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We determine the curvature of the pseudocritical line of strong interactions by means of numerical
simulations at imaginary chemical potentials. We consider Nf ¼ 2þ 1 stout improved staggered fermions
with physical quark masses and the tree level Symanzik gauge action, and explore four different sets of
lattice spacings, corresponding to Nt ¼ 6; 8; 10; 12, in order to extrapolate results to the continuum limit.
Our final estimate is κ ¼ 0.0135ð20Þ.
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I. INTRODUCTION

The exploration of the phase diagram of strongly
interacting matter in the temperature-baryon chemical
potential (T − μB) plane is being pursued both by exper-
imental and by theoretical investigations. The comparison
between the chemical freeze-out line [1–8] and the cross-
over line, corresponding to chiral symmetry restoration, is
one of the main issues. In principle these two lines are not
expected to coincide, however an exact statement about
their interrelation will provide useful information about the
dynamics of strong interactions. That requires a precise
determination of both lines.
From the theoretical point of view, lattice QCD simu-

lations represent the best first principle tool to provide
information about the chiral transition1 temperature Tc:
present results provide consistent evidence for Tc ≃
155 MeV at μB ¼ 0. Unfortunately, as one moves to finite
baryon chemical potential, direct numerical simulations are
presently hindered by the so-called sign problem, stemming
from the complex nature of the fermion determinant when
μB ≠ 0. However, various methods have been proposed to
circumvent the problem in the regime of small chemical
potentials, where the pseudocritical line can be well
approximated by a quadratic behavior2 in μ2B:

TcðμBÞ
Tc

¼ 1 − κ

�
μB
Tc

�
2

þOðμ4BÞ; ð1Þ

where the coefficient κ defines the curvature of the pseu-
docritical line TcðμBÞ. Information about κ can be obtained
for instance by Taylor expansion techniques [14–17]), by
analytic continuation from imaginary chemical potentials
[18–29], by reweighting techniques [30,31] or by a
reconstruction of the canonical partition function [32,33].
Recent numerical investigations [28,29], adopting the

method of analytic continuation with improved discretiza-
tions at or close to the physical point of Nf ¼ 2þ 1 QCD,
have provided results for κ which are generally larger than
previous estimates obtained by the Taylor expansion tech-
nique [15–17].
In particular, in Ref. [29] we performed numerical

simulations adopting an improved stout staggered fermion
discretization on lattices with Nt ¼ 6; 8, leading to a
preliminary estimate κ ∼ 0.013, to be compared with
previous determinations obtained by Taylor expansion
[15–17], reporting κ ∼ 0.006.
In the present study we aim at extending our results in

two directions. First, we increase the number of imaginary
chemical potentials explored on lattices with Nt ¼ 8, in
order to obtain a better control over the analytic continu-
ation systematics and to perform a deeper comparison
between the cases in which a strange quark chemical
potential is included or not. Then we extend simulations
for μs ¼ 0 to two new sets of lattice spacings, correspond-
ing to Nt ¼ 10 and Nt ¼ 12, in order to perform a
continuum extrapolation of our determination of κ. As a
byproduct, we also discuss the behavior of the continuum
extrapolated chiral susceptibilities as a function of μB, in
order to assess the possible influence of the baryon
chemical potential on the strength of the transition, which
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1We speak of chiral transition even if present lattice studies

provide evidence for a crossover [9–13].
2We note that a possible ambiguity in the denominator of the

quadratic term, i.e. whether we take μB=TcðμBÞ or μB=Tcð0Þ as an
expansion variable, is irrelevant as long as just the quadratic term
is considered, since it only affects higher order terms.

PHYSICAL REVIEW D 92, 054503 (2015)

1550-7998=2015=92(5)=054503(11) 054503-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.054503
http://dx.doi.org/10.1103/PhysRevD.92.054503
http://dx.doi.org/10.1103/PhysRevD.92.054503
http://dx.doi.org/10.1103/PhysRevD.92.054503


is relevant to the possible existence of a critical endpoint in
the T − μB plane.
The paper is organized as follows. In Sec. II we provide

some details about the lattice discretization adopted in this
study, about the various explored setups of chemical
potentials, about the observables chosen to locate Tc and
their renormalization. In Sec. III we discuss our numerical
results and finally, in Sec. IV, we draw our conclusions.

