
Asymptotic scaling and continuum limit of pure SU(3) lattice gauge theory

Bernd A. Berg
Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA

(Received 21 July 2015; published 8 September 2015)

Recently the Yang-Mills gradient flow of pure SU(3) lattice gauge theory has been calculated in
the range from β ¼ 6=g20 ¼ 6.3 to 7.5 (Asakawa et al.), where g20 is the bare coupling constant of the
SU(3) Wilson action. Estimates of the deconfining phase transition are available from β ¼ 5.7 to 6.8
(Francis et al.). Here it is shown that the entire range from 5.7 to 7.5 is well described by a power series
of the lattice spacing a times the lambda lattice mass scale ΛL, using asymptotic scaling in the 2-loop and
3-loop approximations for aΛL. In both cases identical ratios for gradient flows versus deconfinement
observables are obtained. Differences in the normalization constants with respect to ΛL give a handle on
their systematic errors.
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I. INTRODUCTION

We consider pure SU(N), N ¼ 3, lattice gauge theory
(LGT) with the Wilson action (see, e.g., Ref. [1])

S ¼ −
β

N
Re

X
p

TrUp; β ¼ 2N
g20

; ð1Þ

where the sum is over all plaquettes of a 4D hypercubic
lattice with periodic boundary conditions. Up is the SU(N)
plaquette variable, g20 the bare coupling constant, and β the
usual convention, which emphasizes the interpretation
as a 4D statistical mechanics, but gives up the β ¼
1=ðkTÞ relation with the physical temperature. Namely,
T ¼ 1=ðaNτÞ holds in LGT, where the integer Nτ is the
extension of the lattice in Euclidean time and a is the lattice
spacing.
For every physical observable m with the dimensions of

a mass, the relation

m ¼ cmΛL ð2Þ

holds in the continuum limit aðβÞ → 0 for β → ∞, where
ΛL sets the mass scale of the lattice regularization and cm
are calculable constants. Their actual computation faces
difficulties, because one has to rely on simulations at finite
lattice spacings aðβÞ, introducing corrections to the con-
tinuum relation. The subject of a good reference scale
arises. This topic gained renewed interest after Lüscher [2]
introduced the Yang-Mills gradient flow scale,

ffiffiffiffi
t0

p
, which

comes by now in several variants. As anticipated by
Sommer in his review of the subject [3], gradient scales
allow for an unprecedented precision when compared with
traditional scales like r0 or rc [4], defined by the force
between static quarks at intermediate distances.
In recent work, Asakawa et al. [5] pushed estimates for

gradient scales in SU(3) gauge theory all the way up to
β ¼ 7.5. The SU(3) deconfining phase transition defines

another precise scale, second only to gradient scales.
Francis et al. [6] managed to extend estimates of the
SU(3) transition temperature Tt from lattice sizes of
Nτ ≤ 12 up to Nτ ¼ 22, βt ¼ 6.7986ð65Þ.
Remarkably, neither Asakawa et al. nor Francis et al. fit

the β dependence of their estimates so that there is a β → ∞
continuum limit as predicted by the universal part of
asymptotic scaling. Instead, a parametrization for a limited
β range is used, and the continuum limit of ratios is
subsequently estimated by fits in variables like ða=r0Þ2,
ða= ffiffiffiffi

t0
p Þ2, and so on. This is in accordance with a majority

of publications on the subject, which all have given up on
approaching the asymptotic scaling limit.
Reasons for this, and why the decision to give up on

asymptotic scaling may have been premature, are outlined
in Sec. II. Inspired by an earlier approach of Allton [7], we
are led to write the corrections to the mass relation (2) as a
simple Taylor series in the lattice spacing times the lambda
lattice mass scale, aΛL. In Sec. III, this is seen to yield
excellent results for fitting the data of Refs. [5] and [6] (see
the abstract). A summary and conclusions follow in the
final section, Sec. IV.

