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The renormalizable coloron model is built around a minimally extended color gauge group, which is
spontaneously broken to QCD. The formalism introduces massive color-octet vector bosons (colorons), as
well as several new scalars and fermions associated with the symmetry breaking sector. In this paper, we
examine vacuum stability and triviality conditions within the context of the renormalizable coloron model
up to a cutoff energy scale of 100 TeV, by computing the β-functions of all relevant couplings and
determining their running behavior as a function of the renormalization scale. We constrain the parameter
space of the theory for four separate scenarios based on differing fermionic content, and demonstrate that
the vectorial scenarios are less constrained by vacuum stability and triviality bounds than the chiral
scenarios. Our results are summarized in exclusion plots for the separate scenarios, with previous bounds
on the model overlaid for comparison. We find that a 100 TeV hadron collider could explore the entire
allowed parameter space of the chiral models very effectively.
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I. INTRODUCTION

As we anticipate the flood of new data from the second
run of the CERN Large Hadron Collider, thoughts are
turning to the new states that may be discovered, states that
would represent a first clear sign of physics beyond the
standard model (SM). Many theories of new physics that
attempt to address unresolved challenges, including flavor
physics and naturalness, incorporate an extended strong
interaction sector. Examples include models such as top-
color [1], the flavor-universal coloron [2], chiral color [3,4],
chiral color with unequal gauge couplings [5], flavor
nonuniversal chiral color [6] and a flavorful top-coloron
model [7]. In such models, the color gauge group is
extended to SUð3Þ1c × SUð3Þ2c at high energies; this
enlarged gauge group is spontaneously broken at low
energies to the diagonal SUð3Þc subgroup, which is
identified with QCD. In the process of spontaneous
symmetry breaking, the broken generators become identi-
fied with a set of massive color-octet gauge bosons,
generically called colorons.
As discussed in [2,8–10], one can construct a renorma-

lizable theory by including scalars transforming appropri-
ately under the extended color symmetry. In addition to the
new massive color gauge states, new colored and uncolored
scalar degrees of freedom are present in this model.
Moreover, cancellation of potential anomalies, which
would arise if the couplings of the ordinary quarks to
colorons were chiral, can require the existence of new

spectator fermions. Hence, if this formalism corresponds to
the correct description of nature, a rich spectrum of new
scalar, fermionic, and vector particles with novel properties
are predicted, the discovery of which may lie within the
reach of the LHC.
A first complete study of hadron collider production of

colorons at next-to-leading order was presented in [11,12].
The scalar sector of the renormalizable coloron model has
been studied in [10], and bounds on its properties were set
by imposing limits arising from the global minimum of the
potential coinciding with the scalar vacuum expectation
values (VEVs), unitarity, electroweak precision tests, and
properties of the 125 GeV Higgs-like scalar discovered in
2012 at the LHC [13,14]. A subsequent paper [15]
examined the properties of the additional (heavier) color-
singlet charge parity (CP)-even scalar boson in the model,
and established the expected reach of the

ffiffiffi
s

p ¼ 14 TeV
LHC for this state in three selected scenarios with zero, one,
and three spectator fermion generations, respectively.
In this paper, recalling that gauge theories with extended

scalar sectors are often subject to Landau poles below the
Planck scale [16,17], we examine constraints that consid-
erations of vacuum stability and triviality place on the
renormalizable coloron model. After introducing the essen-
tial features of the model in Sec. II, we establish the
separate cases within the model that we propose to examine
in Sec. III. Specifically, we lay out four distinct scenarios
with differing numbers of spectator fermion generations
and different origins of the spectator fermion masses. We
then compute the β-functions of all relevant couplings and
determine their running behavior as a function of the
renormalization scale up to a cutoff energy scale of order
100 TeV. Details regarding the form of the β-functions in
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the different scenarios are summarized in a set of three
appendixes. The results of the calculations and their
implications for the parameter space of the model are
discussed in Sec. IV. We show how the behavior of the
β-functions translates into constraints on the model as a
function of the physically relevant free parameters: masses,
scalar VEV, and scalar mixing angle. We also provide
exclusion plots showing how the constraints arising from
vacuum stability and triviality compare with those obtained
from other theoretical and phenomenological sources in
prior work [10,15]. The concluding section summarizes our
findings, most notably that the scenarios in which the
spectator couplings to colorons are vectorial are far less
constrained by the vacuum stability and triviality bounds
than those in which the couplings are chiral. The latter
scenarios could be explored quite thoroughly at a 100 TeV
hadron collider.

II. FORMALISM

In this section, we briefly discuss the renormalizable
coloron model [2,8–10,15] and review the necessary
notation and definitions that we employ [10,15]. In the
framework of the renormalizable coloron model, the color
gauge group of the SM is enlarged to SUð3Þ1c × SUð3Þ2c;
this extended group is spontaneously broken to its diagonal
subgroup, SUð3Þc, which we identify with ordinary QCD.
The spontaneous symmetry breaking also produces a set of
additional massive color-octet vector bosons, generically
referred to as colorons in this work. The colorons obtain
their mass by “eating” the colored Nambu-Goldstone
bosons of the eight broken generators of the original
extended color gauge group. Hence, the full theory may
be characterized schematically as

SUð3Þ1c × SUð3Þ2c × SUð2ÞL × Uð1ÞY
→ SUð3Þc × SUð2ÞL ×Uð1ÞY → SUð3Þc ×Uð1ÞEM;

ð2:1Þ

where the gauge symmetry breaking in the electroweak and
the color sectors occurs at different energy scales.

A. The boson sector

The spontaneous symmetry breaking in the (unaltered)
SM electroweak sector, SUð2ÞL ×Uð1ÞY → Uð1ÞEM, is
facilitated by the usual (color-singlet) Higgs field doublet
ϕ, at the weak scale vh ¼ 246 GeV:

ϕ ¼ 1ffiffiffi
2

p
� ffiffiffi

2
p

πþ

vh þ h0 þ iπ0

�
; ð2:2Þ

where h0 corresponds to the SM Higgs boson, and π0;� are
the electroweak Nambu-Goldstone bosons eaten by the Z
and theW� gauge fields. The extended strong sector, on the

other hand, is spontaneously broken to the diagonal QCD
subgroup, SUð3Þ1c × SUð3Þ2c → SUð3Þc, via the vacuum
expectation value of a complex multicomponent (electro-
weak-singlet) scalar Φ, which assumes a bifundamental
form ð3; 3̄Þ under the two original color groups [9,10]:

Φ ¼ 1ffiffiffi
6

p ðvs þ s0 þ iAÞI3×3 þ ðGa
H þ iGa

GÞta

ðta ≡ λa=2Þ: ð2:3Þ

Here, s0 (A) denotes a gauge-singlet scalar (pseudoscalar)
degree of freedom, Ga

H represents a set of massive color-
octet scalars, and λa is the set of Gell-Mann matrices. The
energy scale at which the spontaneous symmetry breaking
occurs in the extended color sector is characterized by vs,
the nonzero VEV of the gauge-singlet scalar s0, which is
presumed to be higher than the scale of electroweak
symmetry breaking (vs > vh ¼ 246 GeV).
The color-octet pseudoscalars Ga

G in (2.3) represent the
colored Nambu-Goldstone bosons, which are eaten by the
colorons to induce their mass [9,10]:

M2
C ¼ v2s

6
ðg2s1 þ g2s2Þ; ð2:4Þ

with gsi being the corresponding couplings of the
original SUð3Þic color gauge groups (i ¼ 1; 2).
Furthermore, the usual QCD coupling gs of the massless
gluons may be expressed in terms of the gsi couplings,
according to [9–11]:

1

g2s
¼ 1

g2s1
þ 1

g2s2
: ð2:5Þ

One notes that the relations (2.4)–(2.5) may be inverted to
express the gauge couplings gs1 and gs2 in terms of the
physically more relevant quantities MC, vs, and gs, result-
ing in

g2s1;2 ¼
3M2

C

v2s

�
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2g2sv2s
3M2

C

s �
: ð2:6Þ

As an immediate consequence of (2.6), one deduces a
theoretical lower bound for the coloron mass:

MC ≥
ffiffiffiffiffiffiffiffi
2=3

p
gsvs: ð2:7Þ

The scalar sector of the model is described by the
Lagrangian:

Lscalar ¼ Dμϕ†Dμϕþ Tr½DμΦ†DμΦ� − Vðϕ;ΦÞ; ð2:8Þ

with the usual electroweak covariant derivative acting on ϕ
(2.2). Defining Ga

iμ as the gauge fields of the two original
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SUð3Þic color groups,1 the color covariant derivative acting
on the bifundamental Φ (2.3) takes the form

DμΦ ¼ ∂μΦ − igs1G
a
1μt

aΦþ igs2ΦG
a
2μt

a: ð2:9Þ

As discussed in [9,10], the most general renormalizable
form of the scalar potential contains the following terms:

Vðϕ;ΦÞ ¼ λh
6

�
ϕ†ϕ −

v2h
2

�
2

þ λm

�
ϕ†ϕ −

v2h
2

��
Tr½Φ†Φ� − v2s

2

�

þ λs
6
ðTr½Φ†Φ�Þ2 þ κs

2
Tr½ðΦ†ΦÞ2�

−
λs þ κsffiffiffi

6
p vsrΔðDetΦþ H:c:Þ

−
λs þ κs

6
v2sð1 − rΔÞTr½Φ†Φ�; ð2:10Þ

with the five real and dimensionless couplings λh, λm, λs, κs,
and rΔ. The last of these is always accompanied by powers
of the singlet scalar VEV, vs, in the potential and, hence,
does not participate in the quartic scalar interactions. The
potential is bounded from below under the quartic coupling
conditions [10]:

λh > 0; λ0s > 0; κs > 0; λ2m <
1

9
λhλ

0
s;

ð2:11Þ
where we define λ0s ≡ λs þ κs for later convenience. In
addition, demanding that the global minimum of the
potential (2.10) coincides with the scalar VEVs, hϕi ¼
vhffiffi
2

p ð0
1
Þ and hΦi ¼ vsffiffi

6
p I3×3 [c.f. (2.2)–(2.3)], imposes a

nontrivial condition on the rΔ coupling [10]:

0 ≤ rΔ ≤
3

2
: ð2:12Þ

From the scalar potential (2.10), one deduces the
following expressions for the masses of the singlet pseu-
doscalar and the scalar color octet [9,10]:

m2
A ¼ v2s

2
rΔλ0s; m2

GH
¼ 1

3
ðv2sκs þ 2m2

AÞ; ð2:13Þ

which implies

mA ≤
ffiffiffi
3

2

r
mGH

: ð2:14Þ

The two massive scalars in the potential that have
nonzero VEVs, h0 and s0, are mixed with one another
due to the mixing coupling λm, and may be diagonalized by
performing an orthogonal rotation into their mass-
eigenstate basis:

�
h0
s0

�
¼

�
cos χ sin χ

− sin χ cos χ

��
h

s

�
;

cot 2χ ≡ 1

6λm

�
λ0s

�
1 −

rΔ
2

�
vs
vh

− λh
vh
vs

�
: ð2:15Þ

Consequently, the mass eigenstates h and s constitute the
corresponding physical scalars of the theory with the
masses:

m2
h;s ¼

1

6

�
λhv2h þ λ0sv2s

�
1 −

rΔ
2

�

�
�
λhv2h − λ0sv2s

�
1 −

rΔ
2

��
sec 2χ

�
: ð2:16Þ

The relations (2.13) and (2.15)–(2.16) may be used to
convert the five dimensionless couplings of the potential
(2.10) into the physically more relevant quantities sin χ, vs,
mh, ms, mA, and mGH

, according to

λh ¼
3

2

m2
h þm2

s þ ðm2
h −m2

sÞ cos 2χ
v2h

;

λm ¼ 1

2

m2
s −m2

h

vhvs
sin 2χ;

λ0s ¼
1

2

2m2
A þ 3ðm2

h þm2
sÞ − 3ðm2

h −m2
sÞ cos 2χ

v2s
;

κs ¼
3m2

GH
− 2m2

A

v2s
;

rΔ ¼ 4m2
A

2m2
A þ 3ðm2

h þm2
sÞ − 3ðm2

h −m2
sÞ cos 2χ

: ð2:17Þ

Note that an attractive or repulsive interaction between the
two scalar fields ϕ and Φ in the potential (2.10), charac-
terized by the sign of λm, is reflected in the sign of the
mixing angle sin χ. Moreover, as evident from the potential
(2.10), the two scalar fields decouple in the limit λm → 0.
Based on (2.12) and the expression for rΔ in (2.17), one
also obtains the condition

m2
A ≤ 9½m2

hsin
2χ þm2

scos2χ�; ð2:18Þ

1Note that the gluon and the coloron are the corresponding
physical gauge boson definitions, once Ga

1μ and Ga
2μ are orthogo-

nally rotated (with a mixing angle θc) into their mass-eigenstate
basis (see e.g. [11,12] for a detailed treatment). The theoretically
“lightest” coloron mass, MC ¼ ffiffiffiffiffiffiffiffi

2=3
p

gsvs [c.f. (2.7)], corre-
sponds to the case of maximal mixing between the two gauge
groups SUð3Þic (θc ¼ π=4), and equal original gauge couplings,
gs1 ¼ gs2 ; the axigluon [3,4] is an example of this case.

VACUUM STABILITY AND TRIVIALITY ANALYSES OF … PHYSICAL REVIEW D 92, 055002 (2015)

055002-3



which results in the lower bound: ms ≥ 1
3
mA, in the

decoupling limit ðλm → 0Þ.
In this framework, the lighter of the two color-neutral

physical scalars in (2.15) is assumed to be the h degree of
freedom, which is identified with the Higgs-like state
discovered at the LHC [13,14]; i.e., mh ¼ 125 GeV. In
addition, the theoretical and experimental analyses of
[10,15] disfavor large values of the mixing angle sin χ,
implying that the h scalar is more “SM-like,” while the
heavier s boson appears more “singletlike.” The same
analysesprefer a singletVEVvs ≳ 1 TeV.Tevatron searches
have already excluded scalar color-octet bosons in the mass
range 50≲mGH

≲ 125 GeV [18] and LHC searches place
the lower bound on themasses of scalar color-octet bosons at
2.70TeV[19,20];we, therefore, assumemGH

> mh through-
out this work, in accordance with the assumptions made in
the previous studies [10,15]. Finally, the experimental lower
bound on the coloronmass is shown to be of order a fewTeV
by the Tevatron and LHC searches [21].

B. The fermion sector

The extended strong interaction gauge sector allows the
left- and the right-handed chiral eigenstates of the quarks
(which are charged in the usual way under the electroweak
interactions) to be charged under different SUð3Þic color
gauge groups, giving rise to the interesting possibility of
constructing a chiral theory of color [1–6]. Chiral charge
assignments for the quarks under the extended color group
will, subsequently, be reflected only in the quarks’ chiral
couplings to the colorons; their coupling to the gluons
remains vectorlike in nature, reproducing the ordinary
QCD interactions regardless of the original charge
assignments.
Such chiral color charge assignments for the quarks,

however, can render the model anomalous in this sector
[3,12,22,23], jeopardizing the overall consistency of the
framework. The cancellation of such induced anomalies
may be achieved by requiring the existence of new chiral
spectator fermions [12,23] whose chiral charges under the
extended strong sector are the opposite of the chiral charges
of the ordinary quarks. The number of spectator fermions
required for anomaly cancellation depends on the details of
the model under consideration. For instance, if all three
generations of the ordinary quarks are chirally charged
under the extended color gauge group, then three corre-
sponding spectator fermion generations (carrying opposite
chiral charges with respect to the quarks) are required to
cancel the induced anomalies. On the other hand, if the
chiral charge assignment of the third quark generation is
opposite to those of the first two generations, only one
additional spectator fermion generation (one uplike and one
downlike spectator) is necessary. When all ordinary quarks
are vectorially charged under the extended color inter-
actions, no anomalies are induced and no spectator fer-
mions are needed. For further details, see Appendix A.

To achieve anomaly cancellation within the extended
strong sector without introducing anomalies in other
sectors, the introduced spectator fermions are conjectured
to interact vectorially under the electroweak gauge group.2

Indeed, following [7], both the left- and the right-handed
spectator generations are assumed to be doublets under the
SUð2ÞL gauge group, while carrying a Uð1ÞY hypercharge
þ1=6. As a consequence, the spectator fermions carry the
same electric charges as their corresponding quark counter-
parts; i.e., þ2=3 for the uplike spectator and −1=3 for the
downlike spectator.3 A potential mixing between the
spectators and the ordinary quarks was shown to be
negligible, due to the presence of strong constraints on
flavor-changing coloron couplings [7].
These anomaly-canceling spectator fermions obtain their

masses via Yukawa interactions [10] with the bifundamen-
tal scalar Φ (2.3):

−yQ½Q̄k
RΦQ

k
L þ Q̄k

LΦ
†Qk

R�; ð2:19Þ

with Qk
LðRÞ representing a left(right)-handed spectator

doublet, and k the generation index. Taking the Yukawa
coupling yQ as a flavor-universal parameter for conven-
ience,4 one deduces the universal mass scale of the
spectator flavors in terms of the singlet VEV:

MQ ¼ yQffiffiffi
6

p vs: ð2:20Þ

While direct collider searches exclude spectator fermions
with masses below only about 700 GeV, fits to precision
electroweak observables raise the lower bound to a few
TeV [24].
Summarizing our brief review, the renormalizable col-

oron model enlarges the SM color gauge group to
SUð3Þ1c × SUð3Þ2c [c.f. (2.1)], spontaneously broken to
the diagonal QCD subgroup. As a consequence, a set of
massive color-octet vector bosons (colorons) are produced.
The spontaneous symmetry breaking in the strong sector is
facilitated by introducing additional (colored and color-
neutral) scalar degrees of freedom. Anomalies that would
arise from the ordinary quarks’ chiral charges under the
extended color gauge group may be canceled by the
addition of an appropriate number of new colored spectator
fermions with opposite chiral charges. As such, the model

2Spectators interacting chirally under the electroweak gauge
group would require the addition of “leptonlike” (color-neutral)
spectator fermions to cancel anomalies introduced within the
electroweak sector.

