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We revise the analysis of the bottomonium hyperfine splitting within the lattice nonrelativistic QCD.
The Wilson coefficients of the radiatively improved lattice action are evaluated by a semianalytic approach
based on the asymptotic expansion about the continuum limit. The nonrelativistic renormalization group is
used to estimate the high-order radiative corrections. Our result for the 1S hyperfine splitting is
Mϒð1SÞ −Mηbð1SÞ ¼ 52.9� 5.5 MeV. It reconciles the predictions of the continuum and lattice QCD
and is in very good agreement with the most accurate experimental measurement by the Belle
collaboration.
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The bottomonium hyperfine splitting defined by the
mass difference Ehfs ¼ Mϒð1SÞ −Mηbð1SÞ has been a subject
of much controversy since the first observation of the spin-
singlet ηb state in radiative decays of the ϒð3SÞ mesons by
the BABAR collaboration [1]. The measured value of the
hyperfine splitting overshot the predictions of perturbative
QCD [2] by almost a factor of two, well beyond the
experimental and theoretical uncertainty bands; see Table I.
Further experimental studies [3–5] were consistent with the
initial measurement, while the Belle collaboration reported
a significantly lower value of the splitting with higher
experimental precision [6]. On the theory side the most
accurate estimates of the hyperfine splitting are obtained
from lattice simulations within the effective theory of
nonrelativistic QCD (NRQCD). This method is entirely
based on first principles, allows for simultaneous treatment
of dynamical heavy and light quarks, and gives a systematic
account of the long-distance nonperturbative effects of the
strong interaction. The first analysis [7] with fully incorpo-
rated one-loop radiative corrections [8] favored the larger
value of the splitting [1]. The most recent analysis [9]
includes the leading relativistic corrections and gives a
lower value, which is close to the PDG average [10] but
nevertheless not consistent with Ref. [2]. This might
indicate a serious failure of perturbative QCD in the
description of the bottomonium ground state in clear
conflict with the general concept of the heavy quarkonium
dynamics. Thus the current experimental and theoretical
status of the bottomonium hyperfine splitting remains
ambiguous and sets up one of the most interesting open
problems in the QCD theory of hadrons, which yet inspired
a discussion about possible signal of physics beyond the
standard model [11].
In this article we revise the analysis of the radiative

corrections to the lattice NRQCD action. We develop a
semianalytical approach based on the asymptotic expansion
about the continuum limit [13], which provides a very

powerful tool for the radiative improvement of lattice
NRQCD. Our result for the one-loop Wilson coefficient
of the effective spin-dependent four-quark interaction
significantly differs from the result of the previous calcu-
lation [8] used in the subsequent analyses [7,9], which leads
to a sizable reduction of the lattice NRQCD prediction for
the hyperfine splitting. We give an estimate of the higher
order radiative corrections by evaluating the two-loop
double-logarithmic terms within the nonrelativistic renorm-
alization group approach [14,15]. The main result of this
paper is a new theoretical value for bottomonium hyperfine
splitting, Eq. (11).
The idea of the NRQCD approach [16,17] is to separate

the hard modes, which require a fully relativistic analysis,
from the nonrelativistic soft modes. The dynamics of the
soft modes is governed by the effective nonrelativistic
action given by a series in heavy quark velocity v, while the
contribution of the hard modes is encoded in the corre-
sponding Wilson coefficients. The nonrelativistic action
can be applied in a systematic perturbative analysis of the
heavy quarkonium spectrum [18–20]. At the same time the
action may be used for lattice simulations of the heavy
quarkonium states [21,22]. The latter approach gives full
control over nonperturbative long-distance effects and can
be used for the description of excited states where pertur-
bative QCD is not applicable.
The hyperfine splitting, i.e., the splitting between the

spin-singlet and spin-triplet states is generated by the spin-
dependent part of the NRQCD Lagrangian. To orderOðv4Þ
it reads (see, e.g., [23,24])

Lσ ¼
cF
2mq

ψ†Bσψ þ ðψ → χcÞ þ dσ
CFαs
m2

q
ψ†σψχ†cσχc;

