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The leptonic bound states positronium and muonium are used to constrain Galileon contributions to the
Lamb shift of muonic hydrogen. Through the application of a variety of bounds on lepton compositeness, it
is shown that either the assumption of equating the charge radius of a particle with its Galileon scale radius
is incompatible with experiments, or the scale of Galileons must be M > 1.33 GeV, too large to solve the
muon problem. The possibility of stronger constraints in the future from true muonium is discussed.
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I. INTRODUCTION

Several measurements in muon physics [1–5] have
varying levels of disagreement with theoretical calcula-
tions. This “muon problem” could be a sign of the violation
of lepton universality from beyond standard model (BSM)
physics. That the muon should be more susceptible to new
physics is intuitively reasonable from an effective field
theory point of view, given its dramatically larger mass
compared to the electron, which can lead to observables
proportional to powers ofml=Λ, whereΛ is the cutoff scale.
This is similar to the enhancement of weak interactions in
muonic systems discussed in Ref. [6]. While larger effects
with the τ or quarks are not impossible, the relative
simplicity of muonic physics (little QCD contamination,
longer lifetime) makes signals easier to detect. In this paper,
we will consider two facets of the muon problem: the
anomalous magnetic moment of the muon aμ, and the
proton charge radius from muonic hydrogen ðrPÞμ.
Over the years, a number of ideas incorporating BSM

physics have been proposed to solve the muon problem
[7–24]. A recent proposal that disformal scalars [25] arising
from Galileon theories [26] could resolve the rP discrep-
ancy [27] offers the tantalizing possibility that gravitational
effects could be at play in atomic systems. We devote the
work of this paper to investigating the viability of this
model in the leptonic bound states positronium ðeþe−Þ and
muonium, ðμþe−Þ. Additionally, we will make speculations
about the possible limits that a measurement of true
muonium ðμþμ−Þ might set. While this system is yet to
be detected, near-term experiments [28,29] are planned to
possibly detect and characterize it. Due to its larger reduced
mass, true muonium (TM) has novel features compared to
positronium (Ps) and muonium (Mu) [6,30], including the
capacity to produce the strongest constraints on Galileons.
The most general metric, formed from only gμν and a

scalar field ϕ that respects causality and weak equivalence,
was shown in Ref. [31] to be

~gμν ¼ Aðϕ; XÞgμν þ Bðϕ; XÞ∂μϕ∂νϕ; ð1Þ

where X ¼ 1
2
gμν∂μϕ∂νϕ. The first term gives rise to

conformal scalars, whose couplings to matter are heavily
constrained by various fifth-force experiments. For our
discussion, only the second term, which gives rise to the
disformal coupling, is of importance. This Lagrangian
interaction is given by

Ldis ¼
Bðϕ; XÞ

2
∂μϕ∂νϕT

μν
J ; ð2Þ

where Tμν
J is the energy-momentum tensor of all matter

fields as given in the Jordan frame.
In previous work [25,32,33], the leading disformal

coupling in nonrelativistic systems was shown to be a
one-loop quantum effect that gives rise in atoms to an
energy-level perturbation

δE ¼ −
3mimj

32π3M8
hEj 1

r7
jEi; ð3Þ

where mi;mj are the masses of the constituent particles
of the bound state (throughout, we will use the convention
that mi ≥ mj) and M is the Galileon coupling scale. This
potential is sufficiently singular to be divergent for point-
like particles like e and μ. In the case of muonic hydrogen
ðμHÞ, it is possible to handwavingly cut off the integral
because the proton is composite, and then one may apply a
screening mechanism [34–36] to prevent the region inside
this radius from contributing. For the standard, noncom-
posite leptons, using any composite scale as a cutoff scale is
not possible. Further, we will show that in particular, the
choice of the charge radius as the Galileon coupling scale
assumed in Ref. [27] is incompatible with what is known
about leptonic bound states.
We begin in Sec. II with a discussion of how radii are

defined in quantum field theory and the complications
that arise with associating the Galileon cutoff radius with
any other measured quantity. In Sec. III we explore ways to
bound the possible composite scale of leptons, with*hlammiv@asu.edu
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particular emphasis on the charge radius. Section IV is
devoted to deriving constraints on Galileons from Lamb
shift measurements in leptonic systems. Finally, we con-
clude in Sec. V with remarks on the future of bounds from
leptonic systems.

