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We present and test a new method to compute the hadronic vacuum polarization function in lattice
simulations. This can then be used, e.g., to determine the leading hadronic contribution to the anomalous
magnetic moment of the muon. The method is based on computing susceptibilities with respect to external
electromagnetic plane wave fields and allows for a precision determination of both the connected and the
disconnected contributions to the vacuum polarization. We demonstrate that the statistical errors obtained
with our method are much smaller than those quoted in previous lattice studies, primarily due to a very
effective suppression of the errors of the disconnected terms. These turn out to vanish within small errors,
enabling us to quote an upper limit. We also comment on the accuracy of the vacuum polarization function
determined from present experimental R-ratio data.
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I. INTRODUCTION

The most precise measurement of the anomalous
magnetic moment of the muon, obtained by E821 at
Brookhaven [1], differs by more than three standard
deviations from the theoretical expectation. At present,
the uncertainties on the theory and on the experimental
sides are of similar sizes. For recent reviews and analyses,
see, e.g., Refs. [2–6]. With the planned E989 experiment at
Fermilab [2] and E34 at J-PARC [7], it is of utmost
importance to increase the precision of the standard model
prediction in line with the expected experimental improve-
ment by a factor of about five [1,2,7]. If the discrepancy
persisted at this even higher level of accuracy, this should
help to pin down any particular beyond-the-standard-model
scenario and constrain the parameters of new interactions.
With an impressive QED five-loop evaluation [8] available,
the theoretical uncertainty is dominated by nonperturbative
effects and, in particular, by the leading hadronic contri-
bution to the electromagnetic vacuum polarization tensor,
with the second biggest source of uncertainty being the
hadronic light-by-light scattering contribution. The had-
ronic contribution to the vacuum polarization tensor is also
important in view of the running of the electromagnetic
fine-structure constant and of the Weinberg weak mixing
angle [4,9–12] from low to high scales.
The standard method [13,14] employed in lattice calcu-

lations of the leading hadronic contribution to the anoma-
lous magnetic moment al ¼ ðgl − 2Þ=2 of a charged
lepton l ∈ fe; μ; τg consists of computing the renormal-
ized vacuum polarization function and inserting this into

the leading-order QED formula. The hadronic vacuum
polarization tensor, which is the main object of this study, is
defined as

ΠμνðpÞ ¼
Z

d4xeipxhjμðxÞjνð0Þi

¼ ðpμpν − δμνp2ÞΠðp2Þ; ð1Þ
where

jμ ¼
qu
e
ūγμuþ qd

e
d̄γμdþ qs

e
s̄γμsþ � � � ð2Þ

denotes the quark electromagnetic current in position space
and qu=e ¼ 2=3, qd=e ¼ qs=e ¼ −1=3 are the fractional
quark charges. Due to electromagnetic current conserva-
tion,Πμν is transverse and can be parametrized in terms of a
single vacuum polarization function Πðp2Þ, where we
employ Euclidean spacetime conventions, i.e. the spacelike
p2 > 0 correspond to virtualities. Πðp2Þ undergoes addi-
tive renormalization but the renormalized combination

ΠRðp2Þ ¼ Πðp2Þ − Πð0Þ ð3Þ

is ultraviolet finite.
It turns out that the leading hadronic contribution ahad;LOμ

to the anomalous magnetic moment of the muon [see the
definition equation (4) below] depends most strongly on
ΠRðp2Þ at relatively small argument values. Since small
momenta correspond to large Euclidean distances, naively
implementing Eq. (1) results in a bad signal over noise ratio
in this region. This becomes even worse for calculations of
the quark-line disconnected contributions, which therefore
have been neglected in almost all previous lattice studies.
Where these were taken into account [15–17], they

*Corresponding author.
gergely.endrodi@physik.uni‑r.de.

PHYSICAL REVIEW D 92, 054506 (2015)

1550-7998=2015=92(5)=054506(14) 054506-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.054506
http://dx.doi.org/10.1103/PhysRevD.92.054506
http://dx.doi.org/10.1103/PhysRevD.92.054506
http://dx.doi.org/10.1103/PhysRevD.92.054506


dominated the statistical error. Another problem of many
past lattice attempts is a conceptual one: Πð0Þ often is
extrapolated from Πðp2Þ at p2 > 0 and the parametrization
used constitutes a source of systematic uncertainty that is
difficult to estimate.
Here we propose methods that address both of the above

issues. The vacuum polarization at p2 ¼ 0 is shown to be
equal to the baremagnetic susceptibility of the system,which
can be determined independently on the lattice. We inves-
tigate different methods to achieve this, giving consistent
results. We also discuss how this quantity diverges as a
function of the lattice spacing towards the continuum limit.
Most importantly, we introduce a new method for

computing both the connected and the disconnected con-
tributions to the hadronic vacuum polarization function
with unprecedented precision, in particular at small
momenta. This consists of calculating Πðp2Þ at p2 > 0
through the response of the system to oscillatory back-
ground electromagnetic fields. The new method is similar
in spirit to employing momentum sources [18,19], allowing
us to spend more effort on the low-p2 points, thereby
increasing their precision, without wasting resources on
large momenta whereΠRðp2Þ can easily be obtained within
small relative errors, with a much smaller impact on the
predicted value of ahad;LOμ .
The methods are tested on Nf ¼ 2þ 1 staggered ensem-

bles at the physical point, neglecting QED effects on
the quark propagation which are of a higher order in the
fine-structure constant α. In this situation, due toP

f∈fu;d;sgqf ¼ 0, disconnected contributions vanish for
ms ¼ mud but need to be taken into account for ms > mud,
which we do. Since we neglect charm quark effects, we
have to restrict ourselves to p2 < m2

c. At high momenta our
results can, however, be combined with measurements of
the R ratio as well as with perturbation theory: the non-
singlet and singlet QCD contributions to the Adler function
have been calculated in massless QCD to Oðα4sÞ in the
strong coupling constant in Refs. [20–21], respectively.
This article is organized as follows. In Sec. II we review

previous calculational strategies, followed by Sec. III, where
we introduce our background field method and link this to
magnetic susceptibilities. We also discuss renormalization
issues and comment on relations between the Adler function
and the entropy density at high temperatures. Finally, in
Sec. IV we present the simulation setup and first results,
before we conclude. The equivalence between magnetic
susceptibilities and the vacuum polarization is demonstrated
in Appendix A, and the details of our numerical implemen-
tation are discussed in Appendixes B–C.