ð1Þ
where B is the chromomagnetic field, mq and αs are the
heavy quark mass and the strong coupling constant, the
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SUðNcÞ color group factor is CF ¼ ðN2
c − 1Þ=ð2NcÞ, ψðχcÞ

are the nonrelativistic Pauli spinors of quark (antiquark)
field, and we have projected the four-quark interaction on
the color-singlet state. The Wilson coefficients cF and dσ
logarithmically depend on the factorization scale μf which
separates the hard and the soft momentum contributions.
This dependence can be predicted to all orders of pertur-
bation theory by renormalization group methods. In lattice
NRQCD the natural factorization scale is given by the
inverse lattice spacing a. The radiative improvement of the
action is therefore mandatory for the correct continuum
limit.
The coefficient cF parametrizes the quark anomalous

chromomagnetic moment. It can be determined nonpertur-
batively by matching the lattice result for particular split-
tings to the physical bottomonium spectrum [7,25]. The
perturbative evaluation of the one-loop correction to cF [8]
is in good agreement with the nonperturbative result. The
Wilson coefficient of the effective four-quark interaction
however can only be obtained perturbatively. It vanishes in
the Born approximation and is determined by matching the
one-particle irreducible quark-antiquark scattering ampli-
tudes in QCD and NRQCD; see Fig. 1. The matching does
not depend on the choice of soft kinematical variables and
becomes particulary simple when the amplitude is com-
puted at the quark-antiquark threshold and vanishing
momentum transfer. In this case the one-loop full QCD
amplitude is

MQCD
1PI ¼ CFα

2
s

m2
q

�
CA

2
log

�
mq

λ

�
þ ðln 2 − 1ÞTF

þ
�
1 −

2πmq

3λ

�
CF

�
ψ†σψχ†cσχc; ð2Þ

where CA ¼ Nc, TF ¼ 1=2, and we introduced a small
auxiliary gluon mass λ to regulate the infrared divergence.
The power enhanced 1=λ term corresponds to the Coulomb
singularity of the threshold amplitude, while the term

proportional to TF is due to the two-gluon annihilation
of the quark-antiquark pair.
On the other hand the lattice NRQCD result for the one-

loop amplitude can be written as follows:

MNRQCD
1PI ¼ CFα

2
s

m2
q

�
−
�
δþ 1

2
ln ðaλÞ

�
CA

−
2πmq

3λ
CF

�
ψ†σψχ†cσχc þOða2Þ; ð3Þ

where the nonlogarithmic non-Abelian term δ depends on a
particular realization of the lattice action. To match
Eqs. (2)–(3) we add to the NRQCD Lagrangian the
four-quark operator with coefficient

dσ ¼ αs

��
δþ 1

2
L

�
CA þ ðln 2 − 1ÞTF þ CF

�
; ð4Þ

where L ¼ lnðamqÞ. The main problem is therefore in
determination of the coefficient δ. The asymptotic expan-
sion of the lattice loop integrals about the continuum limit
[13] can in principle be used to get this coefficient in a
closed analytic form. Since the heavy quark mass is not a
dynamical scale in NRQCD, the parameter of the expan-
sion in our case is aλ. The idea of the method is to split the
integration over the virtual momentum l into the contri-
butions of the hard region with l ∼ 1=a and the soft region
with l ∼ λ. In the hard region the integrand is expanded in
aλ and λ=l and reduces to the lattice tadpole integrals. In the
soft region the integrand is expanded in al and aλ and
reduces to the continuum NRQCD Feynman integrals. As a
result of the scale separation the hard (soft) contribution in
general has spurious infrared (ultraviolet) logarithmic
divergences and has to be regulated. In the total result
for a given lattice loop integral the dependence on the
regulator cancels out leaving the asymptotic series in aλ
which includes the logarithmic terms [cf. Eq. (3)]. We

TABLE I. Results of high-precision experimental and theoreti-
cal determinations of the bottomonium hyperfine splitting in
MeV.

Experiment

BABAR, ϒð3SÞ decays [1] 71.4þ2.3
−3.1ðstatÞ � 2.7ðsystÞ

BABAR, ϒð2SÞ decays [3] 66.1þ4.9
−4.8ðstatÞ � 2.0ðsystÞ

Belle, hbð1PÞ decays [6] 57.9� 2.3
PDG average [10] 62.3� 3.2

Theory
NRQCD, NLL [2] 41� 11ðthÞþ9

−8 ðδαsÞ
Lattice NRQCD Oðv4Þ [7] 70� 9
Lattice NRQCD Oðv6Þ [9] 62.8� 6.7
Lattice QCD [12] 54.0� 12.4þ1.2

−0.0
Lattice NRQCD, this work 52.9� 5.5

(a) (c) (e)

