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We consider theories where dark matter is composed of a thermal relic of weak scale mass, whose
couplings to the standard model (SM) are however too small to give rise to the observed abundance.
Instead, the abundance is set by annihilation to light hidden sector states that carry no charges under the SM
gauge interactions. In such a scenario the constraints from direct and indirect detection, and from collider
searches for dark matter, can easily be satisfied. The masses of such light hidden states can be protected by
symmetry if they are Nambu-Goldstone bosons, fermions, or gauge bosons. These states can then
contribute to the cosmic energy density as dark radiation, leading to observable signals in the cosmic
microwave background (CMB). Furthermore, depending on whether or not the light hidden sector states
self-interact, the fraction of the total energy density that free-streams is either decreased or increased,
leading to characteristic effects on both the scalar and tensor components of the CMB anisotropy that
allows these two cases to be distinguished. The magnitude of these signals depends on the number of light
degrees of freedom in the hidden sector, and on the temperature at which it kinetically decouples from the
SM. We consider a simple model that realizes this scenario, based on a framework in which the SM and
hidden sector are initially in thermal equilibrium through the Higgs portal, and show that the resulting
signals are compatible with recent Planck results, while large enough to be detected in upcoming
experiments such as CMBPol and CMB Stage-IV. Invisible decays of the Higgs into hidden sector states at
colliders can offer a complementary probe of this model.
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I. INTRODUCTION

In the last two decades, with the advent of precision
cosmology, it has become clear that some form of non-
luminous dark matter (DM) contributes more than 20% of
the total energy density of the universe [1]. Although it is
known that the particles of which DM is composed lie
outside the SM of particle physics, their precise nature
remains to be understood.
In the absence of a detailed understanding about the

properties of dark matter, many different candidates have
been put forward. A large class of well-motivated theories
are based on the “weakly interacting massive particle”
(WIMP) paradigm. In its simplest incarnation, this scenario
involves a particle of weak scale mass, the WIMP, that has
interactions of weak scale strength with the SM fields. This
class of theories possesses the very attractive feature that
the WIMPs that survive after their annihilation into SM
particles freezes out naturally tend to have a relic abun-
dance that is in good agreement with observations [2,3].
In this conventional scenario, the WIMP must have

interactions of weak scale strength with the SM fields.
Several different types of DM experiments are searching for
evidence of such interactions. These include direct detec-
tion experiments that are looking for the recoils of nuclei
after being impacted by a DM particle, indirect detection

experiments that seek to observe the products of DM
annihilation, and collider experiments such as the Large
Hadron Collider (LHC) that seek to produce DM. To date,
there has been no compelling evidence for the existence of
such interactions, and the experimental limits now exclude
a significant part of the preferred parameter space for many
WIMP DM candidates [4–8].
With the simplest realizations of the WIMP paradigm

beginning to come under strain, several ideas have been put
forward to explain the absence of a signal in these
experiments. Among the hypotheses that have been
advanced are that the DM candidate scatters inelastically
[9,10], is leptophilic [11–13], or interacts preferentially
with heavier quark flavors [14–18]. An alternative proposal
that has attracted interest [19–22] is the idea that, while DM
is indeed composed of WIMPs, their couplings to the SM
fields are suppressed, and too small to yield the observed
abundance. Instead, the DM candidate possesses inter-
actions of weak scale strength with a new hidden sector that
carries no charge under the SM gauge interactions, and its
relic abundance is set by its annihilation into these states.
Such a scenario can naturally account for the observed
abundance of DM, while explaining the absence of any
signal in experiments.
It is not difficult to envisage scenarios where the DM

candidate naturally has weak scale mass and interactions of
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weak scale strength with a hidden sector. For example, in
supersymmetric theories, both the weak scale and the scales
in the hidden sector could be set by the scale of super-
symmetry breaking. Similarly, in extra dimensional
Randall-Sundrum constructions, both the Higgs and the
hidden sector states could be localized to the infrared brane.
In such a scenario the scales in the hidden sector would
again naturally be of order the weak scale. Therefore,
provided the SM and hidden sectors are in thermal
equilibrium at or above the weak scale, so that their
temperatures at freeze-out are not very different, this
framework can naturally explain the observed abundance
of DM while remaining consistent with all experimental
constraints.
The existence of a hidden sector into which DM

annihilates can potentially be tested by experiments. The
nature of the signals depends on the masses of the particles
in the hidden sector, and on their couplings to SM states. If
all the particles in the hidden sector have masses above an
eV, and the temperature of this sector is comparable to that
of the SM, we expect these states will decay or annihilate
into SM particles before the CMB epoch. This is because
the lightest state in the hidden sector, being massive, would
otherwise contribute to the energy density in DM, violating
the overclosure bounds if it is heavier than a keV, and
coming into conflict with the cosmological constraints on a
warm subcomponent of DM if it is lighter than a keV. Such
a scenario therefore implies the existence of couplings
between the hidden sector states and the SM that can
potentially be tested in experiments, as in the scenarios of
exciting DM [19,23], secluded DM [20] and boosted DM
[24,25]. If instead, some or all of the states in the hidden
sector have masses below an eV, they would be expected to
constitute a significant component of the energy density of
the universe both before and during the epoch of matter-
radiation equality, potentially leading to observable signals
in the CMB [21,22,26–31]. The simplest possibility is that
these states, if present, are massless, and constitute dark
radiation (DR) at present times, thereby obviating the need
for any other mass scales in the theory. It is this scenario,
and the associated signals, that we will focus on in this
paper.1

The presence of these new light particles implies the
existence of additional structure in the theory, if the
scenario is to be natural. There are three known symmetries
that can prevent masses from being generated for a
massless particle: a shift symmetry for a spin-0 Nambu-
Goldstone boson, a chiral symmetry for a spin-1=2 fer-
mion, and a gauge symmetry for a spin-1 vector boson. DR

candidates protected by these symmetries have been
considered, for example, in [36,37]. These symmetries
may appear individually or in combination; for example,
the spectrum of light states may consist of a single Nambu-
Goldstone boson, but it may also consist of spin-1=2
fermions charged under a U(1) gauge group with its
associated massless spin-1 boson [38]. This latter example
illustrates that the constituents of the DR need not be free,
but may have interactions amongst themselves without
violating the symmetries that keep them light. In general,
therefore, we see that the DR can take two distinct forms:

(i) Free DR, which free streams during the era of
acoustic oscillations, and is characterized by a mean
free path ≫ H−1, where H is the Hubble constant.

(ii) Scattering DR, which scatters during the era of
acoustic oscillations, and is characterized by a mean
free path ≪ H−1.