II. SUMMARY OF PREVIOUSLY
EMPLOYED METHODS

The leading hadronic contribution to the anomalous
magnetic moment is given as [13,22]

ahad;LOl ¼ 4α2
Z

∞

0

dp2Klðp2ÞΠRðp2Þ; ð4Þ

where the perturbative kernel function is defined as

Klðp2Þ ¼ m2
lp

2Zlðp2Þ3½1 − p2Zlðp2Þ�
1þm2

lp
2Zðp2Þ2 ð5Þ

with

Zlðp2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

l=p
2

q
− 1

2m2
l

: ð6Þ

The renormalized hadronic vacuum polarization function is
defined in Eqs. (1) and (3) above. Note that the above
expressions are valid to leading order in terms of the QED
fine-structure constant α ¼ e2=ð4πÞ ≈ 1=137, i.e. toOðα2Þ,
which, at this order, can be pulled out of the integral.
In the limit of small momenta, where ΠRðp2Þ ∝ p2,

the argument of the integral has its maximum at
p2
0 ≈ ð ffiffiffi

5
p

–2Þm2
l. For the muon with mμ ≈ 0.105 GeV this

implies p2
0 ≈ 0.0026 GeV2: an enormous volume would be

necessary to resolve this momentum region, at least without
the use of twisted boundary conditions [23,24], since
π=p0 ≈ 2π=mμ ≈ 12 fm. Fortunately, the integral as a
whole turns out to be dominated by somewhat higher
momenta: it still picks up about 50% of its value from
momenta larger than 10p2

0. The predicted value of ahad;LOμ

strongly depends on ΠRðp2Þ at these still relatively small
momenta p2 ∼ 0.03 GeV2. This is nicely illustrated, e.g., in
Ref. [25], in Fig. 3 of Ref. [24] and in Fig. 1 of Ref. [17].

A. Information from experiment

The hadronic polarization tensor (and also the leading
hadronic contribution to the lepton anomalous magnetic
moments [22]) can be obtained by analytic continuation of
the R ratio of the total cross section σðeþe− → hadronsÞ
over the tree-level eþe− → μþμ− expectation (see, e.g.,
Refs. [26,27]):

ΠRðp2Þ ¼ p2

12π2

Z
∞

4m2
π

ds
RðsÞ

sðsþ p2Þ : ð7Þ

R-ratio measurements [4,5] can in principle be augmented
by other experimental data, including τ-decays into final
states containing πþπ−; see, e.g., Ref. [28].
In Fig. 1 we show the so-determined renormalized

vacuum polarization as a function of p2 [29]. The present
relative precision of ΠR is 0.64% at p2 ¼ 0.025 GeV2,
increasing to 0.74% at p2 ¼ 0.6 GeV2 [5,29]. Achieving a
statistical error below 1% around p2 ¼ 0.03 GeV2 already
constitutes an enormous challenge for present-day lattice
determinations, and such results still need to be

GUNNAR S. BALI AND GERGELY ENDRŐDI PHYSICAL REVIEW D 92, 054506 (2015)

054506-2



extrapolated to the infinite volume and continuum limits
and, often, to physical quark masses. In principle, lattice
data at large p2 values—where discretization errors are
enhanced—can be substituted by results from the R ratio.
Such a combined strategy may prove optimal for an
accurate determination of ahad;LOμ , once sufficiently precise
lattice results become available.

B. Lattice determinations of Πð0Þ
In the past, two strategies have been used to obtain

the zero-momentum subtraction Πð0Þ. One possibility are
fits of Πðp2Þ data, e.g., to pole parametrizations, assuming
vector dominance [14,24,30–32], which is also suggested
to be the dominant contribution by chiral perturbation
theory [30]. Extending the fit region towards large
momenta, such pole Ansätze have also been combined
with polynomial parametrizations [15,17,30,33], motivated
by perturbation theory. Another popular and less model-
dependent way to obtain the normalization is through
Padé approximants [24,25,34,35].
As an alternative, one can compute derivatives of ΠμνðpÞ

from its definition in terms of the continuum Fourier
transformation (1). Then the divergent contribution that
needs to be subtracted fromΠðp2Þ can, e.g., be obtained via

Πð0Þ ¼ − 1

2

∂2

∂p2
μ
ΠννðpÞj

p¼0

ðμ ≠ νÞ

¼ 1

2

Z
d4xx2μhjνðxÞjνð0Þi ¼

1

2

Z
dtt2GðtÞ; ð8Þ

where no summation over ν is implied and in the last
step we identified μ with the time direction, to emphasize
the correspondence to the second t-moment of a zero-
momentum projected two-point function

GðtÞ ¼
Z

d3rhjiðr; tÞjið0Þi: ð9Þ

This method was used, e.g., in Refs. [36,37], to obtain this
subtraction.
Finally, in Ref. [38] the expansion of the two-point

current-current correlation function in powers of pμ is
carried out already on the level of quark propagators.
This enables the direct computation of Πð0Þ ¼ ∂2Π12=
ð∂p1∂p2Þjp¼0, without relying on a continuum formula.
However, this comes at the price of computing the expect-
ation value of an operator involving up to four fermion
matrix inversions, without even considering disconnected
contributions.

C. Lattice determinations of Πðp2Þ, ΠRðp2Þ
or moments thereof

The lattice vector Ward-Takahashi identity reads
p̂μΠμν ¼ 0 and therefore [13,14,39]

Πμνðp2Þ ¼ ðp̂μp̂ν − δμνp̂2ÞΠðp2Þ; ð10Þ

where p̂μ ¼ ð2=aÞ sinðapμ=2Þ. This change that affects
Πðp2Þ at high momenta has been implemented in almost
all lattice studies, as well as a modified phase
eipx↦eipðxþaμ̂=2−aν̂=2Þ within the Fourier sum for μ ≠ ν.
Most lattice evaluations use what we refer to below as the

conventional method. This amounts to directly computing
the lattice version of Eq. (1); see, e.g., Refs. [13–15,30–
33,37]. In some cases, lower momenta were made acces-
sible by the use of twisted boundary conditions [24,40,41].
Very recently, another interesting method, stochastically
averaging over different twists, has been suggested [42]
that reduces finite-volume effects and allows us to realize
very small momenta. The main problem of modifying
the fermionic boundary conditions is that this cannot
easily be extended to incorporate quark-line disconnected
contributions.
Obviously, Eq. (4) can be Taylor expanded in powers

of p2 and the coefficients can be related to those of the
corresponding expansion of ΠRðp2Þ. Generalizing Eq. (8)
above, the first and higher order derivatives of Πμμ with
respect to p2 can be obtained, computing t2-moments
of two-point zero-momentum (spatial) projected current-
current correlators. This was explored within Ref. [43] and
carried out for the first few moments of the connected
strange and charm quark contributions to ahad;LOμ in
Ref. [44]. In Ref. [27] the anomalous magnetic moment
was directly related to the zero-momentum projected
current-current two-point function. This approach was then
employed, e.g., in Refs. [16,36,41].
So far, disconnected contributions have been included in

very few lattice studies [15–17]. While their effect seems to
be small, the associated statistical error exceeds that of the