(b) (d) (f)

FIG. 1. One-loop Feynman diagrams contributing to the one-
particle irreducible quark-antiquark scattering amplitude in QCD
[(a)–(d)] and NRQCD [(c)–(f)].
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emphasize that the expansion about the continuum limit is a
formal tool to get the NRQCD loop integrals as series in a
and facilitate the matching procedure, while the lattice
NRQCD is a valid nonrelativistic effective theory only for
a ≫ 1=mq. Note that Eq. (3) has only a logarithmic
singularity in a. In higher orders of the NRQCD expansion
in 1=mq the amplitude includes also the terms with a
negative power of a. Such 1=ðamqÞn terms are more
singular in the formal continuum limit but are power
suppressed with respect to Eq. (3) in the region where
lattice NRQCD is applied.
Let us consider first a “naive” lattice action with no

improvement for gluonic and heavy quark fields (see, e.g.,
[26,27]). The gluonic field tensor of the NRQCD chro-
momagnetic interaction in the naive action is expressed
through the commutator of the left-right symmetrized
covariant lattice derivatives. In this case we obtain

δnaive ¼ −
7

3
þ 28π2b2 − 256π2b3 ¼ 0.288972…; ð5Þ

where the irrational constants b2 ¼ 0.02401318…, b3 ¼
0.00158857… parametrize the lattice tadpole integrals and
can be computed with arbitrary precision [13]. We however
need the above coefficient for the improved lattice action
which is used in real simulations. Analytic calculation with
an improved action is not optimal since the Feynman rules
in this case become extremely cumbersome. We bypass
this problem by using a semianalytic approach. Indeed
the difference between the Wilson coefficients for the
improved and naive lattice actions Δδ remains finite in
the limit λ → 0 and can be directly obtained by numerical
evaluation of the corresponding lattice loop integrals with
sufficiently small λ (a finite infrared regulator is necessary
for the stability of numerical integration). For the numerical
implementation of the improved lattice action Feynman
rules we use HiPPy/HPsrc code [28]. However in contrast
to the standard implementation the color space reduction is
performed analytically with the help of the program
COLOR [29] before the numerical integration is done by
the CUBA integrator library [30]. This greatly reduces the
runtime and allows for a separate treatment of the con-
tributions of independent color group structures which have
different infrared properties, cf. Eq. (3). The whole process
of the calculation is fully automated. In the case of the
HPQCD action [7] we get Δδ ¼ −0.1444ð28Þ correspond-
ing to

δ ¼ 0.1446ð28Þ: ð6Þ
Note that since dσ ¼ 0 in the Born approximation, we

have to perform neither the strong coupling constant
renormalization nor the lattice tadpole improvement. We
made a few cross-checks of the calculation. For the naive
action the numerical evaluation agrees with the gauge-
invariant analytic result of the asymptotic expansion for

small values of λ. The logarithmic part of dσ is in agreement
with the renormalization group analysis. The nonrelativistic
renormalization group predicts the all-order dependence of
the Wilson coefficients on μf [14,15]. In the leading
logarithmic approximation they read

dLLσ ¼ CA

β0 − 2CA
ðz−2CA − z−β0Þ; cLLF ¼ z−CA; ð7Þ

where β0 ¼ 11CA=3 − 4TFnl=3 is the one-loop QCD β
function, nl ¼ 4 is the number of light flavors, and
z ¼ ðαsðμfÞ=αsðmqÞÞ1=β0 . In lattice NRQCD the factoriza-
tion scale should be identified with inverse lattice spacing
μf ∼ 1=a. By reexpanding the leading logarithmic result we
obtain

dLLσ
π

¼ αs
π

CA

2
L −

�
αs
π

�
2 ðβ0 þ CAÞCA

4
L2 þ � � � ;

cLLF ¼ 1 −
αs
π

CA

2
Lþ

�
αs
π

�
2 ðβ0 þ CAÞCA

8
L2 þ � � � ; ð8Þ

in agreement with Eq. (4).
Let us now compare our result with the previous

calculation [8]. In this paper a different basis of the
four-quark operators is used and the Wilson coefficient
dσ=αs should be identified with the linear combination
9
8
ðd1 − d2Þ (see [31] for the consistent analytical expres-

