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We present results for the nucleon electromagnetic form factors, including the momentum transfer
dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using
OðaÞ improved Wilson fermions in Nf ¼ 2 QCD measured on the Coordinated Lattice Simulations
ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-
point correlation functions, which lead to a biased evaluation, if not accounted for correctly.We argue that the
use of summed operator insertions and fit Ansätze including excited states allow us to suppress and control
this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the
form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for
the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error
budget.We find that our estimates are compatiblewith experimental results within their overall uncertainties.
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I. INTRODUCTION

The electromagnetic form factors, GE and GM, of the
nucleon encode information on the distribution of charge
and magnetization and are among the key quantities
describing its internal structure. Experimental measure-
ments of these quantities in ep scattering processes have a
long history (see, e.g., the review [1]) and have been pushed
to ever higher precision [2,3]. In spite of the fact that
nucleon electromagnetic form factors have been studied
extensively in theory and experiment, there are several open
questions. The first concerns the deviation between the
ratio GE=GM as determined using the traditional
Rosenbluth separation technique and the result obtained
from recoil polarization [4–7] at squared momentum trans-
fers Q2 larger than 1 GeV2. Second, prompted by the
observed discrepancy between the proton charge radius
extracted from the Lamb shift in muonic hydrogen [8,9]
and the value obtained by using the electron as a probe
[3,10], there is a strong interest in new experimental
measurements of form factors in the regime of very small
Q2, as well as in further theoretical studies, in order to
reduce the inherent systematics. The third open issue
concerns our understanding of the internal structure of
the nucleon in terms of the underlying gauge theory of

QCD. Nucleon form factors have been studied extensively
in simulations of QCD on a space-time lattice [11–23], and
although these calculations are quite straightforward, they
mostly fail in reproducing the experimentally observed
Q2-dependence of GE and GM. As a consequence, lattice
estimates for the electric charge radius derived from the
slope of GE at vanishing Q2 are typically underestimated
compared to the results derived from ep scattering data. It
is widely believed that systematic errors in lattice calcu-
lations must be held responsible for this deviation.
In addition to systematic errors induced by nonzero

lattice spacings, finite volumes, and uncertainties associ-
ated with the chiral extrapolation, the issue of contamina-
tion from excited states in calculations of nucleon
correlation functions has recently come to the fore as a
possible explanation for the deviation between experimen-
tal and lattice estimates of the electric charge radius.
In this paper we present a detailed investigation of

systematic effects in lattice calculations of nucleon form
factors arising from excited-state contributions. In particu-
lar, we apply the technique of summed operator insertions
[24–26] which has proven very useful in our earlier
calculation of the axial charge of the nucleon [27].
Furthermore, we address in detail the chiral extrapolation
to the physical pion mass, by employing several variants of
baryonic chiral perturbation theory (ChPT).
Our simulations are performed in two-flavor QCD

with a mass-degenerate doublet of up and down quarks.
Since excited-state contamination is an issue for lattice
simulations with any number of dynamical quarks, the
question whether estimates for nucleon charge radii and
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magnetic moments may be biased can be adequately
addressed in this setup. There is ample evidence [28] that
there are no discernible differences between QCD with
Nf ¼ 2 and Nf ¼ 2þ 1 flavors at the few-percent level.
Therefore, the observed deviation between lattice QCD and
the experiment is far too large to be explained by the
presence or absence of a dynamical strange quark.
Our central findings include the observation that excited-

state contaminations have a sizeable influence on the form
factors extracted from the still widely used plateau method
applied to ratios of three- and two-point functions at least
up to source-sink separations of ∼1.5 fm. The use of
summed insertions, while generally an important tool in
suppressing excited-state effects on hadron structure quan-
tities, cannot reliably exclude a residual bias, in particular
when comparing with the results of fits which include
excited states explicitly. Moreover, for the first time, we
apply the full framework of covariant baryonic chiral
perturbation theory [29–32] to the simultaneous determi-
nation of the form factors near Q2 ¼ 0 and at the physical
pion mass. From a careful study of all relevant systematic
effects, we are able to give a full error budget. Our final
results for various charge radii and the anomalous magnetic
moments κ are listed in Eq. (34) below. We observe
agreement with experiment within the accuracy of our
calculation, including systematic errors. However, the
overall uncertainty is too large to have an impact on the
proton radius puzzle.
This paper is organized as follows. In Sec. II, we describe

our lattice setup, including details of the ensembles used
and observables measured, as well as our evaluation of
statistical errors. In Sec. III, we discuss the analysis
methods we employed to study and suppress excited-state
contributions. The Q2-dependence of the measured form
factors, and the values of the charge radii and magnetic
moment determined from dipole fits on each ensemble, are
presented in Sec. IV. In Sec. V, we discuss in detail the
chiral fits to the form factors which we use to obtain our
final results. Section VI contains our conclusions and a
brief outlook.
A discussion of the impact of the use of Lorentz-

noncovariant interpolating operators obtained from smear-
ing the quark fields in the spatial directions only on the
Lorentz invariance of the results so obtained is contained in
Appendix A. For ease of reference, we provide tables
containing the full set of our results for the form factors at
all values of Q2 on all ensembles in Appendix B.

II. LATTICE SETUP

A. Observables and correlators

The matrix element of the electromagnetic current

Vμ
em ¼ 2

3
ūγμu −

1

3
d̄γμdþ… ð1Þ

between one-nucleon states can be expressed in terms of
the Dirac and Pauli form factors, F1 and F2. In Minkowski
space notation, the form factor decomposition reads

hNðp0; s0ÞjVμ
emð0ÞjNðp; sÞi

¼ ūðp0; s0Þ
�
γμF1ðq2Þ þ i

σμνqν
2mN

F2ðq2Þ
�
uðp; sÞ; ð2Þ

where uðp; sÞ is a Dirac spinor with spin s and momentum
p, γμ is a Dirac matrix, σμν ¼ i

2
½γμ; γν�, and mN denotes the

nucleon mass.
The four-momentum transfer q≡ p0 − p is expressed in

terms of the energies and three-momenta of the initial and
final states as

q2 ¼ −Q2 ¼ ðEp0 − EpÞ2 − ðp0 − pÞ2: ð3Þ

In this paper, we focus on the isovector form factors. By
assuming isospin symmetry, one can show via a simple
application of the Wigner–Eckart theorem applied in
isospin space that

hpðp0; s0Þjūγμu − d̄γμdjpðp; sÞi
¼ hpðp0; s0ÞjVμ

emjpðp; sÞi − hnðp0; s0ÞjVμ
emjnðp; sÞi;

ð4Þ

where jpi and jni refer to one-proton and one-neutron
states, respectively. The expression on the left-hand side is
suitable for lattice QCD calculations, while the right-hand
side allows one to compare the results to experimental
measurements.
The Dirac and Pauli form factors give rise to the helicity-

preserving and helicity-flipping contributions to the ampli-
tude, respectively. The electric and magnetic (Sachs) form
factors GE and GM are obtained as linear combinations of
F1 and F2,

GEðq2Þ ¼ F1ðq2Þ þ
q2

4m2
N
F2ðq2Þ; ð5Þ

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð6Þ

They can be determined from ep scattering experiments by
decomposing the measured differential cross section
through the Rosenbluth formula [33]. The form factors
may be Taylor expanded in the squared momentum
transfer q2,

GE;Mðq2Þ ¼ GE;Mð0Þ
�
1þ 1

6
hr2E;Miq2 þOðq4Þ

�
; ð7Þ

from which the charge radii of the nucleon may be
determined:
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hr2E;Mi ¼
6

GE;Mðq2Þ
∂GE;Mðq2Þ

∂q2
����
q2¼0

: ð8Þ

Electric charge conservation implies GEð0Þ ¼ 1, while the
magnetic moment μ of the nucleon, in units of the nuclear
magneton e=2mN, is obtained from the magnetic form
factor at vanishing q2, GMð0Þ ¼ μ.
Lattice simulations allow for the determination of

hadronic matrix elements by computing Euclidean corre-
lation functions of local composite operators.1 To this end,
one considers the nucleon two-point function

C2ðp; tÞ ¼
X
x

eip·xΓβαhΨαðx; tÞΨ̄βð0Þi; ð9Þ

whereΨαðx; tÞ denotes a standard interpolating operator for
the nucleon and Γ is a projection matrix in spinor space. In
this work, the kinematics is chosen such that the final
nucleon is at rest, i.e. p0 ¼ 0. Hence, the three-momentum
transfer q≡ p0 − p is given by

q ¼ −p; ð10Þ

and the expression for the three-point function of a generic
(Euclidean) vector current Vμ reads

C3;Vμ
ðq; t; tsÞ ¼

X
x;y

eiq·yΓβαhΨαðx; tsÞVμðy; tÞΨ̄βð0Þi:

ð11Þ

For the nucleon correlation functions considered in this
work, the projection matrix

Γ ¼ 1

2
ð1þ γ0Þð1þ iγ5γ3Þ ð12Þ

ensures the correct parity of the created states and gives the
nucleon a polarization in the z-direction, which is required
to extract the magnetic form factor. In the above expression
for the three-point function, the vector current is inserted at
Euclidean time t, while the Euclidean time separation
between the initial and final nucleons is denoted by ts.
Figure 1 shows the corresponding diagrams of the two- and
three-point functions. Note that for the isovector vector
current considered in this work quark-disconnected dia-
grams cancel.
The electric and magnetic form factors are easily

determined from suitable ratios of correlation functions.
Here, we follow Ref. [34] and use the ratio found to be most
effective in isolating the desired matrix element. For our
chosen kinematics, it reads

RVμ
ðq; t; tsÞ

¼ C3;Vμ
ðq; t; tsÞ

C2ð0; tsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðq; ts − tÞC2ð0; tÞC2ð0; tsÞ
C2ð0; ts − tÞC2ðq; tÞC2ðq; tsÞ

s
: ð13Þ

From the asymptotic behavior of RVμ
ðq; t; tsÞ, one can then

extract GE and GM for spacelike momenta Q2 ≡ −q2 > 0
via

RV0
ðq; t; tsÞ ⟶

t;ðts−tÞ≫0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN þ Eq

2Eq

s
Gbare

E ðQ2Þ; ð14Þ

and

ReRVi
ðq; t; tsÞ ⟶

t;ðts−tÞ≫0
ϵij3qj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2EqðEq þmNÞ

s
Gbare

M ðQ2Þ;

ð15Þ

where the ϵ symbol in the last equation denotes the
antisymmetric tensor with ϵ123 ¼ þ1 and the superscripts
“bare” remind us that, in general, the vector current requires
renormalization in the lattice-regularized theory.

