative precision because all
nonrelativistic coefficients for Lorentz and CPT violation
carry mass dimensions. It is therefore reasonable to neglect
the contribution from the spin-dependent coefficients to
Eq. (49) for any of the hydrogen transitions of interest here,
as the attainable absolute sensitivity is significantly below
that accessible to the hyperfine Zeeman transitions. For
example, the long lifetime of the 2S1=2 state and the
impressive relative precision achieved on the 1S-2S tran-
sition [57] yields the lowest absolute uncertainty of about
10 Hz among the optical transitions in hydrogen, but this
remains 4 or more orders of magnitude below the absolute
sensitivity reached in hyperfine measurements. Studies of
optical transitions involving variations with sidereal time
and colatitude at zeroth order in the boost are therefore of
lesser interest.
In contrast, the nS1=2-n0S1=2 and nS1=2-n0P1=2 transitions

offer sensitivity to isotropic coefficients for Lorentz and
CPT violation that cannot be accessed via Zeeman hyper-
fine transitions. For example, Table I reveals that only
coefficients with j ¼ 0 and j ¼ 1 contribute to the 1S-2S
transition. Effects involving the coefficients with j ¼ 1 can
be neglected as above, but those involving the isotropic
components with j ¼ 0 are of definite interest. We

therefore proceed in this subsection under the assumption
that any transition with ΔJ ¼ 0 and J ¼ 1=2 is sensitive
only to isotropic coefficients in the laboratory frame.
Within this scenario, we find that in the laboratory frame

the frequency shift of any hydrogen transition n; L-n0; L0
with J ¼ 1=2, ΔJ ¼ 0 due to Lorentz and CPT violation
can be written as

2πδν ¼ 2mrðεn − εn0 Þ
X
w

ðc∘NRw;2 − a
∘NR
w;2Þ

− 4m2
r

�
ε2n

�
8n

2Lþ 1
− 3

�
− ε2n0

�
8n0

2L0 þ 1
− 3

��

×
X
w

ðc∘NRw;4 − a
∘NR
w;4Þ; ð60Þ

where εn ≡ −α2mr=2n2. Note that the quantities Vw
NR
k00

contain only isotropic coefficients, all of which are absent
in the analogous expression (49) for the frequency shift of
the hyperfine Zeeman levels. Also, only contributions from
coefficients with k ≥ 2 occur, a result consistent with
previous conclusions that minimal coefficients have no
effect on the 1S-2S transition at leading order in Lorentz
and CPT violation [13,29]. We remark in passing that
contributions to the 1S-2S transition are known to appear
when higher-order corrections in minimal coefficients are
included [17,29].

2. Self-consistent analysis

At leading order in β⊕, the transformation of isotropic
coefficients from the laboratory frame to the Sun-centered
frame is the identity map, Klab

k00 → KSun
k00 . The expression

(60) for the frequency shift of any hydrogen transition
n; L → n0; L0 with J ¼ 1=2, ΔJ ¼ 0 therefore also holds in
the Sun-centered frame. At zeroth order in the boost, the
result represents a constant shift in the transition frequency.
However, a tiny constant frequency shift is challenging to
measure experimentally.
One approach to studying the shift (60) is to compare the

experimental data to the theoretical prediction for conven-
tional Lorentz-invariant physics. To date, the available
experimental data all appear consistent with theoretical
expectations within the 10 Hz absolute uncertainty.
However, making a definitive theoretical prediction
requires knowledge of constants such as the Rydberg
constant and the proton radius, which at present are also
determined via hydrogen spectroscopy. For example, the
contribution due to the coefficients Vw

NR
200 acts to produce a

shift δR∞ in the Rydberg constant, given by

δR∞ ¼ 4πm2
r

me
R∞

X
w

ðc∘NRw;2 − a
∘NR
w;2Þ: ð61Þ

Analogously, the contribution due to the coefficients
Vw

NR
400 produces a change δνLamb in the classical Lamb

shift, given by
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2πδνLamb ¼ −
2

3
ðαmrÞ4

X
w

ðc∘NRw;4 − a
∘NR
w;4Þ; ð62Þ

which could change the proton radius determined by
hydrogen spectroscopy. This presents a self-consistency
issue for direct comparison of experiment with theory, as
the theoretical prediction based on Lorentz-invariant phys-
ics cannot be immediately disentangled from Lorentz-
violating effects on the hydrogen spectrum.
Techniques to avoid this issue are possible, at least in

principle. One option could be to measure the coefficients
for Lorentz and CPT violation by comparing several
transitions. For example, a best fit to the shift (60) could
be performed. A related option is to perform a careful self-
consistent comparison. In practice, the present limiting
absolute uncertainty of order 10 kHz on the various
transitions is likely to lead to maximal attainable sensitiv-
ities of about 10−7 GeV−1 on coefficients with k ¼ 2 and of
about 105 GeV−3 on ones with k ¼ 4. Performing an
analysis of this type remains an interesting open possibility
to set first or improved constraints on several coefficients.
Moreover, the efforts underway to improve the data from
hydrogen spectroscopy with an eye to a more precise
determination of the Rydberg constant and the proton
radius [65–69] offer the potential for substantially
improved future sensitivities on Lorentz and CPT
violation.

3. Sidereal and annual variations due to boost corrections

As described in Sec. II D 2, isotropic terms in the
laboratory frame can be used to study anisotropies in the
Sun-centered frame by incorporating boost corrections in
the analysis. Consider, for example, the 1S-2S transition.
Using the expression (38), the frequency shift δν due to
Lorentz and CPT violation in the laboratory frame can be
converted to the Sun-centered frame, giving

2πδν ¼ 2πδνSun þ
X
wd

VðdÞJ
w ðβ⊕ þ βLÞJ: ð63Þ

The first term on the right-hand side is the constant shift
discussed in Sec. III C 2. The second term is suppressed
by boost factors but offers interesting prospects for meas-
uring anisotropic coefficients in the Sun-centered frame.
Analogous results for other transitions can also be obtained.

The boost factors in Eq. (63) generate time variations in
the 1S-2S frequency. The dependence of δν on the Earth’s
velocity β⊕ introduces annual variations given by

VðdÞJ
w βJ⊕ ¼ β⊕½sinΩ⊕TV

ðdÞX
w

− cosΩ⊕Tðcos ηVðdÞY
w þ sin ηVðdÞZ

w Þ�; ð64Þ

where Ω⊕ is the Earth orbital frequency. The dependence
on the laboratory velocity βL produces sidereal variations,
given by

VðdÞJ
w βJL ¼ βLðcosω⊕T⊕V

ðdÞY
w − sinω⊕T⊕V

ðdÞX
w Þ; ð65Þ

where ω⊕ is the Earth sidereal frequency.

Table V provides explicit expressions for VðdÞJ
w with 5 ≤

d ≤ 8 in terms of the rest masses mw of the particles of
flavor w ¼ e and w ¼ p, the fine-structure constant α, the
reduced mass mr of the system, and the effective Cartesian
coefficients for Lorentz violation defined in Eq. (27) of
Ref. [37]. Only leading-order contributions from each
coefficient are included. Note that all the spin-independent
minimal coefficients leave unaffected the 1S-2S frequency
at leading order in the nonrelativistic limit [13,29], so both

Vð3ÞJ
w and Vð4ÞJ

w vanish at this order.
Studies at subleading nonrelativistic order are also of

interest. For example, an experimental search for annual
variations of the 1S-2S transition frequency has been used
to measure the coefficients cðTJÞe in the minimal SME to
parts in 1011 [18]. We can reinterpret the results in terms of
the nonrelativistic coefficients and thereby extract first
measurements of a variety of nonminimal coefficients.
At this order, the restriction of Vð4ÞJ

w to the coefficients
cðTJÞe in the electron sector of the minimal SME gives

X
wd

VðdÞJ
w ¼ 5

4
α2mec

ðTJÞ
e : ð66Þ

Adopting this relation, the results in Eq. (4) of Ref. [18]
generalize to

X
wd

VðdÞX
w ¼ −ð5.3� 3.2Þ × 10−19 GeV ð67Þ

and

TABLE V. Values of the vectors VðdÞJ
w in Eq. (63) for the electron and proton in atomic hydrogen with 5 ≤ d ≤ 8.

d VðdÞJ
w

5 3
4
ðαmrÞ2ð2awð5ÞTTJeff þ aw

ð5ÞKKJ
eff Þ

6 −3ðαmrÞ2mwðcwð6ÞTTTJeff þ cw
ð6ÞTKKJ
eff Þ

7 5
2
ðαmrÞ2m2

wð2awð7ÞTTTTJeff þ 3aw
ð7ÞTTKKJ
eff Þ þ 67

16
ðαmrÞ4awð7ÞKKLLJ

eff
8 − 15

2
ðαmrÞ2m3

wðcwð8ÞTTTTTJeff þ 2cw
ð8ÞTTTKKJ
eff Þ − 201

8
ðαmrÞ4mwcw

ð8ÞTKKLLJ
eff
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X
wd

ð2.3VðdÞY
w þ VðdÞZ

w Þ ¼ −ð1.1� 2.3Þ × 10−18 GeV:

ð68Þ

We can now use the results in Table V to extract attained
sensitivities to nonminimal Cartesian coefficients in the
electron and proton sectors. Table VI displays the resulting
sensitivities to the absolute values of Cartesian a- and c-
type coefficients for 5 ≤ d ≤ 8. As before, we adopt the
standard assumption that only one coefficient is nonzero at
a time. The first column of this table lists the Cartesian
coefficient and the second column its component. The third
and fourth columns contain the resulting constraints in the
electron and proton sectors, respectively.
In contrast to tests using annual variations, sidereal-

variation studies of the 1S-2S transition remain unexplored

to date. While this type of experiment is expected to be
about 2 orders of magnitude less sensitive to the vectors
VðdÞJ
w , different combinations of coefficients for Lorentz

and CPT violation are involved. Pursuing this possibility
remains an interesting open avenue for future research.

D. nS1=2-n0P3=2 and nS1=2-n0D transitions

The interest in improving the experimental values of the
Rydberg constant and the proton radius has spurred the
development of high-precision spectroscopy with atomic
hydrogen. Experiments have measured or plan to study the
transitions 2S1=2-nP3=2 [64–67], 1S1=2-3D [68], and
2S1=2-nD [61–63,69]. The absolute uncertainties achieved
for the corresponding frequencies are typically in the
10 kHz range, reaching values as low as about 1 kHz in
some cases [58].
In the context of searching for Lorentz and CPT

violation, the sensitivities of these measurements to the
nonrelativistic spherical coefficients with j ¼ 0 and j ¼ 1

are weaker than those from hyperfine Zeeman and 1S-2S
transitions. However, a glance at Table I reveals that the
involvement in a transition of a level with J ≥ 3=2 or F ≥
3=2 means that nonrelativistic spherical coefficients with
j ≥ 2 can be measured. For example, a transition to a state
nD with F ¼ 3 could be sensitive to all the coefficients
with k ≤ 4 contributing to the matrix element (18). The
nS1=2-n0P3=2 and nS1=2-n0D transitions therefore offer
excellent prospects for studying certain effects from
Lorentz and CPT violation that otherwise are difficult to
observe.
The Lorentz-violating perturbative corrections to a

specific frequency of interest depend on the particular
details of the experiment. For example, the magnitudes of
applied fields and the nature of the measurement need to be
considered to obtain expressions for the corrections. For an
experiment sensitive to the hyperfine structure with the
hyperfine energy dominating all perturbations, the Lorentz-
violating corrections may be obtained from the matrix
elements (18). Comparatively simple expressions can be
obtained in some cases, as illustrated for a weak applied
magnetic field in Sec. II D. In this scenario, the signals for
Lorentz and CPT violation are similar to those discussed in
previous sections of this work, including sidereal and
annual variations of the measured frequency.
For definiteness and simplicity, we limit our attention

here to the scenario with a weak applied magnetic field.
The analysis of experiments with more involved configu-
rations, which can often include large applied Zeeman or
Stark fields, is of substantial interest but lies outside our
present scope. Nonetheless, the discussion here demon-
strates the potential for discovery in these types of experi-
ments and serves to motivate future investigations of
Lorentz- and CPT-violating signals using other experi-
mental configurations.