sions). We find that the nonannihilation constant term of the
QCD amplitude in [8] is smaller than the one in Eq. (2) by a
factor of 3. The comparison of the NRQCD part of the
result is not straightforward since in [8,31] it has been
evaluated numerically for three different lattice spacings
keeping the full dependence on mq. This dependence
includes power suppressed terms as well as the linear term
from the lattice cutoff of the Coulomb pinch contribution.
For the lattice spacing used in real simulations a ∼ 1=ðvmqÞ
the power suppressed terms are of the same magnitude
as the generic one-loop relativistic corrections and are
beyond the accuracy of our analysis. On the contrary the
lattice artifacts are numerically significant. The linear term
associated with the Coulomb pinch can be estimated by
cutting the corresponding continuum NRQCD one-loop
integral at the scale π=a. This gives an additional con-
tribution to Eq. (4),

−ν
8

3

CFαs
π

amq ≈ −0.94αsamq; ð9Þ

where the factor ν ¼ 0.831… adjusts the analytical result
for the integral over spherical momentum domain to the
integral over the Brillouin zone. The numerical result of
Ref. [8] suggests a significantly larger negative coefficient
of about −1.8. Moreover in the threshold region the
multiple Coulomb gluon exchange contributions are not
parametrically suppressed and the modification of the
Coulomb bound state dynamics on the finite lattice is
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not accounted for by the one-loop analysis. It may change
the numerical coefficient of the linear term and generates
all-order contributions in αsamq. This means that (i) the
one-loop matching does not remove the linear lattice
artifact at OðαsÞ and (ii) one cannot use the finite lattice
spacing a ∼ 1=ðαsmqÞ as a Wilsonian cutoff for NRQCD as
it was done in [8,31]. Thus all the lattice artifacts should be
removed nonperturbatively by numerical extrapolation of
the lattice data to a ¼ 0 [7,9].
Now we are in a position to apply our result to the

analysis of the hyperfine splitting. The contribution of the
four-quark interaction to Ehfs reads

ΔEhfs ¼ −dσ
4CFαs
m2

q
jψð0Þj2; ð10Þ

where ψð0Þ is the wave function of the quarkonium ground
state at the origin. Equation (10) should be added to the
result of the lattice simulation with the one-loop Wilson
coefficient cF and no four-quark contribution included.
Such a result is available for the Oðv4Þ action [7] and for
theOðv6Þ action [9]. For the numerical analysis of Eq. (10)
we use the nonperturbative lattice result for ψð0Þ [7]. To
make our analysis self consistent we adopt the value of the
bottom quark mass mb and the value of the strong coupling
constant αV renormalized in the static potential scheme at
the scale π=a from Ref. [7]. The numerical result for the
hyperfine splitting is presented in Fig. 2 as a function of a2

for three different lattice spacings and two different lattice
actions. The error bars of each point include the statistical
error and the uncertainty in the value of the lattice spacing
from [7,9] as well as the high-order a-dependent radiative
corrections that are estimated by the size of the double-
logarithmic two-loop terms in Eq. (8). The use of relatively
large values of the lattice spacing a ∼ 1=ðvmbÞ ensures the
suppression of the unphysical 1=ðambÞn contributions,

which become important at a ∼ 1=mb [7,31]. At the same
time it results in sizable lattice artifacts, which cannot be
removed by finite order matching due to the all-order
character of the Coulomb binding effects. To minimize this
effect the result is numerically extrapolated to a ¼ 0 [7,9].
The extrapolation below a ∼ 1=mb in this case is justified
since the numerical effect of the 1=ðambÞn terms on the
data points is small. To perform the extrapolation we
use a constrained fit of the data points [32] by a polynomial
in a with vanishing linear term. The inclusion of the
linear and 1=ðambÞn terms in the fit is discussed below.
To estimate the coefficients of the higher order terms in
the lattice spacing we represent the result of the fit as
1þ ðΛaÞ2 þOða3Þ, where Λ is the mass scale character-
izing the approach of the lattice approximation to the
continuum limit. The priors for the coefficients of the an

terms with n > 2 in the constrained fit are then given by the
intervals �Λn. Numerically we get Λ ≈ 360 MeV for the
Oðv4Þ and Λ ≈ 790 MeV for the Oðv6Þ case. Because of a
slower approach to the continuum limit the extrapolation
error for Oðv6Þ action turns out to be larger. This may be
related to the fact that the contribution of the operators of
higher dimension is more sensitive to the ultraviolet
momentum region. Therefore the currently unknown
Oðαsv6Þ matching corrections in this approximation can
be substantial. We checked that the inclusion of the 1=an