B. Simulation details

Our calculations have been performed on a set of
ensembles with Nf ¼ 2 flavors of OðaÞ-improved
Wilson quarks and the Wilson plaquette action. For the
improvement coefficient csw, we used the nonperturbative
determination of Ref. [35]. The gauge configurations have
been generated as part of the Coordinated Lattice Simula-
tions (CLS) initiative, using the deflation-accelerated
DD-HMC [36,37] and MP-HMC [38] algorithms.
Table I provides details of the lattice ensembles used.
For the calculation of three-point correlation functions,

we employed the point-split isovector current

Vcon
μ ðxÞ ¼ 1

2
ðψ̄ðxþ μ̂Þð1þ γμÞU†

μðxÞτ3ψðxÞ
− ψ̄ðxÞð1 − γμÞUμðxÞτ3ψðxþ μ̂ÞÞ ð16Þ

as well as the local vector current

V loc
μ ðxÞ ¼ ψ̄ðxÞγμτ3ψðxÞ: ð17Þ

FIG. 1. Baryonic two-point and three-point functions (left and
right panels, respectively).

1From here on, we use Euclidean notation for the position- and
momentum-space vectors, as well as for the Dirac matrices.
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Here, ψ denotes an isospin doublet of up- and down-quark
fields, and τ3 is the Pauli matrix acting in isospin space.
While the point-split current is conserved and satisfies the
corresponding Ward identity, the local vector current must
be renormalized. The expression for the renormalized
current in the OðaÞ improved theory reads [39]

VR
μ ¼ ZVð1þ bVamqÞðV loc

μ þ acV∂νTμνÞ; ð18Þ

where mq denotes the bare subtracted quark mass, bV and
cV are improvement coefficients, and TμνðxÞ ¼
−ψ̄ðxÞ 1

2
½γμ; γν�τ3ψðxÞ is the tensor density. We used the

nonperturbative estimate for the renormalization factor ZV
in the two-flavor theory of Refs. [40,41]. On the other hand,
the conserved vector current, while not subject to renorm-
alization, requires OðaÞ improvement even at tree level. In
this work, we neither used the improved version of the
point-split vector current, nor did we compute matrix
elements containing the derivative of the tensor current.
Therefore, our results for form factors and charge radii are
not fully OðaÞ improved; hence, neglecting the bV term in
Eq. (18) is consistent.
In the remainder of this paper, we concentrate on results

obtained using the conserved (point-split) vector current.
We have checked explicitly that the local vector current
yields fully consistent results, provided that it is properly
renormalized. As a further check, we have estimated the
renormalization factor ZV on each ensemble from the ratio
of matrix elements of the local and conserved current. We
find agreement with the determination of ZV at the
respective β-value in the chiral limit [40] at the level of
1% or better.
The interpolating field for the proton was chosen as

ΨαðxÞ ¼ ϵabcðuTaðxÞCγ5dbðxÞÞuαcðxÞ; ð19Þ

with Gaussian-smeared quark fields [42]

~ψ ¼ ð1þ κGΔÞNψ ; ð20Þ

where the links in the three-dimensional covariant
Laplacian Δ were APE smeared [43] in the spatial
directions to further enhance the projection properties onto
the ground state and help reduce the gauge noise.
Correlation functions were constructed using identically
smeared interpolating fields at both the source and sink to
ensure that the two-point functions are given by a sum of
exponentials e−Ent with positive coefficients. The smearing
parameter κG and the iteration number N were tuned so as
to maximize the length of the effective mass plateaux in a
variety of channels. A widely used measure for the spatial
extent of a smeared source vector is the “smearing radius”
rsm (for a definition, see, e.g., Eq. (2.6) in Ref. [44]). We
note that our choice of κG and N corresponds to
rsm ≈ 0.5 fm. As was first noted in Ref. [44], the standard
Gaussian smearing procedure becomes rapidly ineffective
for baryons as the lattice spacing is decreased. Alternatively
one may employ “free-form smearing” [44] which, how-
ever, cannot be readily applied at the sink. Therefore, all
results presented in this paper have been obtained using
standard Gaussian smearing at both the source and sink.
Note that we did not employ boosted Gaussian smearing
[45] either, because the boost is small for the nucleon, and
the gain in terms of an enhanced projection on the ground
state is expected to be marginal.
Smearing the quark fields in the spatial directions only,

while required in order to keep the transfer matrix formal-
ism intact, breaks the relativistic covariance of the inter-
polating fields constructed from smeared quarks. This issue
has not been studied previously in any great detail in the
context of nucleon form factors. In Appendix A, we give a
brief explanation why the relativistic invariance of our
results is not affected.
To compute the three-point function, we use the “fixed-

sink” method, which requires an additional inversion for
each value of ts but allows both the operator insertion and

TABLE I. Details of the lattice ensembles used in this study, showing the lattice extent, L, where T ¼ 2L; the values of the bare
parameters β and κ in the lattice action; the pion and nucleon masses (amπ and amN); the number of measurements,
Nmeas ¼ Ncfg × Nsrc; the lattice spacing, a; the pion mass, mπ , in physical units, and the ratio mπ=mN of the pion and nucleon masses.

Run L=a β κ amπ amN mπL Ncfg Nmeas a (fm) mπ (MeV) mπ=mN

A3 32 5.20 0.13580 0.1893(6) 0.546(7) 6.0 133 2128 0.079 473 0.346(5)
A4 32 5.20 0.13590 0.1459(7) 0.488(13) 4.7 200 3200 0.079 364 0.299(7)
A5 32 5.20 0.13594 0.1265(8) 0.468(7) 4.0 250 4000 0.079 316 0.270(5)
B6 48 5.20 0.13597 0.1073(7) 0.444(5) 5.0 159 2544 0.079 268 0.242(3)

E5 32 5.30 0.13625 0.1458(3) 0.441(4) 4.7 1000 4000 0.063 457 0.330(3)
F6 48 5.30 0.13635 0.1036(3) 0.382(4) 5.0 300 3600 0.063 324 0.271(3)
F7 48 5.30 0.13638 0.0885(3) 0.367(5) 4.2 250 3000 0.063 277 0.241(4)
G8 64 5.30 0.13642 0.0617(3) 0.352(6) 4.0 348 4176 0.063 193 0.175(3)

N5 48 5.50 0.13660 0.1086(2) 0.329(2) 5.2 477 1908 0.050 429 0.330(2)
N6 48 5.50 0.13667 0.0838(2) 0.297(3) 4.0 946 3784 0.050 331 0.283(3)
O7 64 5.50 0.13671 0.0660(1) 0.271(4) 4.4 490 1960 0.050 261 0.244(3)
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the momentum transfer to be varied without additional
inversions [46]. To realize a range of values for the squared
four-momentum transfer Q2, we have computed the two-
and three-point correlation functions for several spatial
momenta q≡ n2π=L, with jnj2 ¼ 0; 1; 2;…; 6.
The ratios RVμ

of Eq. (13) contain a particular combi-
nation of nucleon two-point functions, in order to isolate
the relevant matrix element. In our analysis, the two-point
functions which enter RVμ

were represented by single
exponential fits. For nonvanishing momenta q, the nucleon
energies were determined from the nucleon mass using the
continuum dispersion relation. We found that this pro-
cedure produced smaller statistical errors, in particular at
higher values of the momentum transfer q2. It was checked
explicitly that the direct determination of the energies in the
nucleon channel from the exponential falloff of C2ðq; tÞ
produced fully consistent results within statistical errors.
To express dimensionful quantities in physical units, we

determined the lattice spacing for all our ensembles using
the mass of the Ω baryon, as described in Ref. [47]. More
recently, the ALPHA Collaboration has published accurate
values for the lattice spacing determined from the kaon
decay constant, fK [48,49]. While the central values differ
slightly, both determinations are well compatible within the
quoted uncertainties. We have verified that uncertainties in
the scale-setting procedure have no significant influence on
the values of the charge radii in physical units.

C. Statistics and error analysis

We computed two- and three-point correlation functions
on all ensembles listed in Table I. To increase statistics,
we used multiple sources spread evenly across the lattice
on each gauge configuration. The total number of mea-
surements for each ensemble is listed in Table I. Statistical
errors were estimated using a bootstrap procedure with
10,000 bootstrap samples. Note that we averaged mea-
surements taken at different source positions on a given
configuration prior to computing bootstrap samples.
Simulations at the fine lattice spacings considered here

are known to be affected by the critical slowing down of the
smooth modes of the gauge field and the freezing of the
topological charge [50], leading to potentially long auto-
correlation times. Ignoring the long tails in the autocorre-
lation function may lead to a significant underestimation of
statistical errors [51]. Since the correlation functions of the
nucleon studied here are intrinsically very noisy, however,
one may expect that the contributions from the tails have
relatively little influence on the overall statistical error.
We have investigated the impact of autocorrelations on

our results by performing a binning analysis prior to
applying the bootstrap procedure. To this end, we focused
on the N6 ensemble, which is based on a long Monte Carlo
sequence, comprising 8040 molecular dynamics units in
total. Our findings indicate only a marginal increase in the

statistical error of the electric form factor and the nucleon
mass, which amounts to 2% at most. We conclude that, for
the purpose of computing nucleon hadronicmatrix elements
and masses, our ensembles are sufficiently decorrelated.