3The same assumption was made for the spectator electric
charge assignments in the phenomenological studies of
[10,15]. As in [7], the hypercharge is normalized according to
Q ¼ T3 þ Y.

4In general, the Yukawa coupling can be a flavor matrix, giving
rise to different masses for the individual spectator flavors.
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introduces eight free parameters, which may be expressed
in terms of the physically relevant quantities [10,15]:

fvs; sin χ; ms; mA; mGH
;MC;MQ;NQg; ð2:21Þ

where NQ denotes the number of spectator fermion
generations.

III. VACUUM STABILITY AND TRIVIALITY
ANALYSES OF THE SCALAR POTENTIAL

As described in Sec. II, the renormalizable coloron
model, with its extended strong sector, serves as an
interesting candidate description of physics beyond the
SM, introducing a variety of new vector, scalar, and
fermionic degrees of freedom into the theoretical frame-
work. In this section, we examine the stability of the scalar
potential (2.10), as well as the triviality of its couplings, up
to an energy cutoff of 100 TeV. To this end, we construct
the renormalization group (RG)-improved quartic inter-
actions, by simultaneously solving the RG equations of the
four scalar quartic couplings (λh, λm, λ0s, and κs), and we
determine their behavior as a function of the renormaliza-
tion scale μ. The stability of the scalar potential is,
subsequently, guaranteed by requiring the conditions
(2.11) to be satisfied for the running couplings within
the energy range of interest.5 Furthermore, we demand that
the running quartic couplings remain finite within the same
energy range, by imposing an upper limit of 4π on their
magnitudes; i.e., the triviality requirement should be
fulfilled and no Landau poles should develop.
In this study, we distinguish four separate scenarios,

according to the number of spectator fermion generations
and the Yukawa or Dirac nature of their masses. If the
spectator fermions obtain their masses via Yukawa inter-
actions (2.19) with the Φ scalar, then either zero, one, or
three generations of the spectator fermions may be present;
we analyze each as a separate scenario. However, if the
theory is vectorial in nature—and thus anomaly free by
construction—another possibility still exists: one can
include spectator fermions whose mass arises mainly from
a Dirac mass term, with the Yukawa interaction (2.19)
negligible or entirely absent. Such a scenario with one
generation of spectator fermions was introduced in [7], and
we analyze the stability and triviality requirements for this
scenario along with the three aforementioned cases.
In order to compute the running of the couplings as a

function of the renormalization scale, it is necessary to
obtain their β-functions within the context of the renorma-
lizable coloron model. By solving the RG differential
equation μdC=dμ ¼ βC, the behavior of any of the running

couplings C as a function of the energy may, subsequently,
be determined. The analytical expressions for the one-loop
β-functions of the relevant couplings of the SM, the
renormalizable coloron model containing spectators with
Yukawa couplings, and the renormalizable coloron model
containing spectators with a Dirac mass term are provided,
respectively, in Appendixes B, C, and D.
In the current treatment, we focus on capturing the

essential physics of the renormalizable coloron model
formalism, by considering one single relevant energy scale
beyond the SM, namely, the singlet VEV, vs. Taking vs as
the characteristic energy scale where the spontaneous
symmetry breaking of the extended color gauge group
occurs, all the particle masses generated by the symmetry
breaking may be approximated to reside in the vicinity of
vs. This is true for the new bosonic degrees of freedom, as
well as the spectator fermions with the Yukawa interac-
tion (2.19).
Assuming vs ≫ mt, below the singlet VEV one may

integrate out all of the non-SM degrees of freedom from the
Lagrangian, recovering the ordinary SM and its β-functions
as the low-energy effective theory. Specifically, we start at
μ ¼ mt, with the MS-scheme values of the gauge, the top
Yukawa, and the Higgs6 quartic couplings [25]:

gðmtÞ ¼ 0.6483; g0ðmtÞ ¼
ffiffiffiffiffiffiffiffi
3=5

p
× 0.3587;

gsðmtÞ ¼ 1.1671; ytðmtÞ ¼ 0.9369;

λhðmtÞ ¼ 6 × 0.1272: ð3:1Þ

As the renormalization scale is increased, the new degrees
of freedom associated with the renormalizable coloron
model become kinematically active above vs, and these
affect the β-functions and the running of the couplings.
Therefore, the appropriate matching between the low- and
high-energy running of the different couplings must occur
at the threshold vs.

7 In the following paragraphs, we discuss
the separate behaviors of the gauge, fermion, and scalar
sectors both below and above this threshold.
At low energies, μ < vs, the strong gauge sector resides

in the broken phase and acts like ordinary QCD, interacting
via the massless gluons with the running strong coupling
gs. However, once the threshold is reached, the colorons
become kinematically active and fully participate in the
interactions; the structure of the strong gauge sector is
restored to the unbroken phase SUð3Þ1c × SUð3Þ2c. The
strong coupling gs is, subsequently, replaced by the two
running couplings of the extended color gauge group, gs1

5Note that the running of the rΔ coupling does not interfere
with the running of the quartic interactions (and, therefore, has no
influence on the stability of the potential), since it is always
accompanied by powers of the scalar VEV, vs.

6The normalization we use for λh in (2.10) differs by a factor of
6 from the conventional Higgs self-coupling normalization in the
literature. In addition, g0 ¼ ffiffiffiffiffiffiffiffi

3=5
p

g1, where g1 is the hypercharge
coupling with the grand unified theory (GUT) normalization.

7By integrating out all states simultaneously, we neglect one-
loop corrections proportional to logarithms of ratios of masses
relative to vs, e.g. proportional to logðM2=v2sÞ=16π2.
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and gs2 , with the matching conditions at the threshold
μ ¼ vs given by (2.6). Note that the matching conditions
(2.6) result in different shifts for the starting points of the
two gsi couplings, with respect to the running value of the
QCD coupling at that scale, gsðvsÞ.
Spectator fermions with Yukawa interactions described

by (2.19) do not contribute below μ < vs, and become
kinematically accessible only above the threshold. At
μ ≥ vs, their Yukawa coupling and its β-function is
activated, with the starting point given by (2.20). For
spectator fermions with a Dirac mass term, the kinematic
threshold above which these fermions start to participate is,
instead, set by their Dirac mass MQ, which is independent
of the symmetry breaking scale vs. In this scenario, the
fermionic threshold, MQ, should be treated as a free
parameter separate from the bosonic threshold vs. Note
also that, as mentioned in Sec. II B, mixing between the
ordinary quarks and the spectator fermions is negligible [7],
and their Yukawa couplings remain independent of one
another.
The scalar sector also has distinctive behavior in differ-

ent energy regimes. Below μ < vs, one may integrate out
the ð3; 3̄Þ Φ scalar altogether from the potential (2.10) by
completing the square. This reproduces the SM scalar
potential with the effective Higgs coupling as the sole
scalar interaction:

λeffh ðμ < vsÞ≡ λh − 9
λ2m
λ0s

; ð3:2Þ

which arises due to the mixing between the SM Higgs
doublet ϕ and the complex Φ scalar. Once the threshold is
reached, μ ≥ vs, the Φ scalar and its additional spin-0
degrees of freedom become kinematically accessible and
the remaining (quartic) couplings participate within the
scalar interactions. The β-functions of the four scalar
quartic couplings are, at this point, coupled to one another
and must be solved simultaneously. The matching con-
ditions for these couplings are, at the scale μ ¼ vs, retrieved
from the expressions in (2.17) that represent the starting
point for the quartic couplings λm, λ0s, and κs, which are
absent at low energies. The transition of the low-energy λeffh
into the high-energy λh is accompanied by a shift at the
scale vs, due to the mixing quartic coupling [c.f. (3.2)].
In the following section, we identify the viable region of

the free parameter space, in which the stability and triviality
conditions are satisfied for the four scenarios containing
different configurations of spectator fermions. We illustrate
our results using exclusion plots.