TABLE VI. Sensitivities to the absolute value of nonminimal
cartesian coefficients for 5 ≤ d ≤ 8 from Eqs. (67) and (68).

Coefficient Electron Proton
KðdÞνμ1…μd−3

eff J ðGeV4−dÞ ðGeV4−dÞ
að5ÞTTJeff

X <3.4 × 10−8 <3.4 × 10−8

Y <5.6 × 10−8 <5.6 × 10−8

Z <1.3 × 10−7 <1.3 × 10−7

að5ÞKKJ
eff

X <6.7 × 10−8 <6.7 × 10−8

Y <1.1 × 10−7 <1.1 × 10−7

Z <2.5 × 10−7 <2.5 × 10−7

cð6ÞTTTJeff
X <3.3 × 10−5 <1.8 × 10−8

Y <5.5 × 10−5 <3.0 × 10−8

Z <1.3 × 10−4 <6.9 × 10−8

cð6ÞTKKJ
eff

X <3.3 × 10−5 <1.8 × 10−8

Y <5.5 × 10−5 <3.0 × 10−8

Z <1.3 × 10−4 <6.9 × 10−8

að7ÞTTTTJeff
X <3.9 × 10−2 <1.1 × 10−8

Y <6.5 × 10−2 <1.9 × 10−8

Z <0.15 <4.4 × 10−8

að7ÞTTKKJ
eff

X <2.6 × 10−2 <7.6 × 10−9

Y <4.3 × 10−2 <1.3 × 10−8

Z <0.1 <2.9 × 10−8

að7ÞKKLLJ
eff

X <8.7 × 102 <8.7 × 102

Y <1.5 × 103 <1.5 × 103

Z <3.4 × 103 <3.4 × 103

cð8ÞTTTTTJeff
X <51 <8.1 × 10−9

Y <85 <1.4 × 10−8

Z <2.0 × 102 <3.1 × 10−8

cð8ÞTTTKKJ
eff

X <25 <4.1 × 10−9

Y <43 <6.8 × 10−9

Z <98 <1.6 × 10−8

cð8ÞTKKLLJ
eff

X <2.8 × 105 <1.5 × 102

Y <4.7 × 105 <2.6 × 102

Z <1.1 × 106 <6.0 × 102
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High-precision spectroscopy of atomic hydrogen typi-
cally concerns transitions involving the 1S ground state or
the metastable 2S state. The Lorentz- and CPT-violating
corrections to these levels have been discussed in previous
subsections, so the discussion here focuses on the energy
corrections to the nP3=2 and nD states. The nonrelativistic
spherical coefficients that can contribute to the corrections
are displayed in Table I. In the Sun-centered frame and at
zeroth order in the boost, the explicit form of the energy
corrections in the presence of a weak magnetic field is
given by Eq. (35). The weights ASun

jm ðnFJLÞ are specified

by the result (19) with the factors ΛðqPÞ
j given for J ≤ 5=2 in

Table II, while the expectation values hjpjkinL are provided
in Eq. (15).
The expression (35) displays the sidereal variations in

the energy shifts. Any nonrelativistic spherical coefficient
KNR

kjm contributing to the shift introduces oscillations at the
mth harmonic of the sidereal frequency ω⊕. The allowed
harmonics are determined by J and F, as described in
Sec. II D 1. As an explicit example, consider a transition to
a state nDF¼2

5=2 . Table I shows that contributions arise
from spin-independent terms with j ¼ 0; 2; 4 and spin-
dependent ones with j ¼ 1; 3. We therefore can expect
variations up to the fourth harmonic of the sidereal
frequency. The first harmonic receives contributions from
coefficients with 1 ≤ j ≤ 4, the second from 2 ≤ j ≤ 4, the
third from 3 ≤ j ≤ 4, and the fourth only from j ¼ 4.
Table I also shows the relation between the k and j indices.
For example, only coefficients with k ≥ 4 can contribute to
the fourth harmonic.
Using this information, we can form estimates of the

potential sensitivities to nonrelativistic coefficients from
searches for sidereal variations in nS1=2-n0P3=2 and
nS1=2-n0D transitions. Table VII provides the results
obtained under the assumption that the absolute experi-
mental uncertainty for these variations is 10 kHz. The first
column of the table displays the relevant nonrelativistics

spherical coefficients, generically denoted as KNR
kjm. The

second column shows the range ofK ≡ J; F for the relevant
transitions. The third column presents the values of nLF

J for
the excited energy levels used in obtaining the specific
estimates. The smallest value of n producing contributions
is chosen for these levels, as an experiment with fixed
absolute uncertainty is less sensitive to coefficients with
k ≠ 0 and larger n. The final column lists the potential
sensitivities to the moduli of the real and imaginary parts of
the coefficients taken one at a time, derived with values of
mF and χ chosen to maximize the sensitivity. Note that the
coefficients shown in Table VII remain unmeasured in any
experiments to date. Note also that sensitivity to both
electron and proton coefficients is achieved despite the
mass difference between the particles, which can be traced
to their equal but opposite angular momenta.

IV. ANTIHYDROGEN

The techniques developed in the previous sections to
search for Lorentz and CPT violation using spectroscopy
of atomic hydrogen can also be applied to other hydrogenic
systems. In this section, we turn our attention to the
emerging field of antihydrogen spectroscopy. A number
of collaborations have as goal the precision spectroscopy of
antihydrogen, including the Antihydrogen Laser Physics
Apparatus (ALPHA) Collaboration [19], the Atomic
Spectroscopy and Collisions Using Slow Antiprotons
(ASACUSA) Collaboration [20], and the Antihydrogen
Trap (ATRAP) Collaboration [21]. Several studies of the
gravitational response of antihydrogen are under develop-
ment, including ones by the Antihydrogen Experiment:
Gravity, Interferometry, Spectroscopy (AEGIS)
Collaboration [70], the ALPHA Collaboration [71], and
the Gravitational Behavior of Antihydrogen at Rest
(GBAR) Collaboration [72]. A proposal for an antimatter
gravity experiment (AGE) also exists [73].
Since CPT violation in realistic effective field theory

necessarily comes with Lorentz violation [8,10], which
implies the breaking of rotation and boost symmetry, a
natural question to ask is whether experiments with
antihydrogen spectroscopy can attain sensitivities to new
physics that is inaccessible or impractical to access with
experiments using rotated or boosted ordinary matter. The
answer is affirmative, as might intuitively be expected.
Indeed, the form of Eq. (6) already reveals that coefficients
for Lorentz violation for a given species always appear in
summed pairs, one controlling CPT-odd and one CPT-
even operators, and this feature holds in the full relativistic
theory as well [37]. As a result, experiments with strictly
nonrelativistic electrons or protons in any combination
cannot explore the full parameter space for the coefficients
and hence cannot study the full range of possible physical
effects. For example, although the individual nonrelativistic
spherical coefficients modifying the antihydrogen spectrum

TABLE VII. Potential sensitivities from sidereal variations to
the moduli of the real and imaginary parts of electron and proton
nonrelativistic coefficients in Table I.

KNR
kjm K values nLF

J Sensitivity

aNR22m, c
NR
22m J ≥ 3=2 2P2

3=2 6 × 10−8 GeV−1

HNRð0BÞ
23m , gNRð0BÞ23m

F ≥ 2 2P2
3=2 2 × 10−7 GeV−1

HNRð1BÞ
23m , gNRð1BÞ23m

F ≥ 2 2P2
3=2 1 × 10−7 GeV−1

aNR42m, c
NR
42m J ≥ 3=2 2P2

3=2 7 × 103 GeV−3

HNRð0BÞ
43m , gNRð0BÞ43m

F ≥ 2 2P2
3=2 2 × 104 GeV−3

HNRð1BÞ
43m , gNRð1BÞ43m

F ≥ 2 2P2
3=2 1 × 104 GeV−3

aNR44m, c
NR
44m J ≥ 5=2 3D3

5=2 7 × 104 GeV−3

HNRð0BÞ
45m , gNRð0BÞ45m

F ≥ 3 3D3
5=2 7 × 104 GeV−3

HNRð1BÞ
45m , gNRð1BÞ45m

F ≥ 3 3D3
5=2 3 × 104 GeV−3
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are the same as those for hydrogen listed in Table I, the
nonrelativistic spectral modifications involve disparate
coefficient combinations and so experiments on both are
necessary to discern the relevant CPT-violating physics.
Situations can even be envisaged in which no effect exists
in nonrelativistic hydrogen but a large signal occurs in
antihydrogen, such as the isotropic invisible model dis-
cussed in Sec. IX B of Ref. [86], which allows compara-
tively large effects in the antihydrogen hyperfine structure
while damping those in hydrogen.
In principle, high-precision experiments with heavily

boosted electrons and protons offer additional options for a
complete coverage of possible effects because the combi-

nations Vw
NR
kjm and T w

NRðqPÞ
kjm in Eq. (6) involve coefficients

of different dimensions accompanied by distinct momen-
tum dependences. However, precision measurements
involving significant boosts come with additional exper-
imental challenges. Typical analyses take advantage of the
comparatively small boost ∼10−4 due to the Earth’s orbital
motion [18,49,52]. In this scenario, for example, the
dominant sensitivities to nonminimal coefficients available
to antihydrogen spectroscopy are enhanced by about 8
orders of magnitude relative to those of hydrogen spec-
troscopy using annual variations due to the parity selection
rules described in Sec. II D 2. In practice, a comprehensive
search for Lorentz and CPT violation therefore requires
performing experiments with positrons and antiprotons in
various combinations as well.
Among studies of Lorentz and CPT symmetry using

positrons and antiprotons, antihydrogen has distinctive
sensitivity due to its intrinsic spherical symmetry and
flavor content. The symmetries of other experiments, such
as the cylindrical symmetry of ones trapping and studying
individual positrons or antiprotons in Penning traps
[74–78], make them sensitive to different sets of coefficients
and thus different physical effects [79]. Positronium and
protonium do have spherical symmetry but involve C-
invariant particle-antiparticle combinations of only one
flavor and hence also have distinct physical sensitivities.
Moreover, other intrinsic factors can enhance the difference
between various types of experiments. For example, certain
coefficients for Lorentz andCPT violation are accompanied
by factors of the particle momentum, which is aboutmeα≃
3.7 keV for antihydrogen but differs in other types of
experiments. In short, spectroscopy of antihydrogen repre-
sents a unique tool to probe Lorentz andCPT violation, and
one that is essential for the definitive and unambiguous
detection of CPT violation involving the nonrelativistic
spherical coefficients considered in this work.
In this section, we begin with a description of the

implementation of the CPT transformation on the hydro-
gen spectrum. We then address the effects of nonminimal
coefficients on hyperfine and 1S-2S transitions. Finally, we
offer some comments on experiments testing the gravita-
tional response of antihydrogen.

