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QCD with 2 flavors of massless color-sextet quarks is studied as a possible walking-Technicolor
candidate. We simulate the lattice version of this model at finite temperatures near to the chiral-symmetry
restoration transition, to determine whether it is indeed a walking theory (QCD-like with a running
coupling which evolves slowly over an appreciable range of length scales) or if it has an infrared fixed
point, making it a conformal field theory. The lattice spacing at this transition is decreased towards zero by
increasing the number Nt of lattice sites in the temporal direction. Our simulations are performed at
Nt ¼ 4; 6; 8; 12, on lattices with spatial extent much larger than the temporal extent. A range of small
fermion masses is chosen to make predictions for the chiral (zero mass) limit. We find that the bare lattice
coupling does decrease as the lattice spacing is decreased. However, it decreases more slowly than would
be predicted by asymptotic freedom. We discuss whether this means that the coupling is approaching a
finite value as lattice Nt is increased—the conformal option, or if the apparent disagreement with the
scaling predicted by asymptotic freedom is because the lattice coupling is a poor expansion parameter, and
the theory walks. Currently, evidence favors QCD with 2 color-sextet quarks being a conformal field
theory. Other potential sources of disagreement with the walking hypothesis are also discussed. We also
report an estimate of the position of the deconfinement transition for Nt ¼ 12, needed for choosing
parameters for zero-temperature simulations.
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I. INTRODUCTION

The LHC at CERN is currently probing the Higgs sector
of the Standard Model of high-energy physics. This sector
is the least well understood part of the Standard Model, and
the least satisfactory from a theoretical standpoint. Thus the
study of extensions of the Standard Model with a more
aesthetically compelling Higgs sector is timely. The obser-
vation of a light (≈125 GeV) Higgs-like excitation at
ATLAS and CMS, with properties consistent with the
Standard-Model Higgs, puts constraints on any such model.
We are especially interested in those models where the
Higgs sector is strongly coupled and the Higgs boson is
composite.
We are interested in QCD-like models—non-Abelian

gauge theories with massless fermions and spontaneously
broken chiral symmetry—where the pionlike Goldstone
bosons play the role of the Higgs field, giving mass to the
W� and Z weak vector bosons through the Higgs mecha-
nism. Here the Higgs boson is the remnant radial excitation.
Such theories are called Technicolor models [1,2].
Technicolor models, which are simply QCD scaled up
so that fπ ≈ 246 GeV rather than fπ ≈ 93 MeV of regular
QCD, are not phenomenologically viable. It has been
suggested that Technicolor theories where the fermion
content is such that the running gauge-coupling evolves

very slowly over an appreciable range of mass scales,
described as “walking” rather than running, might be
capable of overcoming such difficulties. Such theories
are referred to as Walking Technicolor models [3–6].
Because of their nature, the nonperturbative properties of
such models are amenable to study using the simulation
methods developed for Lattice QCD. It is such theories that
we are interested in simulating.
Candidate walking gauge theories typically have 2-loop

β-functions with a second, nontrivial, zero. If this behavior
remains true to all orders, this nontrivial fixed point
controls the infrared properties of the theory, which is
therefore a conformal field theory with a continuous
spectrum. On the other hand, if the running coupling
becomes so large that a chiral condensate forms before
this would-be IR fixed point is reached, the theory is QCD-
like with spontaneously broken chiral symmetry and
Goldstone bosons separated by a mass gap from the rest
of the spectrum. Because of the proximity of the would-be
fixed point, a region where the coupling walks would be
expected.
We have concentrated our efforts on techni-QCD with 2

flavors of massless Technicolor-sextet techniquarks. Since
this is identical to QCD with 2 color-sextet quarks scaled so
that fπ ≈ 246 GeV, we will omit the prefix “techni” from
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here on. This theory has been identified as a potential
walking-Technicolor candidate (see for example [7] and
references therein). It is asymptotically free and its 2-loop
β-function does have a nontrivial zero far enough from
g2 ¼ 0 for the coupling to become sufficiently large for
there to be a chance that chiral symmetry breaks before it is
reached. If it is indeed QCD-like, it has 3 Goldstone
bosons, the correct number to give masses to the Ws
and Z, with none left over. In this sense, it is minimal.
Other groups have studied or are studying this model

using lattice techniques. The main contributors are Degrand
et al. [8–13] and the Lattice Higgs Collaboration [14–21],
In addition we should mention some recent work by A.
Hasenfratz and her collaborators [22]. With the exception
of one early paper by Degrand et al. [9], these have
concentrated on the zero-temperature properties of this
model. We study lattice QCD with 2 color-sextet quarks at
finite temperature. Our goal is to determine if the evolution
of the coupling as lattice spacing a → 0 is described by
asymptotic freedom, and that chiral symmetry remains
broken in this limit. Assuming that the chiral-symmetry-
restoration transition is indeed a finite-temperature tran-
sition, increasing the temporal extent of the lattice, Nt in
lattice units, with the spatial extent Ns ≫ Nt, and with
temperature T fixed at the chiral phase transition temper-
ature Tχ , takes a ¼ 1=NtTχ towards zero. Thus the running
coupling at this temperature, gχðaÞ, should approach zero
as Nt → ∞ in a manner determined by the perturbative β-
function. If, on the other hand, the theory is conformal, gχ
will approach a finite limit as Nt → ∞, characterizing a
bulk transition. Similar arguments should apply to the
deconfinement transition at gd. However, as we have
determined, deconfinement occurs at a much stronger
coupling than chiral-symmetry restoration. For the Nt
values we have considered (Nt ≤ 12), gd is too large for
its evolution to be controlled by the perturbative β-function.
Recent use of this method, to search for the lower bound