IV. RESULTS AND DISCUSSION

Having discussed the formal structure of the model and
set up the vacuum stability and triviality requirements in the
previous sections, we now proceed to determine the viable
regions of the parameter space where these conditions can

be fulfilled. Specifically, in this study we are interested in
imposing the vacuum stability of the potential and triviality
conditions up to an energy of 100 TeV; in other words, we
demand that the conditions (2.11) be satisfied for all of the
four running scalar quartic couplings within this energy
range, and that none of the couplings develop a Landau
pole. We investigate separately the three scenarios of zero,
one, or three generations of the spectator fermions having
Yukawa interactions (2.19) with the Φ scalar, as well as the
scenario of one spectator fermion generation with Dirac
masses.
The obtained viable regions of the parameter space are

exhibited in sin χ −ms exclusion plots, taking into account
both the positive and negative values of the mixing angle—
corresponding to the sign of λm, signifying an attractive
or repulsive interaction between the scalars ϕ and Φ.
Furthermore, the plots incorporate the theoretical and the
95% C.L. experimental constraints from demanding the
global minimum of the potential to coincide with the scalar
VEVs [c.f. (2.12) and (2.18)], unitarity, electroweak pre-
cision tests, and the LHC direct measurements of the Higgs
boson couplings, which were previously analyzed and
derived in [10].

A. Scenario with no spectator fermions (NQ ¼ 0)

In this scenario, the ordinary quarks are vectorially
charged under the extended color group SUð3Þ1c×
SUð3Þ2c; i.e., both the left- and right-handed eigenstates
of each chiral quark flavor are charged under the same
gauge group SUð3Þic. The scenario is, hence, anomaly free
by construction and no additional spectator fermions with
Yukawa couplings to the Φ scalar are required for anomaly
cancellation purposes. For concreteness, this scenario is
represented by vectorially charging all three quark gen-
erations under SUð3Þ1c by convention.8 The β-functions of
the running couplings, above the singlet VEV scale vs, are
given in Appendix C by setting NQ ¼ 0 and yQ ¼ 0. None
of the couplings, therefore, receives any contribution from
the spectator fermions in their running.
The scenario contains six free parameters: vs and sin χ,

as well as the bosonic masses ms, mA, mGH
, and MC. The

panels in Fig. 1 display the sin χ −ms exclusion plots for a
singlet VEV, vs ¼ 3 TeV. The MC and mGH

values are
varied from below vs to above it in each row and column,
respectively. Within each panel, the exclusion curves
corresponding to three representative values of n≡
mA=mGH

are superimposed, n ¼ 0; 0.5, and 1.9 The bounds
are obtained by imposing the vacuum stability and triviality
conditions up to 100 TeV, as well as the previously
analyzed [10] theoretical and experimental constraints.

8This choice is, however, immaterial for the overall phenom-
enological results.

9Note that the upper value ofmA is given by (2.14), resulting in
0 ≤ n ≲ 1.2.
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In these exclusion plots, the upper bound on ms in
different regions, due to the vacuum stability and triviality
constraints, is determined by the following two competing
effects:

(i) At relatively small values of j sin χj, the quartic
coupling λ0s develops a Landau pole for large values
of ms before the renormalization scale has reached
the 100 TeV cutoff. This process, however, depends
only weakly on the precise value of the mix-
ing angle.

(ii) As the absolute value of the mixing angle increases,
the SM Higgs coupling λh receives larger contribu-
tions at the threshold vs [c.f. (2.17)] as well as to its
running from the mixing coupling jλmj, and develops
a Landau pole before the cutoff is reached. This
process is much more strongly dependent on the
mixing angle.

The upper bound onms is, thus, determined by the triviality
condition in this scenario. These two competing effects

explain the origin of the sudden drop in the upper value of
ms as a function of j sin χj: the observed “kinks” in Fig. 1.
The much stronger dependence of λh on the mixing angle,
as compared with λ0s, is encoded in their β-functions (C3),
with the former receiving a much larger contribution in its
running from λm (due to the larger coefficient) than the
latter. Furthermore, the β-function of λm reveals different
running behaviors for the positive and negative values of
this coupling, although with very moderate effects on the
viable parameter space (the negative values of λm slightly
mitigate the constraints on the viable parameter space).
As mentioned, within each panel, the mass of the

pseudoscalar, mA, is varied from 0 to near its formal upper
bound (2.14). According to (2.17), a larger mA introduces,
at the threshold, a smaller starting point for the κs quartic
coupling, to which the β-function of λ0s is quadratically
sensitive with a sizable coefficient. Hence, a larger mA
mitigates the positive κs contribution to the running of the
λ0s coupling, allowing for an increased ms upper bound at

FIG. 1 (color). The sin χ −ms exclusion plots with no spectator fermions, NQ ¼ 0, for a singlet VEV vs ¼ 3 TeV. The panels display
benchmark values of mGH

;MC ∈ f2.5; 3.5g TeV, so that one can observe the impact of having each mass lying below or above vs. The
constraints from considering the global minimum of the potential coinciding with the VEVs (long-dashed green line), unitarity (dot-
dashed blue line), electroweak precision tests (dotted red line), direct Higgs coupling measurements by the LHC (short-dashed black
line), and vacuum stability and triviality up to 100 TeV (solid brown line) are exhibited. The enumerated curves correspond to several
values of n≡mA=mGH

between 0 and 1. All colored regions are excluded.

VACUUM STABILITY AND TRIVIALITY ANALYSES OF … PHYSICAL REVIEW D 92, 055002 (2015)

055002-7



small mixing angles before the Landau pole is reached.10 In
contrast, the ms upper bound at larger mixing angles,
caused when λh develops a Landau pole, is independent of
the value of the pseudoscalar mass mA, as expected. A
larger scalar color-octet mass mGH

(lower plots in Fig. 1),
on the other hand, forces a greater κs initial value at the
threshold and an enhanced positive contribution to the
running of λ0s, which results in the latter developing a
Landau pole at smaller ms. In this case, an additional
change in mA has a much more pronounced effect on the
ms upper bound and the resulting viable parameter space.
Finally, one observes that a (slightly) larger coloron mass

(right-hand panels in Fig. 1) slightly alleviates the Landau
pole constraints. This is attributed to the fact that, within the
scalar β-functions [c.f. (C3)], the two gsi extended gauge
couplings [whose threshold values depend on the coloron
mass by (2.6)] contribute according to two competing
terms: a positive quartic term ∝ þðg2s1 þ g2s2Þ2 and a
negative quadratic term ∝ −ðg2s1 þ g2s2Þλquartic. For coloron
masses not far away from the singlet VEV, MC ∼ vs, the
values of the two gsi couplings start relatively small, and the
negative quadratic term (multiplied by the potentially
sizable scalar quartic coupling) takes the upper hand.
This in turn causes a taming of the positive running of
the scalar quartic coupling, postponing its Landau pole.
Such behavior, nevertheless, reverses for larger coloron
masses lying farther away from the singlet VEV, as the

positive quartic gauge term is dominant for large gsi
threshold values.
The dependence of the viable region of the parameter

space on the singlet VEV is further illustrated in Fig. 2 for
two larger values, vs ¼ 5 and 10 TeV. We illustrate the
benchmark case where MC;mGH

∼ vs, since the impact of
varying the color-octet state masses away from vs remains
similar to that analyzed for vs ¼ 3 TeV in Fig. 1. One notes
that a larger vs necessitates largerms, which in turn induces
a larger contribution to λh at the threshold, for a given value
of the mixing angle, and leads to the development of a
Landau pole more quickly. Therefore, the viable region is
dominated by smaller values of the mixing angle for larger
singlet VEVs.
In order to explicitly demonstrate these findings, we plot

the running of the couplings as a function of the renorm-
alization scale in Fig. 3, taking as an example different
locations within the parameter space at vs ¼ 3 TeV,
mGH

¼ MC ¼ 3.5 TeV (bottom-right panel of Fig. 1). A
representative value within the allowed region of the
parameter space for a heavy pseudoscalar is selected for
the top-left panel of Fig. 3. One observes that, for this
choice of the free parameters, all couplings behave as
expected below the 100 TeV cutoff; i.e., the stability of the
potential (2.11) is guaranteed and no Landau poles are
encountered. The top-right panel exhibits the situation
where the mixing angle has been increased until it falls
outside the allowed region. In this case, the Higgs quartic
coupling, λh, receives unacceptably large contributions
from the mixing coupling, λm, at the threshold as well
as in its running, and develops a Landau pole before
reaching the cutoff, excluding this region. In contrast, the
situation where ms has been increased to fall outside the

FIG. 2 (color). The sin χ −ms exclusion plots with no spectator fermions, NQ ¼ 0, for singlet VEVs vs ¼ 5; 10 TeV, and
mGH

;MC ∼ vs. Once more, several n≡mA=mGH
curves between 0 and 1 are displayed. All colored regions are excluded. Note that as vs

increases, the unitarity bounds (corresponding, from bottom to top, to n ¼ 0; 0.5; 1) restrict sin χ more strongly, the direct Higgs
constraints restrict sin χ less strongly, and the regions allowed by electroweak precision tests, vacuum stability, and triviality become
both more constrained in sin χ and less constrained in ms. Once more, the lower bounds (corresponding, from bottom to top, to
n ¼ 0.5; 1) are due to demanding that the global minimum of the potential coincides with the VEVs. (See the caption of Fig. 1 for further
details.)