A. Basics

The form of the leading-order Lorentz- and CPT-
violating perturbation δhNRH̄ to the nonrelativistic
Hamiltonian for free antihydrogen is similar to that for
hydrogen,

δhNRH̄ ¼ δhNRē þ δhNRp̄ ; ð69Þ

involving the sum of perturbative contributions from the
positron ē≡ eþ and the antiproton p̄. The individual
perturbations are given by expressions similar to
Eqs. (3)–(5) for hydrogen,

δhNRw̄ ¼ hw̄0 þ hw̄rσ · ϵ̂r þ hw̄þσ · ϵ̂− þ hw̄−σ · ϵ̂þ; ð70Þ
where w̄ represents either ē or p̄. The spin-independent
term is

hw̄0 ¼ −
X
kjm

jpjk0Yjmðp̂ÞVw̄
NR
kjm; ð71Þ

while the spin-dependent ones are

hw̄r ¼ −
X
kjm

jpjk0Yjmðp̂ÞT w̄
NRð0BÞ
kjm ;

hw̄� ¼
X
kjm

jpjk�1Yjmðp̂ÞðiT w̄
NRð1EÞ
kjm � T w̄

NRð1BÞ
kjm Þ: ð72Þ

In these equations, the quantities Vw̄
NR
kjm and T w̄

NRðqPÞ
kjm are

CPT-transformed versions of those given for hydrogen in
Eq. (6),

Vw̄
NR
kjm ¼ cwNRkjm þ awNRkjm;

T w̄
NRðqPÞ
kjm ¼ −gw

NRðqPÞ
kjm −Hw

NRðqPÞ
kjm : ð73Þ

These expressions include operators of arbitrary mass
dimension d. When restricted to the minimal-SME coef-
ficients, the above equations reduce to those used in the
previous literature on CPT violation in antihydrogen [13].
The physical effects of Lorentz and CPT violation in

antihydrogen are determined by the matrix elements of
δhNRH̄ in the unperturbed states. The coefficient selection
rules for hydrogen presented in Sec. II B are valid for
antihydrogen, and in particular the nonrelativistic spherical
coefficients contributing to modify the antihydrogen
spectrum are those listed in Table I. The methods used
in Sec. II C to derive the matrix elements for hydrogen can
also be applied, but the corrections to the antihydrogen
spectrum must be obtained by performing a CPT trans-
formation on the hydrogen matrix elements. This involves
both using the antihydrogen perturbative Hamiltonian δhNRH̄
and the antihydrogen states, which are CPT transforma-
tions of the hydrogen ones. Specifically, the CPT counter-
part of an energy state jnFJLmFi in hydrogen is the state

V. ALAN KOSTELECKÝ AND ARNALDO J. VARGAS PHYSICAL REVIEW D 92, 056002 (2015)

056002-22



jnFJLð−mFÞi in antihydrogen, as the net result of the CPT
transformation is to replace the atom with the antiatom and
to invert the direction of the total angular momentum F.
To illustrate the idea, consider the antihydrogen

energy shift δϵ̄ðnFJLmFÞ in the presence of a weak
uniform magnetic field. For hydrogen, the energy shift
δϵðnFJLmFÞ of the Zeeman levels is provided by Eq. (33).
For antihydrogen, noting that the uniform magnetic field
and the magnetic dipole moment are both invariant under
CPT, we find instead

δϵ̄ðnFJLmFÞ ¼
X
j

Āj0ðnFJLÞhFð−mFÞj0jFð−mFÞi

¼
X
j

ð−1ÞjĀj0ðnFJLÞhFmFj0jFmFi; ð74Þ

where the weights Āj0 are given by Eq. (19) with the
replacementw → w̄ throughout. In the second line, we have
used the Wigner-Eckart theorem and the properties of the
Clebsch-Gordan coefficients. As shown in Sec. II B, the
weights Ajm can acquire contributions for even j only from
coefficients associated with spin-independent operators and
for odd j only from coefficients associated with spin-
dependent operators. This reveals a simple relationship
between the shifts of the hydrogen and antihydrogen
spectra: given the expression for the shift in a hydrogen
energy level, the shift of the corresponding antihydrogen
level is obtained by implementing the replacements

awNRkjm → −awNRkjm; Hw
NRðqPÞ
kjm → −Hw

NRðqPÞ
kjm : ð75Þ

Comparing this rule to the operator transformations listed
in Table I, we infer that the antihydrogen spectral shifts can
be obtained by charge conjugation of the hydrogen ones.
This result extends the minimal-SME result obtained
in Ref. [13].
The reader is cautioned that the spectral map (75) is a

formal statement of correspondence between energy levels,
which depends on the labeling of the states. In the above
example, the spectra are described using the orientation of
the total angular momentum relative to the applied mag-
netic field, which is a C-invariant notion. If instead the
spectra are described using the orientation of the magnetic
moment relative to the magnetic field, which is a CPT-
invariant notion, then the two spectra would be related by a
CPT transformation. Moreover, the spectral map is distinct
from observable quantities such as frequency differences,
which in practical scenarios may depend on other factors.
For instance, magnetically trapped states in hydrogen have
opposite values of mF from those in antihydrogen, so
frequency comparisons of trapped atoms and antiatoms
amount to measuring the effect of the CPT replacements

awNRkjm → −awNRkjm; gw
NRðqPÞ
kjm → −gw

NRðqPÞ
kjm ð76Þ

instead of the C replacements (75). This is intuitively
reasonable for tests of the CPT theorem, which specifically
concerns invariance under CPT transformations but makes
no statement about invariance under C transformations.

B. Hyperfine transitions

The application of a comparatively weak external mag-
netic field to antihydrogen splits the two 1S1=2 levels into
four distinct hyperfine Zeeman sublevels, one with F ¼ 0
and three with F ¼ 1. These splittings can be in principle
be studied experimentally. For example, the ASACUSA
collaboration plans to measure the corresponding hyperfine
transitions using an ultracold beam of antihydrogen atoms
[80]. For simplicity, we neglect any boost effects in what
follows, and we work in the strict Zeeman or Paschen-Back
regimes so that the magnetic mixing of states in inter-
mediate regimes can be neglected. Extensions of the results
below to include these more general cases are possible and
may be of interest for some future applications but lie
beyond our present scope.
The Lorentz- and CPT-violating shifts in the antihy-

drogen energies can be found from the expression (48) for
hydrogen by implementing the coefficient map (75). The
resulting hyperfine frequency shifts 2πδν̄ for transitions
with a given ΔmF take the form

2πδν̄ ¼ −
ΔmF

2
ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ

×
X
w

½gwNRð0BÞð2qÞ10 þHw
NRð0BÞ
ð2qÞ10 þ 2gw

NRð1BÞ
ð2qÞ10

þ 2Hw
NRð1BÞ
ð2qÞ10 � ð77Þ

in the laboratory frame. In the minimal-SME limit, the
combination of nonrelativistic spherical coefficients
appearing in this expression reduces to minimal
Cartesian coefficients according to

gw
NRð0BÞ
010 þ 2gw

NRð1BÞ
010 þHw

NRð0BÞ
010 þ 2Hw

NRð1BÞ
010

→ 2
ffiffiffiffiffiffi
3π

p
½bw3 þmwdw30 þHw

12 −mwg
wðAÞ
3 þmwg

wðMÞ
120 �;

ð78Þ
where the superscripts (A) and (M) denote the irreducible
axial and irreducible mixed-symmetry combinations of the
coefficients gwκλν, respectively [81,82]. The result (77)
therefore reproduces and extends the minimal-SME expres-
sion obtained in Ref. [13] under the assumption that only
the Cartesian coefficients bwμ , dwμν, and Hw

μν are nonzero,
with the g-type coefficients set to zero in accordance with
their expected additional suppression due to the breaking of
the electroweak SUð2Þ × Uð1Þ symmetry [8].
The laboratory-frame coefficients appearing in Eq. (77)

are time dependent by virtue of the rotation of the Earth and
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its revolution about the Sun. As a result, all the signals for
Lorentz and CPT violation discussed for hydrogen in
Sec. III B have counterparts in antihydrogen experiments.
The measured hyperfine Zeeman frequencies in antihydro-
gen can exhibit sidereal and annual time variations and can
be sensitive to the orientation of the magnetic field and the
colatitude of the laboratory. For example, at zeroth boost
order, the relation between the coefficients in the laboratory
and Sun-centered frames is given by Eq. (51), revealing that
the frequency shifts δν̄ undergo sidereal variations at the
Earth’s rotation frequency ω⊕.
In addition to searching for the above hyperfine Zeeman

signals of Lorentz and CPT violation in antihydrogen
alone, interesting prospects for focusing specifically on
CPT violation are offered by direct comparisons of
measurements with hydrogen and antihydrogen. Note that
some caution is required in performing these comparisons,
as differences between hydrogen and antihydrogen involv-
ing only CPT-even effects can appear unless the assorted
time variations and orientation and colatitude dependences
are carefully incorporated in the analysis.
As an illustration of a direct comparison, consider the

hyperfine Zeeman frequency difference between hydrogen
and antihydrogen for transitions with ΔmF ¼ 1, which in
the presence of CPT violation is given by

2πΔν≡ 2πδν − 2πδν̄ ¼ −
1ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ

×
X
w

ðgwNRð0BÞð2qÞ10 þ 2gw
NRð1BÞ
ð2qÞ10 Þ:

ð79Þ
This expression depends only on coefficients controlling
CPT-odd operators in the perturbation Hamiltonians for
hydrogen and antihydrogen. In the minimal-SME limit, this
result reduces to

Δν → −
1

π
ðbe3 −meg

eðAÞ
3 þmeg

eðMÞ
120

þ bp3 −mpg
pðAÞ
3 þmpg

pðMÞ
120 Þ; ð80Þ

which extends the result presented in Ref. [13] to include g-
type coefficients. Note that the result (79) is expressed in
the laboratory frame and therefore still generically depends
on time. For example, time variations at the Earth’s sidereal
frequency are given by converting the coefficients to the
Sun-centered frame using Eq. (51). This reveals that only
the g-type components involving Sun-frame coefficients
with kjm ¼ 010, 210, and 410 are associated with signals
independent of sidereal time.
Studies of the antihydrogen spectrum in the presence

of a strong external magnetic field are also of experi-
mental interest. For example, the ALPHA and ATRAP
collaborations plan to perform spectroscopy on

antihydrogen trapped in the Paschen-Back limit of strong
fields [83,84].
For the Paschen-Back splitting of the 1S1=2 levels, the

total angular momentum F is no longer a good quantum
number. Instead, the states can be labeled by the spins Sē ¼
�1=2 and Sp̄ ¼ �1=2 of the positron and antiproton,
respectively. Incorporating perturbative Lorentz and CPT
violation as before, the hyperfine Paschen-Back frequency
shifts δν̄ for given ΔSw in antihydrogen are found to be

2πδν̄ ¼ −
1ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ

×
X
w

ΔSw½gwNRð0BÞð2qÞ10 þHw
NRð0BÞ
ð2qÞ10

þ 2gw
NRð1BÞ
ð2qÞ10 þ 2Hw

NRð1BÞ
ð2qÞ10 � ð81Þ

in the laboratory frame. This agrees with the minimal-SME
result in Ref. [13] in the appropriate limit.
Converting the coefficients to the Sun-centered frame

leads to antihydrogen frequency signals similar to those in
the Zeeman limit, including sidereal and annual time
variations and dependences on the magnetic-field orienta-
tion and laboratory colatitude. A significant difference
between the Zeeman shift (77) and the Paschen-Back shift
(81) is the lack of sensitivity of the latter to coefficients of
one flavor in certain transitions, depending on the specific
values of Sē and Sp̄. For example, the frequency difference
Δνc→d ≡ δνc→d − δν̄c→d for the transition jci → jdi essen-
tially involves a proton spin flip because jci contains highly
polarized electron and proton spins with mSe ¼ 1=2 and
mSp ¼ −1=2. We find

Δνc→d ¼ −
1ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ

× ðgpNRð0BÞð2qÞ10 þ 2gp
NRð1BÞ
ð2qÞ10 Þ: ð82Þ

This reduces in the minimal-SME limit to

Δνc→d → −
2

π
ðbp3 −mpgp

ðAÞ
3 þmpgp

ðMÞ
120 Þ; ð83Þ

in agreement with and extending the result found
in Ref. [13].