terms with the priors αs
π ð π

mb
Þn into the constrained fit

changes the result within the extrapolation error intervals.
In general the Coulomb binding effects give rise to a

linear dependence of the lattice data on a which can be
roughly estimated by the one-loop result (9). A more
refined estimate can be obtained by including the linear
term clαsamq into the fit of the lattice data. For the prior
jclj < 1 the constrained fit gives cl ≈ −0.25 for both
actions, which is two times smaller than the one-loop
estimate cl ≈ −0.5 corresponding to Eq. (9). At the same
time the extracted value of the hyperfine splitting is
increased within the extrapolation error interval by approx-
imately 2.5 MeV.
The total error budget of our estimate is given in Table II.

Besides the discretization errors discussed above it includes
the uncertainty due to high-order relativistic and radiative
corrections. For a conservative estimate of the radiative
corrections we take the value of the double-logarithmic
two-loop terms at the soft factorization scale μf ≈ αsmb

v6 action

v4 action

0.000 0.005 0.010 0.015 0.020 0.025
0

20

40

60

80

a2 fm2

E
hf

s
M

eV

FIG. 2 (color online). The result of the lattice simulation of the
bottomonium hyperfine splitting withOðv4Þ action [7] andOðv6Þ
action [9]. The error bars are explained in the text. The solid lines
correspond to the central values of the constrained fit.

TABLE II. The central value and the error budget for the lattice
NRQCD determination of the bottomonium hyperfine splitting
with Oðv4Þ action [7] and Oðv6Þ lattice action [9] in MeV.

Oðv4Þ action Oðv6Þ action
Discretization error 2.6 3.1
Relativistic corrections 6.0 1.8
Radiative corrections 4.8 4.3
Ehfs 57.5 51.5
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dictated by the bound state dynamics. In Table II this
uncertainty is combined with the numerical error in the
one-loop coefficient cF [9]. Our estimate of the relativistic
corrections for the Oðv4Þ action is based on the difference
between the Oðv4Þ and Oðv6Þ results in the continuum
limit. For the Oðv6Þ action we multiply this uncertainty by
αs evaluated at the soft renormalization scale to take into
account the previously discussed missing matching cor-
rections. The larger discretization uncertainty balances the
smaller relativistic corrections in the Oðv6Þ case and both
actions provide comparable total errors. Since the structure
of the relativistic corrections and the behavior of the results
at finite lattice spacing are significantly different for the two
actions, we consider the corresponding uncertainties as
uncorrelated and take the weighted average of the results as
the best estimate. At the same time the uncertainty due to
the high-order purely radiative corrections is treated as
correlated between the two actions. Our final result for the
hyperfine splitting reads

Ehfs ¼ 52.9� 5.5 MeV: ð11Þ
We now can compare our estimates to the available
theoretical and experimental results in Table I. Our result
for both Oðv4Þ and Oðv6Þ actions (Table II) are below the
ones of the previous lattice NRQCD analysis [7,9] by
approximately 12 MeV. About 5 MeV of the difference is
due to the error in the one-loop QCD amplitude calculation
[8]. The remaining discrepancy is related to the different
procedure of extrapolation to a ¼ 0. The analysis [7,9]
implies that the one-loop matching [8] removes the linear

artifact form the lattice data. However, as it was pointed out
above, the one-loop calculation can only be used for a
rough estimate of the linear term due to the all-order
character of the Coulomb binding effects. We therefore
determine the corresponding coefficient by a constrained fit
of the lattice data with the prior set by the one-loop result.
Moreover the numerical result [8] suggests a significantly
larger value of the linear term than what follows from our
analytic calculation and from the fit of the lattice data,
which leads to a sizable difference of the extrapolation
results.
With the new value of the four-quark Wilson coefficient

the lattice NRQCD prediction (11) agrees within the error
bars with the next-to-leading logarithmic (NLL) perturba-
tive QCD result [2]. Its central value practically coincides
with that of the full lattice QCD simulation [12], though the
uncertainty of the latter is significantly larger. This may
indicate that the matching of the lattice NRQCD to full
QCD is now done properly. On the experimental side our
result strongly favors the value obtained by the Belle
collaboration, which has the lowest reported uncertainty.
Thus we have reconciled the theoretical predictions of the
lattice and continuum QCD as well as the most accurate
experimental data.
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