Since the presence of DR is a robust prediction of this
scenario, it is important to understand whether it can be
detected, and whether we can distinguish between the two
different cases of free DR and scattering DRİt is these
questions that we shall be primarily concerned with in this
paper. We find that, provided the hidden DM sector was in
thermal equilibrium with the SM at temperatures at or
above the weak scale, the contribution of the DR to the
energy density during the CMB epoch is in general large
enough to be detected in future experiments, such as
CMBPol [39] (σNeff

¼ 0.044), and eventually CMB
Stage-IV [40] (σNeff

¼ 0.02).
We also find that it is, in general, possible to distinguish

between scenarios with free streaming DR and scattering
DR. Studies of the scalar [41–43] and tensor [44,45] metric
perturbations have established that the details of the CMB
spectrum depend on the fraction of the energy density in
radiation that is free streaming. This ratio impacts not just
the amplitudes of the modes, but also the locations of the
peaks in the CMB spectrum. In scenarios where neutrinos
scatter off new light states during the period immediately
prior to the CMB epoch, as in models of late time neutrino
masses [46–48], and in the neutrinoless universe scenario
[49], this ratio differs significantly from the SM prediction.
Consequently, it has been possible to establish that this
class of theories, which was already disfavored by the
WMAP data [50–54], is now excluded by Planck, unless
the new neutrino interactions come into equilibrium only
very shortly prior to matter-radiation equality [55,56].
Similar considerations apply to the class of theories we

are considering. In the presence of a new dark component
of radiation, the free streaming fraction is altered, with the
sign of the correction dependent on whether the DR scatters
or free streams. Consequently, the amplitudes of the scalar
and tensor modes receive corrections, with the sign of the
effect dependent on whether the DR is free or self-
interacting. In addition, the locations of the CMB peaks
are shifted, with the sign of the shift again dependent on

1If the DM and DR are tightly coupled, oscillations of the DM-
DR fluid can also give rise to signals in the matter power
spectrum [32,33], (see also [34,35]). However, the large strength
of the interaction required to obtain an observable effect would
overly deplete the abundance of DM, and is therefore disfavored
in the framework of thermal WIMPs.
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whether or not the DR carries self-interactions. We find that
these effects may be large enough to allow upcoming
experiments to distinguish between free DR and scattering
DR. Therefore the CMB offers a window into the dynamics
of the hidden sector that DM annihilates into.
The outline of this paper is as follows. In the next section

we discuss the CMB signals associated with DR, and
explain how scenarios with free streaming DR and scatter-
ing DR can be distinguished. In Sec. III we show how the
expression for the relic abundance of DM may be gener-
alized to the case when the temperature of the dark sector
differs from that of the SMİn Sec. IV we consider a simple
model based on the Higgs portal that realizes this scenario,
and show that the signals can be large enough to be detected
by upcoming CMB experiments, while remaining compat-
ible with the recent Planck results [1]. We also show that
invisible decays of the Higgs into hidden sector states at
colliders can offer a complementary probe of this scenario.
Our conclusions are in Sec. V.

II. THE CMB SIGNALS OF DARK RADIATION

The CMB spectrum is affected by the presence of extra
relativistic degrees of freedom during the era between
matter-radiation equality and photon decoupling. It is
customary in cosmology to quantify the contribution to
the energy density from such additional radiation in units of
the energy density of a single relativistic SM neutrino
species ρ1ν,

ΔNeff ≡ ρDR
ρ1ν

; ð1Þ

where ρDR is the energy density of DR, and all SM
neutrinos are treated as being relativistic at the temperatures
in question.
For any specific hidden sector model, we can calculate

ρDR, and hence ΔNeff . The first step is to determine the
temperature of the dark sector, T̂, that corresponds to a
given SM temperature T at the same cosmic time t. To do
this, note that the comoving entropies of the SM and of the
dark sector are separately conserved after the two sectors
thermally decouple from each other. Then, after thermal
decoupling when T ¼ T̂ ¼ Tkd, but before the neutrino
decoupling, taking the ratio of the two entropy conservation
relations leads to the relation

ĝ�T̂3

g�T3
¼ ĝ�kd

g�kd
: ð2Þ

Here g� and g�kd are the number of degrees of freedom in
the SM at temperatures T and Tkd, respectively, with the
usual 7=8 factors for the fermions. The corresponding
parameters in the dark sector are labeled by ĝ� and ĝ�kd.
Applying this relation just above the neutrino decoupling
temperature T ∼Oð10Þ MeV, g� ¼ 10.75, and noting that

the contribution of a single neutrino species to the energy
density is given by ρ1ν ¼ 7

4
π2

30
T4, we have

ΔNeff ¼
ĝ�T̂4

7
4
T4

¼ 4

7
ĝ�

�
g�
ĝ�

ĝ�kd
g�kd

�
4=3

: ð3Þ

Note that the aboveΔNeff computed for the time just before
neutrino decoupling is the same as the ΔNeff at the later
CMB time, as T̂ and Tν redshifts the same way till then.
As outlined in section I, in general ρDR can consist of

two qualitatively very different types of radiation: free-
streaming radiation with mean free path ≫ H−1, and
scattering radiation with mean free path ≪ H−1. We can
parametrize each of these components of radiation in
complete analogy with the definition (1),

ΔNfree
eff ≡ ρfreeDR

ρ1ν
; ΔNscatt

eff ≡ ρscattDR

ρ1ν
; ð4Þ

so that the total extra radiation ΔNeff ¼ ΔNfree
eff þ ΔNscatt

eff .
In this class of models, for a given thermal decoupling

temperature Tkd, there is a robust lower bound onΔNeff . To
understand this, note that the lowest possible value of ĝ� in
Eq. (3) is 1, corresponding to the case when the dark
radiation consists of just a single real scalar. Then, if
thermal decoupling between the hidden sector and the SM
occurs at temperatures well below the mass of the DM
particle, we can have ĝ�kd ¼ ĝ� ¼ 1. In this limit we obtain
a lower bound on ΔNeff ,

ΔNmin
eff ¼ 4

7

�
g�
g�kd

�
4=3

: ð5Þ

From Equation (5), assuming all the SM degrees of
freedom are in the bath at decoupling, we have
g�kd ¼ 106.75, which leads to a lower bound on the
effective number of neutrinos, ΔNmin

eff ≳ 0.027. This result
applies to arbitrarily high Tkd provided there are no new
states in the SM sector up to that scale. In Fig. 1 we have
plotted this lower bound as a function of the decoupling
temperature Tkd. Quite intriguingly, the ultimate experi-
mental sensitivity at CMB-Stage-IV is σNeff

¼ 0.02 [40],
which would allow it to probe the DM scenario we outline
here. This projected experimental sensitivity is based on a
one parameter extension of the standard six parameter
ΛCDM model that accommodates varying Neff . Although
this projection assumes that the primordial density fluctua-
tions have an exactly power law spectrum, the recent
Planck results have established that at present this is an
excellent fit to data [1], and so this forms a reasonable basis
for estimating the sensitivity.
If the dark sector consists of just a real scalar, we expect

that it is a Goldstone boson, so that its mass is protected
against radiative corrections from the weak scale. In this
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scenario, the interactions of the states that constitute the DR
are momentum suppressed, and so the DR free streams. In
scenarios where the DR possesses self-interactions large
enough to prevent free streaming, the requirement of
naturalness up to the weak scale implies that it must be
composed of more than just a single real scalar, or else the
radiative corrections to the scalar mass from the self-
interactions would tend to make its mass much greater
than an eV. Therefore, in scenarios where the DR scatters,
we expect that there will be additional light states in the
hidden sector, and so ΔNeff is expected to be larger than its
minimum value, ΔNmin

eff . In Fig. 1, we have plotted ΔNeff as
a function of Tkd for the case when the DR consists of a pair
of massless Weyl fermions with vectorlike charges under a
U(1) gauge group, and the associated massless gauge
boson. We see that even for high Tkd, we predict
ΔNeff ≳ 0.15, which is large enough to be observed at
CMBPol.
In the rest of this section we discuss how the exper-

imental limits on ΔNeff are obtained, and how we can
distinguish between the two cases of scattering DR and free
streaming DR.

A. The determination of ΔNeff

At present, limits on ΔNeff are obtained by considering
how the presence of additional energy density in radiation
would affect the quality of the fit in the six parameter
ΛCDM model. Of the six parameters, two are particularly
sensitive to ΔNeff . These are the total energy density in
matter, ρm, which is the sum of the energy densities in
baryons and DM, and in the cosmological constant, ρΛ. The
presence of additional energy density in radiation would
tend to delay the onset of matter-radiation equality. Since
the amplitude of a Fourier mode is very sensitive to the
fraction of energy density in matter as it crosses the
horizon, this ratio is highly constrained by the CMB data.