C. 1S-2S and nL1=2-n0L0
1=2 transitions

In searching for CPT violation in the minimal SME,
hyperfine spectroscopy of antihydrogen has a theoretical
advantage over optical spectroscopy because the 1S-2S
transition is insensitive to minimal-SME coefficients in free
antihydrogen and exhibits only suppressed sensitivity in
magnetically trapped antihydrogen [13]. Here, we show
this situation changes for nonminimal operators: optical
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spectroscopy offers access to nonminimal SME coefficients
with unsuppressed sensitivity. Moreover, some of these
coefficients are inaccessible to hyperfine spectroscopy.
The derivation of the relevant spectral shifts for free

antihydrogen parallels the one for free hydrogen outlined in
Sec. III C. Restricting our attention to isotropic effects as in
the hydrogen case, we find that any antihydrogen transition
nL-n0L0 with J ¼ 1=2, ΔJ ¼ 0 experiences a frequency
shift δν̄ due to Lorentz and CPT violation given in the
laboratory frame by

2πδν̄ ¼ 2mrðεn − εn0 Þ
X
w

ða∘NRw;2 þ c
∘NR
w;2Þ

− 4m2
r

�
ε2n

�
8n

2Lþ 1
− 3

�
− ε2n0

�
8n0

2L0 þ 1
− 3

��

×
X
w

ða∘NRw;4 þ c
∘NR
w;4Þ; ð84Þ

where εn ≡ −α2mr=2n2. Note that this result contains only
contributions with k ≥ 2, confirming the absence of unsup-
pressed effects from the minimal SME [13]. In contrast, the
nonminimal coefficients carry negative mass dimensions
and so appear accompanied by powers of the relativistic
energy of the states. For frequencies, this involves the
relativistic energy difference between two levels and hence
at leading order a nonzero contribution proportional to
powers of the particle masses.
Converting this expression to the Sun-centered frame

introduces sidereal and annual variations along with
dependences on the orientation of the magnetic field and
the laboratory colatitude. In principle, all the types of
searches for Lorentz and CPT violation discussed in the
hydrogen context in Secs. III C and III D are of interest in
the antihydrogen context as well. In addition, direct
comparisons of results for hydrogen and antihydrogen
could permit the extraction of clean constraints on coef-
ficients for CPT violation. This includes not only coef-
ficients entering the 1S-2S transition but also coefficients
involved with high-J levels, thereby providing access to
coefficients with large values of j that are inaccessible to
hyperfine spectroscopy.
As an example of a direct comparison between hydrogen

and antihydrogen, consider the isotropic coefficients gen-
erating frequency shifts for the 1S-2S transition. The shift
for antihydrogen is given by

2πδν̄1S2S ¼
3

4
ðαmrÞ2

X
w

ða∘NRw;2 þ c
∘NR
w;2Þ

þ 67

16
ðαmrÞ4

X
w

ða∘NRw;4 þ c
∘NR
w;4Þ: ð85Þ

The frequency difference Δν̄1S2S ≡ δν1S2S − δν̄1S2S
between the 1S-2S transitions in hydrogen and antihydro-
gen is therefore

Δν̄1S2S ¼−
1

8π

X
w

½12ðαmrÞ2a∘NRw;2þ67ðαmrÞ4a∘NRw;4�: ð86Þ

This permits a clean measurement of isotropic CPT-
violating effects with unsuppressed signals in the compari-
son between trapped atoms and antiatoms. If attained, an
absolute uncertainty of 1 Hz in the 1S-2S transition for both
hydrogen and antihydrogen would yield constraints of
order 10−12 GeV−1 on the coefficients a

∘NR
w;2 and of order

10−2 GeV−3 on the coefficients a
∘NR
w;4 in the electron and

proton sectors.
Note that in principle the anisotropic coefficients in the

general result (84) also contribute to δν̄1S2S. In the weak-
field regime, the spin-dependent contributions for
ΔmF ¼ 0 are

2πδν̄1S2S ⊃
mF

8

ffiffiffi
3

π

r X2
q¼1

ðαmrÞ2q
�
1þ 67

12
δ2q

�

þ
X
w

ðgwNRð0BÞð2qÞ10 þHw
NRð0BÞ
ð2qÞ10

þ 2gw
NRð1BÞ
ð2qÞ10 þ 2Hw

NRð1BÞ
ð2qÞ10 Þ: ð87Þ

Note these are nonvanishing only formF ≠ 0. In the strong-
field regime and for ΔSw ¼ 0, the spin-dependent contri-
butions are

2πδν̄1S2S ⊃
ffiffiffiffiffiffiffiffi
3

16π

r X2
q¼1

ðαmrÞ2q
�
1þ 67

12
δ2q

�

þ
X
w

SwðgwNRð0BÞð2qÞ10 þHw
NRð0BÞ
ð2qÞ10

þ 2gw
NRð1BÞ
ð2qÞ10 þ 2Hw

NRð1BÞ
ð2qÞ10 Þ: ð88Þ

However, at present the planned ASACUSA measurement,
which is sensitive to the anisotropic coefficients, is
expected to reach an absolute uncertainty of about
100 Hz or better, while measurements of the 1S-2S
transition in antihydrogen appear unlikely to approach this
benchmark in the near future. It is therefore reasonable at
present to disregard contributions from the anisotropic
coefficients to the 1S-2S transition. Nonetheless, as anti-
hydrogen is intrinsically a stable antiatom and the natural
linewidth of the 2S state is about 1 Hz, the 1S-2S transition
may offer the most interesting long-term prospects for sub-
Hz sensitivities.
In parallel with the hydrogen case discussed in

Sec. III C 2, the presence of Lorentz and CPT violation
can also cause apparent shifts in various fundamental
constants measured in antihydrogen experiments. For
instance, the apparent shift δR̄∞ of the Rydberg constant
in antihydrogen due to Lorentz and CPT violation is
given by

LORENTZ AND CPT TESTS WITH HYDROGEN, … PHYSICAL REVIEW D 92, 056002 (2015)

056002-25



δR̄∞ ¼ 4πm2
r

me
R∞

X
w

ða∘NRw;2 þ c
∘NR
w;2Þ: ð89Þ

A direct comparison of a measurement of the Rydberg
constant (61) performed using hydrogen with one using
antihydrogen therefore can be expected to reveal a dis-
crepancy ΔR∞ given by

ΔR∞ ≡ R∞ − R̄∞ ¼ −
8πm2

r

me
R∞

X
w

a
∘NR
w;2: ð90Þ

This difference depends purely on CPT-odd effects. Other
fundamental constants may similarly be affected. For
example, if future experiments can perform high-precision
spectroscopy of the 2S-2P transition to determine the
classical Lamb shift in antihydrogen,

2πδν̄Lamb ¼ −
2

3
ðαmrÞ4

X
w

ða∘NRw;4 þ c
∘NR
w;4Þ; ð91Þ

or of the two-photon transitions 2S-nD in antihydrogen,
then the radius of the antiproton could be determined. Since
Lorentz and CPT violation produces an apparent shift in
these transitions, a discrepancy between the proton and
antiproton radii could emerge.

D. Antihydrogen and gravity

A long-standing question is whether antiparticles and
particles interact identically with gravity [85]. Several
experiments have been proposed to test this idea directly
using antihydrogen, including AEGIS [70], GBAR [72],
ALPHA [71], and AGE [73]. While the present work is
focused on the spectroscopic effects of nonminimal oper-
ators for Lorentz and CPT violation in flat spacetime, we
offer in this subsection a few comments about the role of
nonminimal operators in the gravitational couplings of
antihydrogen.
A theoretical model in which the gravitational response

of antihydrogen differs from that of hydrogen is presented
in Sec. IX B of Ref. [86]. The model, called the isotropic
parachute model (IPM), is an effective quantum field
theory, constructed as a subset of the gravitationally
coupled minimal SME [9]. The IPM overcomes various
objections to theories with different antimatter and matter
couplings to gravity, demonstrating explicitly that energy
can be conserved, that the binding-energy content can be
largely irrelevant to the gravitational response, and that
restrictions from other systems such as neutral kaons can be
evaded.
In the IPM, the anomalous gravitational response of

antimatter compared to matter is a consequence of CPT
violation and hence of Lorentz violation in the underlying
effective field theory. The IPM is an isotropic theory,
formulated in an asymptotically Minkowski spacetime with

a weak gravitational field and designed to produce a
predominantly null effect in matter by cancellation of
CPT-even and CPT-odd effects in the minimal SME.
The physical Lorentz and CPT violation in hydrogen is
therefore countershaded from detection [87]. The anoma-
lous response in antihydrogen arises because for antimatter
the signs of the CPT-odd contributions change, disrupting
the cancellation. Explicitly, in the IPM the uniform constant
background pieces āwT and c̄wTT of the isotropic minimal-
SME Cartesian coefficients awT and cwTT are related by

αāwT ¼ 1

3
mc̄wTT; ð92Þ

for particles of flavor w, where α is a model-dependent
quantity determined by the gravitational coupling for
Lorentz-violating effects.
In the context of hydrogen and antihydrogen, the

conditions (92) for w ¼ e and w ¼ p represent two con-
straints on four independent coefficients, so the IPM is a
two-parameter model. The resulting inertial and gravita-
tional masses of hydrogen are equal while those of
antihydrogen differ,

mH
i ¼ mH

g ; mH̄
i ≠ mH̄

g : ð93Þ

However, the strength of the anomalous gravitational
response of antimatter in the IPM has recently been
constrained to parts in 107 by an analysis combining data
from torsion-balance tests, matter-wave interferometry, and
microwave, optical, and Mössbauer clock-comparison
experiments, and by taking advantage of the differing
bound kinetic energies of nuclei [88]. Any IPM effects
in antihydrogen are therefore beyond the reach of the
currently proposed antihydrogen experiments.
The IPM uses only isotropic minimal operators in the

SME. However, the gravitational sector of the SME
includes not only minimal pure-gravity and matter-gravity
couplings, but also nonminimal couplings [9] that have
definite experimental signatures [89]. These nonminimal
couplings are also of potential relevance in the present
context, and in particular we expect them to enhance
substantially the prospects for a strong anomalous gravi-
tational response of antihydrogen. A detailed study of
nonminimal effects in this context is challenging and lies
well outside our present scope, although it is likely to offer
interesting insights. Nonetheless, we can provide some
intuition by following the conceptual path presented in
Ref. [86] in the special limit where only isotropic non-
minimal coefficients in the matter-gravity sector contribute,
keeping only zeroth-order nonrelativistic effects and first-
order gravitational couplings.
In this comparatively simple limit, starting with the

generalized Dirac equation incorporating both operators for
Lorentz andCPT violation of arbitrary mass dimension and
gravitational couplings, the corresponding perturbative

V. ALAN KOSTELECKÝ AND ARNALDO J. VARGAS PHYSICAL REVIEW D 92, 056002 (2015)

056002-26



Hamiltonian contains no momentum-dependent Lorentz
violation and the Lorentz-violating energy dependence
involves only the particle mass. The calculation therefore
proceeds with the minimal-SME background coefficients
āwT and c̄wTT now accompanied by a series of terms involving
nonminimal background coefficients and the particle mass.
Since these quantities are all constants, the derivation has
the same algebraic structure as that presented in Ref. [86],
up to possible numerical factors due to the increased
multiplicity of indices on nonminimal coefficients.
Noting that only the nonminimal isotropic coefficients

with k ¼ 0 contain the minimal-SME isotropic coefficients
and using Eqs. (93), (111), (129), and (130) of Ref. [37], we
can deduce that the net result of the calculation involves the
replacements

āwT → ā
∘NR
w;0 ¼ āwT þ

X
odd d≥5

Nd
a;wmd−3

w ā
∘ ðdÞ
0 ;

c̄wTT → c̄
∘NR
w;0 ¼ c̄wTT þ

X
even d≥6

Nd
c;wmd−4

w c̄
∘ ðdÞ
0 ; ð94Þ

where Nd
a;w and Nd

c;w are numerical factors. We can then
make these replacements in the discussion in Sec. IX B of
Ref. [86] and conclude that the vertical acceleration a of an
antihydrogen atom of inertial mass mH̄

i and gravitational
mass mH̄

g obeys

a ¼ mH̄
g

mH̄
i

g≡
�
1þ δg

g

				
H̄

�
g; ð95Þ

with

δg
g

				
H̄
¼ 2

mH̄

X
w

�
αā
∘NR
w;0 þ

1

3
mwc̄

∘NR
w;0

�
; ð96Þ

wherew takes the values e and p andmH̄ is a constant equal
to the inertial mass of an antihydrogen atom in the absence
of Lorentz and CPT violation.
The above derivation suggests introducing a generalized

IPM via the definition

αā
∘NR
w;0 −

1

3
mwc̄

∘NR
w;0 ¼ 0: ð97Þ

The corresponding vertical acceleration for hydrogen is
then unaffected,

δg
g

				
H
¼ 2

mH

X
w

�
αā
∘NR
w;0 −

1

3
mwc̄

∘NR
w;0

�
¼ 0; ð98Þ

while the gravitational response (95) of antihydrogen is
anomalous. Note that the presence of the nonminimal
coefficients implies two new degrees of freedom at each
dimension d. This provides intuition about the connection

between nonminimal coefficients and renewed prospects
for a comparatively large anomalous gravitational response
in antihydrogen. Note also that a complete derivation can
be expected to generate a tensor relation between the
acceleration of a test body and the acceleration due to
gravity, with horizontal components of the acceleration
affected. The relation involves spatial components of
nonminimal coefficients, along with momentum factors
as well. In general, the motion of a freely falling anti-
hydrogen atom in the presence of Lorentz and CPT
violation is expected to follow a geodesic in a pseudo-
Finsler geometry determined by the Riemann metric and
the SME coefficients, while its motion in the IPM follows a
geodesic in pseudo-Randers spacetime [40].
On the experimental side, the above discussion reveals

that studies of the gravitational couplings of antihydrogen
probe distinct effects from the spectroscopic tests discussed
in this work, as none of the latter can detect isotropic
spherical coefficients with k ¼ 0 for reasons discussed in
Sec. II B. Also, we can use simple dimensional analysis to
provide an estimate of the sensitivity of gravitational
experiments with antihydrogen to nonminimal coefficients
for CPT violation. A generic nonrelativistic spherical
coefficient Kw

NR
kjm has mass dimension 1 − k, so taking

one coefficient nonzero at a time as before and neglecting
momentum effects yields expected constraints of order

jKw
NR
kjmj≲m1−k

w
δg
g

				
H̄
: ð99Þ

For an experiment with 10% uncertainty, this gives con-
straints of order 10−4−3k GeV1−k on nonrelativistic coef-
ficients in the electron sector and of order 10−1 GeV1−k on
ones in the proton sector.