(in Nf) of the conformal window for QCD with many
fundamental quarks [23–26] have shown it to complement
step-scaling methods. The reader should consult the refer-
ences in these papers for the history of such studies.
Although these methods are, in principle, straight forward,
these recent papers indicate that they are not so easy to
implement in practice.
Our earlier studies at Nt ¼ 4; 6; 8 [27,28] were consis-

tent with the evolution of gχ between Nt ¼ 6 and Nt ¼ 8

being described by the 2-loop β-function. We have
extended our simulations to Nt ¼ 12. In addition, we have
covered the neighborhood of the chiral transition for Nt ¼
6 and Nt ¼ 8 with more closely spaced values of β ¼ 6=g2

to determine gχ more precisely. In addition, we have
determined the position of the deconfinement transition
for Nt ¼ 12 for one mass value. Preliminary versions of the
results presented in this paper have been presented at lattice
conferences [29,30].

While the observed change in βχ ¼ 6=g2χ between Nt ¼
6 and Nt ¼ 8 is consistent with that predicted using the 2-
loop β-function, that between Nt ¼ 8 and Nt ¼ 12 is only
about half the predicted value. At face value, this
suggests that βχ could be approaching a finite limit, which
would mean that this theory is conformal. However, we
need to be cautious, since we are studying the evolution of
the bare lattice coupling, which is known to be a poor
choice of expansion parameters [31]. In addition, we
are using unimproved staggered fermions for which per-
turbation expansions in terms of the bare lattice coupling
are particularly poorly behaved, because of the “taste”-
breaking tadpoles [32,33]. We discuss this and other
potential sources of systematic errors in our approach,
later in this paper. Our results make it important to perform
further studies of lattice QCD with 3 massless, color-sextet
quarks, to determine if it approaches its expected asymp-
totic behavior at Nt ¼ 12, which would be qualitatively
different from that observed for 2 flavors.
In Sec. II we discuss our methods of simulation and

analysis. Section III gives the results of our simulations at
Nt ¼ 6; 8 and 12 near the chiral transition. We compare
these results with perturbative predictions in Sec. IV, and
discuss improvements. In Sec. V we analyze simulations
at Nt ¼ 12 in the neighborhood of the deconfinement
transition. In Sec. VI we discuss our results, try to draw
conclusions, and indicate directions for future studies.

II. METHODS

This section largely repeats discussions given in earlier
publications [27,28], and is included here for completeness.
We use the simple Wilson plaquette action for the gauge
fields:

Sg ¼ β
X
□

�
1 −

1

3
ReðTrUUUUÞ

�
: ð1Þ

Here the gauge fields U on the links are in the fundamental
representation of SUð3Þcolor. We use the unimproved
staggered-fermion action for the quarks:

Sf ¼
X
sites

�XNf=4

f¼1

ψ†
f½Dþm�ψf

�
; ð2Þ

where D ¼ P
μημDμ with

DμψðxÞ ¼
1

2
½Uð6Þ

μ ðxÞψðxþ μ̂Þ −Uð6Þ†
μ ðx − μ̂Þψðx − μ̂Þ�;

ð3Þ

where Uð6Þ is the sextet representation of U, i.e. the
symmetric part of the tensor product U ⊗ U. Reasons
for this choice have been discussed in our earlier
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publications. When Nf is not a multiple of 4 we use the
fermion action:

Sf ¼
X
sites

χ†f½Dþm�½−Dþm�gNf=8χ: ð4Þ

The operator which is raised to a fractional power is
positive definite and we choose its positive-definite root.
This yields a well-defined operator. We use the RHMC
method for our simulations [34], where the required powers
of the quadratic Dirac operator are replaced by diagonal
rational approximations, to the desired precision. By
applying a global Metropolis accept or reject step at the
end of each trajectory, errors due to the discretization of
molecular-dynamics “time” are removed.
The canonical partition function for a field theory at

finite temperature T is realized by evaluating the functional
integral for Euclidean time where the time is restricted to an
interval 1=T with periodic boundary conditions on the
boson fields and antiperiodic boundary conditions on the
fermion fields. Space is kept infinite. On a lattice of lattice
spacing a, this means using a lattice of temporal extent Nt
in lattice units where Nta ¼ 1=T. The spatial extent of the
lattice Ns ≫ Nt. For lattice QCD with sextet quarks, if
deconfinement and chiral-symmetry restoration are finite-
temperature transitions, then the associated temperatures at
which they occur, Td and Tχ respectively, should be fixed,
independent of a, for a small enough. Thus measuring the
couplings at either of these transitions as Nt is varied, gives
gðaÞ for a sequence of as which approaches zero as
Nt → ∞. As it turns out βd and hence gd lies in the
strong-coupling domain, outside the regime where pertur-
bation theory is likely to be valid, for Nt ¼ 4; 6; 8; 12 and
any other Nt which we are likely to consider in the near
future. We therefore concentrate our efforts on the chiral
transition, which occurs at much weaker couplings. If, on
the other hand, QCD with 2 color-sextet quarks is con-
formal, the chiral transition would be a bulk transition. In
this case gχ would approach a nonzero limit for large Nt,
and the whole region of broken chiral symmetry would be a
lattice artifact, disconnected from the conformal field
theory at weaker coupling.
If QCD with 2 color-sextet quarks is QCD-like, the

approach of gχ to zero is described by asymptotic freedom
expressed in terms of the β-function. Through 2 loops this
is given by:

βðgÞ ¼ −b1g3 − b2g5: ð5Þ

Expressed in terms of β ¼ 6=g2, the evolution of the
coupling when the lattice spacing is scaled by λ is given by