Therefore, for ΔNeff > 0, the best fit is obtained by
increasing ρm in the appropriate proportion to ensure that
the redshift at the onset of matter-radiation equality is
unaffected. Since the energy density in baryons, ρb, is very
tightly constrained by measurements of the relative heights
of the even and odd CMB peaks and cannot be altered, the
change in ρm is accomplished by an increase in the energy
density in DM.
The additional energy density in DR, and in matter, then

implies an increase in the Hubble constant during the CMB
epoch. This will in turn affect the size of the sound horizon,
leading to a change in the locations of the CMB peaks. This
observable is, once again, highly constrained by the data.
However, this effect can be offset by changing ρΛ so as to
alter the distance to the last scattering surface, thereby
keeping the angular locations of the peaks intact.
Nevertheless, as we now explain, the change in the
Hubble constant during the era of acoustic oscillations
leads to other effects in the CMB spectrum that can no
longer be compensated for once ρm and ρΛ are fixed.
Prior to recombination, the photons interacted strongly

with the baryons. Although the photon mean free path
during this era was relatively short, the photons were
nevertheless able to diffuse outward, with a characteristic
diffusion length rd. As a consequence of this diffusion,
inhomogeneities and anisotropies at scale smaller than the
rd are suppressed. This damps the peak amplitudes at
higher l relative to the first peak at l≃ 220, which
corresponds to modes that entered the horizon near
recombination. This effect is known as Silk damping, or
diffusion damping. A change in the Hubble rate affects the
time available for diffusion, leading to observable effects
on the CMB spectrum. In particular, the height of the first
CMB acoustic peak relative to the latter peaks is altered.
Therefore, this effect can be used to place limits on the
Hubble constant during the epoch of acoustic oscillations,
and therefore on ΔNeff . The presence of additional energy
density in radiation also leads to changes in the CMB
spectrum associated with the early integrated Sachs-Wolfe
(ISW) effect, but these are less significant than the effects
arising from Silk damping [57].
In principle, an increase in the fraction of baryons in

helium, Y He, while ρb is held fixed, would reduce the
number of free electrons available for scattering, and could
also account for a change in the scale of Silk damping.
However, the helium fraction in the SM can be calculated
sufficiently precisely from big bang nucleosynthesis so as
to exclude this as the explanation for any observed
discrepancy. For a good discussion of these issues with
more details, see [57,58].

B. Distinguishing between free and scattering DR
via scalar metric perturbations

Several authors have considered the effects of the
SM neutrinos on the scalar component of the CMB
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FIG. 1 (color online). ΔNeff as a function of the temperature at
which the SM and dark sector thermally decouple. Also shown
are the 2015 Planck results: the central value (green dashed line)
and the 2σ constraint (orange dashed line).
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spectrum [41–43]. These results can easily be generalized
to the case when there is additional energy density in
radiation, and can be used to distinguish between free
streaming DR and scattering DR.
In the conformal Newtonian gauge the Robertson-

Walker metric with scalar perturbations takes the form,

ds2 ¼ a2ðτÞð−ð1þ 2ΦÞdτ2 þ ð1 − 2ΨÞdr2Þ: ð6Þ
Here τ represents conformal time, while a is the cosmo-
logical scale factor. Ψ and Φ represent the scalar metric
perturbations. In the absence of any free streaming particle
species, we have Ψ ¼ Φ. When, however, a free streaming
species is present, the energy momentum tensor becomes
anisotropic. This leads to a difference betweenΨ andΦ that
is proportional to fν, the total energy density in free
streaming radiation expressed as a fraction of the total
energy density in radiation.

fν ≡ ρall free rad

ρall rad
¼ 3ρ1ν þ ρfreeDR

3ρ1ν þ ργ þ ρfreeDR þ ρscattDR
: ð7Þ

In the limit that ρfreeDR and ρscattDR are small compared to ρall rad,
the total energy density in radiation, the deviation from the
standard cosmology is given by

fν − fνjSM ¼ fνjSM
3

½ð1 − fνjSMÞΔNfree
eff − fνjSMΔNscatt

eff �

¼ 0.41
3

ð0.59ΔNfree
eff − 0.41ΔNscatt

eff Þ: ð8Þ

Now, the solution of the coupled system of equations for
matter, radiation and gravity reveals that the presence of a
free streaming component in radiation is associated with a
change in the amplitudes of the CMBmodes at large l. The
magnitude of this effect was first determined numerically in
[41]. Subsequently, analytic expressions were obtained in
[42,43]. The result is given by,

δCl

Cl
¼ − 8

15
fν: ð9Þ

Then, using Eq. (8), we can obtain an expression for the
fractional change in Cl with respect to the standard
cosmology,

ΔCl

Cl
¼ δCl

Cl
− δCl

Cl

����
SM

¼ −
8

15
ðfν − fνjSMÞ

¼ −0.072ð0.59ΔNfree
eff − 0.41ΔNscatt

eff Þ: ð10Þ

We see that the result is independent of l, and that the sign
of this effect depends on whether the DR is scattering or
free streaming.

In addition to the corrections to the amplitude, there is a
shift in the angular locations of the high l CMB peaks by
an equal amount [43]. This signal is particularly important
because, in contrast to other effects of DR such as Silk
damping, it is difficult to mimic by altering other param-
eters such as the helium fraction. The magnitude of this
shift is again proportional to the free streaming fraction fν,

δl≃−57fν lA

300
: ð11Þ

Here lA ≈ 300 represents the average angular spacing
between the CMB peaks at large l. Again, in the limit
that DR contributes only a small fraction of the total energy
in radiation, ΔNeff ≲ 1, Eq. (8) leads to an expression for
the change in δl with respect to the standard cosmology,

Δl≡ δl − δljSM
¼ −57ðfν − fνjSMÞ

lA

300

≃−7.8ð0.59ΔNfree
eff − 0.41ΔNscatt

eff Þ lA

300
: ð12Þ

Once again we see that the sign of the effect depends on
whether the DR is scattering or free streaming.
We can obtain a very rough estimate of the sensitivity of

upcoming CMB experiments to the effects of Δl by
considering how well Neff can be determined when the
helium fraction YHe is allowed to float freely. In this limit,
the effects of ΔNeff on Silk damping can be compensated
for by changes in YHe. Under these circumstances, the shifts
in the locations of the CMB peaks play an important role in
the determination ofNeff , and we can interpret the results as
a rough guide to the sensitivity of these experiments to
ΔNeff arising from its effect on Δl, and not its effect on
Silk damping. The projected sensitivity of CMBPol to Neff
when YHe is allowed to float is ΔNeff ¼ 0.09 [43]. We
therefore expect that provided ΔNeff ≳ 0.10, upcoming
experiments will have some sensitivity to whether DR is
free streaming or scattering, allowing the possibility of
distinguishing between these two scenarios.

C. Distinguishing between free and scattering DR
via tensor metric perturbations

The presence of a free streaming component of radiation
also affects the tensor component of the CMB spectrum.
Detailed studies of the effects of the SM neutrinos on the
tensor modes (the B- and E-modes) of the CMB were
performed in [44,45], which found an Oð10Þ% damping of
the correlation functions of the tensor modes at long
wavelengths, rising to an Oð35Þ% damping at short wave-
lengths. Analytic results for the damping were sub-
sequently obtained in [59,60]. The corrections to the
spectrum that arise from the presence of a free streaming
DR component were considered in [61].
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We now show that the results of [44] can be generalized
in a very simple way to arbitrary Neff, provided ΔNeff ≲ 1.
The crucial observation is that, in the analysis of [44], the
effects of the SM neutrinos arise entirely from their
contribution to f̄ν, the free-streaming fraction of the total
energy density,

f̄ν ≡ ρall free rad

ρtotal
¼ 3ρ1ν þ ρfreeDR

ρtotal
: ð13Þ

Therefore, by understanding how the result depends on f̄ν,
we can immediately determine how the correlation func-
tions of the tensor modes depend on ΔNfree

eff and ΔNscatt
eff .