II. NUMERICAL SETUP

As in Ref. [29], we consider a lattice discretization of
Nf ¼ 2þ 1 QCD in the presence of purely imaginary
quark chemical potentials. We consider the following
Euclidean partition function

Z ¼
Z

DUe−SYM

Y
f¼u;d;s

det ðMf
st½U; μf;I�Þ1=4; ð2Þ

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
; ð3Þ

ðMf
stÞi;j ¼ amfδi;j þ

X4
ν¼1

ηi;ν
2

½eiaμf;Iδν;4Uð2Þ
i;ν δi;j−ν̂

− e−iaμf;Iδν;4Uð2Þ†
i−ν̂;νδi;jþν̂�; ð4Þ

where U are the gauge link variables, SYM is the tree level
improved Symanzik gauge action [34,35], written in terms of
Wn×m

i;μν (trace of the n ×m loop constructed from the gauge
links along the directions μ; ν departing from the i site).
Finally, the staggered Dirac operator ðMf

stÞi;j is built up in

terms of the two times stout-smeared [36] linksUð2Þ
i;ν , with an

isotropic smearing parameter ρ ¼ 0.15. Stout smearing
improvement is used in order to reduce taste symmetry
violations (see Ref. [37] for a comparison among different
improved staggered discretizations); the rooting procedure is
exploited, as usual, to remove the residual fourth degeneracy
of the staggered lattice Dirac operator (see, e.g., Ref. [38] for
a discussion on possible related systematics).
The temperature of the system is given by T ¼ 1=ðNtaÞ,

where a is the lattice spacings and Nt is the number of
lattice sites in the temporal direction, along which we take
thermal boundary conditions (periodic/antiperiodic for
boson/fermion fields). At fixedNt, T is changed by varying
the value of the bare coupling constant β. The bare quark
masses ms and ml are rescaled accordingly, in order to
move on a line of constant physics, with mπ ≃ 135 MeV
and ms=ml ¼ 28.15. This line is determined by a spline
interpolation of the values reported in Refs. [39,40] (see
also Ref. [29]). Four different sets of lattice spacings,
corresponding to Nt ¼ 6; 8; 10; 12, have been explored, in
order to extrapolate our results to the continuum limit.

A. Setup of chemical potentials

In Eq. (2), we have introduced an imaginary chemical
potential μf ¼ iμf;I; μf;I ∈ R, with f ¼ u; d; s, coupled to
the number operator of each quark flavor. They are related
to the chemical potentials coupled to conserved charges
(baryon number B, electric charge Q and strangeness S) by
the following relations

μu ¼ μB=3þ 2μQ=3

μd ¼ μB=3 − μQ=3

μs ¼ μB=3 − μQ=3 − μS: ð5Þ

The purpose of our study is to determine the dependence of
the pseudocritical temperature Tc on the baryon chemical
potential (which is given by μB ¼ μu þ 2μd), in a setup of
chemical potentials which is as close as possible to the
thermal equilibrium conditions created in heavy ion colli-
sions. We thus have to require to S ¼ 0 andQ ¼ rB, where
r is the number of protons divided by the number of
nucleons of the colliding ions, r≡ Z=A ≈ 0.4 typically.
These requirements can be translated into relations

between μB, μS and μQ, which at the lowest order in μB
read μQ ≃ q1ðTÞμB and μS ≃ s1ðTÞμB, the coefficients
q1ðTÞ and s1ðTÞ being related to derivatives of the free
energy density [41,42]. Let us consider as an example the
strangeness neutrality condition: in a gas of noninteracting
fermions it would imply μs ¼ 0 but in QCD, due to
interactions, the mixed derivatives of the free energy
density with respect to μs and μu; μd are nonvanishing,
so that one needs a nonzero μs to ensure S ¼ 0. Present
lattice investigations [41,42] show that, for T ∼ 155 MeV,
the constraints on charge and strangeness imply s1 ≃ 0.25
and q1 ≃ −0.025. With a precision of a few percent, around
the transition at vanishing density, we thus have
μl ≡ μu ¼ μd, μl ≃ μB=3 and μs ≃ μl=4.
Our determination of the curvature κ has been obtained

setting μs ¼ 0, which is close to the conditions described
above. To quantify the impact of μs, as in Ref. [29], we have
considered also the case μs ¼ μl, in order to obtain an
estimate about the effect of a nonzero μs in a range which
covers the equilibrium conditions created in heavy ion
collisions.