10At the same time, a larger mA directly induces a larger
threshold starting point for λ0s by (2.17); however, this enhancing
effect is more than compensated by the corresponding decrease of
the κs contribution to the λ0s running, and the resulting viable
parameter space is enlarged (see Fig. 3).
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FIG. 3 (color online). The running of the scalar quartic couplings (top and middle rows) and the gauge and Yukawa couplings (bottom
panel) as a function of the renormalization scale μ, for NQ ¼ 0, vs ¼ 3 TeV,mGH

¼ MC ¼ 3.5 TeV (bottom-right panel of Fig. 1). The
panels in the top and middle rows correspond to different regions of the sin χ −ms parameter space: the top-left panel illustrates a point
in the allowed region for a heavy pseudoscalar, the top-right panel corresponds to a point excluded because sin χ is too large, and the
middle-left panel corresponds to a point excluded because ms is too large. The middle-right panel shows a point that is allowed for a
heavy pseudoscalar (as in the top-left panel) but becomes excluded when the pseudoscalar is light. The vertical solid line indicates the
imposed 100 TeV cutoff, and a Landau pole is indicated by a coupling that exceeds 4π; in the top-right panel, λh suffers a Landau pole
below 100 TeV, while in the middle row it is λ0s that does so. The flow of the gauge and Yukawa couplings (bottom panel) is the same in
all panels, since they do not depend on the mixing angle or the (pseudo)scalar masses. Note that the Higgs quartic coupling, λh, receives
a shift at the threshold vs, whereas the strong coupling gs is replaced by the two extended gauge group couplings, gs1 and gs2 , at the same
threshold.
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allowed region is displayed in the middle-left panel of the
same figure. Here, the larger value of ms induces larger
contributions to the running of λ0s via positive bosonic
coefficients in its β-function, as well as large contributions
to its starting point at the threshold [c.f. (2.17)]. As a
consequence, large ms values lead to a Landau pole for this
quartic scalar coupling, excluding the corresponding region
of the parameter space. The middle-right panel illustrates
the situation where a region that is allowed when the
pseudoscalar is heavy (n ∼ 1, top-left panel) becomes
excluded if the pseudoscalar is light (n ∼ 0). As previously
explained, this happens since a light pseudoscalar implies a
larger starting point for the κs coupling, which then
unacceptably enhances the running of λ0s, causing the latter
to develop a Landau pole despite its lower threshold value.

B. Scenario with one spectator fermion generation
with Yukawa interactions (NQ ¼ 1)

When the chiral eigenstates of the third generation
of ordinary quarks are charged under the extended color
gauge group in the opposite way to those of the first
two generations, then one generation of the spectator
fermions, with a Yukawa coupling to the Φ scalar, is
necessary to cancel the induced anomalies. The β-functions
of the couplings, above the threshold vs, are given in
Appendix C by setting NQ ¼ 1. The spectator Yukawa
coupling, yQ, is fully active, and contributes to the relevant
scalar coupling β-functions.
Examples of the viable region of the parameter space in

this scenario are displayed in Fig. 4 for vs ¼ mGH
¼

MC ¼ 3 TeV, and selected spectator masses MQ ¼ 1
and 2 TeV, as well as covering the allowed range of the
pseudoscalar masses. The sources of the upper bounds on
ms as a function of sin χ, including the presence of kinks in
the boundary curves, are similar to what was discussed in

Sec. IVA; likewise, the shape and the behavior of the
allowed region as a function of the varying bosonic masses
remains similar. Nevertheless, it is evident from the right
panel of Fig. 4 that a moderately heavier spectator fermion
slightly reduces the largest allowed values of ms. This
effect is encoded in the contribution of the spectator
fermion Yukawa coupling within the scalar β-functions
(C3). As was the case with the extended gauge couplings
(albeit with the opposite sign), the spectator Yukawa
couplings enter the scalar β-functions via two competing
terms: a negative quartic term ∝ −NQy4Q and a positive
quadratic term ∝ þNQy2Qλquartic. For spectator masses
around the singlet VEV, MQ ∼ vs, the starting value of
the Yukawa coupling is relatively small [c.f. (2.20)], and the
positive quadratic term (multiplied by the potentially
sizable scalar quartic coupling) may dominate. This enhan-
ces the positive running of the scalar quartic coupling,
hastening the development of its Landau pole. As in the
case of the extended gauge couplings and the coloron mass,
this behavior reverses for larger spectator masses, since the
negative quartic Yukawa term becomes more prominent for
larger threshold values.
Interestingly, at larger values of MQ another effect is

introduced, leading to a lower bound on ms, as depicted in
the right panel of Fig. 4. Recall that a heavy pseudoscalar
(n ¼ 1) induces a small threshold value for the κs coupling
according to (2.17). Furthermore, for small values of the
scalar quartic coupling, the positive quadratic Yukawa term
in the β-function of κs becomes subdominant as compared
with the negative quartic Yukawa term. Hence, for (mod-
erately) larger spectator masses together with heavy pseu-
doscalars, κs starts small and rapidly declines in value due
to the negative fermionic contributions to its running.
Eventually, it becomes negative and destabilizes the poten-
tial, per (2.11). A larger ms is, therefore, necessary in order

FIG. 4 (color). The sin χ −ms exclusion plots with one spectator fermion generation, NQ ¼ 1, for vs ¼ mGH
¼ MC ¼ 3 TeV. The

panels correspond to two representative values of the spectator mass,MQ ¼ 1; 2 TeV, and various n≡mA=mGH
curves between 0 and 1

(together with their corresponding unitarity and the global-minimum constraints from bottom to top) are displayed. Note that in the right
panel an additionalms lower bound is developed for a heavy pseudoscalar (n ¼ 1). All colored regions are excluded. (See the caption of
Fig. 1 for further details.)
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to compensate for the negative fermionic contributions in
its β-function. Above this minimum value of ms, a
“window” of viable parameter space is opened, until ms
becomes large enough to trigger a Landau pole for λ0s. In
this scenario, the upper limit on ms is still determined by

the two competing effects of the triviality of λh and λ0s,
whereas its lower bound is set by the vacuum stability
condition due to the positivity of κs. Heavier spectators
rapidly destabilize the potential via their negative fermionic
Yukawa contributions to the κs β-function, and close down

FIG. 5 (color online). The running of the scalar quartic couplings (top and middle rows) and the gauge and Yukawa couplings (bottom
panel) as a function of the renormalization scale μ, for NQ ¼ 1, vs ¼ mGH

¼ MC ¼ 3 TeV, and MQ ¼ 2 TeV (right panel of Fig. 4).
The panels in the top and middle rows correspond to different regions of the sin χ −ms parameter space: the top-left panel illustrates a
point in the allowed region for a light pseudoscalar, the top-right panel corresponds to a point excluded because sin χ is too large (λh
suffers a Landau pole), and the middle-left panel corresponds to a point excluded becausems is too large (λ0s suffers a Landau pole). The
middle-right panel demonstrates a point which is allowed for a light pseudoscalar but becomes excluded for a heavy pseudoscalar, where
κs becomes negative and therefore destabilizes the potential. (See the caption of Fig. 3 for further details.)
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the allowed window even when the pseudoscalars are light.
In consequence, in this scenario, the spectator masses
cannot exceed the singlet VEV.
The behavior of the running couplings as a function of

the renormalization scale, μ, is demonstrated in Fig. 5 for
different parameter space regions of the right panel in
Fig. 4. As with the previous scenario, a benchmark value
within the allowed region (corresponding to a light pseu-
doscalar) is selected for the top-left panel, where it is shown
that the vacuum stability and triviality conditions are safely
satisfied up to a 100 TeV cutoff. A larger mixing angle (top-
right panel) leads the Higgs quartic coupling, λh, to develop
a Landau pole and excludes the corresponding parameter
space. On the other hand, an overly large ms (middle-left
panel) yields a Landau pole for λ0s. Finally, a heavy
pseudoscalar, together with the sizable spectator mass,
forces the κs coupling to become negative prematurely;
the middle-right panel displays this destabilizing effect
on the potential, which excludes the corresponding region
of the parameter space that had been allowed for light
pseudoscalars.