During the radiation dominated era, to a very good
approximation, f̄ν ¼ fν. However, as matter-radiation
equality approaches, the contribution of matter to the total
energy density can no longer be neglected, and f̄ν and fν
are distinct.
The Robertson-Walker metric with tensor perturbations

takes the form,

ds2 ¼ a2ðτÞð−dτ2 þ ½δij þ hijðx; τÞ�dxidxjÞ ð14Þ

with hii ¼ ∂ihij ¼ 0. We define a new coordinate u ¼ kτ,
where k is the comoving wave number. Then, as shown in
[44], the amplitude of tensor perturbations with comoving
wave number k can be written as hijðuÞ ¼ hijð0ÞχðuÞ,
where the function χðuÞ remains to be determined. It
satisfies the integro-differential equation

F ðu; ∂uÞχðuÞ ¼ f̄ν

Z
u

0

Iðu;UÞχ0ðUÞdU; ð15Þ

where F ðu; ∂uÞ is a second-order, linear differential oper-
ator. Its precise form, along with that of the kernel function
Iðu;UÞ, may be found in [44]. The initial conditions on χ
are given by χð0Þ ¼ 1 and χ0ð0Þ ¼ 0.
In general, the integro-differential equation Eq. (15) is

not simple to solve. However, approximate analytic sol-
utions that apply in certain limits have been obtained for the
important case of the SM with 3 free streaming neutrinos,
Neff ¼ 3.046. As we now explain, these solutions can be
generalized in a simple way to the case of arbitrary f̄ν,
provided ΔNeff ≲ 1.
For short wavelengths that enter the horizon well before

matter radiation equality, that is, u ≫ 1, the solution to
Eq. (15) approaches a homogeneous solution [44],

χðuÞ → A
sinðuþ δÞ

u
; ð16Þ

where the parameters A and δ contain the dependence on
f̄ν ¼ fν. In the limit fν ¼ 0, A and δ take values
A0 ¼ 1; δ0 ¼ 0. We denote this solution by χ0ðuÞ. For
the case of the three free streaming neutrino species of the

SM, with fν ¼ fSMν ¼ 0.41, a numerical study [44] leads to
the values ASM ¼ 0.80; δSM ≈ 0. The fact that the value of A
changes by only about 20% for the change fromNeff ¼ 0 to
Neff ¼ 3.046 indicates that for ΔNeff ≲ 1 the term propor-
tional to fν can be treated as a perturbation. Accordingly,
we may obtain an approximate solution for general fν by
replacing χðuÞ by χSMðuÞ on the right-hand side of Eq. (15).
Here χSMðuÞ is the solution of Eq. (15) for fν ¼ fSMν .
Having made this approximation, Eq. (15) reduces to

F ðu; ∂uÞχðuÞ ¼ fν

Z
u

0

Iðu;UÞχ0SMðUÞdU: ð17Þ

Noting that the right-hand side of this equation is propor-
tional to F ðu; ∂uÞχSMðuÞ, we have

F ðu; ∂uÞ
�
χðuÞ − fν

fSMν
χSMðuÞ

�
¼ 0: ð18Þ

Recalling that F ðu; ∂uÞχ0ðuÞ ¼ 0, it follows that this
equation admits a solution of the form,

χðuÞ − fν
fSMν

χSMðuÞ ∝ χ0ðuÞ: ð19Þ

Using the initial conditions to fix the constant of propor-
tionality, we obtain an analytic solution for χðuÞ valid for
general fν that is applicable in the short-wavelength limit,

χðuÞ ¼
�
1þ fν

fSMν
ðASM − 1Þ

�
sin u
u

: ð20Þ

As discussed in [44], the ratio of the CMB tensor
correlation functions for general fν relative to that for
fSMν is given by

R ¼
���� χ0ðuÞ
χ0SMðuÞ

����2 ¼ ð1þ fν
fSMν

ðASM − 1ÞÞ2
A2
SM

: ð21Þ

Since the right-hand side of this equation is independent of
u, it follows that the fractional change in the correlation
functions arising from the presence of DR is independent of
wave number for modes deep inside the horizon. The result
is plotted in Fig. 2.
To obtain the solution of Eq. (15) for long wavelengths, it

is convenient to change variables from u to
y≡ aðτÞ=aðτeqÞ, where aðτÞ is the standard scale factor
of the Robertson-Walker metric and τeq is the value of the
conformal time coordinate τ at matter-radiation equality.
Expressed in terms of y, the integro-differential equation
Eq. (15) takes the form

½Gðy; ∂yÞ þQ2�χðyÞ ¼ fν

Z
y

0

J ðy; YÞχ0ðYÞdY: ð22Þ
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Here Gðy; ∂yÞ is again a second-order, linear differential
operator, and Q is a normalized comoving wave number
defined as Q≡ ffiffiffi

2
p

k=keq, where keq is the value of k
corresponding to the length scale that enters the horizon at
matter-radiation equality. We have also eliminated f̄νðyÞ in
favor of fν, which is independent of y. The initial
conditions are now given by χð0Þ ¼ 1 and χ0ð0Þ ¼ 0.
The precise forms of G and the kernel function J ðy; YÞ
may be found in [44]. Then, given the solutions χ0ðyÞ and
χSMðyÞ corresponding to the choices fν ¼ 0 and
fν ¼ fSMν ðyÞ, an approximate solution χðyÞ corresponding
to a general fν may be obtained as

χðyÞ ¼ χ0ðyÞ þ
fν
fSMν

ðχSMðyÞ − χ0ðyÞÞ: ð23Þ

Expressions for χ0SMðydecÞ and χ00ðydecÞ at small Q were
obtained in [60],

χ0SMðydecÞ ¼ a2Q2 þ a4Q4 þ a6Q6 þOðQ8Þ;
χ00ðydecÞ ¼ b2Q2 þ b4Q4 þ b6Q6 þOðQ8Þ; ð24Þ

with

a2¼−0.573661; a4¼0.243294; a6¼−0.0381643;
b2¼−0.601254; b4¼0.264482; b6¼−0.0424186:
Here ydec is the value of y at photon decoupling, given by
ydec ¼ 3.31. Note that the regime of validity of these
expansions is limited to small Q, and they are expected
to break down at Q ∼ 1. Nonetheless these analytic
approximations offer a simple way to parametrize the
effects of DR on the tensor mode anisotropies for long
wavelengths. Using these expressions in association with
the general solution Eq. (23), we can determine the
suppression of the tensor correlation function for arbitrary
fν relative to that for the SM,

R ¼
���� χ0ðydecÞ
χ0SMðydecÞ

����2: ð25Þ

The results are shown in Fig. 3, where we can see that
scattering and free streaming DR contribute with opposite
signs. It follows that while scattering DR tends to reduce
the damping effect associated with the SM neutrinos, free
streaming DR enhances this effect. This dissimilar behavior
is analogous to what was observed for the corrections to the
amplitude and phase of the scalar modes.