FIG. 1 (color online). The renormalized vacuum polarization
determined from the experimental R ratio [29], performing the
integral (7) up to s ¼ smax ¼ ð2 GeVÞ2, where three quark
flavors are active. Also indicated is the result of the integral
supplemented by three-flavor perturbation theory for
s > ð2 GeVÞ2.
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connected terms. Here we will find that this need not be the
case. There exist theoretical expectations regarding the
size of flavor singlet contributions: exploiting the fact that
mω; mϕ > mρ, it was demonstrated [16] that the ratio of
the disconnected contribution over the total momentum-
projected current-current two-point function GðtÞ, defined
in Eq. (9), approaches the value −1=9, in the limit of large
Euclidean times for Nf ¼ 2þ 1 quark flavors. This ratio
will, however, not automatically propagate into ΠRðp2Þ
that depends on GðtÞ at all times t. Next-to-leading order
chiral perturbation theory arguments show the discon-
nected contribution to also account for −1=9 of the total
ΠRðp2Þ [45]. However, this observation builds on the fact
that the correlator of the isosinglet vector current ūγμuþ
d̄γμd is momentum independent to this order of chiral
perturbation theory—which we found is not at all satisfied
by the lattice data. Thus, direct computation of the
disconnected terms cannot be avoided in a systematic
study. Our numerical results will shed light onto the size
of the disconnected contribution at low p2.

III. VACUUM POLARIZATION FROM
SUSCEPTIBILITIES

A. The method

The photon vacuum polarization tensor (1) can also be
interpreted as a momentum space current-current correla-
tion function

ΠμνðpÞ ¼
1

V4

h ~jμðpÞ ~jνð−pÞi; ð11Þ
where V4 denotes the four-dimensional volume of the
system and ~jμ is the Fourier transform of the electromag-
netic current defined in Eq. (2):

~jμðpÞ ¼
Z

d4xeipxjμðxÞ: ð12Þ
Depending on the lattice definition of jμ, the polarization
tensor (11) may or may not renormalize multiplicatively
with Z2

V . Here, we work with a conserved current,
i.e. ZV ¼ 1.
In the following we relate the vacuum polarization to the

leading response of the free energy density f of the system
to background electromagnetic fields. To illustrate the
relation between the two objects on a qualitative level, it
is instructive to represent the vacuum polarization tensor by
the diagram

νμ

where a momentum p flows in and out of the photon legs.
Here, the gray blob indicates all possible closed loops
formed by quark and gluon propagators—i.e. the pertur-
bative expression for the free energy density f. The
legs may be thought of as photons corresponding to a
background electromagnetic field Aμ with momentum

p. Pulling out these legs is achieved by taking appropriate
derivatives of f with respect to the background field. While
background electric fields turn the Euclidean QCD action
complex and are thus problematic in lattice simulations,
background magnetic fields can be realized without com-
plications. Employing the latter gives access to the spatial
components Πij and hence to all components Πμν since in
Euclidean spacetime at zero temperature the indices can be
relabeled at will.
To find the background field corresponding to ΠμνðpÞ,

we define the magnetic fields

BpðxÞ ¼ B sinðpxÞe3; B0 ¼ Be3; ð13Þ
pointing in the third spatial direction. While Bp is an
oscillatory magnetic field with oscillation frequency p, B0

is a homogeneous background. The corresponding suscep-
tibilities are obtained as the second derivatives of the
free energy density with respect to the amplitude of the
magnetic field:

χp ¼ −∂
2f½Bp�
∂ðeBÞ2

����
B¼0

: ð14Þ

These susceptibilities are normalized by the square of the
elementary charge e > 0 to ensure that only the renorm-
alization group-invariant combination eB appears in the
definitions. Note that χp can be evaluated on gauge
ensembles generated at B ¼ 0.
The explicit calculation in Appendix A shows that

2χp ¼ Πðp2Þ; χ0 ¼ Πð0Þ: ð15Þ
These relations form a new representation of the vacuum
polarization function in terms of susceptibilities with
respect to the magnetic fields defined in Eq. (13) and
are the main result of this article.
Unlike the conventional method, where the polarization

function is extracted from the same set of position space
current-current correlators for all momenta, Eq. (15) gives
access to Πðp2Þ at one single lattice momentum p. While
this certainly increases the costs of calculating Π over a
large range of momenta, it also allows for a better signal-to-
noise ratio within momentum regions of particular interest.
As argued above, for the determination of the hadronic
contribution to the muon anomalous magnetic moment
ahad;LOμ , low momenta p2 ∼ 0.03 GeV2 are much more
important than the high-p region. While hjμðxÞjνð0Þimixes
information about all allowed values of p, here such a
mixing is avoided.
Just like the vacuum polarization tensor, χp and χ0 can

also be separated into connected and disconnected con-
tributions. We demonstrate in Sec. IV below that, using this
new approach, an unprecedented accuracy can be achieved
for both the connected and the disconnected contributions
to the vacuum polarization function, already at moderate
computational costs. An additional advantage of the
method is that it gives direct access to Πð0Þ.
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To summarize, to arrive at a prediction for ahad;LOμ it is
desirable to improve the accuracy in the low-p region and
to calculate Πð0Þ independently. The method we propose
accomplishes both of these requirements.

B. Renormalization

Before presenting the details of the implementation
and our numerical results, it is instructive to discuss
the renormalization properties of χ0 in more detail.
Equation (15) reveals that the homogeneous susceptibility
is additively divergent, just as Πð0Þ. To see where this
divergence comes from, let us consider the multiplicative
renormalization of the background magnetic field (and the
corresponding renormalization of the electric charge),

e2 ¼ Z−1
e e2r ; B2 ¼ ZeB2

r ; eB ¼ erBr; ð16Þ

with the renormalization factor

Ze ¼ 1þ 2b1e2r logðμaÞ; ð17Þ

where a is the lattice spacing (inverse of the regulator) and
μ the renormalization scale. Notice that since the magnetic
field is external and has no dynamics, only the lowest-order
QED β-function coefficient—denoted as b1—appears
in Ze [46–48].
The total free energy density ftot of the system is the sum

of f and the energy B2=2 of the magnetic field. Since
varying the background field should not change the ultra-
violet properties of the system, ftot must be free of B-
dependent divergences. This implies that the divergence of
the pure magnetic energy

B2

2
¼ B2

r

2
þ b1ðeBÞ2 logðμaÞ ð18Þ

is exactly canceled by an analogous divergence of f.
Plugging this divergence into the definition (14), we obtain

χ0 ¼ 2b1ðaÞ logðμaÞ: ð19Þ

The renormalization scale μ is fixed by the requirement that
there should be no finite quadratic terms in ftot other than
B2
r=2 [46]. Let us emphasize that b1 is the lowest-order

coefficient of the QED β function, however, with all QCD
corrections taken into account. To highlight this, we
explicitly indicate the dependence of b1 on the lattice
spacing. Perturbatively, this reads [49]

b1ðaÞ ¼
X

f¼u;d;s

ðqf=eÞ2
1

4π2

�
1þ g2ðaÞ

4π2
þ � � �

�
; ð20Þ

where g2ðaÞ is the QCD coupling. Equation (19) allows us
to connect lattice results for χ0 to perturbation theory, once
the lattice spacing is small enough, cf. Ref. [48].