II. ON RADII

In Ref. [27], the cutoff radius, ri, was assumed to be
approximated by the charge radius of the protonffiffiffiffiffiffiffiffi
hr2i

p ≡ rP, which is derived from hydrogen spectroscopy
to be rP ¼ 0.8758ð77Þ fm. For this value of ri, M ¼
320 MeV was found to explain the rP discrepancy. This
low value for the coupling scale can be reconciled with
other constraints by embedding the disformal scalars in a
Galileon theory with screening mechanisms caused by
higher-order operators [25]. With this in mind, we will only
consider models of disformal scalars that are embedded in
Galileon models. In this paper, we study how limits on
lepton compositeness affect the Galileon explanation for
the muon problem.
There are two ways to interpret the assumption ri ¼ rP.

Reference [27] seems to use the charge radius as a proxy
for the size of the nuclei that can be used as a cutoff.
This interpretation is troubling, because it prevents
sensible predictions of the Galileon in other bound
states. Since nuclei can contain neutrons with a negative
hr2i ¼ −0.1149ð35Þ fm2, the charge radius of a nuclei can
be reduced while the size of the nuclei could increase.
Another troubling part of using the charge radius is that this
choice is arbitrary. A charged particle has a number of radii,
each one reflecting a different distribution (e.g. electric
charge, weak interaction, neutron density, strange quark
density, matter density), and as we will see, assuming any
two are (nearly) equal has implications for other particles.
A further complication of this view is that it provides no
explanation as to how leptonic bound systems can regulate
the divergence of Eq. (3).
Another way to understand this assumption is that it

expresses a relationship between the underlying distribu-
tions. In this paper we investigate whether this relationship
can be sustained quantitatively with leptonic bound states.
To begin, formally the charge radius of a particle is defined
via the electric form factor,

GEðq2Þ ¼
Z

d3xeiq·xρðxÞ

¼
Z

d3x

�
1þ iq · xþ ðq · xÞ2

2
þ � � �

�
ρðxÞ

¼ Qtot −
1

6
jqj2hr2i þ � � � ; ð4Þ

where GE is the electric form factor, ρðxÞ is the charge
density, and Qtot is the total charge of the particle. The
standard definition of hr2i is then

hr2i ¼ −6
dGE

dq2

����
q2¼0

: ð5Þ

In analog to this, we argue that an appropriate definition for
ri should be via a disformal form factor, and therefore
would be

r2i ¼ −6
dGdis

dq2

����
q2¼0

: ð6Þ

By this definition, we see that ri is related to a disformal
density ρdisðxÞ that represents the spatial distribution of
matter coupling to the Galileons. Therefore, the assumption
ri ¼ rP is not an arbitrary statement but is tantamount to
saying

Z
d3xjxj2ρðxÞ ¼

Z
d3xjxj2ρdisðxÞ: ð7Þ

Since setting the right-hand side of Eq. (7) for leptons to
zero is unacceptable due to the divergence in Eq. (3), this
implies that leptons must have a charge distribution differ-
ent from a point particle. If instead ri is a property of
particles unconnected to their charge radius, then the so-far
unobserved lepton charge radius would give no constraint.
This would be in analogy to how the Zemach radius is a
property of charged particles arising from the magnetic
field distribution, and therefore has no necessary relation to
the charge radius.

III. COMPOSITENESS OF LEPTONS

As stated above, the results of Ref. [27] relied upon
rP > 0 in order to cut off the divergences. Using the
measured value from hydrogen or electron scattering
experiments, a novel correction to the Lamb shift of muonic
hydrogen can mimic a scenario with a smaller rP. Since
Galileons couple to all matter content equally, this inter-
action should occur in leptonic systems also. But if leptons
are truly pointlike, the potential would lack regularization
and would yield unacceptably large corrections to the Lamb
shift and 1s-2s intervals. In order to prevent this effect,
we are forced to introduce a composite radius. Here, we
investigate the strict constraint that

ffiffiffiffiffiffiffiffi
hr2i

p
¼ ri (i.e., the

charge radius is the composite radius), and a more general
constraint on a composite radius.
Since we must demand screening mechanisms to evade

other bounds, it is nontrivial to construct a composite
scale from Galileons alone; therefore, we compute several
different limits on composite lepton radii.