III. DETERMINATION OF THE RELIC
ABUNDANCE

In this section we explain how the well-known formalism
for determining the relic abundance of DM generalizes to
the case when the DM sector and the SM are at two
different temperatures. The evolution of the DM density in
an expanding universe is governed by the Boltzmann
equation,

dnχ
dt

þ 3Hnχ ¼ −hσviðn2χ − ðneqχ Þ2Þ: ð26Þ

The difference between the scenario we are considering and
the conventional relic abundance calculation for a thermal
WIMP lies in the fact that in Eq. (26), the averaged
annihilation cross section hσvi and the DM equilibrium
number density neqχ now depend on the dark sector temper-
ature T̂ rather than the SM temperature T, while the Hubble
constant H depends on both T and T̂. In our analysis we
will assume that at temperatures in the neighborhood of the
freeze-out, the number of relativistic degrees of freedom in
the SM, and in the dark sector, are not changing. Then,
since the entropy densities of the two sectors are separately
conserved, it follows that during freeze-out the ratio of the
dark sector temperature T̂ to the SM temperature T is a
constant labeled by r≡ T̂=T. We can then express all the
terms in the Boltzmann equation as functions of the SM
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temperature T. For the equilibrium number density in the
nonrelativistic limit we have,

neqχ ðT̂Þ ¼ gχ

�
mχT̂

2π

�3
2

e−
mχ
T̂

¼ gχ

�
rmχT

2π

�3
2

e−
mχ
rT : ð27Þ

For the Hubble constant,

H2 ¼ 8πG
3

ρ ¼ 8π

3M2
P
ðρSM þ ρdarkÞ

¼ 8π

3M2
P

�
π2

30
g�ðTÞT4 þ π2

30
ĝ�ðT̂ÞT̂4

�

≡ 4π3

45M2
P
g�effT4; ð28Þ

where

g�effðT; T̂Þ≡ g�ðTÞ þ ĝ�ðT̂Þ
�
T̂
T

�
4

¼ g�ðTÞ þ ĝ�ðT̂Þr4:

ð29Þ

In the nonrelativistic regime hσvi is well approximated by

hσvi ¼ aþ bhv2i ð30Þ

where the constant term plays the leading role if the
annihilation can proceed through the s-wave. If, however,
the s-wave contribution is suppressed so that annihilation
occurs primarily through the p-wave, the term proportional
to v2 dominates. Performing the thermal average,

aþ bhv2i ¼ aþ 6rb
T
mχ

: ð31Þ

We are now in a position to solve the Boltzmann
equation by the standard procedure. We introduce the
variable Y ≡ nχ=sSM, where sSM is the entropy density
carried by the SM degrees of freedom. We also introduce
the variable x≡mχ=T. In the radiation dominated era,
when g� and ĝ� are not changing, we have

dx
dt

¼ Hx: ð32Þ

Eliminating the number density nχ in favor of Y, and t in
favor of x, we obtain for the Boltzmann equation,

dY
dx

¼ − hσvi
Hx

sSMðY2 − Y2
eqÞ: ð33Þ

Rewriting this in terms of Δ≡ Y − Yeq, we have

Δ0 ¼ −Y 0
eq − fðxÞΔð2Yeq þ ΔÞ; ð34Þ

where fðxÞ is given by

fðxÞ≡ hσvisSM
Hx

¼
ffiffiffiffiffi
π

45

r
g�ffiffiffiffiffiffiffiffiffi
g�eff

p mχMP
aþ 6rb=x

x2
: ð35Þ

This Boltzmann equation cannot be solved exactly.
However, it is possible to obtain analytic solutions of this
equation that are valid at very early times, and very late
times. Then, an approximate solution that is valid for all
times may be obtained by stitching together these limiting
cases. We define the freeze-out temperature Tf in terms of
the implicit relation,

ΔðxfÞ ¼ cYeqðxfÞ; ð36Þ
where c is an order one number. The final result depends
only logarithmically on the value of c, which is chosen to
be

ffiffiffi
2

p − 1 in the case of s-wave annihilation and
ffiffiffi
3

p − 1 in
the case of p-wave annihilation, to give the best fit to
numerical results [62]. At early times x ≪ xf, Δ0 ≪ Y 0

eq, so
that the Boltzmann equation reduces to

Δ ¼ − Y 0
eq

fðxÞð2Yeq þ ΔÞ : ð37Þ

This equation, in combination with Eq. (36), may be used
to determine the freeze-out temperature,

xf ¼ r log

�
cðcþ 2Þ

4π3

ffiffiffiffiffi
45

2

r
gχffiffiffiffiffiffiffiffiffi
g�eff

p mχMP
r
5
2ðaþ 6rb=xfÞ

x1=2f

�
:

ð38Þ

At late times, x ≫ xf, Δ ≈ Y ≫ Yeq and Δ0 ≫ Y 0
eq so that

we have,

Y−2Y 0 ¼ −fðxÞ: ð39Þ
Integrating this equation from xf to ∞, we obtain

Y∞ ¼
� ffiffiffiffiffi

π

45

r
g�ffiffiffiffiffiffiffiffiffi
g�eff

p MPmχ
aþ 3rb=xf

xf

�−1
ð40Þ

where we have used the fact that ΔðxfÞ ≫ Δð∞Þ.
Combining this result with the expression for xf from
Eq. (38), we can obtain the present-day energy density in
dark matter, Ωχ ¼ mχs0Y∞ρ

−1
c . Here s0, ρc are the present-

day SM entropy density and critical density, respectively.
From this discussion we see that the difference between

our framework, which allows for T̂ ≠ T at freeze-out, and
the conventional scenario with T̂ ¼ T, primarily translates
into an extra factor of r ¼ T̂=T in the expression for the
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relic abundance of DM. There is an additional effect arising
from the r dependence of the argument of the logarithm in
Eq. (38), but this is small. Put in another way, the values of
a and b in the expression for hσvi in Eq. (30) that
correspond to the observed ΩDM are smaller by a factor
of T̂=T than in the case of the standard thermal cross
section ∼3 × 10−26 cm3=s. One may obtain similar results
to those given in Eqs. (38) and (40) by performing a simple
estimate based on equating Γχ ¼ neqχ hσvi to the Hubble
constant H at freeze-out, while keeping track of the
distinction between T and T̂.
In this analysis, we have assumed that the number of

degrees of freedom in the SM, and in the hidden sector, do
not change in the neighborhood of the freeze-out temper-
ature. We have further assumed that the annihilation cross
section is well approximated by an expansion of the form
given in Eq. (31). Using the methods of [63,64], these
assumptions can be relaxed, and the result generalized. We
leave this for future work.

IV. A SIMPLE BENCHMARK MODEL

A. The model

In this section we consider in detail a simple model that
illustrates the scenario we are considering. We consider an
unbroken U(1) gauge theory with massless spin-1=2
fermions charged under it. Let Âμ be the massless
gauge boson associated with this U(1), and ψ̂ i and êi
(i ¼ 1; 2;…; Nψ̂ ) represent the massless (4 component)
fermions and their associated charges under Uð1ÞÂ. Note
that some of the êi may be zero, thereby allowing us to dial
the number of free-streaming species. We consider a
complex scalar particle, denoted by χ, as the DM candidate.
Since our scenario assumes hidden sector dark matter, χ

is uncharged under the SM gauge interactions. The only
possible renormalizable interaction of χ with SM particles
is of the Higgs portal form jχj2jHj2, where H is the
complex scalar doublet that includes the SM Higgs particle
h. This operator is expected to be present, and serves to
ensure that the SM and hidden sectors are initially in
thermal and chemical equilibrium. However, our interest is
in the scenario in which this coupling is not large enough to
govern the annihilation of dark matter that determines its
relic abundance. Instead, the relic abundance is controlled
by an additional interaction through which dark matter
annihilates into DR. For that purpose, we introduce a
massive spin-1 boson Ẑ that couples to both χ and ψ̂ i,
which carry charges q̂χ and q̂i under the associated broken
Uð1ÞẐ. In our analysis, we will focus on the parameter
range where χ is lighter than the Ẑ gauge boson by a factor
of a few.
The Lagrangian of our benchmark model therefore

reads as

L ¼ LSM þ ðDμχÞ�ðDμχÞ − m̂2
χ jχj2 − κjχj2jHj2 − λ

4
jχj4

þ ¯̂ψ iiDψ̂ i − 1

4
ẐμνẐ

μν þ 1

2
m2

Ẑ
Ẑ2 − 1

4
ÂμνÂ

μν

þ � � � ð41Þ

In this expression the ellipses represents the sector respon-
sible for breaking Uð1ÞẐ and generating the Ẑ mass. We
will not specify this sector explicitly as it is not relevant for
our discussions. We only mention that all the particles in
that sector are assumed to be significantly heavier than mχ

and mẐ, so that they do not affect the dynamics we are
considering.2 Note that, as a consequence of electroweak
symmetry breaking, the parameter m̂χ in the Lagrangian is
not equal to the χ mass, mχ , but is related to it as

m2
χ ¼ m̂2

χ þ
κ

2
v2EW; ð42Þ

where vEW ¼ 246 GeV. The masses of the ψ̂ i are all set to
zero, and are protected against quantum corrections by
chiral symmetry. Finally, to ensure the stability of the dark
matter particle χ, we impose an exact Z2 symmetry under
which χ is odd and all the other fields are even.3