B. Physical observables, renormalization
and the determination of Tc

In the absence of a true phase transition, the determi-
nation of the pseudocritical line may depend on the
physical observable chosen to locate it. On the other hand,
chiral symmetry restoration is the leading phenomenon
around Tc, with the light chiral condensate becoming an
exact order parameter in limit of zero light quark masses.
Therefore in the following TcðμBÞ will be determined by
monitoring the chiral properties of the system. The chiral
condensate of the flavor f is defined as
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hψ̄ψif ¼
T
V
∂ logZ
∂mf

; ð6Þ

where V is the spatial volume. In our simulations the two
light quarks are degenerate, ml ≡mu ¼ md, and it is
convenient to introduce the light quark condensate:

hψ̄ψil ¼
T
V
∂ logZ
∂ml

¼ hūui þ hd̄di; ð7Þ

hψ̄ψil is affected by both additive and multiplicative
renormalizations. We consider two different renormaliza-
tion prescriptions, in order to determine whether any
systematic effect related to this choice affects the determi-
nation of κ. The first one [43] is

hψ̄ψirð1ÞðTÞ≡
½hψ̄ψil − 2ml

ms
hs̄si�ðTÞ

½hψ̄ψil − 2ml
ms

hs̄si�ðT ¼ 0Þ ; ð8Þ

where ms is the bare strange quark mass; in this way the
leading mass dependent contribution is subtracted,3 while
one takes care of the multiplicative renormalization by
dividing by the same quantity at T ¼ 0. As an alternative,
we consider the following prescription [16]

hψ̄ψirð2Þ ¼
ml

m4
π
ðhψ̄ψil − hψ̄ψilðT ¼ 0ÞÞ: ð9Þ

In this case the zero T subtraction eliminates additive
divergences while multiplication by the bare quark massml
takes care of multiplicative ones.
The behavior of both condensates will be monitored to

locate Tc. In particular, since in the presence of a true phase
transition the slope of the condensate as a function of T
diverges at Tc, we will look for the point of maximum
slope, i.e., the inflection point (a detailed comparison with
other prescriptions has been reported in Ref. [29]).
A much better probe is provided by the chiral suscep-

tibility χψ̄ψ, which is itself divergent at Tc in the presence of
a true transition: in this case the introduction of relevant
parameters (finite mass or finite volume) smooths the
divergence, however looking for the maximum of χψ̄ψ
remains a well-defined and univoque prescription for
locating the pseudocritical temperature Tc. On the lattice,
the light chiral susceptibility is given by (Ml is the Dirac
operator corresponding to a single light flavor)

χψ̄ψ ¼ ∂hψ̄ψil
∂ml

¼ χdiscψ̄ψ þ χconnψ̄ψ ð10Þ

χdiscψ̄ψ ≡ T
V

�
Nl

4

�
2

½hðTrM−1
l Þ2i − hTrM−1

l i2� ð11Þ

χconnψ̄ψ ≡ −
T
V
Nl

4
hTrM−2

l i: ð12Þ

whereNl ¼ 2 is the number of degenerate light quarks. The
renormalization is performed by first subtracting the T ¼ 0
contribution, to remove the additive renormalization, then
multiplying the result by the square of the bare light quark
mass, to cancel the multiplicative one [39]:

χrψ̄ψ ¼ m2
l ½χψ̄ψ ðTÞ − χψ̄ψðT ¼ 0Þ�: ð13Þ

C. Analytic continuation from imaginary
chemical potentials

The physical observables relevant to our study will be
monitored as a function of T for fixed values of the
dimensionless ratio θl ¼ ImðμlÞ=T. In this way we shall
be able to locate Tc for a set of values of θl, so as to
determine the dependence TcðθlÞ to the leading order

TcðθlÞ
Tcð0Þ

¼ 1þ Rθ2l þOðθ4l Þ; ð14Þ

where we have assumed TcðθlÞ to be an analytic function of
θl, at least for small values of it. This assumption is
consistent with numerical data and is at the basis of the
method of analytic continuation. Comparing with Eq. (1)
one has, at the leading order in μ2B, κ ¼ R=9.

III. NUMERICAL RESULTS

We have performed simulations on lattices with Nt ¼
8; 10 and 12 and different choices of T and of the chemical
potentials; results will be combined with those already
presented in Ref. [29] for Nt ¼ 6; 8 to perform the
continuum extrapolation. To that purpose, we will consider
only lattices with fixed aspect ratio Ls=Nt ¼ 4: that
guarantees the absence of significant finite size effects
(see Ref. [29] for a detailed study about that).
Four different values of chemical potentials have been

considered for Nt ¼ 10; 12, corresponding to μs ¼ 0 and
ImðμlÞ=ðπTÞ ¼ 0; 0.20; 0.24 and 0.275. A larger set has
been considered for Nt ¼ 8, in which case we performed
simulations also at μs ≠ 0, in order to provide more
information about systematics related to the choice of
μs=μl and to the truncation of the Taylor expansion
in Eq. (14).
For each setup of chemical potentials we have explored