III. EXCITED-STATE SYSTEMATICS

The standard “plateau method” for extractingGE andGM
proceeds by fitting the ratios defined in Eq. (13) to a
constant in the region where they are approximately
independent of t and ts, assuming that their asymptotic
behavior has been reached. For the following discussion, it
is useful to define an “effective” electric form factor,
Geff

E ðQ2; t; tsÞ, by dividing out the kinematical factor in
Eq. (14), i.e.,

Geff
E ðQ2; t; tsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eq

mN þ Eq

s
RV0

ðq; t; tsÞ: ð21Þ

A similar relation is used to define Geff
M ðQ2; t; tsÞ. As

t; ðts − tÞ → ∞, the effective form factors will approach
their asymptotic values with exponentially small corrections,

Geff
E;MðQ2; t; tsÞ ¼ GE;MðQ2Þ þOðe−ΔtÞ þOðe−Δ0ðts−tÞÞ;

ð22Þ
where Δ and Δ0 denote the energy gaps between the ground
and first excited states for the initial- and final-state nucleons,
respectively. Here, we omit the superscript “bare” on the
form factors, since we assume that the ratios RVμ

have been
appropriately renormalized.
It is well known that nucleon correlation functions suffer

from an exponentially increasing noise-to-signal ratio
[52,53], which imposes a limit on the source-sink separation
ts which can be realized with reasonable numerical effort. In
typical calculations, ts ≈ 1.1–1.2 fm, while separations as
large as 1.4 fm have been reported only in very few cases
[22,23]. Hence, to guarantee a reliable determination of GE
and GM using the plateau method, the contributions from
excited states in Eq. (22) must already be sufficiently
suppressed for t; ðts − tÞ≲ 0.5 fm. Moreover, since the gaps
Δ and Δ0 are proportional to mπ in the chiral regime, one
expects that this effect will become even more pronounced
for the more chiral ensembles.
In Fig. 2, we show effective mass plots for a nucleon at

rest, computed at two different values of the lattice spacing
at nearly fixed pion mass. One clearly sees that the ground
state is isolated only for separations larger than 0.5 fm.
Since the asymptotic behavior must be reached for both the
initial- and final-state nucleons, which may also carry
momentum, source-sink separations of the order of 1–
1.5 fm seem rather small. Therefore, one cannot rule out a
systematic bias, unless source-sink separations signifi-
cantly larger than 1 fm are realized.
To minimize or eliminate such a bias in our final results,

we employ three different methods:
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(i) Plateau fits.—For a fixed value of ts, the quantities
Geff

E;MðQ2; t; tsÞ are fitted to a constant over a small
interval in t. The default value of the source-sink
separation is ts ≈ 1.1 fm. For the high-statistics run
on the N6-ensemble, we have also considered
separations as large as ts ¼ 1.4 fm.

(ii) Two-state fits.—In this case, the leading contribu-
tions from excited states are included explicitly by
using an ansatz of the form

Geff
E;MðQ2; t; tsÞ ¼ GE;MðQ2Þ þ cð1ÞE;MðQ2Þe−Δt

þ cð2ÞE;MðQ2Þe−Δ0ðts−tÞ; ð23Þ

with simultaneous fits in t and ts − t performed to
the data collected for several source-sink separations
ts. To stabilize the fits and reduce the number of
fit parameters, we fix the gaps to Δ ¼ mπ and
Δ0 ¼ 2mπ , assuming that the lowest-lying excita-
tions are described by multiparticle states, consisting
of a nucleon and at least one pion. In our chosen
kinematics. the nucleon at ts is at rest, such that the
lowest-lying multiparticle state consists of one
nucleon and two pions in an S-wave. By contrast,
the initial state carries momentum and, in the
absence of πN interactions, therefore consists of a
moving nucleon and a pion at rest, hence the choice
Δ ¼ mπ . With these assumptions, we may determine

the form factorsGE;M as well as the coefficients cð1ÞE;M

and cð2ÞE;M as fit parameters for a given Q2-value.2

(iii) Summed insertions (“summation method”).—
Following Refs. [24–26,54] and our previous work
[22,27,55], we define the quantities SE;MðQ2; tsÞ by

SE;MðQ2; tsÞ ≔ a
Xts−a
t¼a

Geff
E;MðQ2; t; tsÞ; ð24Þ

the asymptotic behavior of which is given by

SE;MðQ2; tsÞ ⟶
ts≫0

KE;MðQ2Þ þ tsGE;MðQ2Þ þ…;

ð25Þ

where KE;MðQ2Þ denote (in general divergent) con-
stants and the ellipses stand for exponentially sup-
pressed corrections. The precise form of the latter
depends on the details of the spectrum. If, for
instance, Δ ¼ mπ and Δ0 ¼ 2mπ , the leading cor-
rection is of the order expf−Δtsg, while for Δ ¼ Δ0,
it is of the generic form

ðAE;M þ BE;MtsÞ expf−Δtsg; ð26Þ

with coefficients AE;M and BE;M. By computing
SE;MðtsÞ for several sufficiently large values of ts,
form factors can be determined from the slope of a
linear fit. Since ts is, by design, larger than either t or
ðts − tÞ, excited-state contributions are parametri-
cally reduced compared to the plateau method. The
summation method has been successfully applied in
our earlier calculation of the nucleon axial charge
[27] and also in recent studies of various nucleon
matrix elements [23,56].

As a common feature among lattice calculations, we note
that nucleon electromagnetic form factors are typically
overestimated at a given value of Q2 relative to the
phenomenological representation of the experimental data
[57], even when the calculation is performed for small pion
masses. The three methods which we employ to determine

GE;MðQ2Þ are compared in Fig. 3. Our data computed for

different source-sink separations ts show a systematic

FIG. 2 (color online). Effective masses in the nucleon channel computed at two different lattice spacings for mπ ≈ 330 MeV (left
panel) and mπ ≈ 275 MeV (right panel).

2We have also performed two-state fits in which the gaps were
left as fit parameters. The resulting estimates for the form factors
were fully consistent but had much larger statistical errors.
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downward trend as ts is increased from 0.65 to 1.1 fm. This
reinforces our concern that ts ≈ 1.1 fm is insufficient to rule
out a systematic bias when the plateau method is applied. In
comparison, the slope determined from the summed ratio in
Eq. (25) yields a result for GEðQ2Þ which lies sufficiently
below Geff

E ðQ2; t; tsÞ for all t; ts.
The result from the two-state fit is even smaller: The

asymptotic value of Geff
E ðQ2; t; tsÞ for t; ðts − tÞ → ∞ is

represented by the gray band, while the dashed curves

correspond to GE þ cð1ÞE e−mπ t and GE þ cð2ÞE e−2mπðts−tÞ,
where GE, c

ð1Þ
E , and cð2ÞE are determined from the fit. At

face value, the sizeable gap between the result from the
two-state fit and the data for Geff

E suggest that the latter are
far from the asymptotic behavior when ts ≤ 1.1 fm. In
particular, there is no overlap between the gray band and
any of the data points from which it is determined. The
dashed lines in the plot suggest that the two-state fit
constrains GE merely from the curvature in t at a given
ts and from the trend in the source-sink separation as the
latter is increased. To investigate this further, we have
added two more values of ts to the N6 ensemble, corre-
sponding to separations of 1.3 and 1.4 fm, respectively. The
additional data for Geff

E are shown in the right panel of
Fig. 3. In spite of the large statistical error, it is clear that
Geff

E approaches the asymptotic value extracted from the
two-state fit. We conclude that two-state fits applied to our
data collected for ts ≤ 1.1 fm should not simply be dis-
carded, even though the fit corresponding to the gray band
in the left panel of Fig. 3 does not appear very convincing.
We will thus include such results in our subsequent analysis
but interpret them with the necessary amount of caution.
Consequently, our preferred method for determining form
factors remains the summation method.

IV. Q2-DEPENDENCE AND CHIRAL BEHAVIOR

In this section, we discuss the dependence of form
factors on the squared momentum transfer, Q2, and their
behavior as the pion mass is tuned toward its physical
value. Here, we focus on the more qualitative features and
defer a detailed discussion of chiral extrapolations based on
baryonic ChPT to Sec. V.
A full set of results for GEðQ2Þ and GMðQ2Þ obtained

from all three methods (i.e., plateau fits, summation
method, and two-state fits) is presented in Tables VI–
XVI in Appendix B. To describe the dependence onQ2, we
follow the standard procedure of fitting the results for GE;M

using a dipole ansatz motivated by vector meson domi-
nance, i.e.,

GEðQ2Þ ¼
�
1þ Q2

M2
E

�−2
;

GMðQ2Þ ¼ GMð0Þ ·
�
1þ Q2

M2
M

�−2
: ð27Þ

Using the definition in Eq. (8), the charge radii are then
obtained from

hr2E;Mi ¼
12

M2
E;M

: ð28Þ

The ratio GMðQ2Þ=GEðQ2Þ is related to the nucleon’s
magnetic moment μ via

μ≡ 1þ κ ¼ GMðQ2Þ
GEðQ2Þ

����
Q2¼0

; ð29Þ

where κ denotes the anomalous magnetic moment. The
reciprocal ratio GEðQ2Þ=GMðQ2Þ is an interesting quantity

FIG. 3 (color online). Data for Geff
E computed for several values of ts at the lowest nonzero momentum transfer on the N6 ensemble.