In this benchmark model, there is only one renormaliz-
able interaction, κjχj2jHj2, that connects the dark sector to
the SM. The presence of such an interaction is expected to
be a general feature of any theory in which the dark matter
particle is a scalar, as there is no symmetry that forbids it.
Provided κ ≳ 10−6, this coupling ensures that the SM and
hidden sector are initially in thermal equilibrium at temper-
atures of order the weak scale. The requirement that
annihilation to SM states does not play a significant role
in setting the relic abundance constrains κ ≲ 10−2. We will
therefore focus on the regime 10−2 ≳ κ ≳ 10−6. We also
choose to stay away from the region of parameter space
such that the DM mass is close to half the Higgs mass,
where annihilation to the SM is resonantly enhanced.
The presence of interactions between the hidden sector

and the SM leads to constraints on the theory and potential
signals. Upon electroweak symmetry breaking, the jχj2jHj2
term leads to a 3-point interaction of the form hjχj2.
Provided mχ < mh=2, this will generate a contribution to
the invisible width of the Higgs boson given by

2We assume that the Lagrangian in Eq. (41) does not include
kinetic mixings between these new U(1) gauge fields and those of
the SM, such as ÂμνBμν, where Bμ is the SM hypercharge gauge
boson. These can be forbidden by an internal charge conjugation
symmetry carried by the hidden sector fields.

3Alternatively, such Z2 symmetry can accidentally emerge if
the value of q̂χ is such that it is not equal to any linear
combination of the other Uð1ÞẐ charges with rational coefficients.
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Γinv
h ¼ mh

16π

κ2v2EW
m2

h

βχ ; βχ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

χ

m2
h

s
: ð43Þ

The current experimental limit on the invisible branching
ratio from the LHC 7 and 8 TeV data sets stands at about
30% of the total Higgs width, Γh ¼ 4.07 × 10−3 GeV,
from the vector boson fusion channel [65,66]. The limit
from the associated production channel is significantly
weaker [67,68]. The bound on the invisible width is
expected to improve to ∼10% of the total width after
300 fb−1 at the 14 TeV LHC [69,70]. For mh ≫ mχ, these
limits can be translated into the constraints on the parameter
κ. At present we have κ ≲ 2 × 10−2 from the LHC 7 and
8 TeV runs. This limit is expected to improve to κ ≲ 7 ×
10−3 after 300 fb−1 at the 14 TeV LHC. Stronger bounds
can be obtained at future lepton colliders, such as the ILC
or TLEP. According to the studies [71–73] these machines
can constrain the Higgs invisible branching ratio to 0.2%–
1%, which corresponds to κ ≲ 9.5 × 10−4–2.5 × 10−3. For
mh < 2mχ , on-shell Higgs decays into DM particles are
kinematically forbidden, and the hidden sector must be
accessed through an off-shell Higgs, or through loop
effects. The current collider limits are then very weak in
the regime of interest, κ ≲ 10−2, and are not expected to
improve significantly even at future colliders [72]. While
the hjχj2 interaction can also give rise to signals in direct/
indirect DM detection experiments, current experiments are
not yet sensitive in the region κ ≲ 10−2.

B. Relic abundance of DM

Let us now analyze this benchmark model. The first step
is to require that the relic abundance of χ agree with the
observed amount of cold dark matter. We focus on the
region of parameter space where the DM mass lies between
5 GeV and 100 GeV, and where 2mχ < mẐ. Then the
abundance of DM is governed by the annihilation process
χ þ χ� → ψ̂ þ ¯̂ψ via the exchange of a virtual Ẑ in the
s-channel, after the DM particles become nonrelativistic.
To lowest order in the nonrelativistic limit, the cross section
for this process is given by

σχχ�→ψ̂ ¯̂ψ ¼ ĝ4eff
48πm2

χ

�
1 − m2

Ẑ

4m2
χ

�−2
vχ ; ð44Þ

where

ĝ4eff ≡
XNψ̂

i¼1

ĝ4
Ẑ
q̂2χ q̂2i ð45Þ

and vχ represents the speed of each annihilating χ in the
center-of-momentum (CM) frame. The presence of the vχ
suppression is an indication that the annihilation process

proceeds through the p-wave channel. This can be under-
stood from the fact that the initial state consists of two
scalars and the intermediate state is spin-1. Letting v be the
relative velocity of the annihilating χ’s (v ¼ 2vχ), and
performing a thermal averaging, we obtain

hσχχ�→ψ̂ ¯̂ψvi ¼
ĝ4eff

48πm2
χ

�
1 − m2

Ẑ

4m2
χ

�−2 3T̂
mχ

: ð46Þ

In this expression T̂ is the temperature of the dark sector
and we have used the nonrelativistic relation
hv2i ¼ 6T̂=mχ . We emphasize again that T̂ is in general
no longer equal to the temperature T of the SM gas, because
we are allowing for the possibility that the dark sector
decouples from the SM well before before the χ particles
freeze out.
The relic abundance of χ can be obtained from the

Boltzmann equation,

dnχ
dt

þ 3Hnχ ¼ −hσχχ�→ψ̂ ¯̂ψviðn2χ − ðneqχ Þ2Þ: ð47Þ

This can be solved using the methods discussed in Sec. III.

C. Kinetic decoupling between DM and DR

After freeze-out, the system of DM and DR continues to
behave as a tightly coupled fluid until kinetic decoupling
occurs. This is in analogy to the photon-baryon plasma
before recombination, and the DM-SM plasma in the
context of the conventional WIMP scenario. Even though
DM and DR have chemically decoupled, they are kept in
kinetic equilibrium by the elastic scattering of χ with the
fermions ψ̂ i, which proceeds through an off-shell Ẑ in
the t-channel. To leading order in the nonrelativistic limit,
the cross section for χ þ ψ̂ i → χ þ ψ̂ i is given by

σχψ̂ i→χψ̂ i
¼ ĝ4Zq̂

2
χ q̂2i

2π

E2
ψ̂ i

m4
Ẑ

; ð48Þ

where Eψ̂ i
represents the energy of the scattering ψ̂ i in the

CM frame. Performing a thermal averaging, we obtain

XNψ̂

i¼1

nψ̂ i
hσχψ̂ i→χψ̂ i

vi ¼ 4 · 45ζð5Þ
4π2

ĝ4eff
2π

T̂5

m4
Ẑ

≡ Γcol; ð49Þ

where the overall factor of 4 in front accounts for the two
polarizations of ψ̂ , as well as the contribution from
scattering with an anti-ψ̂ i. The factor of 45ζð5Þ=4π2 arises
from thermal averaging. Note that Γcol represents the rate
for a χ to experience a single collision with any one of the
ψ̂ i. This rate is not, however, the same as the rate for the χ
plasma to thermalize with the ψ̂ bath. This is because a
single collision of a χ particle with a ψ̂ i typically involves a
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momentum transfer of only OðT̂Þ, which is not large
enough to significantly deflect the direction of the χ, which

carries a momentum Oð
ffiffiffiffiffiffiffiffiffi
mχT̂

q
Þ. Viewing the effect of N

such collisions as a random walk with N steps, the χ
momentum typically changes by Oð ffiffiffiffi