ΔβðβÞ ¼ βðaÞ − βðλaÞ
¼ ð12b1 þ 72b2=βÞ lnðλÞ þOð1=β2Þ; ð6Þ

where for Nf flavors of color-sextet quarks:

b1 ¼
�
11 −

10

3
Nf

�
=16π2

b2 ¼
�
102 −

250

3
Nf

�
=ð16π2Þ2: ð7Þ

The chiral transition occurs at that value of β (βχ) at
which the chiral symmetry is restored and beyond which
the chiral condensate hψ̄ψi vanishes, for massless quarks.
Of course, in lattice simulations, we need to run at (small
but) finite mass, and extrapolate to zero quark mass. It is
not, however, practical to run at masses small enough for
the condensate to accurately determine βχ directly. We
therefore estimate βχ from the peaks in the chiral suscep-
tibilities, or rather in the disconnected part of the chiral
susceptibilities. This is given by:

χψ̄ψ ¼ V½hðψ̄ψÞ2i − hψ̄ψi2� ð8Þ

where the hi indicates an average over the ensemble of
gauge configurations and V is the space-time volume of the
lattice. Since we use stochastic estimators for ψ̄ψ, we need
at least 2 estimators per configuration. The first term must
include only contributions which are off diagonal in the
noise, to obtain an unbiased estimator. We, in fact, use 5
stochastic estimators at the end of each trajectory giving 10
estimates for χψ̄ψ per configuration.

III. SIMULATIONS OF QCD WITH 2 FLAVORS OF
COLOR-SEXTET QUARKS AT Nf ¼ 6;8;12

Here we describe our simulations with 2 color-sextet
quarks on lattices with Nf ¼ 6; 8 and 12. For Nf ¼ 6 and 8
we have extended the simulations of our earlier papers,
where we simulated at β spacings of 0.1, through the chiral
transition region. For the lowest mass (m ¼ 0.005) at
Nf ¼ 6, we have covered the vicinity of the chiral
transition at β spacings of 0.02, and with increased
statistics. At Nt ¼ 8 we have also covered the vicinity
of the chiral transition with β spacings of 0.02 for all
masses, including a new smaller mass (m ¼ 0.0025). We
have performed new high-statistics simulations at Nt ¼ 12,
covering the region of the chiral transition with β spacings
of 0.02, for all masses. Preliminary results of these new
simulations have been presented at Lattice 2011, Lattice
2012, Lattice 2013 and Lattice 2014. In each case, we
simulate using the RHMC algorithm with trajectory length
1. Most of our simulations have been performed on lattices
with Ns ¼ 2Nt.

A. Nt ¼ 6

Our simulations at Nt ¼ 6 are performed on 123 × 6
lattices with quark masses m ¼ 0.005, m ¼ 0.01 and
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m ¼ 0.02. To more accurately pinpoint the peak of the
chiral susceptibility at the lowest mass (m ¼ 0.005) we
have covered the region in the neighborhood of the chiral
transition 6.5 ≤ β ≤ 6.7 at β spacings of 0.02. At each of
these βs we have performed runs of 100,000 trajectories.
Outside of this interval, and that near the deconfinement
regime, we employ β spacings of 0.1 and 10,000 trajecto-
ries per β. The chiral susceptibilities [Eq. (8)] from these
new runs and those for m ¼ 0.01 from our earlier work are
plotted in Fig. 1.
Here we attempted to determine the position of the peak

of the m ¼ 0.005 susceptibility using Ferrenberg-
Swendsen interpolation, but were unable to obtain con-
sistent results. We therefore chose to fit the “data” with a
smooth curve:

χψ̄ψ ¼ a − bðβ − βχÞ2 − cðβ − βχÞ3: ð9Þ

The rational for this simple form is so that we can use
the same form for each Nt. The second term is to
give a simple parabolic fit to the peak. The third term is
necessary because, as is obvious for the larger Nts,
the susceptibility is not symmetric around the peak.
The value obtained for βχ from a fit using all βs
in the range 6.4 ≤ β ≤ 6.7 is βχ ¼ 6.611ð3Þ for a fit with
χ2=DOFðdegree of freedomÞ ¼ 1.55, which is acceptable.
This fit is shown, superimposed on the data in Fig. 2.

B. Nt ¼ 8

We have extended our simulations at Nt ¼ 8 on a 163 ×
8 lattice. For the 3 masses considered in our earlier work,
m ¼ 0.005,m ¼ 0.01 andm ¼ 0.02, we have increased the

number of β values in the neighborhood of the chiral
transition, 6.6 ≤ β ≤ 6.8, by simulating at βs separated by
0.02 compared with our previous 0.1. We have increased
our statistics to 50,000 trajectories at each ðβ; mÞ in this
range. In addition, we have simulated at a new, lower mass,
m ¼ 0.0025. Again we have covered the range 6.6 ≤ β ≤
6.8 with βs spaced by 0.02, performing runs of 100,000
trajectories at each β. Outside this rangewe performed a run
of 20,000 trajectories at β ¼ 6.5, and runs of 10,000
trajectories at β ¼ 6.9 and β ¼ 7.0, for this smallest mass.
Figure 3 shows the chiral susceptibilities for these runs.
To estimate the position of the peak of the chiral

susceptibility for m ¼ 0.0025, we first consider using
Ferrenberg-Swendsen interpolation of the chiral suscep-
tibilities. This is possible, since the distributions of pla-
quette values for adjacent βs in the range 6.6 ≤ β ≤ 6.8
show significant overlap. Here we performed extrapola-
tions from the susceptibilities for β ¼ 6.66, β ¼ 6.68,
β ¼ 6.70, β ¼ 6.72 and β ¼ 6.74, and looked for consis-
tency in our predictions. The best consistency we found
was between extrapolations from β ¼ 6.68, which pre-
dicted a peak at β ¼ 6.691ð24Þ, and β ¼ 6.70, which
predicted a peak at β ¼ 6.689ð5Þ. Combining these we
obtain a prediction βχ ¼ 6.69ð1Þ.
A second estimate comes from fitting our susceptibilities

to the form we used for Nt ¼ 6 [Eq. (9)]. For m ¼ 0.0025,
fitting to this cubic polynomial over all points in the
range 6.5 ≤ β ≤ 6.8 yields βχ ¼ 6.706ð1Þ for the value
of β at the peak. This fit has χ2=DOF ¼ 0.55, which is
excellent. Figure 4 shows this fit superimposed on the
“data”. Performing a similar fit to the susceptibilities at