The yellow band shows the result for GE determined from the summation method. The solid curves are a representation of the data at
individual values of ts, as determined from a simultaneous two-state fit to the solid points in the left panel. The gray band denotes the
corresponding asymptotic value. For the explanation of the dashed curves, see the text. The fits which correspond to the yellow and gray
bands in both panels have been performed for ts ≤ 1.1 fm, i.e., ts=a ≤ 22.
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regarding the discrepancy between experimental determi-
nations based on Rosenbluth separation and the recoil
polarization technique.
Examples of dipole fits to the form factor data obtained

for two different pion masses are shown in Figs. 4 and 5,
where they are compared to Kelly’s phenomenological
parametrization [57] of experimental data.3 In comparing
experimental and lattice results, one must bear in mind that

the latter have been obtained at unphysical values of the
pion mass.
Clearly, the slope of the electric form factor near Q2 ¼ 0

varies depending on the method which is used to determine
GE from the ratio of correlators. One observes that two-
state fits produce by far the steepest dropoff, while the
standard plateau method yields the flattest behavior in Q2.
This translates into a corresponding hierarchy for estimates
of the electric charge radius, which are tabulated in Table II.
As the pion mass is lowered toward its physical value, one
also finds that the spread in the results for hr2Ei becomes
more pronounced among the three methods. This is
consistent with the assertion that the issue of unsuppressed
excited-state contributions becomes increasingly important
near the physical pion mass.

FIG. 4 (color online). Dipole fits of the Q2-dependence of GE, as determined using the plateau method (shown in blue), summed
insertions (red), and two-state fits (green). The left and right panels correspond to pion masses of 331 and 193 MeV, respectively. The
black line denotes Kelly’s parametrization of experimental data.

FIG. 5 (color online). Dipole fits of the Q2-dependence of GM. The meaning of the symbols is identical to Fig. 4.

3We employ Kelly’s parametrization as a benchmark, since the
differences between Kelly’s and the more recent parametrization
by Arrington and Sick [58], as well as the dispersive analysis by
Lorenz et al. [59] are too small to be resolved at the level of
statistical precision provided by our data.
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ForGM, the systematic trend in theQ2-dependence is not
so clearly visible as in the case of the electric form factor
and charge radius, which is partly due to the larger
statistical errors. Qualitatively, one observes that our lattice
data for GMðQ2Þ show better overall agreement with the
representation of the experimental data, regardless of the
method which with the former have been obtained.
Dipole fits to the data for GMðQ2Þ extracted from two-

state fits show a slight—albeit statistically insignificant—
tendency for larger intercepts at vanishing Q2, resulting in
somewhat higher estimates for the magnetic moment, μ.
Moreover, these fits reveal that the electric and magnetic
radii turn out to be rather similar (see Table II). The fact that
GM=GE shows no statistically significant deviation from a
constant within theQ2-range we are able to investigate (see
Fig. 6) is consistent with the experimental data extracted
using the traditional Rosenbluth separation technique.
To further assess the effectiveness of the three methods

employed to extract the form factors, we have studied their
chiral behavior at a reference value of the four-momentum
transfer of Q2

ref ¼ 0.1 GeV2. This is very close to the
smallest nonzero value of Q2 on the G8 ensemble, i.e., at
our smallest pion mass. Using the dipole fit parameters, we
have obtained GEðQ2

refÞ and GMðQ2
refÞ for all ensembles in

our set. Similarly, we employed the phenomenological
parametrization to produce the corresponding estimates
from experiment at Q2

ref and at the physical pion mass. The
results are shown in Fig. 7. The plateau method clearly
overestimatesGE, as there is no observable tendency for the
data at different pion masses to approach the experimental
result. The summation performs slightly better but does not
improve the situation substantially. Only the data based on
two-state fits show a trend which brings them into agree-
ment with experiment at the physical pion mass. For the
magnetic form factor, the situation is more favorable: The
plateau method only slightly underestimates GM relative to

TABLE II. Electric and magnetic charge radii and magnetic
moment as determined from the three methods on each of our
ensembles.

Run Method hr2Ei (fm2) hr2Mi (fm2) μ

A3 Plat 0.310(14) 0.355(29) 4.22(17)
Sum 0.335(27) 0.391(56) 4.65(34)

Two-state 0.339(18) 0.425(55) 4.48(29)
A4 Plat 0.362(23) 0.324(52) 3.65(29)

Sum 0.462(55) 0.190(63) 3.15(38)
Two-state 0.453(35) 0.216(71) 3.42(43)

A5 Plat 0.413(26) 0.395(59) 3.69(31)
Sum 0.504(57) 0.333(98) 3.72(51)

Two-state 0.543(56) 0.53(21) 4.3(1.0)
B6 Plat 0.427(22) 0.442(32) 3.89(17)

Sum 0.581(89) 0.42(10) 4.11(49)
Two-state 0.585(56) 0.69(18) 4.90(62)

E5 Plat 0.304(14) 0.318(44) 4.03(30)
Sum 0.336(22) 0.373(69) 4.21(45)

Two-state 0.385(19) 0.367(69) 4.16(48)
F6 Plat 0.407(17) 0.387(27) 3.67(18)

Sum 0.451(23) 0.502(49) 4.15(25)
Two-state 0.505(21) 0.366(68) 3.32(33)

F7 Plat 0.421(25) 0.385(45) 3.72(25)
Sum 0.431(29) 0.446(62) 4.17(31)

Two-state 0.518(35) 0.54(24) 3.57(80)
G8 Plat 0.463(25) 0.505(58) 4.08(30)

Sum 0.502(76) 0.45(13) 4.58(73)
Two-state 0.739(76) 0.85(39) 5.8(1.6)

N5 Plat 0.333(12) 0.314(24) 3.85(16)
Sum 0.383(29) 0.361(60) 3.93(35)

Two-state 0.381(12) 0.399(34) 4.18(21)
N6 Plat 0.391(16) 0.412(33) 3.91(21)

Sum 0.448(19) 0.336(33) 3.88(21)
Two-state 0.571(22) 0.535(91) 4.11(43)

O7 Plat 0.396(19) 0.399(37) 3.45(19)
Sum 0.460(23) 0.436(42) 3.66(21)

Two-state 0.672(38) 0.99(20) 4.98(69)

FIG. 6 (color online). The Q2-dependence of GM=GE.
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the experiment, while the chiral trend in the data extracted
using the summation method or two-state fits agrees well
with Kelly’s parametrization.
We conclude that the summation method cannot fully

reconcile lattice data for GE with its phenomenological
value. Such an agreement can only be reached if one is
willing to trust two-state fits.

V. CHIRAL FITS

Our task is now to make contact between lattice data for
form factors obtained for a range of pion masses and lattice
spacings and the quantities which describe key properties
of the nucleon, namely the charge radii and the magnetic
moments. This link is provided by the chiral effective field
theory. The approach which has so far been most widely
applied to perform chiral extrapolations of lattice results for
these quantities is based on heavy baryon chiral perturba-
tion theory (HBChPT) [60], supplemented by the inclusion
of the Δ-resonance [61,62].
Here, we employ an alternative formalism, i.e., the

manifestly Lorentz-invariant version of baryonic ChPT
[29–31], which has also been extended to include the Δ-
resonance [63], as well as vector mesons [32,64]. Our
procedure resembles the strategy pursued in Ref. [32] to
extract charge radii and magnetic moments from exper-
imental data of nucleon form factors. In particular, we focus
on fitting the dependence of the form factorsGE andGM on
the pion mass and the squared momentum transferQ2 to the
expressions of baryonic effective field theory (EFT),
including vector degrees of freedom. The relevant EFT
expressions for GE and GM have been supplemented by
terms which describe the dependence on the lattice spacing
a. In this way, we combine a simultaneous chiral and
continuum extrapolation with a fit to the Q2-dependence of
form factors. To enable a comparison with the standard

approach, we also perform fits to the pion mass dependence
of charge radii and the magnetic moment to several variants
of HBChPT.
Specifically, we consider the manifestly Lorentz-

invariant effective Lagrangian describing πN interactions
including vector mesons at Oðq3Þ in the chiral expansion.
A detailed discussion of this effective Lagrangian can be
found in Ref. [32]. Table III gives an overview of the
various interaction terms, as well as the associated low-
energy constants and hadron masses. From the table, one
can read off which low-energy constants are determined by
our fitting procedure and which phenomenological infor-
mation is used to fix the values of the remaining ones. We
note that the interaction terms proportional to c7 and d7 do
not contribute in the isovector case considered here. We
have also dropped the contributions from the ω-meson
entirely, since they were found to have only a negligible
effect on the results [32]. Furthermore, in Ref. [65], it
was shown that the universal ρ-meson coupling constant g
can be fixed via the Kawarabayashi–Suzuki–Riadzuddin–
Fayyazuddin (KSRF) relation [66,67], which follows by
requiring the self-consistency of an effective chiral theory
involving a pion, nucleons, and the ρ-meson.
The full expressions for the chiral expansions of the Dirac

and Pauli form factors to Oðq3Þ are given in Appendix D.2
of Ref. [68] but are too lengthy to be displayed here. Starting
from those formulas, we have formed the appropriate linear
combinations for the isovector form factorsGE andGM. The
resulting expressions were used to perform a simultaneous fit
to both GEðQ2Þ and GMðQ2Þ obtained for a range of pion
masses and momentum transfers, at all three values of the
lattice spacing.4 Cutoff effects can be easily incorporated

FIG. 7 (color online). Comparison of the three methods for extracting the nucleon form factorsGE (left) andGM (right) at a fixed value
of Q2. Shown are, from top to bottom, the results from the plateau method, summation method, and two-state fit, as a function of m2

π .