A. Spectroscopy

Derived constraints from hyperfine splitting (hfs), Lamb
shifts, and 1s-2s intervals are either directly on the hr2i or
on the Zemach radius, hrið2Þ. The Zemach radius is

HENRY LAMM PHYSICAL REVIEW D 92, 055007 (2015)

055007-2



approximately linearly related to
ffiffiffiffiffiffiffiffi
hr2i

p
, with a model-

dependentOð1Þ coefficient (see Ref. [37] for a discussion).
Composite leptons have finite-size contributions similar to
those of the proton [38]. For the case of an s-state energy
level, the leading finite-size contribution is known:

δE ¼ 2

3n3
ðZαÞ4μ3hr2i; ð8Þ

where n is the principal quantum number, Z is the charge of
the particle, and μ is the reduced mass of the system. At this
order, p states are not affected by hr2i, so for the Lamb
shift, the contribution is

δELamb ¼
1

12
ðZαÞ4μ3hr2i: ð9Þ

Furthermore, for the 1s-2s interval, this contribution yields

δE1s-2s ¼
7

12
ðZαÞ4μ3hr2i: ð10Þ

We can derive stronger limits from the hyperfine splitting
(hfs), where the leading-order effect is given in Ref. [39]:

δEhfs ¼ −2ðZαÞμhrið2ÞEF; ð11Þ

where the Fermi energy is given by

EF ¼ 8

3
ðZαÞ4ð1þ aiÞ

mj

mi

�
μ

mj

�
3

me; ð12Þ

where ai is the anomalous magnetic moment of particle i.
In addition to the Zemach radius, there is a higher-order
contribution directly from hr2i, which is found in Ref. [40]:

δEhfs ¼
4

3
ðZαÞ2 ln ðZαÞμ2hr2iEF: ð13Þ

Applying these expressions to the measured energy
spectrum of positronium and muonium states, we can set
limits on hrið2Þ and hr2i. While the Lamb shift and 1s-2s
constraints in muonium can be applied to either the e or μ
component, the shift to the hfs is not mass symmetric, so
these limits apply only to muons. Table I is devoted to
listing the various constraints, using the experimental and
theoretical values found in Table II. We point out that the
Zemach radius constraint in muonium gives a numerical
bound very close to that from aμ, and so in Fig. 1 we only
label the Zemach radius.
In Table I we have used x as a stand-in for the percent

uncertainty in a measurement of energy shifts in true
muonium. We see that, for even a 10% measurement of
the Lamb shift or hyperfine splitting, true muonium would
give competitive limits on the muon’s size.

B. Anomalous magnetic moments

In order to solve the muon problem, considering con-
straints from the anomalous magnetic moments is critical.
From the formalism of Brodsky and Drell [62], one can use
the precisely measured al to limit possible substructure in
the leptons. Models of composite leptons can generically
give corrections Δal ∝ ml=M�, where M� is the scale of
new physics. As pointed out in Ref. [62], though, these
models result in a strong fine-tuning to the self-energy of
the form δml ∝ ml=M�. A more conservative, and perhaps
more reasonable, estimate of al assumes the existence of a
chiral symmetry which causes a cancellation of the linear
term in ml, leaving Δal ∝ ðml

M�Þ2.
If we use the current best limits from experiments

compared to theory for the values of al [1,63,64],

TABLE I. Constraints on the charge radius and Zemach radius
for leptonic systems. For true muonium (TM), x corresponds to
the percent precision of a future measurement.

Atom
ffiffiffiffiffiffiffiffi
hr2i

p
1s-2s (m)

ffiffiffiffiffiffiffiffi
hr2i

p
Lamb (m)

ffiffiffiffiffiffiffiffi
hr2i

p
hfs (m) hri2 (m)

Mu 4 × 10−15 1 × 10−14 4 × 10−18 1 × 10−18

Ps 7 × 10−15 8 × 10−15 2 × 10−16 2 × 10−15

TM 4
ffiffiffi
x

p
× 10−13 8

ffiffiffi
x

p
× 10−15

ffiffiffi
x

p
× 10−18 x × 10−17

TABLE II. Experimental and theoretical values for the necessary energy shifts in leptonic systems. For the case of true muonium, we
have used the representative value of 50% of the theoretical values for δE.