N
p

T̂Þ after N colli-

sions. Requiring that this change be Oð
ffiffiffiffiffiffiffiffiffi
mχT̂

q
Þ, we obtain

that N ∼mχ=T̂. It follows that the rate for the χ plasma to
thermalize with the ψ̂ bath is given by

Γcol

N
∼
45ζð5Þ
π2

ĝ4eff
2π

T̂6

m4
Ẑ
mχ

: ð50Þ

Then, the temperature T̂D below which the χ plasma
thermally decouples from the bath may be estimated as

Γcol

N

����
T̂¼T̂D

∼H

����
T¼TD

: ð51Þ

For the ranges of parameters considered in our benchmark
models, a quick estimate tells us that TD ∼Oð1Þ–
Oð10Þ MeV.
Above the kinetic decoupling temperature TD, DM is in

equilibrium with DR, and they form a tightly coupled fluid.
Acoustic oscillations within this fluid have the effect of
erasing density perturbations on small scales. As a result,
the temperature TD determines the cutoff of the power
spectrum, and sets a lower bound on the masses of the
smallest halos [74],

Mcut ≃ 105
�

TD

10 keV

�−3
M⊙: ð52Þ

In principle, this offers a separate way to probe these
theories, independent of the CMB. At present, kinetic
decoupling temperatures up to about 10 keV can be probed.
Unfortunately, in our scenario, TD is too high for the cutoff
of short-distance structures to be observable in current
experiments.
One possible generalization of our scenario that would

lead to observable effects in the DM power spectrum
involves allowing the mass mẐ of the mediator to lie below
the weak scale. It is easy to see that the WIMP miracle
prediction for DM relic abundance continues to apply,
provided the DM candidate itself continues to have weak
scale mass and couplings of Oð1Þ to the mediator. In order
to have observable effects, a mediator of mass m̂Z ≲
Oð100Þ MeV would be required. If the mediator mass is
further pushed down to OðMeVÞ, exchange of the light Ẑ
would give rise to sizable DM self-interactions, which can
lead to observable effects in the DM power spectrum [75].
The resulting DM scattering cross section is velocity
dependent, and can therefore be large enough to resolve
small scale structure anomalies while remaining consistent

with cosmological bounds, along the lines suggested in
[27,76–79]. We leave a detailed study of this possibility for
future work.

D. Kinetic decoupling of DM from the SM bath

As we noted earlier, the size of the CMB signals depends
on the temperature T ¼ T̂ ¼ Tkd at which the dark matter
sector kinetically decouples from the SM bath. For mχ in
the range between 10 GeV and 100 GeV, the leading
processes maintaining the kinetic equilibrium are the elastic
scattering of χ off the W, Z, and SM fermions. These
processes decouple at different temperatures, and Tkd is set
by the last process that decouples.
It turns out that at temperatures above ∼10 GeV the

dominant process is the scattering of DM particles off W
bosons. At these temperatures, even if the W bosons are
nonrelativistic and their number density begins to be
Boltzmann suppressed, it is still more dominant than the
competing scattering of χ off a relativistic b quark, as the
latter suffers from a small Yukawa coupling. Let us first
consider the scattering of a relativistic χ off a nonrelativistic
W. The tree-level cross section in this limit is given by

σW ¼ κ2

4π

m2
W

m4
h

: ð53Þ

Equating the scattering rate ΓW ¼ nWhσWvi with the
Hubble expansion rate H gives an estimate for the temper-
ature at which this process decouples, where nW represents
the equilibrium number density of W bosons, and the
relative speed v between the scattering χ and W is unity in
the limit under consideration. We thus obtain

Tkd ∼mW

�
log

�
9

ffiffiffiffiffi
10

p

16π4
MP

mh

m3
W

m3
h

κ2ffiffiffiffiffi
g�

p
��−1

¼ mW

�
8.5þ log

�
κ2

10−10
10ffiffiffiffiffi
g�

p
��−1

: ð54Þ

In obtaining this expression, we have assumed that
g� ≫ ĝ�, so that the energy density is dominated by the
SM degrees of freedom. For a similar process with the Z
boson rather than the W, every appearance of mW above
should be replaced by mZ, and the argument of the
logarithm is reduced by a factor of 2 because of the fewer
degrees of freedom associated with the Z. Therefore, the
corresponding decoupling temperature is proportional to
mZ with the same proportionality factor (neglecting the
change in the argument of the logarithm), so the Z
decouples at a slightly higher temperature than the W.
On the other hand, in the limit where the χ and W are

both nonrelativistic, the scattering cross section is given at
tree level by
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σW ¼ κ2

4πðmχ þmWÞ2
m4

W

m4
h

: ð55Þ

To calculate the rate nWhσWvi, we need to know hvi. For a
single nonrelativistic particle of mass m obeying the
Maxwell-Boltzmann distribution with temperature T, an
elementary integral gives hvi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8T=ðπmÞp
. We have a

two-body system instead, but the relative speed v in the lab
frame is the same as that in the CM frame, where the two-
body problem reduces to a one-body problem with the
reduced mass μχW ≡mχmW=ðmχ þmWÞ. We thus have
hvi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8T=ðπμχWÞ
p

. The kinetic decoupling temperature
then becomes

Tkd ∼mW

�
log

�
9

ffiffiffi
5

p

4π9=2
MP

mh

m3
W

m3
h

μ2χW
m2

χ

ffiffiffiffiffiffiffiffi
mW

μχW

r
κ2ffiffiffiffiffi
g�

p
��−1

¼ mW

�
8.9þ log

�
μ2χW
m2

χ

ffiffiffiffiffiffiffiffi
mW

μχW

r
κ2

10−10
10ffiffiffiffiffi
g�

p
��−1

: ð56Þ

At temperatures below ∼10 GeV, scattering of DM off
SM fermions becomes increasingly important, and even-
tually dominates. At these temperatures the DM particle χ is
nonrelativistic, while the SM fermions may be relativistic or
nonrelativistic. In the case where the scattering SM fermion
f is relativistic, the tree-level cross section is given by

σf ¼ κ2

8πm2
χ

m2
fp

2

m4
h

; ð57Þ

wherep is the magnitude of the 3-momenta of the scattering
particles in the CM frame, and higher order terms in p=mχ

have been neglected. In this leading nonrelativistic approxi-
mation, the thermal average hp2i in the CM frame is the
same as that in the lab frame, as the difference between the
two frames itself is an Oðp=mχÞ effect. Therefore, we
evaluate hp2i and the number density nf simply in the
lab frame in the standard way, obtaining

hp2i ¼ 15ζð5Þ
ζð3Þ T2; nf ¼ 4Nc ·

3ζð3Þ
4π2

T3; ð58Þ

where Nc is the number of colors carried by the fermion
species f. Notice, however, that the relevant reaction rate to
maintain a kinetic equilibrium is not simply given by
nfhσfvi, because a single collision of a heavy particle χ
with a relativistic particle f with p ≪ mχ hardly changes the
direction of the χ momentum. Since the χ momentum is on
average of order

ffiffiffiffiffiffiffiffiffi
mχT

p
, and a typicalmomentum transfer via

a single collision is of orderp ∼ T, the number of collisionsN
required to alter the χmomentumby anOð1Þ fraction is given
by

ffiffiffiffi
N

p
T ∼

ffiffiffiffiffiffiffiffiffi
mχT

p
, i.e.,N ∼mχ=T. The relevant reaction rate

to maintain a kinetic equilibrium, therefore, is given by
Γf ¼ nfhσfvi=N. Then, fromΓf ∼H, we obtain an estimate
for the kinetic decoupling temperature:

Tkd ∼mh

�
16π9=2

135
ffiffiffi
5

p
ζð5Þ

1

Nc

m3
χ

m2
fMP

ffiffiffiffiffi
g�

p
κ2

�1
4

∼ 4.3 GeV ×

�
3

Nc

m3
χ

ð10 GeVÞ3
m2

b

m2
f

10−10
κ2

ffiffiffiffiffi
g�

p
10

�1
4

; ð59Þ

where mb is the b-quark mass.
If the SM fermion is also nonrelativistic, the tree-level

cross section in the leading nonrelativistic approximation is
given by

σf ¼
κ2

4πðmχ þmfÞ2
m4

f

m4
h

: ð60Þ

For thermal averaging, we use hvi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8T=ðπμχfÞ

p
, sim-

ilarly to what we did below Eq. (55). Furthermore, the
number of collisionsN required to randomize the motion of
χ is given by

ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffi
mfT

p
∼

ffiffiffiffiffiffiffiffiffi
mχT

p
, i.e., N ∼mχ=mf. Then,

from nfhσfvi=N ∼H, we obtain

Tkd ∼mf

�
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2π9=2
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:

ð61Þ

Note that the “reference value” of κ used here is 10−3,
which differs from Eqs. (54), (56), and (59), where the
value used was 10−5. This reflects the fact that this process
is relevant only if κ is sufficiently large, even for the
b quark.
In Fig. 4, we plot the kinetic decoupling temperature

against the dark matter mass, for several different values of
the coupling κ. We see that for the range of values of κ that
can be probed in current and future collider experiments,
the kinetic decoupling temperature lies below several GeV
and above several hundred MeVİn particular, the kinetic
decoupling occurs before a drastic change in the number of
relativistic SM degrees of freedom due to QCD phase
transition.

E. Signals

Given the dark matter mass and the value of the coupling
constant κ, we can determine the temperature Tkd at which
the dark sector kinetically decouples from the SM. We can
then use Eq. (3) to obtain ΔNeff and Eq. (12) to obtain the
angular shifts of the CMB peaks. In our benchmark model,
ĝ� and ĝ�kd are given by

ĝ� ¼ 2þ 7

2
Nψ̂ ; ĝ�kd ¼ nþ 7

2
Nψ̂ : ð62Þ

We assume that the Ẑ boson is already nonrelativistic when
the SM and hidden sectors decouple. Then n ¼ 2 if the DM
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candidate is already nonrelativistic when the SM and dark
sectors decouple, and n ¼ 4 otherwise.
The results for Nψ̂ ¼ 1 are shown in the upper panel of

Fig. 5 for three different values of κ. The smallest of the
values studied, κ ¼ 5 × 10−6, corresponds to the minimum

value of κ that can ensure that the SM and hidden sector are
in thermal equilibrium at or above the weak scale. The other
two values studied correspond to the limits that can be
placed on κ at the LHC and at a lepton collider. In the figure
we have plotted the current limits on ΔNeff from the Planck
experiment. Although in the region of light DMmasses that
may be probed at the 14 TeV LHC the predicted ΔNeff are
above the central value from Planck data fit, they are still
well within 95% C.L., and are large enough to be detected
in upcoming experiments. It is also important to note that
these bounds are not immediately applicable to this model
since in the standard Planck analysis, it is assumed that the
contribution to ΔNeff is free streaming. A fresh analysis
that relaxes this assumption by including scattering radi-
ation is required to determine the current limits on this
scenario.
We see from Fig. 5 that ΔNeff ≳ 0.2 in this class of

models for the entire range of DM masses. Then, based on
the discussion in Sec. II we expect that upcoming experi-
ments will offer the possibility of distinguishing this
scenario from one where ΔNeff is the same, but the DR
free streams. For the purposes of comparison, in the lower
panel of Fig. 5 we have plotted ΔNeff and Δl for the same
model, but without the U(1) gauge symmetry. The DR now
consists of only one massless fermion species ψ̂ . Since the
gauge boson Âμ is now absent, the DR free streams rather
than scatters. We see from the figure that although the
magnitudes of ΔNeff and Δl are comparable in size to the
benchmark model, the sign of Δl is opposite in sign. It is
this difference that we expect will help distinguish between
free streaming and scattering DR

V. CONCLUSIONS

In this paper, we have explored a scenario where the DM
candidate is part of a hidden sector whose particles carry no
charges under the SM gauge groups, and whose couplings
to the SM states, though present, are small. The abundance
of DM is assumed to be determined primarily by annihi-
lation to massless states that lie within the hidden sector.
Then, if we further assume that the weak scale is the only
mass scale in the hidden sector, so that the mass of the DM
particle and its annihilation cross section are both set by this
scale, the observed abundance of DM can be naturally
explained. This framework is motivated by an alternative
realization of thermal WIMP DM paradigm that is naturally
compatible with limits from direct, indirect and collider
searches for DM thus far.
A robust consequence of this framework is the existence

of DR, associated with the massless states in the hidden
sector. The contribution of this DR to the energy density of
the universe during the era of recombination epoch man-
ifests itself observationally as a contribution to the effective
number of neutrino species, ΔNeff . In addition, massless
particles constituting DR may or may not interact with one
another. We determined the shift in the locations of the
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CMB peaks, Δl, as a function of the number of free
streaming DR species, ΔNfree

eff , and scattering species,
ΔNscatt

eff . We found that free streaming and scattering species
shift the peaks in opposite directions, so that by combining
this effect with the measurement of the total ΔNeff

mentioned above, we can separately determine ΔNfree
eff

and ΔNscatt
eff . We also calculated the corrections to the

amplitudes of the scalar and tensor modes of the CMB
arising from the presence of DR, and showed that the sign
of the correction depends on whether the DR scatters or free
streams.
We have found that provided the hidden sector is initially

in thermal equilibrium with the SM degrees of freedom at
temperatures at or above the weak scale, there is a robust
prediction for a lower bound onΔNeff of about 0.02. This is
large enough to be observed by future CMB Stage-IV
experiments. In the scenario where the DR has self-
interactions, assuming naturalness, ΔNeff is expected to
liewell above this lower bound,making it large enough to be
observed in upcoming experiments such as CMBPol. We
further constructed a simple model that realizes this sce-
nario. In our model, the SM and hidden sector are initially
kept in thermal equilibrium through the Higgs portal. We
have determined the size of the ΔNeff signal, and have
shown that it is large enough to be detected in upcoming
experiments. These experiments are also expected to be
sensitive enough to the Δl signal to allow the possibility of
distinguishing between free streaming DR and scattering
DRİn addition, we find that there are regions of parameter
spacewhere invisible decays of the Higgs into hidden sector
states can be used to probe this model at colliders.
An important point to reiterate is that the bounds on

ΔNeff derived from the standard analyses, such as by

Planck, may not be directly applicable to our scenario
where the DR may be self-scattering. A dedicated analysis
parametrized by ΔNfree

eff and ΔNscatt
eff instead of a single

ΔNeff is required to determine the exact limits on this
scenario.
The general possibility that dark matter may arise from a

sector hidden from the visible matter of the SM has drawn
considerable interest recently, due in no small part to the
increasing experimental limits on the conventional WIMP
DM paradigm. Our work highlights that in this scenario
which is challenging or perhaps even impossible for
conventional DM searches, CMB experiments may be able
to shed light on the nature of the DM sector, which is
worthy of further exploration.
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