C. Implication for hot or dense QCD

As a side remark, we mention that the correspondence
(15) can be generalized to high temperatures. In this case it
results in a relation between the entropy density and the
perturbative Adler function [48]. The latter is defined as the
logarithmic derivative of the polarization function with
respect to the squared momentum [26]:

Dðp2Þ ¼ 12π2
∂Πðp2Þ
∂ logðp2Þ : ð21Þ

Let us consider QCD at a high temperature T, which
exceeds all other dimensionful scales in the system. In this
limit, the argument ofΠ is set by a thermal scale μth ¼ 2πT,
leading to the correspondence Πðμ2thÞ↔χ0ðT2Þ. (The sus-
ceptibility at high temperatures indeed only depends on T2

[48].) For the Adler function, this implies the relation

Dðμ2thÞ⟷12π2
∂χ0

∂ logT2
¼ 6π2T

∂2s
∂ðeBÞ2

����
B¼0

; ð22Þ

where in the second step we used the definition of the
entropy density s≡−∂f=∂T. Equation (22) reveals that
the leading dependence of the entropy density on the
magnetic field at high temperatures is fixed by the Adler
function, i.e. by perturbative QED physics. Repeating the
above argument with T replaced by a chemical potential μ
(or by an isospin chemical potential μI) gives an analogous
relation for the quark number density n ¼ −∂f=∂μ at high
μ (or for the isospin density nI ¼ −∂f=∂μI at high μI). We
believe these are highly nontrivial findings.

IV. SIMULATION DETAILS AND
NUMERICAL RESULTS

We employ the Nf ¼ 2þ 1 staggered lattice ensembles
[50,51] generated at physical pion and kaon masses. Each
ensemble—summarized in Table I—consists of a hundred
to a few hundred effectively statistically decorrelated
configurations. Details of the simulation algorithm and
of the lattice setup can be found in Refs. [50,52,53].

A. Oscillatory susceptibilities

First we discuss results on the susceptibilities χp ¼
Πðp2Þ=2 with respect to the oscillatory backgrounds.

TABLE I. Lattice ensembles investigated; the largest lattice
spacing reads a0 ¼ 0.29 fm.

Ns Nt β a [fm] logða=a0Þ
24 32 3.45 0.290 0
24 32 3.55 0.216 −0.295
32 48 3.67 0.153 −0.636
40 48 3.75 0.125 −0.843
40 48 3.85 0.099 −1.078
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These are determined via the noisy estimator technique
described in Appendix B. A typical set of low-momentum
results is shown in Fig. 2. The data include both the
connected and the disconnected contributions to Πðp2Þ.
The figure also includes results obtained via the conven-
tional method, however, employing stochastic wall sources
(for our numerical implementation, see Appendix C).
The comparison reveals full agreement between the two
approaches. The statistical error of the random wall data
increases towards small momenta, whereas it remains tiny
even for the lowest nonvanishing p2-value shown for
the oscillatory susceptibilities. Note that the number of
inversions employed to obtain the data point at the lowest
momentum was the same, Ninv ¼ 3000, for both
approaches.
In most previous lattice studies, Πð0Þ was obtained by

extrapolating Πðp2Þ to zero. Some possible extrapolations,
employing polynomials or Padé approximants, fitted over
various ranges in p2, are included in the figure. These fits
are also compared to the direct determinations via the
homogeneous susceptibility χ0 (see Sec. IV B below) and
via the zero-momentum projected current-current correla-
tion function GðtÞ according to Eq. (8), again obtained
using random wall sources. Within their scatter, at p2 ¼ 0
the extrapolations agree with the direct determinations. We
remark that increasing the precision for the lowest few
momenta stabilizes such extrapolations tremendously.

B. Homogeneous susceptibility and renormalized
vacuum polarization

The susceptibility χ0 with respect to a homogeneous
background is of interest for QCD thermodynamics in
magnetic fields and has been the subject of detailed studies

in the past few years. The determination of χ0 is consid-
erably more complicated than that of χp due to the
quantization of the magnetic flux Φ. On the one hand,
oscillatory magnetic fields have zero flux and can be varied
continuously, allowing for a direct differentiation with
respect to B. On the other hand, homogeneous fields have
nonzero flux. Therefore, such a differentiation cannot be
carried out to determine χ0; see Appendix B. Several
approaches, summarized in Refs. [48,54], have been
developed recently to overcome this problem. Here we
compare results obtained using the finite difference method
[55], the generalized integral method [48] and the half-half
method [56]. The former two approaches are based on
simulations at nonzero magnetic flux values, numerically
differentiating the results with respect to Φ. The half-half
method involves calculating expectation values directly at
B ¼ 0, employing a setup where the magnetic field is
positive in one half and negative in the other half of the
lattice. In this case, since the total flux is zero, a direct
differentiation with respect to the amplitude is possible.
However, the discontinuity of the magnetic field turns out
to dramatically enhance finite-volume effects in χ0; see
below.1

In Fig. 3, we compare all three approaches. The results
from the generalized integral method and from the finite
difference approach are taken from Refs. [58,59] while the
half-half results are new. Not all lattice spacings are covered
by all the methods. While the results of the generalized
integral method2 and of the finite difference approach are
consistent with each other, the half-half approach consis-
tently underestimates the magnitude of the susceptibility.
The difference between that approach on the one hand and
the other two methods on the other hand is found to be as
large as 10% and reduces only very slowly with increasing
lattice volumes.3 Altogether, we conclude that the half-half
method is insufficient for our purposes and discard it in the
following.
Perturbation theory predicts the dependence of χ0 on the

lattice spacing; see Eqs. (19)–(20). In Fig. 3 the data are
plotted against logða=a0Þ to verify the expected logarithmic
divergence. We include the leading Oðg2Þ QCD correction
to the lowest-order QED β-function coefficient b1. The
renormalization scale μ is fitted to match the lattice results
(dashed green line). In addition, we multiply the resulting

FIG. 2 (color online). The low-momentum region of the
oscillatory susceptibilities as measured on the 243 × 32 configu-
rations at β ¼ 3.45. The curves correspond to polynomial- and
Padé-type extrapolations of 2χp to p ¼ 0. The direct determi-
nation χ0 is shifted horizontally to the left for better visibility.
Also included are results obtained using random wall sources,
displaced horizontally to the right.