FIG. 1 (color online). Chiral susceptibilities on a 123 × 6
lattice, with Nf ¼ 2.

FIG. 2 (color online). Chiral susceptibilities on a 123 × 6
lattice, with Nf ¼ 2 m ¼ 0.005. The curve is the fit described
in the text, with a ¼ 26.0489, b ¼ 407.578, c ¼ 978.166
and βχ ¼ 6.61143.
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m ¼ 0.005 over the range 6.5 ≤ β ≤ 6.9 gives βχ ¼
6.701ð4Þ with χ2=DOF ¼ 0.85. Fitting the susceptibilities
for m ¼ 0.01 over the range 6.5 ≤ β ≤ 6.9 yields βχ ¼
6.693ð8Þ with χ2=DOF ¼ 1.36 while fits to the suscep-
tibilities for m ¼ 0.02 over the same range predicts βχ ¼
6.71ð1Þ with χ2=DOF ¼ 0.29. A word of caution is due
concerning the fits for the 2 largest masses. In both these
cases, the measured susceptibility is statistically flat over an

appreciable neighborhood of the transition. The positions
of these 2 peaks is thus determined largely by the outlying
points on the fits, and should therefore not be taken too
seriously. The main reason for performing these high-mass
fits is to get an estimate of the height of these peaks from
the parameter a in the fits.
For a second-order phase transition, the value χψ̄ψ at the

peak, χmax is expected to scale with mass as:

χmax ¼ Am1=δ−1: ð10Þ
If the chiral transition is a finite-temperature transition, it is
expected to lie in theOð2Þ orOð4Þ universality class where
the critical exponent δ ≈ 4.8. If it is a bulk transition, which
is expected to be first order, δ ¼ ∞. The best fit to Eq. (10)
gives δ ¼ 4.1ð1Þ and has χ2=DOF ¼ 9. Figure 5 shows this
fit superimposed on the values of χmax taken from the
values of a in the susceptibility fits. Clearly the reason that
the estimated quality of the fit (reduced χ2) is poor is
because the systematic errors associated with choosing a as
an estimate for χmax have been ignored, whereas, especially
for the larger masses, these clearly dominate.
At Nt ¼ 8, we have also performed simulations with

m ¼ 0.0025 on a 243 × 8 lattice at 3 β values, near and
above the chiral transition, to check for finite volume
effects. Values of the chiral susceptibilities, which
should be most susceptible to finite volume effects, are
given here, along with their values on a 163 × 8 lattice in
square brackets. For β ¼ 6.7, χψ̄ψ ¼ 34.4ð4Þ½35.0ð5Þ�,
for β ¼ 6.76, χψ̄ψ ¼ 30.9ð4Þ½31.5ð4Þ�, while for β ¼ 6.9,
χψ̄ψ ¼ 7.0ð2Þ½7.0ð2Þ�. These results are in good-enough
agreement for us to conclude that finite volume effects are
small at the masses we use.

FIG. 3 (color online). Chiral susceptibilities on a 163 × 8 lattice
with Nf ¼ 2.

FIG. 4 (color online). Chiral susceptibilities on a 163 × 8
lattice with Nf ¼ 2 and m ¼ 0.0025. The curve is the fit
described in the text, with a ¼ 34.6359, b ¼ 940.687,
c ¼ 2716.49 and βχ ¼ 6.70613.

FIG. 5 (color online). Peak of chiral susceptibility as a function
of mass, with fit to critical scaling form χmax ¼ Am1=δ−1 on a
163 × 8 lattice.
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C. Nt ¼ 12

We perform simulations on a 243 × 12 lattice at masses
m ¼ 0.0025, m ¼ 0.005 and m ¼ 0.01, in the neighbor-
hood of the chiral transition. At the smallest mass,
m ¼ 0.0025, we perform simulations at β values spaced
by 0.02 over the range 6.6 ≤ β ≤ 6.9. For6.6 ≤ β ≤ 6.66we
perform runs of 50,000 trajectories at each β. For the range
6.68 ≤ β ≤ 6.9 we perform runs of 100,000 trajectories per
β. At β ¼ 6.5, we run for 25,000 trajectories, while for
β ¼ 7.0, β ¼ 7.1 and β ¼ 7.2, we perform runs of 10,000
trajectories per β. At mass m ¼ 0.005 we again cover the
interval 6.6 ≤ β ≤ 6.9 at increments of 0.02. Forβ ¼ 6.6, we
run for 100,000 trajectories. For the rest of the interval i.e.
6.62 ≤ β ≤ 6.9 we run for 50,000 trajectories per β. At β ¼
6.5 we run for 25,000 trajectories, while for β ¼ 6.4,
β ¼ 7.0, β ¼ 7.1 and β ¼ 7.2, we run for 10,000 trajectories
per β. At m ¼ 0.01 we perform simulations of 25,000
trajectories per β at βs spaced by 0.02 over the range
6.6 ≤ β ≤ 6.9. At β ¼ 6.3; 6.4; 6.5 we run for 25,000
trajectories per β, while for β ¼ 6.2 we run for 12,500
trajectories. For β ¼ 6.0; 6.1 and for β ¼ 7.0; 7.1; 7.2 we
perform runs of 10,000 trajectories. We also run for 50,000
trajectories per β for βs spaced by 0.02 over the range
5.7 ≤ β ≤ 5.9, which is in the neighborhood of the decon-
finement transition. These runs at β < 6 will be discussed
further in Sec. V.
Figure 6(a) shows the chiral condensates (hψ̄ψi), as