V. DEUTERIUM

The differing nuclear and spin structures of the various
hydrogen isotopes imply these systems have distinct
sensitivities to Lorentz and CPT violation. We focus here
on deuterium, a stable fermionic system that has been
widely studied since its discovery in the early 1930s [90].
Tritium and the higher hydrogen isotopes are unstable and
challenging to handle experimentally, although an inves-
tigation of the spectroscopic properties of these systems
could be worthwhile as well. Note that tritium decays are of
interest in the context of precision measurements of the
neutrino mass [91] and the associated searches for Lorentz
and CPT violation in the neutrino sector [92].
The isotope shift for the 1S-2S transition between

deuterium and hydrogen has been measured with a poten-
tially competitive absolute uncertainty of about 15 Hz [93],
while the presence of the neutron in the deuteron core
changes the angular-momentum couplings and opens
opportunities for additional sensitivities to coefficients in
the neutron sector of the SME. Moreover, a deuterium
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maser [94] could in principle be used to study the
deuterium hyperfine structure at mHz sensitivity or better.
In this section, we consider these possibilities in turn. We
outline an approach to the perturbative Hamiltonian, obtain
relevant frequency shifts, and summarize some implica-
tions for experimental studies.
Note that our analysis here disregards the gravitational

couplings of deuterium. Although antideuterons were first
created in the laboratory about 50 years ago [95], anti-
deuterium remains only a theoretical possibility at present.
It is expected to be stable, and comparisons of its
gravitational response with that of deuterium could con-
ceivably be of interest for at least two theoretical reasons.
Both deuterium and antideuterium incorporate neutron
coefficients for Lorentz and CPT violation and therefore
a comparison of their gravitational properties would further
extend tests of models such as the generalized IPM
discussed in Sec. IV D. Also, deuterium and antideuterium
are fermions, and as such their behavior in weak gravita-
tional fields involves a different set of spin-dependent
coefficients for Lorentz and CPT violation [9,86,96].
However, the production, trapping, and experimental
manipulation of antideuterium remains at present a futur-
istic challenge, so detailed theoretical considerations of the
free fall of antideuterium lie outside our present scope.

A. Isotropic Lorentz-violating perturbations

Since the deuteron is a bound state of two hadrons, for
which exact expressions for the energy levels are lacking,
the perturbative methods developed above for atomic
hydrogen cannot be applied directly. Nonetheless, the
dominant contributions from isotropic Lorentz and CPT
violation can be obtained within plausible assumptions.
These are of interest in the context of 1S-2S and similar
transitions in deuterium.
As a reasonable first approximation to the Hamiltonian

HD governing the dominant deuterium physics of relevance
here, we can write the three-body expression

HD ≈
p2e
2me

þ p2p
2mp

þ p2n
2mn

þ VðrepÞ þUðrpdÞ; ð100Þ

where pw is the three-momentum of the particle of flavor
w ¼ e, p, n, mw is the corresponding mass, rep is the
relative position of the electron and proton, and rpd is the
relative position of the proton and neutron. The potential V
accounts for the electromagnetic interaction between the
proton and electron, while U describes the nuclear inter-
actions between the proton and neutron. For simplicity, we
work in the zero-momentum inertial frame of the deu-
terium atom.
To separate the Hamiltonian while keeping the dominant

Lorentz-invariant physics, we can reinterpret the dynamics
of the proton and neutron in terms of the motion of the
deuteron and the motion of the proton and neutron relative

to the deuteron center of mass. It is therefore convenient to
define p≡ pp þ pn ¼ −pe and ppd ≡ ðpp − pnÞ=2, with the
latter being the momentum of the proton relative to the
center of mass of the deuteron. It is also a sufficient
approximation for present purposes to take mn ≈mp and
rep ≈ rd ≡ rep þ rpd=2. The vector rd can be viewed as the
approximate position of the deuteron center of mass with
respect to the electron. It follows that VðrepÞ ≈ VðrdÞ. With
these definitions and approximations, the Hamiltonian HD
takes the form

HD ≈
p2

2mr
þ VðrdÞ þ

p2pd
mp

þUðrpdÞ; ð101Þ

where mr ≈ 2mpme=ð2mp þmeÞ is the reduced mass of
deuterium. This expression is separable, so its solution is
the tensor product of the solutions of the two individual
systems.
The next step is to express the Lorentz-violating pertur-

bation in terms of these variables. Following the scenario
introduced in Sec. II A, we can suppose that each of the
three particles e, p, n experiences a perturbation δhNRw of
the form (3). As discussed in Sec. III C 1, the 1S-2S and
similar transitions are of interest primarily in the context of
measuring isotropic coefficients for Lorentz violation, so
we restrict our attention here to the quantities Vw

NR
kjm ≡

cwNRkjm − awNRkjm defined in Eq. (6), but now with w ¼ e; p; n.
Under these assumptions, we find that the isotropic part

of the perturbation Hamiltonian δhNRD can be written in the
form

δhNRD ¼ −
1ffiffiffiffiffiffi
4π

p
X
k¼2;4

�
Ve

NR
k00jpjk þ Vp

NR
k00

				 12 pþ ppd

				k

þ Vn
NR
k00

				 12 p − ppd

				k
�
: ð102Þ

This operator expression describes the leading-order per-
turbative effects arising from isotropic Lorentz and CPT
violation.

B. 1S-2S transition

The deuterium energy-level shifts are given by expect-
ation values of the perturbation Hamiltonian δhNRD in the
Lorentz-invariant states. In performing the calculations,
only the cross terms p · ppd and ðp · ppdÞ2 that couple both
systems could in principle be challenging to handle.
However, the former is odd under a parity transformation
of either momentum and hence yields zero contribution at
leading order. To treat the quadratic term, we can plausibly
assume the two systems are sufficiently decoupled so that
hðp · ppdÞ2i ≈ hp2ihp2pdi=2. Also, the contribution to the
1S-2S and other nL-n0L0 transitions can be expected to
depend on a nonzero power of p. Moreover, the magnitude
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of ppd is roughly 100 MeV while that of p is about 1 keV,
so hp2ihp2pdi ≫ hp4i.
Combining these considerations and using the expect-

ation values (15), we find that the frequency shift δνD of the
nL-n0L0 transition in deuterium due to isotropic Lorentz
and CPT violation is given by

2πδνD ¼ mrffiffiffi
π

p ðεn0 − εnÞ
�
Ve

NR
200 þ

1

4
ðVp

NR
200

þ Vn
NR
200Þ

þ hp2pdiðVp
NR
400

þ Vn
NR
400Þ

�

−
2m2

rffiffiffi
π

p
�
ε2n0

�
8n0

2L0 þ 1
− 3

�
− ε2n

�
8n

2Lþ 1
− 3

��

×

�
Ve

NR
400 þ

1

16
ðVp

NR
400

þ Vn
NR
400Þ

�
; ð103Þ

where εn ≡ −α2mr=2n2 and hp2pdi≃ 104 MeV2. This
expression generalizes the result (60) for hydrogen and
reduces to it in the limit where the proton and neutron are
taken to have identical momenta, each of magnitude half
that of the electron momentum.
The 1S-2S transition in deuterium provides interesting

sensitivity to anisotropic coefficients in the Sun-centered
frame via boost corrections that produce sidereal and
annual variations. At leading order in the boost parameter,
the deuterium 1S-2S transition frequency takes the same
form (63) as its hydrogen counterpart, except that the sum
over flavors now includes also the neutron. The leading-

order contributions for the electron vectors VðdÞJ
e have the

same form as for hydrogen and so can be found in Table V.
The leading-order contributions for the proton and neutron

vectors VðdÞJ
p and VðdÞJ

n with 5 ≤ d ≤ 8 can be obtained
from Table VIII. In this table,mw represents the rest masses
of the proton w ¼ p and neutron w ¼ n. As before, α is the
fine-structure constant, mr is the reduced mass of the
system, and the effective Cartesian coefficients for
Lorentz violation are defined in Eq. (27) of Ref. [37].

The minimal-SME spin-independent coefficients Vð3ÞJ
w and

Vð4ÞJ
w vanish at leading order in the nonrelativistic limit and

so have no effect on the 1S-2S frequency, in parallel with
the hydrogen case [13,29].
The time variations in the deuterium 1S-2S transition are

determined by the same expressions as for hydrogen,

namely, Eq. (64) for the annual frequency Ω⊕ and
Eq. (65) for the sidereal frequency ω⊕. However, the
deuterium transition offers some advantages over its hydro-
gen counterpart. One is the sensitivity of deuterium to
neutron coefficients. A more subtle advantage is that the
motion of the proton in the nucleus makes the deuterium
experiment substantially more sensitive to some of the
proton coefficients. The point is that in hydrogen the proton
is a comparatively placid object with momentum opposite
that of the electron, with magnitude ∼αme of a few keV. In
contrast, the proton and neutron in deuterium together have
total momentum opposite that of the electron, but each
nucleon has momentum of over 100 MeV, producing an
expectation value hp2pdi ∼ 104 MeV2. As a result, measure-
ments of the deuterium 1S-2S transition offer about a
billionfold greater sensitivity than hydrogen to the proton
coefficients apKKLLJeff and cpTKKLLJeff , as can be deduced
from the entries for d ¼ 7; 8 in Table VIII.
We remark in passing that a study of subleading effects

in the deuterium 1S-2S frequency along the lines of the
experiment with hydrogen performed in Ref. [18] could
also be used to constrain minimal SME coefficients in the
neutron sector. The analogue of the minimal-SME match
(66) for deuterium involves both proton and neutron
coefficients,

X
wd

VðdÞJ
w ¼ 5

4
α2mr

�
cðTJÞe þ 1

4
ðcðTJÞp þ cðTJÞn Þ

�
; ð104Þ

and this expression could be used to determine sensitivities
to nonminimal coefficients in all three sectors w ¼ e, p, n
as for the hydrogen case.