1These finite-volume effects cancel to a large extent in the
difference χ0ðTÞ − χ0ðT ¼ 0Þ [57], which is relevant for QCD
thermodynamics in background magnetic fields.

2Here we compare data obtained on Nt > Ns zero-temperature
lattices. On the configurations of Fef. [48] at finite (but low)
temperatures, χ0 was found to have slightly smaller absolute
values for fine lattices of Table I (β ≥ 3.67Þ.

3The comparison between the half-half method and the
generalized integral method on our coarsest lattice, already
presented in Ref. [48], has been updated by increasing the
statistics and the number of noisy estimators to reveal the
significant difference visible in Fig. 3.
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curve by a rational function that approaches unity as a → 0
(solid yellow error band). This band defines the homo-
geneous magnetic susceptibility χ0ðaÞ, as shown for one
lattice spacing in the very left of Fig. 2. The resulting
renormalization scale reads μ ¼ 0.123ð8Þ GeV, consistent
with our determination in Ref. [48].
The Πðp2Þ results are shown for all five ensembles of

Table I in Fig. 4, whereΠð0Þ ¼ χ0 with the susceptibility χ0
determined as detailed above. Notice that the statistical
uncertainties (again, both connected and disconnected
terms are taken into account) within our window of lattice
spacings remain at the subpercent level for p2 > 0 and are
about one percent for p ¼ 0. Taking into account the
statistical errors of Πðp2Þ and of the independently

determined Πð0Þ, the renormalized vacuum polarization
(3) is plotted in Fig. 5 for the whole momentum region
under consideration. For orientation we also show the
three-flavor perturbation theory result for p2 > 2 GeV2,
where we truncate the formulas of Refs. [20–21] at Oðα2sÞ.
The perturbative curve is only defined up to an overall
constant shift, which we adjust by matching to a continuum
extrapolation around p2 ¼ 2 GeV2. It is clear from the
figure that—as one would expect—lattice spacing effects
become more prominent towards high momenta. In addi-
tion, the vacuum polarization obtained from the experi-
mental R ratio (cf. the blue points in Fig. 1) is included
in Fig. 5.
Having obtained the renormalized hadronic vacuum

polarization, we can use Eqs. (4)–(6) [13,22] to predict
its contribution to the muon anomalous magnetic moment.
Choosing a third-order spline interpolation, we obtain
values in the range ahad;LOμ ¼ ð4…5Þ × 10−8 and an upward
trend towards the continuum limit. This is encouraging
as the R-ratio predictions of Refs. [5] and [4] for the Nf ¼
2þ 1þ 1 flavor theory read ahad;LOμ ¼ 6.923ð42Þ × 10−8
and ahad;LOμ ¼ 6.949ð43Þ × 10−8, respectively. However,
given that the present lattices are rather coarse
(0.1 fm ≲ a < 0.3 fm), we do not yet attempt a full-
fledged continuum limit extrapolation. (Note that at these
lattice spacings, the taste splitting of the staggered pion
multiplet is still sizeable [53]. Thus, large lattice artefacts
originating from the heavier pion states are not unexpected,
since ahad;LOμ is highly sensitive to the pseudoscalar
masses.)

C. Statistical accuracy and disconnected contributions

Next, we perform a quantitative comparison between
the oscillatory susceptibility method, the conventional

FIG. 4 (color online). Vacuum polarization via magnetic
susceptibilities in the low-momentum region. The data include
both connected and disconnected contributions.

FIG. 3 (color online). Magnetic susceptibility with respect to a
homogeneous background as a function of the logarithm of the
lattice spacing (a0 ¼ 0.29 fm), using three different approaches
(the generalized integral method [48], the finite difference
method [58,59] and data generated in this study using the
half-half method [56]). Also included are a comparison to
Oðg2Þ perturbation theory and a parametrization via a rational
Ansatz.

FIG. 5 (color online). Subtracted vacuum polarization with
independent determinations of Πðp2Þ and Πð0Þ. The data include
both connected and disconnected contributions. The solid red line
indicates the experimental result (cf. Fig. 1) and the dotted line
the three-loop perturbative prediction (see the text).

HADRONIC VACUUM POLARIZATION AND MUON g − 2 … PHYSICAL REVIEW D 92, 054506 (2015)

054506-7



approach with random wall sources and that with point
sources. We demonstrate that the statistical error of Πðp2Þ
can be pushed well below that of existing studies in the
literature—even with the disconnected terms taken into
account.
We calculated Πðp2Þ using all three methods on 120

configurations from the β ¼ 3.45 ensemble for a single
momentum p2 ¼ 0.03 GeV2 using an increased number of
sources. Figure 6 shows the statistical error as a function of
the number of inversions Ninv. The details of our imple-
mentation can be found in Appendixes B–C. As visible in
the figure, the oscillatory susceptibility method allows us to
save 50–60% of the computational effort with respect to the
random wall approach. This difference mainly comes from
the disconnected contributions, which can be calculated
very accurately via susceptibilities. In fact, the statistical
error in this approach is dominated by the connected
contribution,4 as is also visible in the figure. As expected,
the conventional method with point sources is not appli-
cable for the determination of the disconnected terms.
Obviously, it is favorable in terms of the total computer
time spent to increase the number of configurations instead
of the number of inversions per configuration. We remark
that the total number of exact inversions necessary to
achieve a given error can be considerably reduced by
methods like the hopping parameter expansion [60,61],
truncated eigenmode substitution [62–64], the truncated

solver method [65–67] and, in the case of Wilson-like
fermions, employing spin-explicit stochastic sources
[68–70].
Finally, we discuss the disconnected contribution Πdis in

more detail. A particular feature of Πdis is that it requires no
additive renormalization. To see this, note that Πdisð0Þ
vanishes in the perturbative continuum limit, since it is of
order g6ðaÞ in the strong coupling [21], which dampens the
logarithmic divergence and results in Πdisð0Þ to fall off as
1= log2ðaÞ for a → 0. In our three-flavor case the discon-
nected term even vanishes identically in perturbation theory
due to