functions of β for all 3 masses m ¼ 0.0025, m ¼ 0.005,
m ¼ 0.01. These are bare (lattice) quantities. However, at
nonzero mass, if we expand in powers of the quark massm,
the coefficient of m in physical units diverges as 1=a2 as
a → 0, and should be regularized. We therefore subtract
part of this divergence using the prescription adopted by the
Lattice Higgs Collaboration, where the subtracted chiral
condensate is defined by:

hψ̄ψisub ¼ hψ̄ψi −
�
mV

∂
∂mV

hψ̄ψi
�

mV¼m
; ð11Þ

where mV is the valence-quark mass. What we observe is,
that while the unsubtracted chiral condensate shows indi-
cations that it will vanish in the chiral (m → 0) limit for β
sufficiently large, the subtracted chiral condensate shows
this vanishing more clearly. However, even the subtracted
chiral condensate does not yield an estimate for βχ which is
accurate enough for our purposes. We thus turn to using the
peaks of the chiral susceptibilities, extrapolated to zero
mass as our estimates for βχ.
Figure 7 shows the chiral susceptibilities, defined in

Eq. (8) extracted from our measurements of hψ̄ψi (5 per
trajectory) in our simulations on 243 × 12 lattices for
masses m ¼ 0.0025, m ¼ 0.005 and m ¼ 0.01. Here, the
distributions of plaquette values for adjacent βs have
insufficient overlap to even attempt using Ferrenberg-
Swendsen interpolation to estimate the positions of the

peaks in the susceptibilities for the 3 masses. The suscep-
tibilities for m ¼ 0.0025 show a clear peak, those for m ¼
0.005 show some indication of a rather flat peak, while
those for m ¼ 0.01 show little evidence for any peak. In
order to extract an estimate of the positions of these peaks,
we use the fitting form used for Nt ¼ 6 and 8 [Eq, (9)],
which makes maximal use of the “data”. The fit to the
m ¼ 0.0025 susceptibilities for all points in the range 6.5 ≤
β ≤ 6.9 yields βχ ¼ 6.768ð2Þ in an acceptable fit with
χ2=DOF ¼ 1.68. This fit is superimposed over the mea-
sured susceptibilities in Fig. 8. A fit to the m ¼ 0.005
“data’” over the same interval predicts βχ ¼ 6.745ð6Þ with
χ2=DOF ¼ 0.91, while a fit to the m ¼ 0.01 data also over

(a)

(b)

FIG. 6 (color online). (a) Unsubtracted chiral condensates
hψ̄ψi as functions of β for masses m ¼ 0.0025; 0.005; 0.01.
(b) Chiral condensates hψ̄ψi, subtracted using the Lattice Higgs
Collaboration’s prescription, as functions of β for masses
m ¼ 0.0025; 0.005; 0.01.
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the same range gives βχ ¼ 6.70ð3Þ with χ2=DOF ¼ 1.52.
These last 2 fits should not be considered too seriously,
because these peaks are defined by outlying rather than
central points, owing to the flatness of the distributions.
Their main purpose is to yield an estimate for the values of
the parameter a at their peaks.
We also consider the scaling properties of the suscep-

tibility peak with mass using the scaling form of Eq. (10).
With only 3 points, there is only one degree of freedom.

Our fit gives the critical exponent δ ¼ 2.98ð4Þ with
χ2=DOF ¼ 0.29. This is in agreement with the mean-field
(free-field) critical exponent δ ¼ 3, rather than the expected
Oð2Þ orOð4Þ critical exponent δ ≈ 4.8 or first-order scaling
δ ¼ ∞. The graph of our data—the values of a from our fits
—with this fit superimposed is given in Fig. 9.

IV. COMPARISON WITH PERTURBATIVE
PREDICTIONS

Here for consistency we only consider the values of βχ
obtained from fitting our chiral susceptibilities to the form
given in Eq. (9). The errors given in the previous section do
not include any systematic errors due to this rather arbitrary
choice of a fitting function or to the selection of the range of
β values over which the fits are performed. We will assume
0.01 as a conservative estimate of these systematic errors, at
least for the lightest masses. Because our measurements are
inadequate to reliably determine if there is any significant
mass dependence on the position of the peaks, we take our
measurement of the position of the peak for the lightest
mass as our estimate for the position of the transition in the
chiral limit. We assume that our estimate of the systematic
errors is large enough to encompass the shift in the
positions of the peaks as we approach the chiral limit.
Table I summarizes the results of our determinations of the
positions of the chiral transitions (βχ) from this and
previous publications, as well as those of the positions
of the deconfinement transitions (βd) from previous pub-
lications and the next section.
Equation (6) gives the perturbative asymptotic freedom

predictions for the changes in βχ between different Nts. In
particular:

FIG. 7 (color online). Chiral susceptibilities on a 243 × 12
lattice with Nf ¼ 2.

FIG. 8 (color online). Chiral susceptibilities on a 243 × 12
lattice with Nf ¼ 2 and m ¼ 0.0025. The curve is the fit
described in the text, with a ¼ 25.691, b ¼ 440.589,
c ¼ 1082.3 and βχ ¼ 6.76801.