C. Scenario with three spectator
fermion generations with Yukawa

interactions (NQ ¼ 3)

This scenario is described by charging all left-handed
ordinary quarks under one of the SUð3Þic color groups,
while the corresponding right-handed quarks are charged
under the other color group. As a consequence, three
generations of spectator fermions with opposite chiral
color charges to the ordinary quarks, and Yukawa inter-
actions with the Φ scalar, are required to cancel the
anomalies. In this scenario, the β-functions of the cou-
plings, above the threshold vs, are given in Appendix C by
setting NQ ¼ 3.
The general observations in Sec. IV B about the scenario

containing one spectator fermion generation apply here as
well, but are modified by the fact that the spectator Yukawa
contributions to the scalar β-functions are now enhanced by
the larger number of generations, NQ ¼ 3. Figure 6 exhib-
its the viable parameter space in this scenario for the
benchmarks vs ¼ mGH

¼ MC ¼ 3 TeV, and a spectator
mass MQ ¼ 1 TeV. Once more, curves corresponding to
the full allowed range of pseudoscalar masses are dis-
played. For a moderate spectator mass, the factor of 3
enhancement of its Yukawa contributions has only a
moderate effect on the viable parameter space as compared
with the previous scenario with only one spectator fermion
generation. However, as the spectators become heavier,
their negative fermionic contributions overwhelm the
bosonic contributions within the β-function of the κs
coupling, rapidly destabilizing the potential. Hence, this
scenario favors relatively light spectator fermions with
masses well below vs.

D. Scenario with one spectator fermion generation
with Dirac masses (NDirac

Q ¼ 1)

If the theory is anomaly free by construction (i.e., with
the ordinary quarks vectorially charged under the extended
color group, as in the scenario of Sec. IVA), it is still
possible to include spectator fermions within the renorma-
lizable coloron model, with a (flavor-universal) Dirac mass
term. In this case, the Yukawa interaction (2.19) is
negligible or entirely absent. Hence, the spectator fermion
mass,MQ, is no longer related to the singlet VEV scale, vs,
and does not need to be of the same order in magnitude.
Such an example with one spectator generation, NDirac

Q ¼ 1,
was previously studied in [7], where the spectator fermion
generation and the third quark generation were vectorially
charged under SUð3Þ1 and the remaining two lighter quark
generations were vectorially charged under the SUð3Þ2
gauge group. In this scenario, one thus has two independent
mass thresholds, namely the fermionic threshold MQ and
the bosonic threshold characterized by vs. The β-functions
of this scenario (encompassing both possibilities vs≷MQ)
are provided in Appendix D.
Figure 7 exhibits the sin χ −ms exclusion plots for three

benchmark values of the singlet VEV, vs ¼ 3; 5; 10 TeV
and their corresponding vector and scalar color-octet
masses, and an illustrative spectator fermion mass
MQ ¼ 1 TeV. It is interesting to observe that the panels
in this figure bear a noticeable resemblance to the panels in
Figs. 1–2, the scenario with no spectator fermions. This is
perhaps not surprising, since the spectator Yukawa cou-
plings are absent in both scenarios. The only difference
arises in the spectator contributions to the running of the
gauge couplings in the current scenario, which have a

FIG. 6 (color). The sin χ −ms exclusion plots with three
spectator fermion generation, NQ ¼ 3, for vs ¼ mGH

¼
MC ¼ 3 TeV, and the spectator massMQ ¼ 1 TeV. Various n≡
mA=mGH

curves between 0 and 1 (together with their
corresponding unitarity and the global-minimum constraints from
bottom to top) are displayed. All colored regions are excluded.
(See the caption of Fig. 1 for further details.)
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relatively small, but nonetheless noticeable, impact on the
viable parameter space. Given the minor influence of the
running gauge couplings on the viable parameter space,
sensitivity to the exact value of the fermionic threshold,
MQ, appears insignificant.

11 Moreover, the discussions in
Sec. IVA, regarding the vacuum stability and triviality
analyses, still apply here. We conclude that, given the small
overall effects of the running gauge couplings, inclusion of
Dirac spectator fermions does not have a significant impact
on the vacuum stability and triviality bounds of the
renormalizable coloron model.

V. CONCLUSION

We have analyzed how vacuum stability and triviality
requirements affect the viable parameter space of the
renormalizable coloron model. To this end, we computed
the β-functions of all the relevant fermionic and bosonic
degrees of freedom within the formalism (presented in the
appendixes), and determined the behavior of the couplings
as a function of the renormalization scale. We guaranteed
the stability of the scalar potential by imposing the
conditions (2.11) on the running quartic couplings, while
simultaneously demanding that none of the couplings
encounter a Landau pole, defined as a coupling value
exceeding 4π. We defined the viable region of the free
parameter space of the theory as the region in which these
vacuum stability and triviality conditions remain satisfied
up to the 100 TeV cutoff scale. Our results are summarized
in exclusion plots that include complementary prior theo-
retical and experimental bounds from the potential’s global
minimum condition, unitarity, electroweak precision tests,
and the LHC measurements of the 125 GeV Higgs
couplings.
Our analysis covered four separate scenarios with dis-

tinctive spectator fermion contents. The first three included
zero, one, or three generations of spectator fermions with

Yukawa couplings to the scalar sector of the renormalizable
coloron model; the fourth scenario includes a single
spectator fermion generation with only Dirac masses.
Our investigations revealed that the vectorial scenarios
containing either no spectator fermions or one generation of
the Dirac spectator fermions leave ample viable regions of
parameter space. The upper bounds our analysis places on
the mass of the extra scalar state, as a function of the mixing
between the two scalars in the model, arise because one or
more scalar couplings encounters a Landau pole. In
contrast, the chiral scenarios featuring either one or three
spectator generations with Yukawa couplings strongly
favor relatively light spectators with masses well below
the symmetry breaking scale characterized by the singlet
VEV (corresponding to small Yukawa couplings). Again,
there are upper bounds on the mass of the extra scalar due
to triviality. However, if the spectator mass is increased to
lie not far below the singlet VEV scale (corresponding to
moderate Yukawa couplings) then the upper bounds on the
scalar mass due to triviality are accompanied by lower
bounds due to vacuum stability, so that the model is viable
only within a window of scalar mass vs scalar mixing
angle. A future 100 TeV hadron collider may, therefore, be
considered a natural laboratory to thoroughly explore the
structure of the renormalizable coloron model as a potential
description of nature within this energy range.
Finally, we comment on the dependence of the obtained

results upon the cutoff scale. As explained in Sec. IV the
triviality constraints are determined at small mixing angle
by the behavior of λ0s and at large mixing angle by the
behavior of λh. Simply increasing the cutoff scale without
rescaling the breaking scales vh;s restricts the allowed
parameter space since the initial conditions (2.17) are fixed
and the stability and triviality conditions must hold to
higher energies. At small mixing angles, the region shrinks
due to a Landau pole in λ0s and at larger mixing angles due
to a Landau pole in λh. In each mixing-angle region, the
bounds on the particle masses will fall logarithmically with
cutoff scale in the usual manner—leading to a smaller
allowed region as the cutoff is increased.

FIG. 7 (color). The sin χ −ms exclusion plots with one Dirac spectator fermion generation, NDirac
Q ¼ 1, for three benchmark values

vs ¼ 3; 5; 10 TeV, and the corresponding values for the vector and scalar color-octet masses. Several curves within the allowed range of
the pseudoscalar masses (n ¼ 0 − 1) are presented. A universal spectator mass MQ ¼ 1 TeV is selected for illustration. All colored
regions are excluded. (See the caption of Fig. 1 for details.)

11We have checked that substituting a heavy MQ ¼ 20 TeV
does not noticeably alter the viable parameter space of Fig. 7.
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APPENDIX A: QUARK CHANGES
AND THE TOP-QUARK MASS IN THE

RENORMALIZABLE COLORON MODEL

In this appendix we give a brief overview of possible
fermion charges in the renormalizable coloron model, and a
description of the origin of the top-quark mass in these
scenarios.