Oð10Þ different temperatures around TcðθlÞ. The rational
hybrid Monte-Carlo algorithm [44–46] has been used to
sample gauge configurations according to Eq. (2), each
single run consisting of 2–5 K trajectories of unit length in

3This prescription subtracts both divergent and finite terms
which are linear in the mass, thus permitting us to isolate
contributions to the quark condensate directly related to sponta-
neous chiral symmetry breaking. However, possible additive
logarithmic divergences could still be present.
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molecular dynamics time, with higher statistics around the
transition.
Traces appearing in the definition of chiral quantities

[see, e.g., Eqs. (11) and (12)] have been computed by noisy
estimators at the end of each molecular dynamics trajectory,
using 8 random vectors for each flavor. Such a choice has
appeared, after some preliminary tests, as a reasonable
compromise to balance the effort spent in the stochastic
estimators and in the gauge configuration production, i.e. in
order to optimize the statistical error obtained for a given
computational effort. A jackknife analysis has been
exploited to determine the statistical errors.
To perform the renormalization described in Sec. II, one

needs to compute observables also at T ¼ 0 and at the same
values of the bare parameters, i.e. at the same ultraviolet
(UV) cutoff. For that reason we have performed simula-
tions on lattices as large as 484: details are reported in the
Appendix.
In order to determine the inflection point of the renor-

malized chiral condensate, we have performed a best fit to
our data according to

hψ̄ψirðTÞ ¼ A1 þ B1 arctan ðC1ðT − TcÞÞ; ð15Þ

which involves the independent parameters A1, B1, C1 and
Tc. Instead, for the determination of the peak of the
renormalized susceptibility, we have performed a best fit
according to a Lorentzian function

χrψ̄ψ ¼ A2

B2
2 þ ðT − TcÞ2

: ð16Þ

Both functions are found to well describe respective data
points around Tc. In both cases, statistical errors on the
fitted parameters have been estimated by means of a
bootstrap analysis, while systematic uncertainties have
been estimated either by varying the range of fitted points
around Tc or by choosing an alternative fitting function
(e.g., a hyperbolic tangent for the condensate or a parabola
for its susceptibility). Statistical and systematic4 errors are
both included in the collection of determinations of Tc for
the various combinations of lattice sizes and chemical
potentials in Table I, which includes, for completeness, also
results presented in Ref. [29].
In Fig. 1 we report results obtained for χrψ̄ψ , hψ̄ψirð1Þ and

hψ̄ψirð2Þ on the 403 × 10 and 483 × 12 lattice, together with

some best fits according to Eqs. (15) and (16). In the
following we will perform the continuum limit using two
different methods, in order to check for systematic effects.

A. Continuum limit for μs ¼ 0—First method

In order to extract the curvature of the critical line, we
have performed a best fit to the values of Tcðμl;IÞ, obtained
for each lattice size and setup of chemical potentials,
according to the function

Tcðμl;IÞ ¼ Tcð0Þ
�
1þ 9κ

�
μl;I

Tcðμl;IÞ
�

2

þOðμ4l;IÞ
�
: ð17Þ

For all sets of chemical potentials explored for μs ¼ 0, the
inclusion of quartic corrections has not been necessary: a
more detailed discussion about the stability of the fit as the
range of chemical potentials is changed is reported in
Sec. III D.
In Fig. 2 we report an example of such quadratic fits to

the critical temperatures obtained for Nt ¼ 10; 12 and for
the various explored observables. A complete collection of
results, including also those already presented in Ref. [29],
is reported in Table II.

TABLE I. Critical values of T obtained from the renormalized
chiral susceptibility and from the renormalized chiral conden-
sates. Errors do not take into account the uncertainty on the
physical scale, which is of the order of 2–3% [39,40].