C. Comparative analyses

In atomic hydrogen, the isotropic coefficients produce an
effective shift of the Rydberg constant given by Eq. (61).
An analogous effect occurs in deuterium, but the shift is
instead given by

δR∞;D ¼ 2
ffiffiffi
π

p
m2

r

me
R∞

�
Ve

NR
200 þ

1

4
ðVp

NR
200

þ Vn
NR
200Þ

þ hp2pdiðVp
NR
400

þ Vn
NR
400Þ

�
: ð105Þ

TABLE VIII. Values of the vectors VðdÞJ
w in Eq. (63) for the proton and neutron in deuterium with 5 ≤ d ≤ 8.

d VðdÞJ
w

5 3
16
ðαmrÞ2ð2awð5ÞTTJeff þ aw

ð5ÞKKJ
eff Þ

6 − 3
4
ðαmrÞ2mwðcwð6ÞTTTJeff þ cw

ð6ÞTKKJ
eff Þ

7 5
8
ðαmrÞ2m2

wð2awð7ÞTTTTJeff þ 3aw
ð7ÞTTKKJ
eff Þ þ 3

4
ðαmrÞ2hp2pdiawð7ÞKKLLJ

eff

8 − 15
8
ðαmrÞ2m3

wðcwð8ÞTTTTTJeff þ 2cw
ð8ÞTTTKKJ
eff Þ − 9

2
ðαmrÞ2mwhp2pdicwð8ÞTKKLLJ

eff
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Since the shift δR∞ in hydrogen and the shift δR∞;D in
deuterium are distinct, any difference between the values
obtained for the Rydberg constant in experiments with
hydrogen and with deuterium could be a signal for Lorentz
and CPT violation. Similarly, the change δνLamb;D in the
classical Lamb shift (2SJ¼1-2PJ¼1) in deuterium,

2πδνLamb;D ¼ −
ðαmrÞ4
3

ffiffiffi
π

p
�
Ve

NR
400 þ

1

16
ðVp

NR
400

þ Vn
NR
400Þ

�
;

ð106Þ
differs from the change δνLamb in the hydrogen Lamb shift
given by Eq. (62). A signal for Lorentz and CPT violation
would therefore be an observed discrepancy between
experimental values obtained in the two systems.
The above comparative analyses can also be extended to

physical effects in other transitions. These could include,
for example, the transitions 2S-4D, 2S-8D, and 2S-12D, all
of which have been measured in deuterium [61,63,69]. To
illustrate the extraction of constraints on coefficients for
Lorentz violation via this method, we consider here a
comparative analysis of the two experimental values of the
difference between the proton and deuteron radii obtained
in Refs. [61] and [98]. As before, only the contributions
from isotropic coefficients for Lorentz and CPT violation
are included, as other types of searches are more sensitive
to anisotropic coefficients.
Consider first the weighted difference

Δ ¼ ν2S4S −
1

4
ν1S2S ð107Þ

between the 2S-4S frequency ν2S4S and the 1S-2S fre-
quency ν1S2S, measured for hydrogen and deuterium in
Ref. [61]. The change in the isotope shift δνshift between the
two measurements is governed by the difference δðr2d − r2pÞ
between the square of the charge radii of the proton and
deuteron,

2πδνshift ¼ −
7πα4R∞

24r2e
δðr2d − r2pÞ; ð108Þ

where re is the classical electron radius. The frequency shift
δνLV of Δ due to Lorentz and CPT violation is given by

2πδνLV ¼ −
89ðαmrÞ4
4096

ffiffiffiffiffiffi
4π

p ð15Vp
NR
400

− Vn
NR
400Þ: ð109Þ

Assuming the observed value of δνshift arises entirely from
δνLV, we find that the difference between the square of
the charge radii determined in Ref. [61] is approximately
given by

δðr2d − r2pÞ ≈ ð2 × 10−6Þð15Vp
NR
400

− Vn
NR
400Þ GeV3 fm2;

ð110Þ

where the coefficients for Lorentz and CPT violation have
units of GeV−3.
Next, consider the difference between the square of the

charge radii obtained in Ref. [98] frommeasurements of the
1S-2S frequency ν1S2S in hydrogen and deuterium. In this
case, the change in the isotope shift δνshift is given by

2πδνshift ¼
7πα4R∞

3r2e
δðr2d − r2pÞ; ð111Þ

while the Lorentz-violating shift δνLV is

2πδνLV ¼ 3ðαmrÞ2
16

ffiffiffiffiffiffi
4π

p ½3Vp
NR
200

− Vn
NR
200

− 4hp2pdiðVp
NR
400

þ Vn
NR
400Þ�: ð112Þ

The assumption that the observed frequency shift originates
from Lorentz violation now gives the difference between
the square of the charge radii as approximately

δðr2d − r2pÞ ≈ ð2 × 105Þ½3Vp
NR
200

− Vn
NR
200

− 4hp2pdiðVp
NR
400

þ Vn
NR
400Þ� GeV3 fm2: ð113Þ

We see that this expression and the result (110) provide two
distinct measures of δðr2d − r2pÞ in terms of coefficients for
Lorentz and CPT violation.
The two reported experimental values are essentially in

agreement. Note that the above results make use of values
of the Rydberg constant and the mass ratios of the electron
to the proton and to the deuteron. In principle, these
quantities could be shifted by Lorentz and CPT violation,
so we take a conservative value of less than 0.02 fm2 for the
uncertainty in jδðr2d − r2pÞj. Disregarding coefficients in the
electron sector, which give contributions proportional to
the difference of powers of the reduced masses of deu-
terium and hydrogen and so are suppressed by 4 or more
orders of magnitude relative to coefficients in the proton
and neutron sectors, we can finally extract the constraint

j3a∘NRp;2 − a
∘NR
n;2 − 4hp2pdiða

∘NR
p;4 þ a

∘NR
n;4Þ − 3c

∘NR
p;2 þ c

∘NR
n;2

− 4hp2pdiðc
∘NR
p;4 þ c

∘NR
n;4Þj

< 2 × 10−7 GeV−1 ð114Þ

on coefficients for Lorentz and CPT violation.
Similar comparative analyses can be performed in other

systems. An example discussed in Ref. [46] is a comparison
of radii using the isotope shift between muonic hydrogen
and muonic deuterium. A complete analysis of this
system would place constraints on muon coefficients for
Lorentz and CPT violation as well as proton and neutron
coefficients.
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D. Deuterium maser

The successful construction and operation of a deuterium
maser with absolute frequency uncertainty around 1 mHz
[94] implies that high-precision spectroscopy of the hyper-
fine structure of deuterium is a realistic possibility. The
high momenta of the proton and neutron in the deuteron
core, which as described in Sec. V B leads to a billionfold
gain in sensitivity to certain coefficients for Lorentz and
CPT violation in 1S-2S spectroscopy, can similarly be
expected to enhance the sensitivity to coefficients affecting
the hyperfine transitions of the deuterium maser relative to
the hydrogen one. Moreover, the deuteron core exists in an
admixture of orbital angular momentum 0 and 2, so the
deuterium maser also provides access to coefficients with
larger values of j.
To study the corrections to the hyperfine structure in

deuterium, a reasonable description of the unperturbed
ground state is required. The angular part of this state can
be obtained by coupling the spin Sd of the deuteron to the
spin Se of the electron. The deuteron component involves
the coupling of the triplet state of the proton and the neutron
with a superposition of L ¼ 0 and L ¼ 2 orbital states of
the nuclear motion [97]. As a result, the unperturbed wave
function for the ground state can be expressed as

hp; ppdjFmFi ¼ ψ10ðpÞ
X
SeSd

h1
2
Se1SdjFmFijSeihppdjSdi;

ð115Þ

where ψ10 is the spin-independent piece, Se is the electron
spin, and Sd is the deuteron spin. The deuteron spin wave
function takes the form

hppdjSdi ¼
X1
l¼0

Ψ2lðppdÞ
X
qm

h1qð2lÞmj1SdiYð2lÞmðp̂pdÞχq;

ð116Þ
whereΨ2l contains the radial piece and χm is the spin-triplet
wave function constructed from the proton and neutron
spin states.
Using this wave function, we can determine the pertur-

bative shifts by calculating the expectation values of the full
perturbative Hamiltonian δhNRD obtained following the
discussion in Sec. II A, assuming each particle e, p, n
experiences a perturbation of the form (3). In the hyperfine
Zeeman regime, the effects from isotropic coefficients
cancel as usual. Neglecting these coefficients, we find
the energy-level shifts are

δεðF;mFÞ ¼ −
mF

3
ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2q
2ðF − 1Þ ð1þ 4δq2Þ

× ðT e
NRð0BÞ
ð2qÞ10 þ 2T e

NRð1BÞ
ð2qÞ10 Þ: ð117Þ

Comparison of this expression with the energy-level shifts
(48) and frequency shifts (49) for the hydrogen maser
shows that both types of maser are sensitive to the
same combination of electron coefficients. The deuterium
maser therefore has no particular advantage over the
hydrogen maser in this regard. Note also that the two
deuterium-maser transitions F ¼ 3=2 → F ¼ 1=2 with
mF ¼∓ 1=2 → mF ¼ �1=2, which are the most indepen-
dent of fluctuations in the applied magnetic field, are
insensitive to Lorentz and CPT violation at leading order.
This parallels the result for F ¼ 1 → F ¼ 0 with mF ¼ 0
for the hydrogen maser.
The calculation of the perturbative shifts due to the

proton and neutron coefficients is more involved. Since the
deuteron spin is a good quantum number, the coefficient
selection rules discussed in Sec. II B imply that only proton
and neutron coefficients with j ≤ 2 can contribute, so only
the cases j ¼ 1 and j ¼ 2 need be considered. Some
identities are useful to evaluate the factors involving the
momentum and spin-weighted spherical harmonics.
Writing p≡ pa þ pb, we find for j ¼ 1 the identities

j pjsY1mðp̂Þ ¼ j pajsY1mðp̂aÞ þ j pbjsY1mðp̂bÞ;
j pjσsðp̂Þ ¼ j pajσsðp̂aÞ þ j pbjσsðp̂bÞ: ð118Þ

For j ¼ 2, we obtain

j pj2Y20ðp̂Þ ¼ j paj2Y20ðp̂aÞ þ j pbj2Y20ðp̂bÞ

þ 1

2
j pa∥ pbj

ffiffiffi
5

π

r
ð3 cos θa cos θb − cos γÞ;

ð119Þ

where cos γ ≡ p̂a · p̂b.
Armed with these identities, we can determine the

perturbative level shifts. Consider first the expectation
value of the spin-dependent terms with j ¼ 1. Choosing
as before the applied magnetic field to be aligned with the
laboratory z axis, we require the expectation value of
Eq. (3) for jm ¼ 10. We find

δεðF;mFÞ ¼ −
1

3
ffiffiffiffiffiffi
6π

p mF

2F−2

X
k

hp2kpdi

×
X
w

ðT w
NRð0BÞ
ð2qÞ10 þ 2T w

NRð1BÞ
ð2qÞ10 Þ; ð120Þ

where w takes the values p and n.
For states with F ¼ 1=2, only proton and neutron

coefficients with j ¼ 1 contribute to the hyperfine
Zeeman frequencies. However, when F ¼ 3=2, contribu-
tions from coefficients with j ¼ 2 can appear. In this case,
we find the contribution to the energy-level shift is
approximately
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δϵðF;mFÞ ¼
1ffiffiffiffiffiffi
5π

p 2F − 1

ð8m2
F − 10Þ

X2
q¼0

hp2qpdi0
X
w

Vw
NR
ð2qÞ20;

ð121Þ
where

hp2qpdi0 ≡ hΨ2j p2qpdjΨ2i −
ffiffiffi
8

p
RehΨ2j p2qpdjΨ0i: ð122Þ

This depends on the specific model used for the radial
deuteron wave functions Ψ0, Ψ2.
Combining the above results for electron, proton, and

neutron coefficients, we find that the anisotropic shifts in
the deuterium hyperfine Zeeman levels are given by