1. Quark charges

While the charges of the quarks under the standard
model SUð3Þc × SUð2ÞL ×Uð1ÞY gauge group are fixed,
the color charges of the quarks can arise from either
SUð3Þ1c or SUð3Þ2c in the renormalizable coloron model.
Care must be taken in the assignment of the SUð3Þ1c ×
SUð3Þ2c charges to avoid gauge anomalies, however, and
some anomaly free representations include fermions with
exotic color charges [3]. Here we follow [23], and inves-
tigate examples in which the only new fermions introduced
are color triplets under the unbroken SUð3Þc, and are hence
color triplets under either SUð3Þ1c or SUð3Þ2c.

a. One quark generation

Let us begin by discussing the case of a single standard
model-like quark generation. By convention, we can take
the left-handed weak-doublet quarks to be charged under
SUð3Þ1c, and therefore the qL state has quantum numbers
ð3; 1; 2;þ1=6Þ under the full SUð3Þ1c × SUð3Þ2c ×
SUð2ÞL ×Uð1ÞY gauge group. The right-handed weak-
singlet quarks, uplike (uR with hypercharge þ2=3) and
downlike (dR with hypercharge −1=3), can then each be
charged under either SUð3Þ group. If both right-handed
quarks are charged under SUð3Þ1c, the representation has
precisely the same form as in the standard model with the
replacement of SUð3Þ1c for SUð3Þc, and is automatically
anomaly free.12

If one or both right-handed quarks transform under
SUð3Þ2c, however, the representation is anomalous and

additional (spectator) fermions must be added. Following
[23], the simplest choice for the spectator fermions is to add
the missing SUð3Þ1;2c chiral partners needed to yield an
anomaly free representation. For example, if uR is charged
under SUð3Þ1c but dR is charged under SUð3Þ2c, we add the
following downlike spectators:

d0R∶ ð3; 1; 1;−1=3Þ; d0L∶ ð1; 3; 1;−1=3Þ; ðA1Þ

i.e. add a d0R under SUð3Þ1c and a d0L under SUð3Þ2c to
cancel the anomalies that were present. A similar arrange-
ment is possible swapping uR ↔ dR, if uR is charged under
SUð3Þ2c and dR under SUð3Þ1c instead.
Finally, if bothuR anddR are chargedunderSUð3Þ2c, there

are two options. Either one can add weak-singlet u0 and d0
quarks (combining the two possibilities described above), or
alternatively one can add weak-doublet spectator quarks

q0R∶ ð3; 1; 2;þ1=6Þ; q0L∶ ð1; 3; 2;þ1=6Þ: ðA2Þ
Note that, in all of the cases above, a Yukawa coupling to

the color bifundamentalΦ∶ ð3; 3̄; 1; 1Þ scalar can give mass
to the additional spectator fermions that were added.13 For
simplicity, in what follows and in the body of this paper we
consider only the last case—the addition of weak-doublet
spectators that transform vectorially under SUð2ÞL×
Uð1ÞY . None of the properties of the renormalizable
coloron model discussed in this paper depend sensitively
on this choice.

b. Three quark generations

In a model, like the renormalizable coloron model, that
includes three quark generations (and weak-doublet spec-
tators), there are several distinct color charge assignments
that are possible. First, one could choose [2] all left- and
right-handed quarks to be charged under SUð3Þ1c. In this
case no spectator fermions are necessary. Alternatively, one
could choose [7] one left-handed weak-doublet and a single
right-handed weak-singlet up and down quark (loosely
speaking, “one generation of quarks”) to be charged under
SUð3Þ1c, and the other quarks (the “other two generations”)
to be charged under SUð3Þ2c; and again, no spectators are
required to cancel anomalies. While neither case involves
spectator fermions, it is the first case that we have studied in
the NQ ¼ 0 scenario of Sec. IVA.
Second, one can have two left-handed weak-doublet

quarks and one right-handed weak-singlet up and down
quark be charged under SUð3Þ1c and the complement (one
left-handed weak-doublet quark, and two right-handed
weak-singlet up and down quarks) charged under SUð3Þ2c.
In this case, one needs one generation of weak-doublet
spectator quarks

12We assume that the quark generation is accompanied by one
standard model lepton generation so that all SUð2ÞL × Uð1Þ and
mixed anomalies also cancel.

13This is in contrast with many of the exotic-color scenarios
described in [3], which require weak-doublet bifundamental
scalars as well.
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Ψ0
R∶ ð3; 1; 2;þ1=6Þ; Ψ0

L∶ ð1; 3; 2;þ1=6Þ ðA3Þ

to cancel anomalies—this is the case labeled NQ ¼ 1 in the
body of the paper and studied in Sec. IV B.
Third, one could choose all left-handed weak-doublet

quarks to be charged under SUð3Þ1c and all right-handed up
and down quarks to be charged under SUð3Þ2c. In this case
three generations of spectators with the quantum numbers of
(A3) are required. This case is labeledNQ ¼ 3 in the body of
the paper; it is explored in Sec. IV C.
Finally, we note that it is always possible to add

additional spectator quarks that are vectorially charged
under both the color and weak gauge groups. One such
scenario, motivated by the need to accommodate quark
mixing [7] in a case where no spectators are required to
cancel anomalies, is considered in the text in Sec. IV D and
denoted NDirac

Q ¼ 1.

2. The top-quark mass

In addition to specifying the gauge charges of the
fermions, a complete analysis of the model requires
determining the fermion mass eigenstates and examining
the weak and flavor phenomenology that results from the
extended gauge and scalar interactions. In general, phe-
nomenological consistency will require that the additional
scalar, fermion, and vector states be sufficiently heavy to be
consistent with existing experimental data—and, for exam-
ple, not give rise to overly large flavor-changing neutral
current interactions. A thorough phenomenological analy-
sis of all the possibilities described above is beyond the
scope of the current work.14

This paper focuses, instead, on the constraints on the
renormalizable coloron model arising from high-energy
vacuum stability and triviality. For the purposes of our
analysis here, then, we can neglect the masses of all of the
light quarks (and leptons) since their corresponding
couplings are small. The top-quark Yukawa coupling is
sizable, however. We outline the form of the top-quark
mass generating sector of the renormalizable coloron model
corresponding to the gauge charge choices described
above.
We assume here that the mass-eigenstate left- and right-

handed top-quark fields are as “aligned” with the
SUð3Þ1c × SUð3Þ2c gauge charges as possible. In the cases
where NQ ¼ 0; 1, therefore, we consider the situation in
which the left- and right-handed top quarks are almost
entirely left- and right-handed gauge-eigenstate fields
which transform under (by convention) SUð3Þ1c. Then
the top-quark mass arises from a standard model-like
Yukawa coupling [10] to the weak-doublet Higgs boson
ϕ, and hence the corresponding coupling constant is the
same in both the low-energy (μ < vs) and high-energy

(μ ≥ vs) theories. The running of this coupling, however,
differs in these two energy regimes; it has the SM form of
(B1) in the low-energy regime and the modified form
corresponding to (C2) in the high-energy regime.
The situation when NQ ¼ 3 is different. In this case, the

gauge eigenstates tL;R [which are charged, respectively,
under SUð3Þ1c;2c] mix substantially with a set of weak-
vector spectators which we will denote TL;R [and are
charged, respectively, under SUð3Þ2c;1c]. After the
extended color and electroweak symmetries break, the
corresponding mass-mixing matrix is of the form

Lm ¼ −ð t̄R T̄R Þ
�

0 ~mt

m M

��
tL
TL

�
;

~mt ≡ ~ytvhffiffiffi
2

p ; M≡ yQvsffiffiffi
6

p : ðA4Þ

Here, m arises from a Dirac mass term coupling the left-
handed third-generation quark field to the corresponding
field in Ψ0

R of (A3),

mð t̄L b̄L ÞΨ0
R; ðA5Þ

~yt is a high-energy Yukawa coupling of tR to TL [both are
charged under SUð3Þ2c],

~ytt̄R ~ϕΨ0
L; ðA6Þ

and yQ is the spectator mass Yukawa coupling of (2.19).
In the limit ~mt ≪ m;M, this matrix is of seesaw form

[26,27], and yields a top-quark mass

mt ¼
~mtm
M

; ðA7Þ

with approximate mass-eigenstate fields

tphysL ≈
MtL −mTLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þM2

p ðA8Þ

tphysR ≈ tR þO
�
~mt

M

�
TR: ðA9Þ

From (A7) we see that the low-energy top-quark Yukawa
coupling (yt) is related to the high-energy coupling through

yt ¼ ~yt
m
M

: ðA10Þ

In this limit, the corresponding spectator mass isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þM2

p
with mass-eigenstate fields orthogonal to those

of the top quark.
For the purposes of illustration, we consider m=M ≃ 1

and impose the boundary condition ~ytðvsÞ ¼ ytðvsÞ
when integrating the renormalization group equations in
Sec. IV C and displaying the results in Fig. 6. As (C3)

14For a recent weak- and flavor-phenomeology analysis in one
case see [7].
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reveals, the impact of the coupling λm exceeds that of yt in
the running of λh, and our results should be relatively
insensitive to the value of m=M.

APPENDIX B: ONE-LOOP β-FUNCTIONS
OF THE SM

At low energies below the threshold scale, vs, all the
heavy non-SM degrees of freedom may be integrated out,
and one recovers the ordinary SM as the low-energy
effective theory. Analytical expressions for the β-functions
(βC ¼ μdC=dμ, with C being the running coupling as a
function of the energy μ) of the SM couplings are known up
to two loops in the literature (see e.g. [28]). Here, we review
the relevant one-loop SM β-functions for completeness,
according to the normalization of the scalar potential
(2.10):

ð4πÞ2βSMg ¼ −g3
�
þ 19

6

�
; ð4πÞ2βSMg0 ¼ þg03

�
þ 41

6

�
;

ð4πÞ2βSMgs ¼ −g3s ½þ7�;

ð4πÞ2βSMyt ¼ yt

�
−8g2s −

9

4
g2 −

17

12
g02 þ 9

2
y2t

�
;

ð4πÞ2βSMλh ¼ þ4λ2h þ 3λh½4y2t − 3g2 − g02�

−
9

4
½16y4t − 2g4 − ðg2 þ g02Þ2�: ðB1Þ

We note that the hypercharge coupling is normalized
according to g0 ¼ ffiffiffiffiffiffiffiffi

3=5
p

g1, where g1 is the corresponding
coupling with the GUT normalization, and the contribu-
tions of all the light fermions, except for the top quark, are
ignored.