Lattice μl;I
πT

μs;I
πT

Tcðψ̄ψ ð1ÞÞ Tcðψ̄ψ ð2ÞÞ TcðχrÞ
163 × 6 0.00 0.00 148.2(3) 148.4(4) 150.7(4)
163 × 6 0.20 0.00 155.0(4) 155.1(5) 157.0(4)
163 × 6 0.24 0.00 158.9(4) 159.1(4) 160.0(4)
163 × 6 0.275 0.00 161.2(4) 161.5(4) 162.7(4)
243 × 6 0.00 0.00 149.0(6) 149.0(6) 151.6(5)
243 × 6 0.24 0.00 160.8(7) 160.7(5) 162.0(5)
243 × 6 0.275 0.00 164.1(4) 164.3(5) 165.9(4)
323 × 6 0.00 0.00 149.1(7) 149.4(4) 152.0(4)
323 × 6 0.24 0.00 160.2(3) 160.4(2) 162.7(4)
323 × 6 0.275 0.00 163.4(3) 163.5(3) 165.5(4)
323 × 8 0.00 0.00 154.2(4) 154.5(4) 155.6(7)
323 × 8 0.10 0.00 155.4(7) 155.2(8) 157.2(7)
323 × 8 0.15 0.00 159.5(9) 158.9(9) 160.2(5)
323 × 8 0.20 0.00 162.9(8) 163.0(6) 163.0(6)
323 × 8 0.24 0.00 165.0(5) 164.8(5) 165.8(8)
323 × 8 0.275 0.00 169.5(9) 168.6(7) 169.8(7)
323 × 8 0.30 0.00 172.4(9) 171.8(9) 172.8(8)
323 × 8 0.10 0.10 157.1(8) 157.0(8) 158.5(7)
323 × 8 0.15 0.15 159.2(9) 158.8(8) 160.1(8)
323 × 8 0.20 0.20 163.9(6) 163.7(6) 165.3(9)
323 × 8 0.24 0.24 169.4(7) 168.6(6) 169.6(7)
323 × 8 0.275 0.275 175.4(6) 174.4(7) 177.0(8)
403 × 10 0.00 0.00 154.5(1.5) 154.3(1.5) 155.1(7)
403 × 10 0.20 0.00 163.0(7) 163.0(8) 162.5(7)
403 × 10 0.24 0.00 166.8(8) 167.1(7) 166.2(1.0)
403 × 10 0.275 0.00 170.8(8) 171.2(8) 169.6(8)
483 × 12 0.00 0.00 154.5(1.0) 155.5(1.3) 154.7(7)
483 × 12 0.20 0.00 163.2(1.2) 165.0(1.5) 161.9(7)
483 × 12 0.24 0.00 165.2(1.1) 166.2(1.0) 166.2(1.0)
483 × 12 0.275 0.00 167.8(1.2) 168.7(9) 167.9(9)

4We do not report the systematic error on the determination of
the physical scale, which is of the order of 2–3% [39,40] and,
being related to an overall scale determination, does not affect the
ratio of pseudocritical temperatures entering the determination of
κ, see Eqs. (1) and (14).
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In a range of temperatures around Tc, the UV cutoff a−1

is approximately proportional to Nt. Therefore, assuming
corrections proportional to a2, we extracted, from the
curvatures obtained for different values of Nt, continuum
extrapolated results according to the ansatz

κðNtÞ ¼ κcont þ const=N2
t : ð18Þ

Results are shown in Fig. 3, where we also report the
extrapolated continuum values, which are κcontðhψ̄ψirð1ÞÞ ¼
0.0134ð13Þ, κcontðhψ̄ψirð2ÞÞ ¼ 0.0127ð14Þ and κcontðχrψ̄ψÞ ¼
0.0132ð10Þ.

B. Continuum limit for μs ¼ 0—Second method

Results of the previous section show that the continuum
extrapolation of κ is quite smooth, with a good agreement
between the results obtained with different observables and
different renormalization prescriptions. This is also consis-
tent with the preliminary evidence reported in Ref. [29].
Nevertheless, it is useful to explore different ways of

performing the continuum limit, in order to check for the
overall consistency of the procedure. In the previous section
we first determined the value of κ at each single value of Nt,
then extrapolated these results to Nt → ∞ to obtain κcont. A
different procedure is to first extrapolate the critical
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FIG. 1 (color online). Renormalized susceptibility and chiral condensates for the 403×10 (left column) and 483×12 lattices
(right column).
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temperatures to Nt → ∞ (for fixed values of the dimension-
less ratio μl;I=T) and then to extract thevalue of κcont by using
the continuum extrapolated critical temperatures.
To implement the second procedure we have performed,

separately for each μl;I=T, a best fit to the values obtained
for the renormalized condensates and for the renormalized
chiral susceptibility on different values of Nt, according to
modified versions of Eqs. (15) and (16). Since the cutoff
dependence is more pronounced for such quantities, we
have excluded Nt ¼ 6 data, thus using only Nt ¼ 8; 10; 12.
In detail, in the case of the renormalized susceptibility,

each fit parameter appearing in Eq. (16) has been
given an additional Nt dependence, for instance TcðNtÞ¼
TcðNt¼∞Þþconst=N2

t . Results for the extrapolated

quantities are reported in the upper plot in Fig. 4 where,
for the sake of clarity, we report only the cases μl;I ¼ 0 and
μl;I=ðπTÞ ¼ 0.275. In the case of the renormalized conden-
sates, instead, due to the larger number of parameters which
are present in Eq. (15), we could obtain fits which are stable
against the variation of the fitted range by adding
a Nt-dependence to just two parameters, in particular Tc
and C1. Results are shown in the middle and lower plot
of Fig. 4.
Such fits provide estimates for the continuum extrapo-