Atom Obs. ΔEexp (MHz) Exp. Ref. ΔEtheory (MHz) Theory Ref. δE (MHz)

Mu Lamb 1042(23) [41] 1047.490(300) [42–44] −5.5ð230Þð0.3Þ
1s-2s 2455528941.0(9.8) [45] 2455528935.4(14) [46–48] 5.6(98)(14)
hfs 4463.302765(53) [49] 4463.30288(55) [50] −0.000115ð53Þð55Þ

Ps Lamb 13012.42(67)(154) [51] 13012.41(9) [52] −0.01ð67Þð154Þð9Þ
1s-2s 1233607216.4(32) [53] 1233607222.2(6) [52] −5.8ð34Þð6Þ
hfs 203389.10(74) [54] 203392.411(60) [55–59] −3.31ð74Þð48Þð6Þ
hfs 203394.2(16)(13) [60] 203392.411(60) [55–59] 1.78(160)(130)(6)

TM Lamb � � � � � � 1.35ð5Þ × 107 [61] 6.8ð5Þ × 106

1s-2s � � � � � � 2.55ð5Þ × 1011 [61] 1.27ð5Þ × 1011

hfs � � � � � � 42330577(800)(1200) [6] 21165288(800)(1200)
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Δae ¼ −9.1ð8.2Þ × 10−13;

Δaμ ¼ 287ð80Þ × 10−11; ð14Þ

and again argue that the corresponding mass scales
can be interpreted as limits on the radius via R ≈ ℏ=
M�c, we find flavor-dependent limits on the composite
radius of

Re ≲ 4 × 10−19 m;

Rμ ≈ 1 × 10−18 m; ð15Þ

where, because of the discrepancy between theory and
experiment, the results for μ are a preferred scale as
opposed to a limit. The upcoming ðg − 2Þμ experiment
[65] anticipates a factor of 4 improvement in the meas-
urement of aμ, which could improve our limit by a factor of
2. These limits lack a clear relation to the lepton hr2i but
are strong limits on compositeness. If we seek to explain
the complete muon problem with Galileons, a precision
constraint from aμ would be essential to derive.

IV. LIMITS ON GALILEONS

It was shown in Ref. [27] that the leading correction
to the Lamb shift of an atomic system due to a
Galileon is

δELamb ¼
3

248π3

�
Z
a0

�
3mimj

M8r4i

�
1 −

1

6

�
Z
a0

�
2

r2i

�
; ð16Þ

where a0 is the Bohr radius of the atom and ri is the radius
of particle i at which the divergence is cut off. To derive
constraints from this equation, we compute the 1σ value of
δELamb for each leptonic system found in Table II. Our
procedure for this is to first combine the errors in quad-
rature, and then sum this with the observed value of δELamb.
Equating these results to Eq. (16), parts of the parameter
space of the ri andM below the lines in Fig. 1 are excluded
at 1σ. We find for any fixed value of ri, hydrogenic systems
place stronger limits than leptonic ones on the value of M.
While this result at first seems disappointing, it is important
to remember that in hydrogenic systems one previously
assumed that ri ¼ rp. In contrast, lepton systems can take
on any values of ri, because no composite scale has been
measured.
Using the constraints on the various radii derived in

Sec. III, we see that leptonic systems require the scale ofM
to be higher than that preferred by μH. Currently, posi-
tronium energy shifts alone are not well enough known to
competitively limit the charge or Zemach radius, so we
have not plotted them. But combining positronium con-
straints from Eq. (16) with the ae, we obtain the bound
Ma > 1.2 GeV. For muonium, all limits on ri are superior
bounds on M to those from the muonic hydrogen which
require ri ¼ rP. These bounds vary from M ffiffiffiffiffiffi

hr2i
p >

0.67 GeV to Ma > 1.33 GeV. In particular, we emphasize
that the constraint from the charge radius of the muon
excludes M ¼ 320 MeV. We therefore conclude that lep-
tonic systems rule out Galileons as the explanation of the
muon problem if the radius is related to the charge or
Zemach radius.
Further, we notice that a fiducial measurement of the

Lamb shift in true muonium with only 50% precision
would improve our limit on the scaleM by a factor of 2. In
fact, due to the weak M ∝ E−1=8 scaling of our constraints,
a mere measurement of the existence of a Lamb shift in
true muonium would likely provide the strongest limit on
Galileons from leptonic physics.
Having seen that requiring

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iem

p
¼ ri for leptons

would rule out the preferred value of M from ðμHÞ, we
can ask whether this assumption is necessary. It is
perhaps not surprising that these two scales must be
different.