4To evaluate the loop integrals appearing in the expressions,
we make use of LoopTools [69,70].

S. CAPITANI et al. PHYSICAL REVIEW D 92, 054511 (2015)

054511-10



into this framework by adding terms proportional to the
lattice spacing a to the form factors, i.e.,

GEðQ2Þ ¼ GEFT
E ðQ2Þ þ aQ2βE;

GMðQ2Þ ¼ GEFT
M ðQ2Þ þ aβM; ð30Þ

where GEFT
E;M denote the continuum EFT expressions for the

form factors, while the coefficients βE;M are taken as fit

parameters. This ansatz takes account of the fact that the
matrix element corresponding to the electric form factor is
OðaÞ improved at vanishing momentum transfer.
Estimates for the charge radii hr2Ei, hr2Mi and the

anomalous magnetic moment κ are obtained by inserting
the fitted values of the low-energy parameters of dx; Gρ; d6,
and ~c6 ≡ c6 −Gρ=2g into the corresponding EFT expres-
sions, i.e.,

hr2E;Mi ¼ −
6

GE;Mð0Þ
dGE;MðQ2Þ

dQ2

����
Q2¼0

; ð31Þ

κ ¼ GMð0Þ − 1: ð32Þ

The relations between these quantities and the Dirac radius
hr21i, as well as the combination κhr22i reads

hr21i ¼ hr2Ei −
6κ

4m2
N
;

κhr22i ¼ ð1þ κÞhr2Mi − hr2Ei þ
6κ

4m2
N
: ð33Þ

We refer to a fit applied to form factor data obtained from
the summation method, over the entire range of Q2, with a
pion mass cut ofmπ ≤ mcut

π ¼ 330 MeV, and the masses of
the ρ-meson and nucleon fixed to their experimental values
as our standard procedure. Standard fits were performed
with and without terms parametrizing lattice artifacts [see
Eq. (30)]. For the fit including lattice artifacts, one finds
χ2red ¼ 1.21, for 66 degrees of freedom. Results for the
quantities hr2Ei, hr2Mi, κ, hr21i, and the combination κhr22i are
listed in Table IV. One observes that fits with and without
OðaÞ terms produce compatible results: Differences at the
level of at most 1.5 standard deviations are seen in hr2Mi and
κ. This indicates that the influence of lattice artifacts on the
results is small.
A first qualitative assessment can be made by plotting

the Q2-dependence of GE and GM at the physical point
compared to various phenomenological parametrizations of
experimental data, as shown in Fig. 8. While the depend-
ence of GE on the squared momentum transfer is somewhat

TABLE III. Interaction terms of the chiral effective theory used
for fitting lattice data for nucleon electromagnetic form factors. A
circle on top of a symbol indicates that the corresponding low-
energy parameter is defined in the chiral limit. The third column
describes how their values are determined. Further details are
described in the text.

Interaction
Low-energy
parameter Value

Lð2Þ F Fexp
π ¼ 92.2 MeV

M2
π Lattice input

Lρ;eff m
∘
ρ

mexp
ρ ¼ 775 MeV or lattice input

g g ¼ mρ=
ffiffiffi
2

p
Fπ ¼ 5.93 from

KSRF relation

Lπρ dx Fit parameter

LπρN g From KSRF relation

Gρ Fit parameter

Lð1Þ
πN m

∘
N

mexp
N ¼ 938 MeV or lattice input

g
∘
A

gexpA ¼ 1.27

Lð2Þ
πN

c6 Fit parameter

c7 c7 does not contribute in the
isovector case

Lð3Þ
πN

d6 Fit parameter

d7 d7 does not contribute in the
isovector case

Lð1Þ
πΔ m

∘
Δ mexp

Δ ¼ 1210 MeV

Lð1Þ
πNΔ

gπNΔ 1.125, from fit to Δ → πN
decay width

TABLE IV. Results for charge radii and magnetic moments from direct fits to the form factors. Lines 3–7 contain the differences
between variants of the fitting procedure as labelled in Table Vand the results from the standard fit performed without OðaÞ-terms. For
instance, variant 5 yields hr2Ei ¼ 0.831.

hr2Ei (fm2) hr2Mi (fm2) κ hr21i (fm2) κhr22i (fm2) Fit

0.722(34) 0.720(53) 3.33(35) 0.501(41) 2.61(9) Standard, with OðaÞ-terms
0.748(12) 0.636(8) 3.93(11) 0.487(14) 2.65(9) Standard, without OðaÞ-terms
−0.013 −0.004 −0.15 −0.003 −0.11 Variant 1
þ0.030 −0.025 þ0.28 þ0.011 þ0.04 Variant 2
−0.001 −0.009 −0.14 þ0.009 −0.14 Variant 3
þ0.030 þ0.035 −0.40 þ0.057 −0.16 Variant 4
þ0.083 þ0.029 −0.16 þ0.093 −0.05 Variant 5
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flatter compared to experiment, the behavior of GM is
reproduced very well.
To estimate the systematic error, we have considered a

number of variations in the fitting procedure, which are
compiled and labelled in Table V. These include different
pion mass cuts, restrictions of the fitted range inQ2, and the
use of the masses of the ρ and nucleon determined by the
lattice calculation at the respective value of the pion mass.
These variations are indicative of higher-order terms in the
chiral expansion and probe the overall consistency of our
particular EFT approach. We have also estimated the
residual systematic uncertainty due to excited states, by
repeating the entire procedure using the form factor data
obtained from two-state fits. Variations of the fitting
procedure (corresponding to the entries in lines 3–7 in
Table IV) were always applied neglecting terms para-
metrizing lattice artifacts (i.e., for βE ¼ βM ¼ 0), as this
produced more stable fits, in particular when imposing
more aggressive cuts in the pion mass or Q2 range.
However, while the systematic error budget is estimated

from fits excluding lattice artifacts, we prefer to quote our
main results using fits in which OðaÞ-terms have been
accounted for.
We thus obtain as our final results:

hr2Ei ¼ 0.722� 0.034ðstatÞþ0.030
−0.013ðχfitÞþ0.083

−0.000ðexcÞ fm2;

hr2Mi ¼ 0.720� 0.053ðstatÞþ0.035
−0.025ðχfitÞþ0.029

−0.000ðexcÞ fm2;

κ ¼ 3.33� 0.35ðstatÞþ0.28
−0.40ðχfitÞþ0.00

−0.16ðexcÞ;
hr21i ¼ 0.501� 0.041ðstatÞþ0.057

−0.003ðχfitÞþ0.093
−0.000ðexcÞ fm2;

κhr22i ¼ 2.61� 0.09ðstatÞþ0.04
−0.16ðχfitÞþ0.00

−0.05ðexcÞ fm2:

ð34Þ

Here, the systematic uncertainties estimated from fit
variants 1–4 have been combined into an overall chiral
fitting error, while the difference between employing the
summation method and two-state fits is quoted as a
separate, residual systematic uncertainty arising from
excited states.
We did not consider fits to baryonic EFT including Δ

degrees of freedom when assessing our systematic errors,
as such fits produced unacceptably large values of χ2red
when the low-energy parameter gπNΔ was fixed to the
phenomenological value of 1.125. On the other hand,
treating gπNΔ as a fit parameter resulted in an unphysically
small value.
In Figs. 9 and 10, we compare the estimates for hr2Ei,

hr2Mi, and κ at the physical point (shown as yellow points)
with the experiment. While hr2Mi and κ agree quite well
with the experimental results within statistical errors, we
find that direct fits to the form factors underestimate the
electric radius. However, given the large systematic uncer-
tainty, we note that our estimate for hr2Ei is not incompatible

FIG. 8 (color online). The Q2-dependence of GE and GM at the physical pion mass and in the continuum limit, as determined from a
simultaneous fit to lattice data (“direct” fit) including lattice artifacts. The bands denote the statistical error. The solid, dashed, and
dashed-dotted curves are the phenomenological representations of experimental data of Refs. [57], [58], and [59], respectively.

TABLE V. The standard procedure for fitting nucleon form
factors to the expressions from baryonic ChPT and the variants
applied in order to estimate the systematic error.