lated pseudocritical temperatures, reported in Table III and
in Fig. 5. Such values coincide, within errors, with the
continuum pseudocritical temperatures that one could
obtain by directly fitting results reported in Table I. A
best fit to the extrapolated temperatures according to
Eq. (17), with only the quadratic term included, provides
κcontðhψ̄ψirð1ÞÞ ¼ 0.0145ð11Þ, κcontðhψ̄ψirð2ÞÞ ¼ 0.0138ð10Þ
and κcontðχrψ̄ψ Þ ¼ 0.0131ð12Þ, which are consistent with
those found previously.

C. Strength of the transition as a function of μB
Thewidth and the height of the chiral susceptibility peak,

which can be obtained respectively from B2 and A2=B2
2 in

Eq. (16), are directly related to the strength of the chiral
pseudotransition. Therefore, we have the possibility to
monitor the dependence of such strength on the baryon
chemical potential and, having performed a continuum
extrapolation for χrψ̄ψ , we can do that directly on continuum
extrapolated quantities.
If a critical endpoint exists, along the pseudocritical line,

for relatively small values of real μB, we might expect a
visible dependence of the strength parameters also for small
values of imaginary μB. The width and the height would
tend, respectively, to zero and infinity approaching, e.g., a
critical endpoint in the Z2 universality class.
To that purpose, in Fig. 6 we plot the continuum

extrapolated width B2 and height A2=B2
2 as a function of
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FIG. 2 (color online). Critical lines for the 403 × 10 lattice (top)
and for the 483 × 12 one (bottom).

TABLE II. Curvatures obtained at fixed Nt from different
observables.

Lattice κðψ̄ψ ð1ÞÞ κðψ̄ψ ð2ÞÞ κðχrÞ
243 × 6 0.0150(7) 0.00152(7) 0.0140(7)
323 × 8 0.0142(7) 0.0135(7) 0.0134(9)
403 × 10 0.0157(17) 0.0164(16) 0.0139(10)
483 × 12 0.0130(15) 0.0123(17) 0.0131(11)
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FIG. 3 (color online). Continuum limit of the curvatures
extracted at fixed Nt (data have been slightly shifted in the
horizontal direction to improve readability).

CLAUDIO BONATI et al. PHYSICAL REVIEW D 92, 054503 (2015)

054503-6



μl;I . No apparent change of either quantity can be appre-
ciated, hence no dependence of the strength as a function
of μB.
Of course, that does not exclude the presence of a critical

endpoint at real μB: the critical region could be small
enough, or the endpoint location far enough from μB ¼ 0,
so that no influence is visible for small, imaginary μB. For
instance, for μs ¼ 0, a Roberge-Weiss [47] like endpoint is
expected along the pseudocritical line at imaginary chemi-
cal potential, for μl;I=ðπTÞ ∼ 0.45 [29]. Figure 6 shows that
also this endpoint has no apparent influence on the strength
of the transition in the explored range.

D. Inclusion of μs ≠ 0 and systematics
of analytic continuation

We have extended results for Nt ¼ 8 presented in
Ref. [29], performing numerical simulations for a larger
range of imaginary chemical potentials, which include also
the case μs ¼ μl. That enables us to answer two important
questions. What is the systematic error, in the determination
of κ by analytic continuation, related to the truncation of the
Taylor series in Eq. (17) and to the chosen range of
chemical potentials? What is the impact of our effective
ignorance about the actual value of μs corresponding to the
thermal equilibrium conditions? We are going to discuss in
detail only the determination of the pseudocritical temper-
ature from the renormalized chiral susceptibility, however
we stress that similar conclusions are reached when one
considers the renormalized chiral condensate. The corre-
sponding pseudocritical temperatures, taken from Table I,
are reported in Fig. 7 for μs ¼ 0 and for μs ¼ μl.
We first tried a quadratic fit in μl;I: remembering the

definition θl ¼ μl;I=T, we used

TcðθlÞ ¼ Tcð0Þð1þ 9κθ2l Þ ð19Þ
and several fits have been performed by changing each time

the maximum value μðmaxÞ
l;I included in the fit. Reasonable

best fits are obtained in all cases, apart from the fit to the
whole μs ¼ μl range, which yields a reduced ~χ2 ∼ 2.4 and
indicates the need for quartic corrections in this case.
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FIG. 4 (color online). Continuum limit for the renormalized
susceptibility and the renormalized chiral condensates.