FIG. 9 (color online). Peak of chiral susceptibility as a function
of mass, with fit to critical scaling form χmax ¼ Am1=δ−1 on a
243 × 12 lattice.
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βχðNt ¼ 8Þ − βχðNt ¼ 6Þ ≈ 0.087

βχðNt ¼ 12Þ − βχðNt ¼ 8Þ ≈ 0.122

βχðNt ¼ 12Þ − βχðNt ¼ 6Þ ≈ 0.209: ð12Þ

The reason for including the third equation is because, if
this is a finite temperature transition, the fermion mass in
physical units form ¼ 0.005 atNt ¼ 6 and form ¼ 0.0025
at Nt ¼ 12 are identical, so that one might hope that any
error due to not extrapolating to the chiral limit might be
minimized. Our measurements (from Table I) give

βχðNt ¼ 8Þ − βχðNt ¼ 6Þ ¼ 0.10ð1Þ
βχðNt ¼ 12Þ − βχðNt ¼ 8Þ ¼ 0.06ð1Þ
βχðNt ¼ 12Þ − βχðNt ¼ 6Þ ¼ 0.16ð1Þ: ð13Þ

If taken at face value, these favor the conformal option,
where the fact that βχðNt ¼ 12Þ − βχðNt ¼ 8Þ is roughly
half the value predicted by asymptotic freedom could
indicate that βχ is approaching a nonzero limit.
We need to be cautious, since the lattice coupling and

hence 1=β is known to be a poor expansion parameter. That
is, higher order terms for the expansion of any quantity in
powers of g2 tend to be large. The simplest improved
choice of βs is the tadpole-improved β of Lepage and
Mackenzie [31]:

β̄ ¼ 1

3
hTr□UUUUiβ: ð14Þ

For connection with Lepage-Mackenzie, β̄ ¼ 6=ḡ2 ¼
6=4πᾱ. (Note that for staggered fermions, tadpole improve-
ment of the fermion determinant is equivalent to rescaling
the fermion mass and can thus be ignored, since we are
interested in the limit m → 0.) The plaquette in the above
equation should be evaluated at β, on a lattice which is at
zero temperature. Since T ¼ 0, in practice means on an N4

t
lattice for which β ≪ βdðNtÞ, this would require simulating
on lattices much larger than any we contemplate. For this
reason, we use the finite temperature plaquettes from our
simulations in this equation. This yields β̄χðNt ¼ 6Þ ¼
4.48ð1Þ, β̄χðNt¼8Þ¼4.58ð1Þ and β̄χðNt ¼ 12Þ ¼ 4.65ð1Þ.
This gives

β̄χðNt ¼ 8Þ − β̄χðNt ¼ 6Þ ¼ 0.10ð1Þ
β̄χðNt ¼ 12Þ − β̄χðNt ¼ 8Þ ¼ 0.07ð1Þ
β̄χðNt ¼ 12Þ − β̄χðNt ¼ 6Þ ¼ 0.17ð1Þ: ð15Þ

compared with the perturbative prediction:

β̄χðNt ¼ 8Þ − β̄χðNt ¼ 6Þ ≈ 0.083

β̄χðNt ¼ 12Þ − β̄χðNt ¼ 8Þ ≈ 0.117

β̄χðNt ¼ 12Þ − β̄χðNt ¼ 6Þ ≈ 0.200: ð16Þ

While this is an overall improvement, it is insufficient.
Choosing instead βV , the β associated with the interquark
potential, makes little difference. Here βV ¼ 6=g2V ¼
6=4παV . We use the relation between ᾱ and αV from
Lepage-Mackenzie to obtain βV . The reason that going
from β to βV does not make much difference is because, as
noted by Lepage-Mackenzie, the perturbative relation:

β ¼ βV þ 2.245þOð1=βVÞ ð17Þ

(where we have chosen the momentum scale at which we
measure βV to be π=a), is a good approximation. With such
a constant shift, differences in βs are left unchanged. In the
prediction, based on the perturbative β-function, for the βs
(βVs) we consider, the 2-loop contribution is small, so the
perturbative predictions for differences in βs and βVs are
almost the same. Here we see that replacing the lattice
coupling with an improved coupling such as gV does not
significantly affect changes in β, since g is small enough
that the 2-loop contribution to the β-function is signifi-
cantly smaller than the 1-loop contribution, for both the
original and improved schemes. Remember that the 1- and
2-loop coefficients in the β-function are scheme indepen-
dent. Hence changing from lattice to improved couplings
will not significantly improve agreement between mea-
sured and predicted running of the couplings. Of course,
choosing a much smaller momentum scale for βV, driving it
towards the perturbative fixed point, could improve agree-
ment for βχðNt ¼ 12Þ − βχðNt ¼ 8Þ, but would be difficult
to justify.
However, it is well-known that even with tadpole

improvement of the gauge links, perturbation theory for
staggered fermions is still badly behaved [32,33]. The
reason is another form of tadpole, the “doubler tadpole”
due to flavor(“taste”)-mixing responsible for taste breaking.
Unfortunately for us, before an improved perturbation
theory could be developed for staggered fermions, interest
shifted to improved staggered fermions designed to min-
imize taste breaking, making perturbation theory better
behaved.
It is interesting to note that the lack of significant

improvement using β̄ (or βV or βMS) instead of β has also
been noticed by [23] in their studies of QCD with 8

TABLE I. Nf ¼ 2 deconfinement and chiral transitions for
Nt ¼ 4; 6; 8; 12.