δϵðF;mFÞ ¼
1ffiffiffiffiffiffi
5π

p 2F − 1

ð8m2
F − 10Þ

X2
q¼0

hp2qpdi0
X
w

Vw
NR
ð2qÞ20

−
1

3
ffiffiffiffiffiffi
6π

p mF

2F−2

X2
q¼0

hp2qpdi

×
X
w

ðT w
NRð0BÞ
ð2qÞ10 þ 2T w

NRð1BÞ
ð2qÞ10 Þ

−
mF

3
ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2q
2ðF − 1Þ ð1þ 4δq2Þ

× ðT e
NRð0BÞ
ð2qÞ10 þ 2T e

NRð1BÞ
ð2qÞ10 Þ; ð123Þ

where the sum over w spans the values p and n. In

this expression, the quantities Vw
NR
ð2qÞ20, T w

NRð0BÞ
ð2qÞ10 , and

2T w
NRð1BÞ
ð2qÞ10 are given in terms of the coefficients for

Lorentz and CPT violation by Eq. (6). Note that the proton
and neutron coefficients contribute to all possible hyperfine
Zeeman transitions, including the ones that are the most
independent of fluctuations in the external magnetic field.
Another key feature of this result is the appearance of
coefficients with j ¼ 2, which implies experimental signals
at the second harmonic 2ω⊕ of the sidereal frequency that
can be measured in hyperfine Zeeman transitions with
ΔF ≠ 0. Moreover, the dependence on the expectation
values hp2qpdi acts to enhance the sensitivity to the coef-
ficients for Lorentz and CPT violation by factors of a
billionfold for coefficients with k ¼ 2 and by 1018-fold for

coefficients with k ¼ 4. Generically, this suggests attain-
able sensitivities to nonrelativistic coefficients Kkjm with
even k ¼ 2; 4 at the level of jKj≲ 10−27þk GeV1−k, rep-
resenting an impressive potential improvement over the
results in Table III as well as sensitivity to numerous
coefficients unmeasurable using a hydrogen maser.
This remarkable potential reach naturally suggests inves-

tigating the possibility of additional constraints from an
analysis of the deuterium hyperfine Zeeman transitions that
incorporates the boost relative to the Sun-centered frame, in
analogy to the discussion for hydrogen in Sec. III B 4.
Adopting a similar notation, we find that the first-order
shifts δϵð1ÞðF;mFÞ of the energies due to the boost
correction take the form

δϵð1ÞðF;mFÞ¼
mF

3ðF−1Þ
X
d

TðdÞJK
e RzJðβK⊕þβKL Þ

þð2F−1Þ
5−4m2

F

X
wd

TðdÞJKL
w MJKðβL⊕þβLLÞ

þ
ffiffiffi
2

p

3

mF

2F−2

X
wd

T̄ðdÞJK
w RzJðβK⊕þβKL Þ; ð124Þ

where the sums over w are over the flavors p and n. In this
expression, the quantities MIJ represent combinations of
rotations given by

MJK ¼ 2RzJRzK − RxJRxK − RyJRyK: ð125Þ

The pseudotensors TðdÞJK
e in the electron sector are

given by Table IV with w ¼ e, while the pseudotensors

T̄ðdÞJK
w in the proton and neutron sectors are also obtained

from this table with the substitutions ðαmrÞ2 → hp2pdi and
ðαmrÞ4 → hp4pdi=5. The explicit forms of the pseudotensors

TðdÞJKL
w are listed in Table IX in terms of the expectation

values hp2qpdi, the rest massesmw, the fine-structure constant
α, the deuterium reduced mass mr, and the effective
Cartesian coefficients for Lorentz violation defined in
Eqs. (27) and (28) of Ref. [37]. For each coefficient, only
the leading-order nonrelativistic contributions are provided.
In parallel with the results for the boost-independent

terms, the expectation values hpkpdi enhance the attainable
sensitivity to spin-dependent coefficients relative to the

TABLE IX. Values of the pseudotensor TðdÞJKL
w in Eq. (54) for the proton and neutron in deuterium for 5 ≤ d ≤ 8.

d TðdÞJKL
w

5 − 1
5
hp2pdið2awð5ÞTTJeff δKL þ aw

ð5ÞJKL
eff Þ

6 4
5
hp2pdimwðcwð6ÞTTTJeff δKL þ cw

ð6ÞTJKL
eff Þ

7 − 2
3
hp2pdim2

wð2awð7ÞTTTTJeff δKL þ 3aw
ð7ÞTTJKL
eff Þ − 2

7
hp4pdiawð7ÞMMJKL

eff

8 2hp2pdim3
wðcwð8ÞTTTTTJeff δKL þ 2cw

ð8ÞTTTJKL
eff Þ þ 6

7
hp4pdimwcw

ð8ÞTMMJKL
eff
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hydrogen maser by factors of about a billion for k ¼ 2 and
about 1018 for k ¼ 4. Moreover, the reach for the a- and c-
type coefficients in Table IX is also substantially enhanced
relative to related measurements of the 1S-2S transitions in
hydrogen and deuterium. The prospects for these boosted
measurements with a deuterium maser therefore appear
excellent as well.

VI. POSITRONIUM

Positronium is another hydrogenic system with potential
for measurable signals from Lorentz and CPT violation.
Studies of CPT violation in positronium decay have been
published for both experiment [35] and theory [36]. Here,
we offer some remarks on the potential role of positronium
spectroscopy the search for Lorentz and CPT violation.
The perturbative corrections to the hydrogen spectrum

obtained in Secs. II and III cannot generically be applied to
determine shifts in the positronium spectrum because the
large magnetic moment of the positron implies the fine and
hyperfine structures in positronium are comparable and so
the hierarchy of angular-momentum couplings of hydrogen
and positronium are different. However, the nS1=2 levels
present an exception to this, as the two schemes for
angular-momentum couplings coincide when L ¼ 0. We
therefore focus here on experimental scenarios involving
transitions among the nS1=2 levels. In particular, we
consider potential signals for Lorentz and CPT violation
in the hyperfine splitting of the 1S ground-state levels and
in the 1S-2S transition.
The quantum states of free parapositronium (S ¼ 0) or

orthopositronium (S ¼ 1) are eigenstates of the charge-
conjugation operator C, so only C-even Lorentz-violating
operators can contribute to the energy shifts. Examining
Table I reveals that only the electron coefficients ceNRkjm can
contribute to spin-independent shifts of the positronium

ground-state splitting, while only ge
NRð0BÞ
kjm and ge

NRð1BÞ
kjm can

contribute to spin-dependent ones. This basic feature means
that positronium naturally disentangles CPT-even and
CPT-odd operators in the electron sector in the non-
relativistic limit.
In the limit of a weak applied magnetic field, the

frequency shift δνZ of the hyperfine Zeeman transitions
in positronium is given by

2πδνZ ¼ −
ΔmFffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ

× ðgeNRð0BÞð2qÞ10 þ 2ge
NRð1BÞ
ð2qÞ10 Þ: ð126Þ

As expected, only contributions from coefficients control-
ling CPT violation appear. In contrast, in a strong applied
magnetic field the quantum states of the system are no
longer eigenstates of the charge-conjugation operator due
to mixing of the entangled spin-triplet and spin-singlet

levels. In this Paschen-Back limit, both CPT-odd and
CPT-even Lorentz-violating operators contribute to the
frequency shift,

2πδνPB ¼ −
1ffiffiffiffiffiffi
3π

p
X2
q¼0

ðαmrÞ2qð1þ 4δq2Þ

× ½ðΔSe þ ΔSēÞðgeNRð0BÞð2qÞ10 þ 2ge
NRð1BÞ
ð2qÞ10 Þ

− ðΔSe − ΔSēÞðHe
NRð0BÞ
ð2qÞ10 þ 2He

NRð1BÞ
ð2qÞ10 Þ�;

ð127Þ

where ΔSe and ΔSē denote the electron and positron spin
changes, respectively.
Current precision measurements of the positronium

hyperfine structure lie in the ppm range, with an absolute
uncertainty of order 1 MHz [99]. For example, this implies
a potential reach of about 10−17 GeV for the coefficients

ge
NRð0BÞ
010 and 2ge

NRð1BÞ
010 , about 10−6 GeV−1 for ge

NRð0BÞ
210 and

2ge
NRð1BÞ
210 , and about 105 GeV−3 for ge

NRð0BÞ
410 and 2ge

NRð1BÞ
410 .

While these sensitivities are about 9 orders of magnitude
below those presented in Table III obtained via spectros-
copy with a hydrogen maser taking only one coefficient
nonzero at a time, the actual combinations of coefficients in
the positronium and hydrogen observables are distinct. This
confirms that positronium hyperfine measurements can be
used to separate CPT-even and CPT-odd spin-dependent
effects in the electron sector.
Positronium also has the advantage of being a purely

leptonic atom, allowing precision tests of quantum electro-
dynamics or new physics via the direct comparison
between experiment and theory. Paralleling the discussion
for hydrogen, isotropic coefficients for Lorentz violation
can be expected to shift the value of experimental mea-
surements of the 1S-2S transition in positronium relative to
the Lorentz-invariant theory. Comparing experiment to
theory therefore provides a constraint on Lorentz violation
in the electron sector.
The Lorentz-violating frequency shift for the 1S-2S

transition in positronium is given by

2πδν ¼ 3

2
ðαmrÞ2

�
c
∘NR
e;2 þ

67

12
ðαmrÞ2c∘NRe;4

�
: ð128Þ

As expected, it contains only CPT-even effects. The
observed difference between the theoretical and experi-
mental values of the positronium 1S-2S frequency is
5.8� 3.3 MHz [100]. Identifying this difference with the
frequency shift (128) yields the result

c
∘NR
e;2 þ

67

12
ðαmrÞ2c∘NRe;4 ≃ ð4.5� 2.5Þ × 10−6 GeV−1;

ð129Þ
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representing a 1.8 sigma effect. It can conservatively be taken
as indicating an experimental reach of about 10−5 GeV−1 to

the coefficients c
∘NR
e;2 and about 105 GeV−3 to c

∘NR
e;4 .

Improvements of about a factor of 5 in the experimental
sensitivity are within reach of future experiments [101].
Measuring the free-fall acceleration of positronium has

been proposed as a test of the gravitational couplings of
matter and antimatter [102], in a spirit similar to the
proposals for antihydrogen discussed in Sec. IV D.
Following the line of reasoning leading to Eq. (96), we
find that nonzero isotropic coefficients for Lorentz viola-
tion lead to a fractional change in the gravitational accel-
eration of positronium given by

δg
g

				
Ps

≈
8

3
c
∘NR
e;0 : ð130Þ

Note this depends only on C-even Lorentz violation. The
prospective measurements of the positronium gravitational
acceleration at the 10% level could therefore either provide
direct sensitivity to CPT-even Lorentz violation in the
electron sector or help disentangleCPT-even andCPT-odd
effects obtained in other experiments.

VII. HYDROGEN MOLECULES

High-precision molecular spectroscopy presents an inter-
esting alternative potential arena for tests of Lorentz and
CPT symmetry, albeit one that remains largely unexplored
to date. Although the primary focus of the present work is
hydrogenic systems, some of the tools developed here can
be applied in the context of comparatively simple mole-
cules and molecular ions such as H2, H

þ
2 , HD, and HDþ.