0 0.02 0.04 0.06 0.08

(μ
l,I

/(πT))
2

150

155

160

165

170

175

180

T
c(μ

l,I
)

χr
ψ−ψ

〈ψ
_

ψ〉(1)
r

〈ψ
_

ψ〉(2)
r

FIG. 5 (color online). Critical lines obtained by using the
continuum extrapolated renormalized chiral susceptibility and
the continuum extrapolated chiral condensates.

TABLE III. Continuum extrapolated critical temperatures for
the various μl;I values.

μl;I=ðπTÞ Tcðψ̄ψ ð1ÞÞ Tcðψ̄ψ ð2ÞÞ TcðχrÞ
0.00 154.7(8) 156.5(8) 154.4(8)
0.20 163.9(8) 165.0(7) 161.0(1.1)
0.24 166.9(9) 168.5(7) 165.8(1.0)
0.275 169.7(8) 170.8(7) 167.3(1.1)
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Results obtained for κ are shown in Fig. 8: for μs ¼ 0, the
fitted value of κ is perfectly stable as the range of chemical
potentials is changed. Instead, for μs ¼ μl, the value of κ
clearly depends on the fitted range of chemical potentials: it
is larger as the range is extended and becomes compatible,
within errors, with that obtained for μs ¼ 0 as the range is
decreased. This behavior is consistent with the presence of
significant quartic corrections in this case. That may be
related to the different structures of the phase diagrams for
imaginary chemical potential that one has in the two cases:
this issue has been discussed in detail in Ref. [29].
We then tried a best fit to a function including quartic

corrections,

TcðθlÞ ¼ Tcð0Þð1þ 9κθ2l þ bθ4l Þ; ð20Þ
to the whole range of chemical potentials explored in both
cases. The corresponding results obtained for κ are reported
in Fig. 8 as well. While for μs ¼ 0 the value is perfectly
compatible with the one obtained without including quartic
corrections (indeed, in this case one obtains b ¼ 0 within

errors), for μs ¼ μl we observe a significant change, bringing
κ in good agreement with the μs ¼ 0 case. A similar
conclusion is reached when a common fit to both sets of
data [i.e. with a common value for Tcð0Þ] is performed, as
shown in the right panel of Fig. 8 and in Fig. 7.
We conclude that, for μs ¼ 0, no evidence of quartic

corrections is found in the whole explored range. As a
consequence, the extracted κ is stable against variations of
the fitted range and we can exclude the presence of
significant systematic corrections, related to the procedure
of analytic continuation, affecting the continuum extrapo-
lated determination of κ that we have provided.
In the case μs ¼ μl, larger values of κ are obtained when

quartic corrections are neglected, however κ becomes com-
patible with that obtained for μs ¼ 0 when such corrections
are included, or when the fitted range of chemical potentials
is small enough. We conclude that κ is not affected by the
inclusion of μs, at least within present errors, which however
are larger than for the μs ¼ 0 case. In particular, a fair
estimate in this case is κðμs ¼ μlÞ ¼ 0.013ð3Þ.

IV. CONCLUSIONS

In the present study, we have extended results reported in
Ref. [29] by performing numerical simulations on lattices
with Nt ¼ 10; 12 and aspect ratio 4, and by enlarging the
range of chemical potentials explored for Nt ¼ 8. That has
permitted us to obtain continuum extrapolated results and to
better estimate possible systematics related to analytic
continuation.
Regarding the case μs ¼ 0, we have obtained continuum

extrapolated values of κ from different observables (chiral
susceptibility and the chiral condensate with two different
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renormalization prescriptions) and by two different
extrapolation procedures [extrapolating κcont from κðNtÞ
or extracting κcont from continuum extrapolated temper-
atures]. The comparison of the two different procedures
permits us to give an estimate of the systematic uncertain-
ties related to the continuum extrapolation. In the case of
the renormalized chiral susceptibility [κ ¼ 0.0132ð10Þ vs
κ ¼ 0.0131ð12Þ] the systematic error is negligible in
comparison to the statistical one. In the case of hψ̄ψirð1Þ
(κ ¼ 0.0134ð13Þ vs κ ¼ 0.0145ð11Þ) and of hψ̄ψirð2Þ
[κ ¼ 0.0127ð14Þ vs κ ¼ 0.0138ð10Þ] the systematic and
statistical uncertainties are clearly comparable in size. The
extended analysis performed on Nt ¼ 8 has permitted us to
state also that, within present errors, systematic effects
connected to the range of μl chosen to extract the curvature
are not significant. Regarding finite size effects, the
analysis reported in Ref. [29] already showed that they
are negligible within the present precision on lattices with
aspect ratio 4. Taking into account the obtained results and
the contributions from the systematic effects mentioned
above, we quote κ ¼ 0.0135ð15Þ as our final continuum
estimate for the case μs ¼ 0.
Such a result confirms, even after continuum extrapo-