APPENDIX C: ONE-LOOP β-FUNCTIONS OF THE
RENORMALIZATION COLORON MODEL:
SPECTATOR FERMIONS WITH YUKAWA

INTERACTIONS

In this section, we provide the general expressions for the
one-loop β-functions of the gauge, Yukawa, and scalar
quartic couplings, within the context of the renormalizable
coloron model at energy scales above the threshold vs,
which characterizes the appropriate symmetry breaking and

mass generating scale. The β-functions may be calculated
either directly using the Feynman rules of the theory,15 or
by employing the well-known general expressions in the
literature [16,17]. All β-functions are computed within the
MS renormalization scheme.
At energy scales above the threshold, vs, the heavy states

of the renormalizable coloron model fully contribute to the
running of the couplings, since they all obtain their masses
due to the spontaneous symmetry breaking. In particular,
this is true for the spectator fermions with a Yukawa
interaction with the Φ scalar, as in (2.19). Moreover, above
the singlet VEV scale, the extended SUð3Þ1 × SUð3Þ2
color gauge group is restored, and the low-energy QCD
coupling gs is traded for the two couplings gs1 and gs2 of the
extended gauge group.
In this energy regime, the β-functions of the gauge

couplings g, g0, gs1 and gs2 are given by

ð4πÞ2βg ¼ −g3
�
þ 19

6
− 2NQ

�
;

ð4πÞ2βg0 ¼ þg03
�
þ 41

6
þ 2

9
NQ

�
;

ð4πÞ2βgs1 ¼ −g3s1

��
9 ðfor NQ ≠ 0Þ
7 ðfor NQ ¼ 0Þ − 4

3

NQ

2
− 1

2

�
;

ð4πÞ2βgs2 ¼ −g3s2

��
9 ðfor NQ ≠ 0Þ
11 ðfor NQ ¼ 0Þ −

4

3

NQ

2
−
1

2

�
;

ðC1Þ

with NQ denoting the number of spectator fermion gen-
erations that act chirally under the extended color gauge
group. As mentioned in Sec. IVA, the scenario with no
spectator fermions (NQ ¼ 0) is represented by charging all
the ordinary quarks vectorially under the SUð3Þ1c color
group; hence, the SUð3Þ2c color group does not have
fermionic content in this particular scenario. The complex
bifundamental Φ scalar, being a ð3; 3̄Þ under the extended
color gauge group, contributes equally to the running of
both gauge couplings with a factor of -1=2.
Next, we present the β-functions of the relevant Yukawa

couplings in the high-energy regime, namely, those of the
top quark and the spectator fermion:

ð4πÞ2βyt ¼ yt

��−4ðg2s1 þ g2s2Þ ðfor NQ ≠ 0Þ
−8g2s1 ðfor NQ ¼ 0Þ −

9

4
g2 −

17

12
g02 þ 9

2
y2t

�
;

ð4πÞ2βyQ ¼ yQ

�
−4ðg2s1 þ g2s2Þ −

9

2
g2 −

1

6
g02 þ ð3þ 2NQÞy2Q

�
: ðC2Þ

15See e.g. the appendixes in [10–12].
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Once more, we note that a mixing between the SM quarks and the spectator fermions is negligible, due to the constraints
from the flavor-changing coloron couplings [7].
Finally, we report the expressions for the β-functions of the scalar quartic couplings above the singlet VEV scale:

ð4πÞ2βλh ¼ þ4λ2h þ 54λ2m þ 3λh½4y2t − 3g2 − g02� − 9

4
½16y4t − 2g4 − ðg2 þ g02Þ2�;

ð4πÞ2βλm ¼ λm

�
þ4λm þ 2λh þ

20

3
λ0s þ

16

3
κs þ

3

2
½4y2t − 3g2 − g02� þ 4½NQy2Q − 2ðg2s1 þ g2s2Þ�

�
;

ð4πÞ2βλ0s ¼ þ 26

3
λ0s2 þ 12λ2m þ 32

3
κ2s þ

32

3
λ0sκs þ 8λ0s½NQy2Q − 2ðg2s1 þ g2s2Þ� − 8½NQy4Q − ðg2s1 þ g2s2Þ2�;

ð4πÞ2βκs ¼ þ8κ2s þ 4κsλ
0
s þ 8κs½NQy2Q − 2ðg2s1 þ g2s2Þ� − 4

�
2NQy4Q −

5

8
ðg4s1 þ g4s2Þ þ g2s1g

2
s2

�
: ðC3Þ

APPENDIX D: ONE-LOOP β-FUNCTIONS OF THE RENORMALIZABLE COLORON MODEL:
SPECTATOR FERMIONS WITH DIRAC MASSES

The details of this scenario are described in Sec. IV D. In the energy regime lower than the bosonic and fermionic mass
scales, one recovers the SM effective theory and its β-functions (B1). Here, we provide the β-functions pertaining to this
scenario at higher energies, giving separate attention to cases where the spectator fermion may be heavier or lighter than the
bosonic states.

1. Spectator fermions lighter than the bosonic states (MQ < μ < vs)

In the energy regime between the fermion and boson masses,MQ < μ < vs, the theory effectively corresponds to the SM
augmented by one generation of left- and right-handed spectator fermions, which directly influences the gauge coupling β-
functions:

ð4πÞ2βg ¼ −g3
�
þ 19

6
− 2

�
; ð4πÞ2βg0 ¼ þg03

�
þ 41

6
þ 2

9

�
; ð4πÞ2βgs ¼ −g3s

�
þ7 −

4

3

�
: ðD1Þ

The top quark and the λh quartic coupling β-functions remain unaffected and retain their SM forms (B1).

2. Spectator fermions heavier than the bosonic states (vs < μ < MQ)

In the energy regime between the fermion and boson masses, vs < μ < MQ, the theory corresponds to the SM augmented
by the extended color gauge group and the extended scalar sector, sans the spectator fermions. With the third quark
generation vectorially charged under SUð3Þ1 and the remaining two lighter quark generations vectorially charged under
SUð3Þ2, the β-functions take the following form:

ð4πÞ2βg ¼ −g3
�
þ 19

6

�
; ð4πÞ2βg0 ¼ þg03

�
þ 41

6

�
;

ð4πÞ2βgs1 ¼ −g3s1

�
11 −

4

3
−
1

2

�
; ð4πÞ2βgs2 ¼ −g3s2

�
11 −

8

3
−
1

2

�
;

ð4πÞ2βyt ¼ yt

�
−8g2s1 −

9

4
g2 −

17

12
g02 þ 9

2
y2t

�
;

ð4πÞ2βλh ¼ þ4λ2h þ 54λ2m þ 3λh½4y2t − 3g2 − g02� − 9

4
½16y4t − 2g4 − ðg2 þ g02Þ2�;

ð4πÞ2βλm ¼ λm

�
þ4λm þ 2λh þ

20

3
λ0s þ

16

3
κs þ

3

2
½4y2t − 3g2 − g02� − 8ðg2s1 þ g2s2Þ

�
;

ð4πÞ2βλ0s ¼ þ 26

3
λ0s2 þ 12λ2m þ 32

3
κ2s þ

32

3
λ0sκs − 16λ0sðg2s1 þ g2s2Þ þ 8ðg2s1 þ g2s2Þ2;

ð4πÞ2βκs ¼ þ8κ2s þ 4κsλ
0
s − 16κsðg2s1 þ g2s2Þ þ

5

2
ðg4s1 þ g4s2Þ − 4g2s1g

2
s2 : ðD2Þ

VACUUM STABILITY AND TRIVIALITY ANALYSES OF … PHYSICAL REVIEW D 92, 055002 (2015)

055002-17



3. Above the fermionic and bosonic mass scales (μ > vs;MQ)

In the energy regime above the fermion and boson masses, μ > vs;MQ, all heavy states contribute to the running of the
couplings. The gauge coupling β-functions are of this form:

ð4πÞ2βg ¼ − g3
�
þ 19

6
− 2

�
; ð4πÞ2βg0 ¼ þg03

�
þ 41

6
þ 2

9

�
;

ð4πÞ2βgs1 ¼ − g3s1

�
11 −

4

3
−
4

3
−
1

2

�
; ð4πÞ2βgs2 ¼ −g3s2

�
11 −

8

3
−
1

2

�
; ðD3Þ

whereas, the top quark and the scalar quartic coupling β-functions have the same form as in (D2).
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