Standard fit Variants Label

Impose pion mass cut
of mcut

π ≤ 330 MeV
mcut

π ≤ 300 MeV 1

No mass cut 2
Fit entire available range
in Q2

Impose cut of
Q2 < 0.5 GeV2

3

Use experimental values
for mN; mρ

Use lattice input
for mN; mρ

4

Fit data obtained using
the summation method

Fit data extracted
from two-state fits

5
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with either the CODATA result [10] or the value determined
from muonic hydrogen [8,9].
To enable a comparison with previous lattice determi-

nations [11–23], we have performed chiral extrapolations
of our data to the expressions of HBChPT including the Δ-
resonance at Oðϵ3Þ in the small scale expansion [61]. In
particular, we fitted the pion mass dependence of our data
for the Dirac radius hr21i, the anomalous magnetic moment
κ, and the combination κhr22i to the expressions of
Refs. [61,62,71], which are summarized, e.g., in
Appendix A of Ref. [23]. In these fits, the low-energy
parameters gA, Fπ , and gπNΔ have been fixed to the same
values as in Table III. An additional parameter, the photon-
nucleon-Δ coupling, was fixed to the value −2.26 [71].
The results of such a HBChPT fit, with a pion mass cut

of 330 MeV, without terms parametrizing cutoff effects
and with the masses of the nucleon and Δ fixed to

mN ¼ 938 MeV and mΔ ¼ 1210 MeV, respectively, are
shown in Fig. 9. While the value for hr2Mi agrees within
statistical errors with the result determined from directly
fitting the form factors, there is a deviation by more than
two standard deviations in the case of hr2Ei, which,
however, becomes insignificant when systematic errors
are taken into account. Interestingly, the result for the
electric radius obtained from the HBChPT fit is statistically
compatible with both the CODATA estimate and the value
determined from muonic hydrogen. However, a number of
comments are in order. First, we note that HBChPT fits
including terms parametrizing lattice artifacts mostly fail.
This may be due to the lack of a clear trend in the data for
the charge radii as the lattice spacing is varied. Second, fits
based on HBChPT depend much more strongly on whether
the input data originate from applying the summation
method or two-state fits.
We note in passing that we have also applied baryonic

EFT based on the Lagrangian described in Table III to
perform chiral extrapolations of charge radii and κ as an
alternative to HBChPT. The results at the physical point are
consistent with direct fits to the form factors within
statistical errors, except for the anomalous magnetic
moment. We conclude that the chiral behavior of the
quantities computed here is not fully understood in terms
of baryonic chiral effective theory. To clarify the situation,
it is mandatory to obtain more statistically precise data at
the physical pion mass.
Given that the results for the charge radii and κ exhibit a

large spread depending on the details of the chiral fitting
procedure, the agreement of the HBChPT result for hr2Ei
with the experimental values must be considered an
accident. Due to the better overall stability, we prefer to
quote our final estimates from fits applied directly to the
form factors GE and GM [see Eq. (34)].

FIG. 9 (color online). Pion mass dependence of electric and magnetic radii extracted by fitting theQ2-dependence of form factors to a
dipole form. Chiral fits to HBChPT for mπ ≤ 330 MeV and their statistical uncertainty are represented by the bands. The yellow points
denote the results obtained by directly fitting the form factors to the EFT expressions. The associated systematic uncertainties are shown
by the dashed error bars.

FIG. 10 (color online). Pion mass dependence of the anomalous
magnetic moment. For an explanation of symbols, see Fig. 9.
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VI. CONCLUSIONS AND OUTLOOK

We have performed a comprehensive study of the
isovector electromagnetic form factors of the nucleon in
two-flavor QCD with a strong emphasis on controlling the
various sources of systematic errors. Our findings culmi-
nate in the estimates shown in Eq. (34) for the charge radii
and magnetic moment including a full error budget.
While the summation method provides a handle to

explore excited-state contributions independently of the
standard plateau method, the issue of a systematic bias
could not be fully resolved. Although we prefer the
summation method, since it does not rely on specific
values of the energy gaps, two-state fits produce values
that appear to reproduce the phenomenological situation
better. However, for lack of data at source-sink separations
of more than 1.5 fm, we cannot currently resolve the issue
completely. Still, our data support the notion that agreement
with experiment can be obtained by mapping out the pion
mass dependence close to the physical point in conjunction
with addressing the issue of excited-state contaminations,
which has a greater impact as the pion mass is reduced.
Our study comprises three lattice spacings in the range

0.05–0.08 fm. In general, we find lattice artifacts to be
small. This is most easily inferred from Figs. 9 and 10,
which demonstrate that results for the charge radii and κ
obtained on each ensemble show no significant difference
as the lattice spacing is varied.
For the first time, we publish a complete error budget for

baryonic charge radii and magnetic moments. Also for the
first time, we have applied the method of Ref. [32], i.e.,
applying the full framework of covariant baryonic chiral
effective theory to the nucleon electromagnetic form
factors, in the context of lattice QCD.
While the wider picture of the convergence properties of

the various forms of baryonic chiral effective theory cannot
be fully addressed with our data, we have a clear preference
for applying the fully covariant chiral effective theory to the
form factors themselves. In particular, this avoids the
systematic uncertainties inherent in the use of the some-
what simplistic dipole description of the form factors.
To further resolve the issue of excited-state effects,

significant improvements in statistical precision at larger
source-sink separations will be required. One proposed way
to achieve this is the use of methods such as all-mode
averaging [72] in order to reduce the associated computa-
tional costs. The first studies have yielded encouraging
results, and we intend to pursue this avenue further.
Another direction for improvement will be to make use
of the variational method [54,73–75] for increased control
and suppression of excited-state contributions.
Going beyond the isovector form factors to the proton

and neutron form factors will require the inclusion of
quark-disconnected diagrams, which makes it necessary to
use all-to-all propagators. By employing stochastic estima-
tors along with a generalized hopping parameter expansion,

the scalar charge radius of the pion, which receives a
significant contribution from quark-disconnected diagrams,
has recently been measured on the lattice with an overall
accuracy rivaling that of phenomenological determinations
[76–78]. Related methods have been employed by other
groups to study the nucleon structure quantities with
disconnected parts [26,79–81], and we intend to further
address the proton radius puzzle from the lattice side by
using these and similar methods to separately study proton
and neutron form factors in the future.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Andreas
Jüttner to the early stages of this work. We thank Jeremy
Green for useful discussions concerning the results of
Refs. [23,56] and Eigo Shintani for discussions on all-
mode averaging. We are grateful to our colleagues within
the CLS initiative for sharing ensembles. These calcula-
tions were partly performed on the HPC Cluster “Wilson”
at the Institute for Nuclear Physics, University of Mainz.
We thank Christian Seiwerth for technical support. We are
grateful for computer time allocated to project HMZ21 on
the BG/Q “JUQUEEN” computer at NIC, Jülich. This work
was granted access to the HPC resources of the Gauss
Center for Supercomputing at Forschungzentrum Jülich,
Germany, made available within the Distributed European
Computing Initiative by the PRACE-2IP, receiving funding
from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under Grant No. RI-
283493. This work was supported by the DFG through
SFB 443 and SFB 1044 and by the Rhineland-Palatinate
Research Initiative. M. D. M. was partially supported by the
Danish National Research Foundation under Grant
No. DNRF:90. T. R. was supported by DFG Grant
No. HA4470/3-1. H.W. is grateful to the Yukawa
Institute for Theoretical Physics, Kyoto University, for
hospitality during the YITP workshop YITP-T-14-03 on
“Hadrons and Hadron Interactions in QCD” where part of
this work was completed. G. v. H. thanks the Tata Institute
for Fundamental Research (Mumbai, India) for its hospital-
ity during the workshop “Perspectives and Challenges in
Lattice Gauge Theories,” February 2015.

APPENDIX A: USE OF NONCOVARIANT
INTERPOLATING OPERATORS IN NUCLEON

FORM FACTOR CALCULATIONS

Typically, the interpolating nucleon operators used in
lattice form factor calculations are not Lorentz covariant,
due to the spatial smoothing procedures applied on the
elementary fields. If we denote the overlap of the inter-
polating operator ΨαðxÞ onto the nucleon as5

5The states are normalized according to hN; p0; s0jN; p; si ¼
2Epδss0 ð2πÞ3δð3Þðp0 − pÞ.
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h0jΨαð0; xÞjN; p; si ¼ Us
αðpÞeip·x; ðA1Þ

the question then poses itself, whether the fact that Us
αðpÞ

does not obey the Dirac equation affects the calculation in
any way.
We denote by usðpÞ the usual plane-wave solutions to the

Dirac equation,6 normalized according to

ūrðpÞusðpÞ ¼ 2mNδ
rs ðA2Þ

and obeying the spin sum rule

X
s¼1;2

usðpÞūsðpÞ ¼ Epγ0 − ip · γ þmN: ðA3Þ

Let ψαðxÞ be a nucleon interpolating field which does
transform as a covariant Dirac spinor. Then its overlap onto
the nucleon state has the form

h0jψαð0; xÞjN; p; si ¼ ZlusαðpÞeip·x; ðA4Þ

where Zl is independent of p and can be chosen real and
positive by an appropriate choice of the phase of the field
ψαðxÞ. To answer the question formulated above, we
analyze the covariance properties of correlation functions
of the operators ΨαðxÞ and ψαðxÞ. We will focus on the
asymptotic behavior of the correlation functions at large
Euclidean time separations, where they are saturated by the
nucleon ground state, and we indicate this by a ⋆ in the
equations below.
We consider the following two-point functions and their

spectral representation for x0 > 0,

Cαβ
2;ssðp; x0Þ≡

Z
d3xe−ip·xhΨαðxÞΨ̄βð0Þi

¼⋆ e−Epx0

2Ep

X
s

Us
αðpÞŪs

βðpÞ; ðA5Þ

Cαβ
2;slðp; x0Þ≡

Z
d3xe−ip·xhΨαðxÞψ̄βð0Þi

¼⋆ Z�
l
e−Epx0

2Ep

X
s

Us
αðpÞūsβðpÞ; ðA6Þ

Cαβ
2;lsðp; x0Þ≡

Z
d3xe−ip·xhψαðxÞΨ̄βð0Þi

¼⋆ Zl
e−Epx0

2Ep

X
s

usαðpÞŪs
βðpÞ: ðA7Þ

We now define

MðpÞ≡X
s

UsðpÞūsðpÞ: ðA8Þ

The other spin sums can also be expressed through M.
First, we have

X
s

usðpÞŪsðpÞ ¼ γ0MðpÞ†γ0: ðA9Þ

Since the overlap of the local nucleon operator is a genuine
Dirac spinor, the matrix M satisfies