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iem

p
is a property of particles determined

by their charge distribution, while ri should in principle
be defined in a similar way by the field distribution that
couples to Galileons. Since the latter couples not only to
quarks and leptons, but also to photons, gluons, W’s, and
Z’s, the two distributions should differ. This is analogous
to how the magnetic distribution of the proton results in
the Zemach radius being different from the charge
radius. Allowing ri ≠ rP for the proton allows the muon
problem to be solved for any value along the ðμHÞ line
in ðri;MÞ space not excluded by limits on M from other
sources, and since these are currently the strong

FIG. 1 (color online). Allowed (ri,M) parameter space from
various atomic systems. The solid lines indicate current con-
straints from Eq. (16), while the dashed line for true muonium
indicates a future measurement with 50% precision. The param-
eter space below the lines is excluded. The horizontal line is the
value of M to explain the rP discrepancy found in Ref. [27].
Shaded regions indicate excluded values of leptonic radii for μ; e
and hfs measurements, as explained in text and summarized in
Table I. To aid comparisons, we have indicated rP on the x-axis.
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compositeness constraints, an unobserved lepton ri is
acceptable.

A. Limits from perturbativity

The condition that the disformal scalars avoid other
constraints required us to embed it in a model with
chameleon [66,67] and Galileon properties. In Ref. [27],
the full action was given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2 − 1

Λ3
□ϕð∂ϕÞ2

− VðϕÞ þ 1

M4
∂μϕ∂νϕT

μν
J

�
þ Smðψ i; AðϕÞgμνÞ; ð17Þ

where we must introduce the suppression scale Λ to control
the self-interactions of the Galileons. Within this model,
an upper limit on Λ can be set by requiring perturbative
unitarity to have not been violated up to currently observed
energies. Reference [27] finds that using LEP data, which
constraints unitarity violations up to 200 GeV,

Λ3 ≤
β

2πmPl

�
8πM4ffiffiffi
2

p
me

�
4=3

; ð18Þ

where β is an Oð1Þ Galileon coupling. Using this bound,
we have a relation between Λ and M of

Λ ≤ 6 keV

�
M

320 MeV

�
16=9

: ð19Þ

Additionally, we have assumed that the Galileon is well
approximated by a free scalar field at least down to the scale
of the composite radius. In order to justify this assumption,
it was found in Ref. [27] that

Λ≳ 1

ri

�
βmi

mPl

�
1=3

: ð20Þ

Putting Eqs. (19) and (20) together, we can obtain addi-
tional constraints on the space of ðri;MÞ:

1

ri

�
βmi

mPl

�
1=3

≤ 6 keV

�
M

320 MeV

�
16=9

: ð21Þ

Unlike the strict limits found in the previous section, this
constraint only applies if we demand trustworthy pertur-
bative solutions from Galileons. With this caveat, for
both muons and electrons, this bound is violated if

M ¼ 320 MeV, again ruling out the assumption
that ri ¼

ffiffiffiffiffiffiffiffi
hr2i

p
.

V. SUMMARY AND CONCLUSIONS

In this paper, we have shown how leptonic systems offer
competitive constraints on the scale M of Galileons. From
the nonobservation of a lepton charge or Zemach radius,
we can be confident that either

ffiffiffiffiffiffiffiffi
hr2i

p
≠ ri or the Galileon

scale must be M > 1.33 GeV. This result would be
competitive with collider and astrophysical constraints.
Going beyond the assumption that the two radii should
be related, the Galileon model is still viable for solving the
muon problem.
Looking forward, the improvement of these atomic

constraints is possible. Understanding the true finite-size
effects of Galileons requires going beyond the crude
estimate that

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2iem

p
¼ ri and accurately determining

their relation. There are a number of ways this could
potentially be done. The simplest theoretical, but relatively
difficult experimentally, approach is to note that since s and
p states have the same dependence on M but a different
dependence on ri, measurements of the ratio of the absolute
energy level of each state would give a limit on ri alone.
Another possibility is that if one could construct additional
Galileon observable effects in al or the hfs, a similar
difference in dependence might arise, allowing us to
leverage those precision experiments further. One could
consider improving the experimental precision, but since
M ∝ r−1=2i δE−1=8, many orders of magnitude improvement
in experiments and theory will be required to improve these
limits. The exception is the potential measurement of the
spectrum in true muonium. Any Lamb shift measurement
in true muonium will improve these limits, and an ambi-
tious part-per-million-level measurement could completely
exclude Galileons. Finally, we note that in positronium and
true muonium, the existence of an annihilation channel
ll → ϕ → ll allows for potentially stronger limits from
energy shifts or decay-rate limits from processes
like ðμþμ−Þ → eþe−.
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