P
f¼u;d;sqf ¼ 0, once quark masses can be

neglected, i.e. a−1 ≫ ms. Based on this observation, in
Fig. 7 we plot the unsubtracted disconnected vacuum
polarization for all our lattice spacings. (The number of
inversions was Ninv ¼ 800 for each momentum, with the
exception of the leftmost point.) Overall, Πdis is consistent
with zero, where the two points that deviate by more
than two standard deviations from this assumption are
statistically expected and no systematic dependence on the
lattice spacing or on the volume is apparent. With the
exception of three outliers with large error bars, all central
values are below 2 × 10−4 in magnitude.
Using all available estimators (Ninv ¼ 20000) for the

β ¼ 3.45 ensemble at p2 ¼ 0.03 GeV2, our most accurate
determinations for the unsubtracted and the subtracted
vacuum polarizations read

p2 ¼ 0.03 GeV2∶ Π ¼ −0.058362ð117Þ;
Πdis ¼ þ0.000021ð026Þ;
ΠR ¼ þ0.002355ð198Þ: ð23Þ

Here, Πðp2Þ and Πdisðp2Þ were measured using the
oscillatory susceptibility method. (We highlight again that
the error of Πdis is much smaller than that of the total Π.)
The vacuum polarization at zero momentum was obtained
via random wall sources. Based on the discussion above

R

FIG. 6 (color online). Statistical error of the total (connected
plus disconnected) Πðp2 ¼ 0.03 GeV2Þ as a function of the
number of inversions. Compared are the results obtained from
oscillatory susceptibilities, using point sources and random wall
sources. In addition, the error of the connected oscillatory
susceptibility alone is shown. Note the logarithmic scale.

FIG. 7 (color online). Disconnected contribution to Πðp2Þ as a
function of p2 for our five lattice spacings.

4To see why this is the case, note that the number of estimates
increases quadratically with Ninv for the disconnected terms but
only linearly for the connected ones; see the discussion in
Appendix B. Therefore, the error on the latter eventually over-
takes that of the former, before both show the expected asymp-
totic σ2 ≃ c1ð1þ c2=NinvÞ falloff. The inherent gauge noise c1
can only be reduced by increasing the number of configurations.
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about the vanishing of Πdisð0Þ in the continuum limit, only
the connected part of Πð0Þ is necessary for the subtraction.
The relative error of the so-obtained ΠR at this momentum
is 8%, and is dominated by the error of Πð0Þ. Clearly,
towards higher p2, where the magnitude of Πðp2Þ
increases, the relative error on ΠR rapidly decreases.

V. SUMMARY

We developed a new approach to determine the hadronic
vacuum polarization Πðp2Þ on the lattice. It is based on
calculating magnetic susceptibilities χp with respect to
oscillatory background fields for p2 > 0 and a homo-
geneous background for p2 ¼ 0. The proof of the equiv-
alence between χp and Πðp2Þ is given in Appendix A. The
oscillatory susceptibilities are obtained by evaluating the
appropriate expectation values using noisy estimators, as
described in Appendix B. Unlike the conventionally used
approach, based on position space current-current correla-
tors, which mix information about all possible lattice
momenta, the present method enables us to determine
the vacuum polarization with increased precision for indi-
vidual low momenta. The low-momentum region is of rele-
vance for an accurate determination of the leading hadronic
contribution to the muon anomalous magnetic moment. In
principle, the lattice determination of Πðp2Þ − Πð0Þ at a
selected set of low momenta can also be combined with
experimental results for the R ratio to increase the accuracy
of ahad;LOμ .
The proposed method not only reduces statistical errors

at low momenta but also allows for an independent
measurement of Πð0Þ, instead of having to rely on
extrapolations of Πðp2Þ from p2 > 0. We discussed three
different methods to determine the homogeneous suscep-
tibility χ0 ¼ Πð0Þ. The most straightforward method,
which relies only on simulations at zero magnetic field
(the so-called half-half method), was found to suffer from
large finite-volume effects of up to 10% of the full value.
Instead, we combined existing results on χ0 from
Refs. [48,58] that are based on simulations at nonzero
background fields. We also tested stochastic wall sources
to obtain Πð0Þ as the second moment of a momentum
projected current-current correlation function and found
that it can compete with the accuracy of the homogeneous
susceptibility for a sufficiently large number of random
sources. It is interesting to note that χ0 can also be obtained
via stochastic wall sources at finite temperatures, giving
direct access to the renormalized magnetic susceptibility
χ0ðTÞ − χ0ðT ¼ 0Þ that enters the QCD equation of state at
finite magnetic fields [48,55,56,58,71,72].
The method was tested on staggered Nf ¼ 2þ 1 flavor

ensembles with various lattice spacings. Already on a few
hundred configurations, a statistical accuracy below one
percent is achieved for Πðp2Þ. The disconnected contri-
butions have been included in all cases. Figure 8 shows an

order-of-magnitude comparison of our statistical accuracy
to that of existing calculations in the literature, wherever
data or figures with error bars are available for Π at
p2 ≈ 0.03 GeV2 [17,24,27,30–35,41]. [Note that the
approach followed in Ref. [36] involves parametrizing
the lattice data for the zero-momentum projected two-
point function GðtÞ of Eq. (9), making a comparison for Π
difficult.] We remark that this incomplete comparison
does not distinguish between different lattice volumes,
spacings or pion masses but just serves as a qualitative
indicator of the accuracy. It reveals that our statistical
errors, obtained on a comparably small number of gauge
configurations, are by far the smallest within the lattice
studies shown in Fig. 8. However, the approach of
employing the experimental R ratio is still by about an
order of magnitude more accurate. Nevertheless, by
applying the methods used in this paper to ensembles
with substantially higher statistics, the desired accuracy
may be reached in the near future.
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FIG. 8 (color online). The statistical error of the vacuum
polarization at low momenta around p2 ¼ 0.03 GeV2 for several
lattice studies in the literature and for the present work (shaded
area). Open points denote the error of the unsubtracted Πðp2Þ,
while full symbols indicate that of the renormalized ΠRðp2Þ.
Studies involving only the connected contribution are indicated
in yellow, while those also taking into account the discon-
nected terms are indicated in blue. The determination using
the experimental R ratio is also included for comparison (solid
green point).
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APPENDIX A: PROOF OF EQ. (15)

Below we prove the main result of the paper, Eq. (15).
We define the free energy density f ¼ − logZ=V4, in
terms of the partition function Z of the system in a four-
dimensional volume V4. Z is obtained evaluating the
Euclidean functional integral over the gluon, quark and
antiquark fields Aμ, ψf and ψ̄f,

Z ¼
Z

DAμ

YNf

f¼1

Dψ̄fDψfe−S; S ¼
Z

d4xL; ðA1Þ

where the action S is the integral of the Lagrange density L.
Without loss of generality, the magnetic field of Eq. (13) is
chosen to point in the third spatial direction and is
generated by a vector potential Ap ¼ Bp:

Ap
2 ¼

Z
dx1Bp; Ap

0 ¼ Ap
1 ¼ Ap

3 ¼ 0: ðA2Þ

Here the superscript p indicates the oscillation frequency of
the magnetic field, cf. Eq. (13). The vector potential enters
the Lagrange density via minimal coupling:

L ¼ Lg þ
XNf

f¼1

ψ̄fðDp
f þmfÞψf;

Dp
f ¼ γμð∂μ þ iAμ þ iqfA

p
μ Þ; ðA3Þ

where Lg is the gluonic Lagrangian and mf denote the
quark masses.
In Eq. (A2) we chose a gauge, in which the photon vector

potential only couples to the second component j2 of the
electromagnetic current. Therefore, this background probes
the Π22ðpÞ entry of the vacuum polarization tensor, where
we orient the momentum p to point in the x-direction:
p ¼ ðp1; 0; 0; 0Þ. In this case, employing Eq. (1), the
vacuum polarization (11) simplifies to

Π22ðpÞ ¼
1

V4

h ~j2ðpÞ ~j2ð−pÞi ¼ −p2
1Πðp2Þ: ðA4Þ

For reasons that will become clear in a moment, we
consider two different oscillatory background fields

Bsin;pðxÞ ¼ B sinðpxÞ; Bcos;pðxÞ ¼ B cosðpxÞ; ðA5Þ
and denote the corresponding susceptibilities accordingly
as χsinp and χcosp .
Integrating the Lagrange density (A3) and going to

momentum space, the magnetic field-dependent part SB
of the action reads

SBðB0Þ ¼ B ~j2
0ð0Þ;

SBðBcos;pÞ ¼ B½ ~j2ðpÞ − ~j2ð−pÞ�=ð2p1Þ;
SBðBsin;pÞ ¼ B½ ~j2ðpÞ þ ~j2ð−pÞ�=ð2ip1Þ; ðA6Þ

where the prime denotes differentiation with respect to p1.
Inserting these expressions into the partition function (A1)
and differentiating twice with respect to eB in order to
obtain the susceptibilities (14) results in

χ0 ¼
1

V4

h ~j20ð0Þ ~j20ð0Þi;

χcosp ¼ 1

V4

1

4p2
1

h½ ~j2ðpÞ − ~j2ð−pÞ�2i;

χsinp ¼ − 1

V4

1

4p2
1

h½ ~j2ðpÞ þ ~j2ð−pÞ�2i: ðA7Þ

Note that terms containing the squares of expectation
values, e.g., h ~j20ð0Þi2 for χ0, vanish due to parity symmetry
B↔ − B and thus do not appear in Eq. (A7).
Comparing Eqs. (A4) and (A7) shows that

χcosp þ χsinp ¼ Πðp2Þ: ðA8Þ
In the zero-momentum limit, the oscillatory magnetic fields
satisfy

lim
p→0

Bcos;p ¼ B0; lim
p→0

Bsin;p ¼ 0; ðA9Þ
which, together with Eq. (A8), implies for the homo-
geneous case

χ0 ¼ Πð0Þ: ðA10Þ
Furthermore, the cos- and sin-type magnetic fields only
differ in a phase and are equivalent due to translational
invariance. Therefore, the two oscillatory susceptibilities
coincide, giving

2χp ¼ Πðp2Þ: ðA11Þ
Note that the equivalence of χsinp and χcosp only holds for
nonzero momenta and breaks down at p ¼ 0. In addition,
on the periodic lattice the two oscillatory susceptibilities
differ at the maximal momentum pmax ¼ π=a where the
cos-type vector potential becomes zero on all lattice sites
and thus χcospmax

vanishes identically. [Still, Eq. (A8) holds
even at this momentum.]
Relations (A10)–(A11) represent the basis of our analy-

sis to obtain the vacuum polarization function from
magnetic susceptibilities. We remark that implementing
Eqs. (A2), (A4) and (A9) may be thought of as using
δ-sources in momentum rather than in position space when
computing Πðp2Þ. A similar idea to relate hadronic matrix
elements to the response to background fields was also
discussed in Ref. [73].

APPENDIX B: IMPLEMENTATION
OF THE SUSCEPTIBILITIES

In this appendix we present the details of the lattice
computation of the susceptibilities (14). First of all we have
to address the implications of magnetic flux quantization.
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In a finite periodic volume, the magnetic flux Φ through
the perpendicular plane L1 × L2 (the magnetic field is
oriented in the third spatial direction) is quantized [74],

Φ ¼
Z

dx1dx2eB ¼ 6πNb; Nb ∈ Z; ðB1Þ

where we exploited that the smallest electric charge in the
system equals qd ¼ −e=3. Thus, flux quantization pro-
hibits direct differentiation with respect to the amplitude
of the magnetic field, unless the flux identically vanishes.
For the oscillatory field BpðxÞ of Eq. (13) this is indeed
the case, making the differentiation with respect to B
straightforward. For the homogeneous background, the
flux is nonzero and, thus, B becomes a discrete variable.
Various methods to calculate χ0 are summarized in
Refs. [48,54].
After integrating out the quark fields, the lattice partition

function becomes an integral over the gluonic links
Uμ ≈ eiaAμ :

Z ¼
Z

DUμe−Sg
YNf

f¼1

ðdetMp
f Þ

1
4; Mp

f ¼ Dp
f þmf: ðB2Þ

Here we employed (rooted) staggered quarks to discretize
the fermion matrixMp

f , but the method trivially generalizes

to different discretizations. The U(1) vector potential of
Eqs. (A2)–(A3) enters Mp

f via the substitution

U2ðx1Þ↦U2ðx1Þ · eiaqfA
p
2 ¼ U2ðx1Þ · eiaqfB

sinðpxÞ
p1 ; ðB3Þ

where in the second step we inserted the vector potential for
the cos-type magnetic field with momentum p1 in the first
spatial direction. The improvement p1↦p̂1 is carried out in
the denominator of the exponent, similarly as in the
conventional approach, cf. Eq. (10). The derivative with
respect to B is then obtained as

χp ¼ 1

V4

�
C2p þ

∂Cp
∂ðeBÞ

�
; ðB4Þ

where

Cp ¼ 1

4

X
f

qf
e
tr½ðMp

f Þ−1 _Mp
f �; ðB5Þ

and the dot denotes differentiation with respect to the
combination qfB at B ¼ 0. Having taken the derivative
at B ¼ 0, we can exploit the equality of the up and
down quark matricesMu ¼ Md ≡Ml due to the coincident
light quark masses. Then the susceptibility reads
(suppressing the index p and using the electric charge
values qu=2 ¼ −qd ¼ −qs ¼ e=3)