MðpÞðγ0Ep − ip · γ −mNÞ ¼ 0: ðA10Þ

We observe from the definition of M that

MðpÞusðpÞ ¼ 2mNUsðpÞ; ðA11Þ

and hence also

ŪsðpÞ ¼ 1

2mN
ūsðpÞγ0MðpÞ†γ0: ðA12Þ

We can thus write the spin sum appearing in the two-point
function C2;ss as

X
s

UsðpÞŪsðpÞ ¼ 1

4m2
N
MðpÞðEpγ0 − ip · γ þmNÞ

× γ0MðpÞ†γ0 ðA13Þ

¼ 1

2mN
MðpÞγ0MðpÞ†γ0: ðA14Þ

The second equality uses Eq. (A10). Thus, γ0 times the spin
sum of the U’s is a Hermitian matrix.
Let JðxÞ be a local operator with the following matrix

elements between one-nucleon states7:

hN; p0; s0jJð0ÞjN; p; si ¼ ūs
0 ðp0ÞJ ðqÞusðpÞ; ðA15Þ

where q≡ p0 − p. The three-point function relevant to form
factor calculations with a vanishing momentum at the sink
and its spectral representation read (for x0 > y0 > 0)

6In this Appendix, we use the conventions of Peskin and
Schroeder in Minkowski space (with Dirac matrices γμM) and
introduce a corresponding set of Euclidean Dirac matrices, γ0 ¼
γ0M and γk ¼ −iγkM. The γμ are all Hermitian; γ0, γ2, and γ5 are
symmetric, and γ1 and γ3 are antisymmetric.

7For instance, J ðqÞ ¼ ðγμMF1ðq2Þ þ iσμνM
qν
2mN

F2ðq2ÞÞ (σμνM≡
i
2
½γμM; γνM�) for the vector current ψ̄ðxÞγμMψðxÞ.
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Cαβ
3;Jðq; y0; x0Þ≡

Z
d3y

Z
d3xeþiq·yhΨαðxÞJðyÞΨ̄βð0Þi

¼⋆ e−Eqy0

2Eq

e−mðx0−y0Þ

2mN

�X
s0
Us0

α ð0Þūs0γ ð0Þ
�

× ðJ ðqÞÞγδ
�X

s

usδð−qÞŪs
βð−qÞ

�
:

ðA16Þ

The three-point function, projected with a generic
projector Γ,

TrfΓC3ðq; y0; x0Þg

¼⋆ e−Eqy0

2Eq

e−mðx0−y0Þ

2mN
TrfΓMð0ÞJ ðqÞγ0Mð−qÞ†γ0g

ðA17Þ

can thus also be expressed in terms of the matrix MðpÞ.
The latter can be expanded in the 16 linearly independent
spinor-space matrices, and symmetries can be used to
restrict the terms that contribute.

1. Symmetry constraints on nucleon
two-point functions

Let

C2;ϕχðp; x0Þ≡
Z

d3xe−ip·xhϕðxÞχ̄ð0Þi ðA18Þ

be a generic nucleon two-point function with interpolating
operators ϕ and χ. We assume that the latter are good
spinors with respect to spatial rotations and with respect to
all discrete symmetries, but no assumption is made on their
behavior under boosts. The implications of the various
symmetries are:

(i) rotation invariance:

C2;ϕχðRp; x0Þ ¼ Λ1
2
ðRÞC2;ϕχðp; x0ÞΛ1

2
ðRÞ−1;

ðA19Þ

where ϕðxÞ → Λ1
2
ðRÞϕðR−1xÞ is the transformation

law of the quark fields;
(ii) parity:

C2;ϕχð−p; x0Þ ¼ γ0C2;ϕχðp; x0Þγ0; ðA20Þ

(iii) Euclidean time reversal:

C2;ϕχðp;−x0Þ ¼ γ0γ5C2;ϕχðp; x0Þγ5γ0; ðA21Þ
(iv) charge conjugation: assuming that the nucleon

interpolating fields transform like the quark fields

[qαðxÞ → ðq̄ðxÞγ0γ2Þα, q̄αðxÞ → ðγ0γ2qðxÞÞα]8

C2;ϕχð−p;−x0Þ⊤ ¼ γ2γ0C2;χϕðp; x0Þγ0γ2: ðA22Þ

Combining the three discrete symmetries, we obtain, for
later use,

γ5C2;ϕχðp; x0Þ⊤γ5 ¼ γ2γ0C2;χϕðp; x0Þγ0γ2: ðA23Þ

The most general form of the nucleon two-point func-
tions allowed by rotation symmetry and parity is

C2;ϕχðp; x0Þ ¼ F sðp2; x0Þ þ F 0ðp2; x0Þγ0
− iFVðp2; x0Þp · γ − iF Tðp2; x0Þγ0p · γ:

ðA24Þ

Time-reversal invariance implies that F 0 and F T are odd
functions of x0, while F s and FV are even functions of x0.
Charge conjugation relates the functions F parametrizing
the correlator C2;ϕχ to those parametrizing the correla-
tor C2;χϕ.

2. General parametrization of MðpÞ
In view of (A24), we parametrize MðpÞ as

MðpÞ ¼ mNfsðp2Þ þ f0ðp2ÞEpγ0 − ifVðp2Þp · γ
− ifTðp2Þp · ðγ0γÞ: ðA25Þ

The condition (A10) from the spectral representation
implies the constraints

fVðp2Þ ¼
1

p2
ðE2

pf0ðp2Þ −m2
Nfsðp2ÞÞ; ðA26Þ

fTðp2Þ ¼
mNEp

p2
ðfsðp2Þ − f0ðp2ÞÞ: ðA27Þ

In particular, f0ðp2Þ − fsðp2Þ ¼ Oðp2Þ; the case of a
Lorentz-covariant spinor source corresponds to f0 ¼ fs ¼
fV independent of p and fT ¼ 0 identically. Now, combin-
ing the discrete-symmetry property (A23) and the spectral
representations (A6), (A7), one derives the property that f0,
fs, fV , and fT must all be real-valued functions.
It is convenient to decompose M as follows:

MðpÞ ¼ MþðpÞ þM−ðpÞ; ðA28Þ

M�ðpÞ ¼
1

2
ð1� γ0ÞMðpÞ: ðA29Þ

8This condition fixes the phase of the interpolating fields. An
interpolating field that satisfies this condition is χαðxÞ ¼
ϵabcðuaβðγ0γ2γ5Þβγdbγ Þucα, but eiφχαðxÞ does not for φ ≠ 0; π.
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Using the constraints, one finds the following general form
of M�ðpÞ:

MþðpÞ ¼
1

2
ð1þ γ0ÞZþðpÞðEp þmN − ip · γÞ; ðA30Þ

M−ðpÞ ¼
1

2
ð1 − γ0ÞZ−ðpÞðEp −mN þ ip · γÞ ðA31Þ

with the relations

ZþðpÞ ¼
mNfsðp2Þ þ Epf0ðp2Þ

Ep þmN
; ðA32Þ

Z−ðpÞ ¼
mNfsðp2Þ − Epf0ðp2Þ

Ep −mN
: ðA33Þ

The bottom line is that the matrix MðpÞ is parametrized
by two (spatially scalar) functions Z�ðpÞ, which are linear
functions of the nucleon interpolating operator ΨαðxÞ. Its
phase can be chosen such that Z�ðpÞ are real for all p.
Furthermore, it can be chosen such that Zþðp ¼ 0Þ is
positive. The generic case that we will consider is then that
it remains positive for all momenta.9 As a side remark, we
note that in the rest frame only parity-odd states (not
considered here) contribute to Trfð1 − γ0ÞC2;slðp ¼ 0; x0Þg.

3. Final form of the noncovariant two-point
and three-point functions

We now specialize to the projector

Γ ¼ 1

2
ð1þ γ0Þð1þ iγ5γ3Þ: ðA34Þ

Starting from Eqs. (A5) and (A13), the projected two-point
function can be written10

TrfΓC2;ssðp; x0Þg

¼⋆ e−Epx0

2Ep
·

1

2mN
Trfð1þ iγ5γ3Þ

×MþðpÞγ0MþðpÞ†γ0g
¼ jZþðpÞj2ð1þmN=EpÞe−Epx0 : ðA35Þ

The second equality uses the parametrization Eq. (A30).
The term iγ5γ3 in Γp does not contribute to this expression.
The trace appearing in Eq. (A17) takes the form

TrfΓpMð0ÞJ ðqÞγ0Mð−qÞ†γ0g
¼ Trfð1þ iγ5γ3ÞMþð0ÞJ ðqÞγ0Mþð−qÞ†g: ðA36Þ

Thus, the expression for the three-point function
becomes

C3ðq; y0; x0Þ

¼⋆ e−Eqy0

2Eq

e−mNðx0−y0Þ

2mN
Zþð0ÞZþð−qÞ�

×mNTrfð1þ γ0Þð1þ iγ5γ3ÞJ ðqÞ
× ðmN þ Eq þ iq · γÞg: ðA37Þ

As we have seen, the phase of the nucleon interpolating
operatorΨðxÞ can be chosen such thatZþðpÞ > 0 for all p. If
the phase had not been chosen in thisway, the common phase
would nonetheless cancel in the product Zþð0ÞZþð−qÞ�.
For a covariant source, the result would be identical to

(A37), except that ZþðpÞ would be independent of p. In the
standard expression of the ratio (13), the three-point
function is, however, divided by the appropriate combina-
tion of two-point functions to cancel the overlap factor
ZþðpÞ for each value of p. The correctness of our
calculation is thus not affected by the use of noncovariant
interpolating operators.