Nt βd βχ

4 5.40(1) 6.3(1)
6 5.54(1) 6.61(1)
8 5.65(1) 6.71(1)
12 5.81(1) 6.77(1)
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fundamental quarks using an improved staggered-quark
action, so perhaps it is a property of theories with slowly
varying running couplings and not an artifact of using
unimproved actions. This contrasts with the one system
where there are precise measurements of the finite temper-
ature transition for a large range of Nt values, namely pure
SUð3Þ Yang-Mills theory (quenched QCD) transcribed to
the lattice using the Wilson (plaquette) action. For this
system using an improved coupling greatly improves the
agreement between the measured Nt dependence of the
critical coupling βc and the prediction from the 2-loop
β-function, as shown in Table II. For these calculations we
used the values of βcðNtÞ for quenched lattice QCD given
in the recent publication [35].

V. THE Nt ¼ 12 DECONFINEMENT TRANSITION

In Sec. III we mentioned that we have extended our
simulations on a 243 × 12 lattice at m ¼ 0.01 into the
neighborhood of the deconfinement transition. Although βd
is too small for its evolution to be governed by perturbation

theory, knowledge of its value as a function of Nt is
necessary when choosing β values for zero temperature
simulations. It is also useful to know the value of the
deconfinement temperature as well as the chiral-symmetry
restoration temperature in physical units i.e. in terms of
fπ ≈ 246 GeV. We chose to simulate this regime at only
one quark mass so that we could devote most of our
resources to the proximity of the chiral transition. For this
same reason we chose the highest of our 3 masses. Here we
are relying on the observation based on our studies at
smallerNts that βd depends only weakly on the quark mass.
The position of the deconfinement transition is deter-

mined by the point below which the Wilson Line (Polyakov
Loop) becomes very small. Figure 10 is a plot of Wilson
Lines against β for our 243 × 12 simulations at all 3 masses.
For the m ¼ 0.01 plot, we notice that the Wilson Line is
near zero for small βs and then jumps to a value appreciably
greater than zero at β ≈ 5.8.
To determine the position of this deconfinement tran-

sition more precisely, we ran for 50,000 trajectories per β
for β values spaced by 0.02 over the interval 5.7 ≤ β ≤ 5.9.
Figure 11 shows histograms of the distribution of magni-
tudes of the Wilson Line, for β values close to the
deconfinement transition. Note the qualitative difference
between these histograms for β ≤ 5.80 and those for
β ≥ 5.82. Those histograms for the lower range of βs
are peaked at ≈0.01, while those for βs in the upper range
are peaked at ≈0.03. From this we estimate that the
deconfinement transition occurs at β ¼ βd ¼ 5.81ð1Þ.
The transition is very abrupt, suggestive of a first-order
phase transition. This value for βd has been entered in
Table I in Sec. IV.

TABLE II. Difference between the changes in the lattice βc with
change in Nt and the prediction from the 2-loop perturbative
β-function, compared with the same quantity using the improved
β̄c, for quenched lattice QCD.

Nt Nt
0 1 − ½βcðNt

0Þ−βcðNtÞ�lattice
½βcðNt

0Þ−βcðNtÞ�2-loop 1 − ½β̄cðNt
0Þ−β̄cðNtÞ�lattice

½β̄cðNt
0Þ−β̄cðNtÞ�2-loop

6 8 34% 19%
8 12 24% 13%
12 18 17% 8%

FIG. 11 (color online). Histograms of magnitudes of the Wilson
Line for β values close to the deconfinement transition on a 243 ×
12 lattice with m ¼ 0.01.

FIG. 10 (color online). Wilson Lines as functions of β on a
243 × 12 lattice. These are traces of products gauge links in the
color-triplet representation of SUð3Þcolor.
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VI. DISCUSSION AND CONCLUSIONS

We use studies of scaling of the assumed finite-
temperature chiral transition of lattice QCD with 2
color-sextet quarks to attempt to determine whether this
theory is conformal or walking. This provides an alternative
to the use of step-scaling methods to achieve this goal.
Recent extensive step-scaling studies using improved
staggered quarks [21] indicate that this theory walks, while
similar studies using improved Wilson quarks [22] present
evidence for a fixed point, which would mean that the
theory is conformal. Hence use of a different method to try
and determine which is the correct behavior is warranted.
We simulate lattice QCD with 2 flavors of color-sextet

quarks on lattices with Nt ¼ 6, 8 and 12 in the vicinity of
the chiral-symmetry restoration transition, to accurately
determine the value βχ of β ¼ 6=g2 at that transition. Under
the assumption that this is a finite-temperature phase
transition, which thus occurs at a fixed temperature in
physical units, this gives the running of the gauge coupling
g as the lattice spacing a is decreased. We compare the
evolution of the coupling gχ at this transition with the
prediction from the 2-loop perturbative β-function. What
we find is that the change in βχ ¼ 6=g2χ is in approximate
agreement with the perturbative prediction between Nt ¼ 6
and 8, but is smaller by about a factor of 2 than the
prediction between Nt ¼ 8 and 12. This suggests that this
chiral transition is a bulk transition for which βχ would
approach a finite value in the large Nt limit. In this case this
theory would be a conformal field theory, and not the
desired walking theory. On the other hand, the scaling of
the susceptibility peaks with mass suggests that the chiral
transition is second order, whereas the simplest scenario
for a bulk transition suggests that it should be first order.
However, the fact that the critical exponent δ ≈ 3 suggests
that the transition is mean-field, which would be
more likely for a true 4-dimensional and hence bulk
transition, than for a finite-temperature and hence quasi-
3-dimensional transition, which should be in the univer-
sality class of the 3-dimensional Oð2Þ or Oð4Þ spin model
with δ ≈ 4.8.
In our initial comparison, we used the prediction in terms

of the bare lattice coupling gðaÞ, which is known to be a
poor expansion parameter. We therefore looked at the
tadpole-improved coupling ḡ, which is supposed to be a
better expansion parameter, as well as the related coupling
gV which is related to the heavy-quark potential. Both these
improvements make a slight improvement in the running of
the coupling, but not nearly enough to produce agreement
with the perturbative results. (Based on our experience with
quenched QCD we would have expected an agreement to
within 20% or probably better.) We do note, however, that
even when such improvements are applied, perturbation
theory with unimproved staggered quarks does not work
well. In addition, the examples where use of such couplings