lation, a discrepancy with previous determinations obtained
by Taylor expansion [15–17], reporting κ ∼ 0.006. As
already discussed quantitatively in Ref. [29], only part
of this discrepancy can be accounted for by the different
prescriptions used to determine the dependence of Tc on μl.
Contrary to the Taylor expansion case, when working at
imaginary μl one can use consistently the same prescription
to locate Tc used for μl ¼ 0, i.e. looking for the maximum
of the chiral susceptibility or the inflection point of the
chiral condensate (see Ref. [29] for more details). The
remaining part of the discrepancy could be possibly
attributed to the systematic uncertainties related to the
continuum extrapolation of previous studies. However, we
stress that updated investigations by the same groups lead
to results which are consistent with our estimate (see,
e.g., Ref. [48]).
Regarding the case μs ¼ μl, we have confirmed the

preliminary results reported in Ref. [29]. There is evidence
for the presence of quartic contributions in the dependence
of Tc on the imaginary μB in this case and when such
contributions are taken into account, or when the range of
fitted chemical potentials around μB ¼ 0 is small enough,
the curvature becomes compatible, even if within larger
errors, with that obtained for μs ¼ 0. That means that also
for the equilibrium conditions created in heavy ion colli-
sions, corresponding to μs ∼ 0.25μl around Tc, one does
not expect significant deviations from the results obtained
for μs ¼ 0: a prudential estimate for the curvature in this
case is5 κ ¼ 0.0135ð20Þ. That is obtained based on the

estimate for μs ¼ 0, with an increased error determined on
the basis of the uncertainty that we have for the curvature
extracted at μs ¼ μl.
Finally, the analysis of the continuum extrapolated

peak of the chiral susceptibility as a function of imaginary
μB shows no significant variations of the strength
of the transition, which could be associated to a possible
nearby critical endpoint present along the pseudocriti-
cal line.
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APPENDIX: DATA AT T ¼ 0

The determination of the renormalized condensate and
susceptibility requires the computation of the correspond-
ing quantities at T ¼ 0 and at the same UV cutoff of the
finite temperature data. To that aim, we spanned a range of
β on the line of constant physics, 3.5 ≤ β ≤ 3.95. The
lattice sizes have been chosen in such a way to have
temperatures well below Tc, keeping at the same time finite
size effects under control. This required us to perform
simulations on larger lattices (going from 324 up to 484) as
we decreased the value of the lattice spacing. We report
results in Table IV.

TABLE IV. Determination of the observables at T ¼ 0 (on the
324 and 484 lattices) needed to perform the renormalizations
discussed in Sec. II. Data are in lattice units.

β Lattice χψ̄ψ hψ̄ψi − 2ðml=msÞhs̄si hψ̄ψi=2
3.50 324 1.97(4) 0.07999(11) 0.04403(5)
3.55 324 1.97(5) 0.05680(13) 0.03164(7)
3.60 324 2.05(6) 0.03912(14) 0.02211(7)
3.65 324 1.82(3) 0.02633(2) 0.01518(9)
3.70 324 1.80(3) 0.01804(3) 0.01064(2)
3.65 484 1.74(7) 0.02638(4) 0.01521(2)
3.75 484 1.61(5) 0.01232(5) 0.00749(2)
3.85 484 1.47(4) 0.00614(2) 0.00401(1)
3.95 484 1.37(3) 0.00331(2) 0.00237(1)

5After completion of this work, Ref. [49] has appeared,
reporting the consistent result κ ¼ 0.0149ð21Þ.
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The temperatures, which are in the range T∼
25–50 MeV, are low enough to be considered as a good
approximation of the T ¼ 0 limit; indeed, as expected
because of the absence of transitions in this T range,
observables depend smoothly on β; moreover, no depend-
ence at all is expected on the imaginary chemical potentials,
since they can be viewed as a modification in the temporal
boundary conditions which, at T ¼ 0 (i.e. for infinite
temporal extension), are completely irrelevant. Hence,
the relatively coarse sampling of the interval is enough
to permit a reliable interpolation. We adopted a cubic spline
interpolation for the condensate and a linear fit for the
susceptibility.
The renormalization prescription for the susceptibility,

Eq. (13), requires the subtraction of the T ¼ 0 result from
the finite T contribution. To give an idea of the relative
magnitude of this subtraction, in Fig. 9 we plot χψ̄ψ for zero
chemical potential and both at zero and finite T.
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