APPENDIX B: Q2 TABLES

In Tables VI–XVI, we give all of our results for the
isovector vector form factors GE and GM of the
nucleon at all values of Q2 measured on each ensemble.
Listed in each case are the values obtained using the plateau
method with a source-sink separation of ts ¼ 1.1 fm, the
summation method, and an explicit two-state fit (cf. the
main text for details). The statistical errors on each
data point are quoted in parentheses following the central
value.

9A priori, it could happen that it becomes negative for some
momenta, but then by continuity it would have to vanish
somewhere, and there is no symmetry reason for this to happen.

10In the following equations, we allow for the case that the
ZþðpÞ have a common phase for all p.
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TABLE VI. A3 ensemble (a ¼ 0.079 fm, mπ ¼ 473 MeV): vector form factors at all Q2 values for all extraction methods.

A3 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.230 0.752 (0.011) 0.725 (0.018) 0.734 (0.012) 3.040 (0.100) 3.320 (0.175) 3.067 (0.128)
0.443 0.601 (0.013) 0.583 (0.025) 0.592 (0.017) 2.359 (0.078) 2.503 (0.147) 2.272 (0.111)
0.639 0.495 (0.018) 0.480 (0.037) 0.484 (0.022) 1.921 (0.084) 1.869 (0.176) 1.783 (0.125)
0.823 0.373 (0.023) 0.322 (0.056) 0.369 (0.036) 1.579 (0.098) 1.716 (0.216) 1.536 (0.158)
0.995 0.331 (0.023) 0.299 (0.055) 0.320 (0.030) 1.349 (0.091) 1.416 (0.205) 1.253 (0.143)
1.156 0.283 (0.031) 0.228 (0.073) 0.213 (0.037) 1.194 (0.121) 0.881 (0.295) 0.910 (0.162)

TABLE VII. A4 ensemble (a ¼ 0.079 fm, mπ ¼ 364 MeV): vector form factors at all Q2 values for all extraction methods.

A4 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.229 0.720 (0.024) 0.685 (0.037) 0.668 (0.021) 2.806 (0.147) 2.603 (0.232) 2.726 (0.239)
0.437 0.547 (0.022) 0.466 (0.043) 0.489 (0.031) 2.121 (0.109) 2.360 (0.210) 2.518 (0.210)
0.628 0.459 (0.024) 0.380 (0.048) 0.385 (0.045) 1.936 (0.130) 2.166 (0.199) 2.146 (0.246)
0.805 0.401 (0.039) 0.397 (0.087) 0.339 (0.076) 1.591 (0.239) 1.499 (0.339) 1.408 (0.375)
0.970 0.338 (0.025) 0.338 (0.080) 0.291 (0.052) 1.317 (0.128) 1.449 (0.281) 1.594 (0.262)
1.123 0.299 (0.035) 0.242 (0.099) 0.205 (0.077) 1.046 (0.156) 1.192 (0.352) 1.510 (0.409)

TABLE VIII. A5 ensemble (a ¼ 0.079 fm, mπ ¼ 316 MeV): vector form factors at all Q2 values for all extraction methods.

A5 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.228 0.692 (0.018) 0.651 (0.036) 0.629 (0.039) 2.572 (0.159) 2.619 (0.270) 2.672 (0.349)
0.434 0.521 (0.019) 0.461 (0.038) 0.433 (0.040) 1.967 (0.121) 2.082 (0.203) 2.021 (0.272)
0.623 0.424 (0.029) 0.305 (0.058) 0.328 (0.054) 1.720 (0.134) 2.115 (0.277) 1.408 (0.328)
0.797 0.343 (0.043) 0.269 (0.096) 0.171 (0.087) 1.247 (0.158) 0.673 (0.426) 1.430 (0.442)
0.959 0.255 (0.033) 0.176 (0.084) 0.002 (0.075) 1.023 (0.135) 0.989 (0.350) 0.867 (0.381)
1.110 0.065 (0.093) 0.189 (0.114) 0.067 (0.128) 0.760 (0.340) 0.750 (0.523) -0.338 (0.522)

TABLE IX. B6 ensemble (a ¼ 0.079 fm, mπ ¼ 268 MeV): vector form factors at all Q2 values for all extraction methods.

B6 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.104 0.826 (0.008) 0.785 (0.023) 0.760 (0.018) 3.264 (0.121) 3.692 (0.370) 3.794 (0.284)
0.203 0.709 (0.012) 0.664 (0.036) 0.669 (0.025) 2.819 (0.121) 3.172 (0.258) 2.571 (0.260)
0.297 0.622 (0.017) 0.572 (0.048) 0.541 (0.038) 2.312 (0.121) 2.417 (0.245) 2.283 (0.299)
0.387 0.565 (0.018) 0.569 (0.069) 0.474 (0.042) 2.154 (0.132) 2.435 (0.241) 2.115 (0.300)
0.474 0.507 (0.018) 0.460 (0.053) 0.428 (0.044) 2.034 (0.105) 2.149 (0.216) 1.970 (0.247)
0.557 0.445 (0.020) 0.421 (0.059) 0.374 (0.056) 1.656 (0.069) 1.680 (0.208) 1.399 (0.233)
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TABLE X. E5 ensemble (a ¼ 0.063 fm, mπ ¼ 457 MeV): vector form factors at all Q2 values for all extraction methods.

E5 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.356 0.663 (0.013) 0.635 (0.018) 0.601 (0.014) 2.611 (0.105) 2.544 (0.150) 2.540 (0.139)
0.675 0.477 (0.016) 0.443 (0.025) 0.411 (0.018) 1.909 (0.090) 1.773 (0.130) 1.782 (0.111)
0.966 0.379 (0.026) 0.357 (0.039) 0.339 (0.029) 1.429 (0.104) 1.346 (0.161) 1.350 (0.151)
1.233 0.209 (0.077) 0.197 (0.065) 0.204 (0.049) 1.342 (0.358) 1.015 (0.242) 1.016 (0.210)
1.480 0.220 (0.046) 0.191 (0.060) 0.190 (0.038) 0.996 (0.178) 0.887 (0.242) 0.929 (0.172)
1.709 0.204 (0.086) 0.164 (0.082) 0.185 (0.054) 0.454 (0.301) 0.644 (0.301) 0.876 (0.241)

TABLE XI. F6 ensemble (a ¼ 0.063 fm, mπ ¼ 324 MeV): vector form factors at all Q2 values for all extraction methods.

F6 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.162 0.766 (0.009) 0.746 (0.011) 0.725 (0.009) 2.834 (0.125) 2.963 (0.143) 2.586 (0.216)
0.314 0.627 (0.012) 0.604 (0.015) 0.555 (0.014) 2.410 (0.102) 2.350 (0.116) 2.128 (0.166)
0.457 0.541 (0.016) 0.516 (0.019) 0.455 (0.020) 2.028 (0.103) 1.809 (0.128) 1.962 (0.173)
0.593 0.423 (0.017) 0.394 (0.023) 0.332 (0.027) 1.586 (0.084) 1.505 (0.116) 1.474 (0.199)
0.723 0.383 (0.017) 0.343 (0.024) 0.307 (0.025) 1.435 (0.072) 1.245 (0.111) 1.306 (0.165)
0.846 0.342 (0.021) 0.291 (0.028) 0.253 (0.030) 1.278 (0.076) 1.007 (0.133) 1.205 (0.171)

TABLE XII. F7 ensemble (a ¼ 0.063 fm, mπ ¼ 277 MeV): vector form factors at all Q2 values for all extraction methods.

F7 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.162 0.759 (0.013) 0.751 (0.016) 0.723 (0.017) 2.894 (0.167) 3.106 (0.192) 2.637 (0.329)
0.313 0.623 (0.020) 0.612 (0.020) 0.566 (0.025) 2.383 (0.136) 2.462 (0.158) 1.893 (0.258)
0.455 0.512 (0.026) 0.507 (0.027) 0.421 (0.033) 1.944 (0.111) 2.065 (0.158) 1.613 (0.294)
0.589 0.442 (0.026) 0.410 (0.033) 0.270 (0.048) 1.706 (0.130) 1.649 (0.175) 1.284 (0.307)
0.717 0.417 (0.037) 0.372 (0.031) 0.289 (0.048) 1.461 (0.107) 1.465 (0.141) 1.336 (0.302)
0.838 0.336 (0.036) 0.308 (0.038) 0.200 (0.051) 1.295 (0.126) 1.329 (0.165) 0.911 (0.342)

TABLE XIII. G8 ensemble (a ¼ 0.063 fm, mπ ¼ 193 MeV): vector form factors at all Q2 values for all extraction methods.

G8 GE GM

Q2 (GeV2) Plat (1.1 fm) Summation Two-state Plat (1.1 fm) Summation Two-state

0.092 0.870 (0.013) 0.928 (0.041) 0.771 (0.030) 3.367 (0.243) 4.272 (0.618) 4.555 (0.815)
0.181 0.731 (0.014) 0.737 (0.046) 0.563 (0.040) 2.822 (0.160) 3.293 (0.398) 3.081 (0.546)
0.266 0.629 (0.016) 0.591 (0.055) 0.396 (0.060) 2.464 (0.155) 2.972 (0.383) 2.879 (0.600)
0.347 0.558 (0.022) 0.510 (0.071) 0.292 (0.074) 2.173 (0.131) 3.088 (0.410) 2.168 (0.568)
0.426 0.499 (0.018) 0.473 (0.058) 0.149 (0.065) 1.902 (0.119) 2.311 (0.315) 1.862 (0.483)
0.503 0.458 (0.020) 0.419 (0.068) 0.048 (0.082) 1.688 (0.130) 1.899 (0.370) 1.767 (0.492)
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