χp ¼ 1

4V4

�
5

9
trðM−1

l M̈l −M−1
l

_MlM−1
l

_MlÞ þ
1

9
trðM−1

s M̈s −M−1
s

_MsM−1
s

_MsÞ
�

þ 1

16V4

�
1

9
trðM−1

l
_MlÞtrðM−1

l
_MlÞ þ

1

9
trðM−1

s
_MsÞtrðM−1

s
_MsÞ − 2

9
trðM−1

l
_MlÞtrðM−1

s
_MsÞ

�
; ðB6Þ

where, like in Eq. (B5), the prefactors 1=4 and 1=16 are due
to the use of rooted staggered fermions.
The first expectation value on the right-hand side is the

connected contribution, whereas the second one is the
disconnected term. The traces are measured via a set of
noisy estimators ξj, j ¼ 1…Nξ. Taking into account the
cyclicity of the trace, the total number of necessary
inversions is 4Nξ (twice for the light and twice for the
strange quark matrix). For the calculation of Np different
momenta, some of the solutions can be recycled. This
results in the total number of required inversions
Ninv ¼ 2Nξð1þ NpÞ, where the prefactor 2 again is due
to M−1

s ≠ M−1
l . We then have Nξ independent estimates

for the connected contribution. Using different stochastic
sources for the strange and for the light quarks, we obtain
N2

ξ estimates of the last disconnected term within
Eq. (B6), while for the two nonflavor mixing disconnected
terms we can only exploit NξðNξ − 1Þ=2 independent
variations.

APPENDIX C: IMPLEMENTATION
OF RANDOM WALL SOURCES

Below we specify the details of the calculation of Πðp2Þ
and of Πð0Þ via stochastic wall sources. In this approach,
one calculates the current-current correlator in coordinate
space, and performs the Fourier transformation sub-
sequently. Care has to be taken in defining the currents
and especially their product at the same position. Usually in
the literature the conserved current is considered and the
contact term is subtracted in order for the lattice Ward
identity (10) to hold [75]. Another possibility is to consider
the product of conserved and local currents as was done
in Ref. [31].
Here we demonstrate how the subtraction of the contact

term can be obtained automatically if the current is defined
using a background U(1) field Aμ. For simplicity, we again
consider the μ ¼ 2 component of the currents and take the
distance between the insertions to point in the first
direction. Then we get
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hj2ðxÞj2ðyÞi ¼
∂2 logZ

∂A2ðxÞ∂A2ðyÞ
����
A2¼0

¼ 1

4

�X
f

�
qf
e

	
2

tr

�
M−1

f

∂2Mf

∂ðqfA2ðxÞÞ∂ðqfA2ðyÞÞ
δx;y −M−1

f

∂Mf

∂ðqfA2ðxÞÞ
M−1

f

∂Mf

∂ðqfA2ðyÞÞ
��

þ 1

16

�X
f

qf
e
tr

�
M−1

f

∂Mf

∂ðqfA2ðxÞÞ
���X

f0

qf0

e
tr

�
M−1

f0
∂Mf0

∂ðqf0A2ðyÞÞ
��

: ðC1Þ

Notice that the first term arises due to the fact that the background field entersMf in the exponential form eiaqfA2 , and it only
contributes if x ¼ y. Now we define

a3
X

x2;x3;x4

∂Mf

∂ðqfA2ðxÞÞ
¼ γ2Px1 ; a3

X
x2;x3;x4

∂2Mf

∂ðqfA2ðxÞÞ∂ðqfA2ðxÞÞ
¼ τ2Px1 ; ðC2Þ

where Px1 is the projector on the slice of the lattice where the first spatial coordinate equals x1. Here, γ2 is the staggered
discretization of the second Dirac matrix and τ2 its equivalent with the Hermitian conjugate links multiplied by minus one,

ðγ2Þxy
ðτ2Þxy

¼ 1

2
½η2ðxÞU2ðxÞδy;xþa2̂

þ
− η2ðx − a2̂ÞU†

2ðx − a2̂Þδy;x−a2̂�; ðC3Þ

and ημ denote the staggered phases. With these definitions we obtain for the two-point function (9), with the temporal
direction replaced by the first spatial direction,

Gðx1 − y1Þ≡ a6

L2L3L4

X
x2;x3;x4

X
y2;y4;y4

hj2ðxÞj2ðyÞi ¼
1

4

�X
f

�
qf
e

	
2

tr½M−1
f δ2Px1 −M−1

f γ2Px1M
−1
f γ2Py1 �

�

þ 1

16

�X
f

qf
e
tr½M−1

f γ2Px1 �
��X

f0

qf0

e
tr½M−1

f0 γ2Py1 �
�
: ðC4Þ

All source positions y1 can be averaged over, keeping the
distance x1 − y1 fixed, to increase statistics. Inserting the
electric charges and taking into account the degeneracy of
the light quark masses, this expression can be simplified, in
analogy to Eq. (B6). For its evaluation we again use noisy
estimators ξj (j ¼ 1…Nξ) that are projected using the P
operators. One technical issue is the treatment of the second
term in the connected contribution of Eq. (C4). Exploiting
the η5-Hermiticity M†

f ¼ η5Mfη5 of the staggered fermion
matrix, the fact that P2 ¼ P and that the term in question is
real, we arrive at

ξ†jPy1γ2M
−1
f Px1γ2M

−1
f Py1ξj

¼ ðPx1γ2M
−1
f Py1ξjÞ · ðη5M−1

f η5γ2Py1ξjÞ�: ðC5Þ

This demonstrates how this term can be obtained for a fixed
source position y1 and any sink position x1 using only two
inversions. One of these inversions can also be reused for
the calculation of the contact term involving τ2 and for the
traces in the disconnected term of Eq. (C4). The number of
necessary inversions is Ninv ¼ 4Nξ.

Putting all this together, the vacuum polarizations
at finite and at zero momentum equal [cf. Eqs. (1), (8)
and (10)]

Πðp2Þ ¼ − a
p̂2
1

X
x1

eip1x1Gðx1Þ;

Πð0Þ ¼ a
2

X
x1

fðx1ÞGðx1Þ; ðC6Þ

where p̂1 ¼ ð2=aÞ sinðap1=2Þ is the lattice momentum and

fðx1Þ ¼


x21; x1 ≤ L1=2;

ðL1 − x1Þ2; otherwise
ðC7Þ

is a quadratic function consistent with the boundary
conditions for a periodic lattice with linear size L1. We
mention that the separation x − y of Eq. (C4) is usually
chosen to lie in the temporal direction, as indicated in
Eq. (8). In our setup it points in the first spatial direction to
make the connection to the magnetic susceptibilities—
involving x1-dependent phases, cf. Eq. (B3)—more
transparent.
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