(ḡ, gV or gMS) has improved the behavior of lattice
perturbation theory have been for theories such as QCD
with quarks in the fundamental representation of the color
group, where the massless theory has only one mass or
length scale, the scale associated with confinement and
chiral symmetry breaking. For QCD with color-sextet
quarks, we have shown that the scales of confinement
and chiral-symmetry breaking are very different. It is
unclear if methods which work for a single-scale theory
will continue to work for a two-scale theory.
We note that use of staggered quarks and, in particular,

unimproved staggered quarks, has potential difficulties
because flavor symmetry (sometimes referred to as taste
symmetry) is explicitly broken, and is only restored in the
continuum limit. This means that in the chiral limit at
nonzero lattice spacing, there are less massless degrees of
freedom than in the continuum limit. Because of this, it is
possible that a theory with an infrared fixed point and hence
conformal, could appear to be walking. Hence, care needs
to be taken in taking the continuum and chiral limits. Using
an improved action can reduce these problems. However,
improved staggered fermions have their own difficulties.
Improving the staggered-fermion action can introduce extra
phases which are lattice artifacts. This was observed in
studies of the apparent bulk transition in QCD with 12
fundamental quarks [36,37] and provides extra complica-
tions for studying the finite temperature behavior of QCD
with many fundamental quarks [23–26]. Improvement is
designed to produce actions whose weak coupling physics
is closer to that of the continuum theory. However, it does
not necessarily produce better behavior in the intermediate
or strong-coupling domain.
Another word of caution is necessary concerning our

results. We have only used one spatial size (243) for our
Nt ¼ 12 simulations, so we have not ruled out finite
volume effects. The mass dependence of the position of
the peaks in chiral susceptibilities has not been adequately
explored to check that we are really seeing the chiral limit.
We have only used one action, and have not explored
whether improved actions such as those used by the Lattice
Higgs Collaboration and Degrand et al. might show
different behavior.
While the most direct way of answering these questions

would be to continue our work to lattices with larger Nt
values and smaller quark masses, such simulations would
be expensive, and it is not clear if repeating our studies with
Nt ¼ 16 or 18 would provide the desired clarification.
There are, however, other less expensive studies which
could potentially help clarify the situation. The first, which
we are pursuing, is to extend our simulations of QCD with
3 color-sextet quarks to Nt ¼ 12. This theory is almost
certainly conformal, and even if it is not, the perturbative
evolution of its coupling is extremely slow (this is because
asymptotic freedom is lost at Nf ¼ 3 3

10
for QCD with Nf

sextet-quark flavors). Hence we should expect to see
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essentially no change in the value of βχ between Nt ¼ 8

and Nt ¼ 12. If this is observed it would indicate that the
Nf ¼ 2 and Nf ¼ 3 theories are behaving rather differently
as would be expected if the Nf ¼ 2 theory walks.
One method of testing how well some of the different

choices of improved couplings work with sextet quarks and
its 2 length scales would be to perform an extensive study
of the position of the chiral transition with sextet quarks in
the quenched theory. That this transition is separated from
the deconfinement transition was shown in very early
studies [38]. The advantage of this approach is that the
production of very large quenched lattices can be per-
formed very cheaply, and multimass inversions, already
used in the RHMC algorithm will allow us to study the
chiral condensate over a large range of masses. Here it will
be possible compare the evolution of βd and βχ with various
improved couplings.
Another direction we are pursuing1 is to simulate QCD

with 2 color-sextet quarks at a fixed β value above
βχðNt ¼ 12Þ—we choose β ¼ 6.9—and simulate on latti-
ces with a fixed spatial volume, varying Nt to look for the
transition. Perturbation theory predicts that βχ ¼ 6.9 for
some Nt in the range 18 < Nt < 20. We are simulating on
243 × Nt lattices with 8 ≤ Nt ≤ 24 with masses as low as
m ¼ 0.00125. Indications are that we will need to increase
the spatial box size to accommodate the larger Nt s, since
we are seeing finite volume effects at Nt ¼ 22 and 24.

Temporarily ignoring questions as to whether this theory
is QCD-like, we have started zero-temperature simulations
at β ¼ 5.81 (βd for Nt ¼ 12), on 243 × 48 lattices. One of
the reasons for this parameter choice, is to answer another
question posed by Julius Kuti, who asked what value we
estimate for Td=fπ. So far we have produced 250 lattices
separated by 100 trajectories for m ¼ 0.01 (mπ ≈ 0.25) and
250 lattices for m ¼ 0.005 (mπ ≈ 0.175). Larger-lattice
zero-temperature simulations at weaker couplings are being
contemplated.
Note that all the simulations reported in this paper are in

the state where the argument of the Wilson Line (Polyakov
Loop) is close to zero. Those states where the argument of
the Wilson Line is close to �2π=3 are being ignored,
except for βs approaching βd and below, where transitions
between these 3 states are frequent. However, should these
be the true vacua, charge conjugation would be sponta-
neously broken [9], and so presumably would CP. If so,
this could possibly provide a mechanism for baryogenesis.
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