In this section, we offer a few comments about the
prospects for measuring nonrelativistic spherical coeffi-
cients for Lorentz and CPT violation in these systems.
Corrections to the energy levels and internuclear dis-

tances of H2, H
þ
2 , HD, and HDþ arising from Lorentz and

CPT violation in the electron sector of the minimal SME
have previously been studied by Müller et al. [23]. In this
work, the unperturbed molecular states are approximated
by a wave function ansatz of the form ϕγðra1Þϕγðrb2Þ þ
ϕγðrb1Þϕγðra2Þ forH2 orHD and ϕγðra1Þ þ ϕγðrb1Þ forHþ

2

or HDþ, where ϕγðrÞ≡ expð−γrÞ and the displacements
between the pointlike nuclei f ¼ a; b and the electrons j ¼
1; 2 are denoted by rfj. The electron wave functions
depend on two parameters, the bond length R of the
molecule and the fall-off parameter γ, both of which are
fixed by minimizing the expectation value of the electron
Hamiltonian in the Born-Oppenheimer approximation.
Here, we extend this methodology to nonrelativistic

spherical coefficients with k ¼ 2 in the electron sector,
which includes operators of arbitrary nonminimal dimen-
sion d. Incorporating coefficients with k > 2 is also of
interest in principle, but it turns out that the higher powers

of the momentum operator accompanying the larger values
of k become unbounded with the simple wave function
ansatz adopted here. A more sophisticated ansatz is likely
to overcome this issue and would be of interest to
investigate but lies beyond our present scope.
The relevant perturbation Hamiltonian δhNRe for Lorentz

and CPT violation in the electron sector is given by
Eqs. (3)–(6) with w ¼ e and k ¼ 2. Using the appropriate
ansatz for the wave function and working in a frame in
which the z axis is aligned along the displacement R
between the positions of the two nuclei, we find the energy
shift of the ground state of H2 due to Lorentz and CPT
violation is given by

hδhNRe iH2
¼ −1ffiffiffi

π
p hp2Ve

NR
200 þ

ffiffiffi
5

p
ðp2

z − p2
xÞVe

NR
220i; ð131Þ

while the shift for Hþ
2 takes the form

hδhNRe iHþ
2
¼ −1ffiffiffiffiffiffi

4π
p hp2Ve

NR
200 þ

ffiffiffi
5

p
ðp2

z − p2
xÞVe

NR
220i

− hσ3i
ffiffiffiffiffiffi
3

4π

r �
T e

NRð0BÞ
010 þ p2

zT e
NRð0BÞ
210

þ 2p2
xT e

NRð1BÞ
210 þ

ffiffiffi
7

3

r
ðp2

z − p2
xÞT e

NRð0BÞ
230

�
:

ð132Þ

In the above equations, Ve
NR
kj0, T e

NRð0BÞ
kj0 , and T e

NRð1BÞ
kj0 are

related to the electron coefficients for Lorentz and CPT
violation via Eq. (6). The derivation of these results takes
advantage of axial symmetry to replace factors of p2

y with
p2
x for convenience.
Numerical values for the expectation values of the

momenta in the above expressions are compiled in
Table I of Ref. [23]. These tabulated values must be divided
by a factor of two before substitution in Eq. (131) to match
our use of p for the electron momentum, but they can be
used directly in Eq. (132). For Hþ

2 , the expectation values
of the electron spin operator σ appearing in Eq. (132) can
be taken in the electron spin state to an excellent approxi-
mation because the two protons are in a symmetric singlet.
Note that in principle operators with E-type parity might
contribute to the shift (132). However, these are associated
with the difference between hσ1i and hσ2i. The symmetry
of the system suggests equality of these expectation values
and hence a zero contribution. This symmetry might fail in
a more realistic model, but any corresponding effects are
likely to be suppressed.
The analogue of the shift (132) for HDþ is also of

potential interest. However, the spin state of the electron in
HDþ is nontrivial, so expectation values involving all the
components of σ play a role. The contributions from σm

with m ¼ �1 for this case are given by
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hδhNRe iHDþ ⊃ −
ffiffiffiffiffiffi
3

4π

r X
m

hσmi
�X

k

pk
xT e

NRð0BÞ
k1m

þ ðp2
z − p2

xÞT e
NRð1BÞ
21m

�

−
ffiffiffiffiffiffi
7

6π

r X
m

hσmihðp2
z − p2

xÞT e
NRð0BÞ
23m i;

ð133Þ
where the sum over m spans the values m ¼ �1 and the
sum over k the values k ¼ 0; 2. The expectation values are
understood to be taken in the electron part of the full spin
wave function.
In addition to shifting the ground-state energy, the

presence of Lorentz and CPT violation also modifies other
physical quantities [23]. The bond length R is changed by
an amount δR, which can be expressed as

δR ¼ −
1

∂2
Rϵ0

∂RhδhNRe i; ð134Þ

where the unperturbed ground-state energy ϵ0 can be taken
as the minimum of the expectation value of the Hamiltonian
in the absence of Lorentz violation. The vibrational
spectrum of the molecule within the electronic ground
state is also shifted. An expression for this shift can be
obtained by approximating the vibrating molecule as a
harmonic oscillator and calculating the effective change
δωv in the resonance frequency ωv due to Lorentz and CPT
violation. This yields

δωv ¼
ωv

2∂2
Rϵ0

ð∂3
Rϵ0δRþ ∂2

RhδhNRe iÞ: ð135Þ

The rotational spectrum within the electronic ground state
is shifted by the Lorentz and CPT violation as well. In the
rigid rotor approximation, this shift can be understood as an
effective change δωr in the rotation frequency ωr given by

δωr ¼ −
2ωr

R
δR: ð136Þ

In the limit of zero nonminimal coefficients, all the above
results reduce to the minimal-SME expressions presented
in Ref. [23]. The nonminimal terms introduce several
qualitatively novel features. One is the dependence of
the bond length of Hþ

2 on the electron spin state in the
presence of Lorentz and CPT violation. Another note-
worthy effect is the occurrence of contributions from
coefficients with j ¼ 2 and j ¼ 3 to the ground-state
energies of all the molecular species. This implies, for
example, a signal involving sidereal variations at the third
harmonic of the sidereal frequency, which could be
detected in measurements of suitable rovibrational tran-
sitions. Including terms with values k > 2 would result in

effects from coefficients with j ≥ 4 as well, together with
the concomitant sidereal signals at higher harmonics. In
contrast, as discussed in Sec. II C, the ground state in
atomic hydrogen only receives contributions from coef-
ficients with j ≤ 1.
Rovibrational transitions with unchanged electronic state

inHDþ are dipole allowed. Current experiments withHDþ
have reached an impressive relative uncertainty of about
10−9 [103]. The long lifetime of rovibrational excited states
suggests considerable room for improvement remains, and
indeed it is believed possible in principle for future
experiments to achieve relative uncertainties of about
5 × 10−17 for Hþ

2 and of order 10−18 for HDþ [104].
For illustrative purposes here, consider future prospective
relative uncertainties of about 10−14 in frequency measure-
ments. Using the expressions (131) and (132), we find
this corresponds to experimental sensitivities of about
10−9 GeV−1 to the nonrelativistic spherical coefficient with
k ¼ 2. For the coefficients with j ¼ 2 and j ¼ 3, a glance at
Table VII reveals that this represents a sharper measure-
ment by at least one order of magnitude than would be
available using atomic hydrogen.
The discussion in this subsection suffices to confirm that

spectroscopy of hydrogen molecules has the potential to
provide competitive searches for Lorentz and CPT viola-
tion in coming years. Several improvements on the theo-
retical treatment can be envisaged. A comparatively
straightforward one would be to adopt improved unper-
turbed electron ground states. For example, a more detailed
form of the Hþ

2 wave function has been available for many
decades [105], and high-accuracy computations of various
systematic effects now exist [106]. This or related improve-
ments in the ground-state wave functions could also make
feasible the calculations for coefficients with k > 2.
Another improvement would be to incorporate contribu-
tions from the nucleons. The perturbative rovibrational
shifts established above can be traced to the effective shift
of the nucleon separation R. However, in reality these
transitions drastically change the vibrational states of the
nucleons, which could plausibly lead to signals allowing
sensitive measurements of coefficients in the proton and
neutron sectors of the SME.

VIII. SUMMARY

In this paper, we studied spectroscopic searches for
Lorentz and CPT violation using hydrogen, antihydrogen,
deuterium, positronium, and hydrogen molecules and
molecular ions. Our considerations begin in Sec. II with
a treatment of theoretical aspects for hydrogen spectros-
copy. The leading-order perturbative Hamiltonian (2) is
constructed in the nonrelativistic limit, incorporating coef-
ficients for Lorentz and CPT violation of arbitrary mass
dimension d. These coefficients can be expressed in a
spherical basis and separated into ones controlling CPT-
even and CPT-odd effects, as presented in Eq. (6). The
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symmetries of the hydrogen atom restrict the possible
perturbative contributions to certain coefficients, listed in
Table I along with some of their key features. The
formalism permits determining the general matrix elements
(18) of the full perturbation Hamiltonian δhNRH . The result is
used in Sec. II C 2 to establish analytical expressions for the
perturbative energy shifts. We follow this with a discussion
of the general features of effects on the hyperfine Zeeman
transitions, including notably the sidereal variations (35)
and the annual variations discussed in Sec. II D 2.
The potential applications of our methodology to mea-

surements using hydrogen spectroscopy are discussed in
Sec. III. We first address the issue of possible signals for
free hydrogen in Sec. III A, and then consider spectroscopy
in an external magnetic field. We derive the explicit
formula (49) for the Lorentz- and CPT-violating shift of
the hyperfine Zeeman frequency, and we combine it with
published results from experiments searching for sidereal
variations using a hydrogen maser [14–16] to place the
constraint (52) on a combination of nonrelativistic coef-
ficients controlling spin-dependent effects. Taken one
coefficient at a time, this constraint yields the results
displayed in Table III. The prospects for hyperfine
Zeeman measurements using annual variations and studies
on a space-based platform are discussed in Secs. III B 4 and
III B 5. We then turn to precision spectroscopy with
nL-n0L0 transitions in hydrogen. The frequency shift for
any hydrogen transition of this type with J ¼ 1=2, ΔJ ¼ 0
arising from isotropic Lorentz and CPT violation is given
by Eq. (60). In Sec. III C 3, we consider various options for
using annual variations of the 1S-2S transition frequency to
measure coefficients for Lorentz and CPT violation.
Results from an existing experiment of this type [18] are
used to place first constraints on various nonminimal
Cartesian coefficients with mass dimensions 5 ≤ d ≤ 8,
as reported in Table VI. In Sec. III D the possibility of
measuring nonrelativistic coefficients with j ≥ 2 using
these types of transitions is discussed, and estimates for
the reach of future analyses are presented in Table VII.
Antihydrogen spectroscopy in the context of the search

for Lorentz and CPT violation is the topic of Sec. IV. The
implementation of the CPT transformation on the hydro-
gen spectrum is provided in Sec. IVA. For hyperfine
Zeeman transitions, the induced frequency shift is pre-
sented in Eq. (77), while for Paschen-Back transitions it is
given in Eq. (81). The 1S-2S transition in free antihydrogen
is shown to depend only on nonminimal coefficients for
Lorentz and CPT violation, with the corresponding fre-
quency shift specified in Eq. (84). For all these cases, we
provide estimates of attainable sensitivities both from direct

measurements and from comparisons with hydrogen spec-
troscopy. In Sec. IV D, the prospects for detecting an
anomalous gravitational response of antihydrogen is con-
sidered. Insight into the role of nonminimal operators is
obtained by constructing a generalization of the isotropic
parachute model [86]. Sensitivity estimates for future
experiments are obtained.
Deuterium spectroscopy is the focus of Sec. V. We obtain

the corrections to the 1S-2S transition frequency arising
from isotropic Lorentz and CPT violation in Eq. (103).
Associated signals are discussed in Sec. V C. The observed
difference between the square of the charge radii of the
proton and deuteron [61,98] is used to derive the constraint
(114) on nonrelativistic coefficients. Another interesting
approach to using deuterium spectroscopy to search for
Lorentz and CPT violation is performing hyperfine
Zeeman measurements with a deuterium maser. The
implications of this are discussed in Sec. V D, where we
show that the Lorentz and CPT reach of a deuterium maser
represents in principle an improvement of many orders of
magnitude over that of a hydrogen maser.
Some aspects of positronium spectroscopy in the context

of the search for Lorentz and CPT violation are considered
in Sec. VI. We obtain expressions for the measurable
frequency shifts and use the observed difference between
theoretical and experimental values of the 1S-2S transition
frequency to deduce the measurement (129) of isotropic
coefficients in the electron sector. Finally, spectroscopy
with hydrogen molecules and molecular ions is the subject
of Sec. VII. We determine the energy shifts (131) and (132)
for the ground states of these systems, and we discuss the
sensitivities and potential advantages of the corresponding
frequency measurements.
The discussions in this paper provide a working sum-

mary of the prospects for observing Lorentz and CPT
violation using precision spectroscopy of a number of
comparatively simple systems. Although our analysis has
led to a variety of new or improved constraints, many
coefficients for Lorentz and CPT violation remain unmeas-
ured at present. The numerous potential signals identified
and impressive attainable sensitivities in future experiments
offer strong motivation for further analyses, along with
encouragement for a potential breakthrough discovery in
this foundational subject.
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