II. ASYMPTOTIC SCALING AND
CONTINUUM LIMIT

The realization that the continuum limit of LGT may not
just in theory but in practice be reached by computer
simulations started with a paper by Creutz [8]. He observed
for the SU(2) string tension κ a crossover from its strong
coupling behavior a2κ ¼ − lnðβ=4Þ to the 1-loop asymp-
totic scaling behavior a2κ ¼ cκ expð−6π2β=11Þ.
As the accuracy of Markov chain Monte Carlo calcu-

lations improved, it was soon realized that there were, in
particular for SU(3) with the Wilson action, strong viola-
tions of the asymptotic scaling relation, and this did not
improve noticeably by moving from the 1-loop to the
2-loop relation
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aΛL ¼ f0asðg20Þ ¼ ðb0g20Þ−b1=2b
2
0 exp

�
−

1

2b0g20

�
; ð3Þ

where b0 ¼ 11N=ð48π2Þ and b1 ¼ ð34=3ÞN2=ð16π2Þ2 are,
respectively, the universal 1-loop [9,10] and 2-loop [11,12]
coefficients of asymptotic freedom, called asymptotic
scaling in our context. Universal means that all renormal-
ization schemes lead to the same b0 and b1 coefficients.
Next, the hope appeared to be that the situation would

improve by including further, nonuniversal terms of the
expansion of aΛL:

aΛL ¼ fasðg20Þ ¼ f0asðg20Þ
�
1þ

X∞
j¼1

qjg
2j
0

�
: ð4Þ

Computing up to 3 loops, Allés et al. [13] calculated q1 for
SU(N) LGT,

q1 ¼ 0.1896 for SUð3Þ: ð5Þ

But, the discrepancies between the asymptotic scaling
equation and data for physical quantities did not improve.
Assuming that lattice artifacts are responsible for the

disagreements, Allton [7] suggested to include such cor-
rections while constraining them with results from pertur-
bative expansions of the considered operators and actions.
Doubting that perturbative information beyond Eq. (4) is
reliable due to uncertainties with the very definition of
nontrivial continuum functional integrals, a general Taylor
series expansion in aΛL is proposed here for corrections to
Eq. (2):

m ¼ cmΛL

�
1þ

X∞
i¼1

âiðaΛLÞi
�
; aΛL ¼ fasðg20Þ; ð6Þ

where one has to determine the normalization constants cm
and the expansion coefficients âi by computer simulations.
This has the potential to eliminate the essential singularity
of the perturbative expansion at g20 ¼ 0. However, the full
sum (4) for fasðg20Þ is not available. Instead, we have to
work with approximations and define for q ¼ 0; 1;…

aΛq
L ¼ fqasðβÞ ¼ f0as½g20ðβÞ�

�
1þ

Xq
j¼1

qj½g20ðβÞ�j
�
; ð7Þ

where we have the q ¼ 0 (2-loop) and q ¼ 1 (3-loop)
asymptotic scaling functions fqas at our disposal, and a
conjecture for q2, if we believe the Padé approximation
made in Ref. [14]. It is instructive to consider the
deconfining temperature Tt as a reference scale. Then
aðβtÞ ¼ 1=½NτðβtÞTt� implies Λq

LðβÞ ¼ fqasðβÞNτðβÞTt.
Now, if the analyticity (6) is true when using the full fas,

it cannot be true at finite q. This is, for instance, seen
by assuming that the expansion (6) is correct for f1as and

comparing it with the same expansion using f0as. The
difference lies in terms of the form

ðf0asÞi½ð1þ q1g20Þi − 1�: ð8Þ

Expressing g20 by f0as gives rise to powers of logarithms
like 1= lnðf0asÞ, lnjlnðf0asÞj, and so on, which are singular
for f0as → ∞. Nevertheless, we continue to use (6) with
fas replaced by fqas and come back to these issues after
presenting the fits.
In the following, we consider observables with the

dimension of a length, L ∼ 1=m, and rewrite (6) as

Lk

a
¼ ck

�
aΛL

�
1þ

X∞
i¼1

âiðaΛLÞi
��−1

ð9Þ

¼ ck
fasðg20Þ

�
1þ

X∞
i¼1

ai½fasðg20Þ�i
�
; ð10Þ

where ai are the parameters which we deal with in our fits.
There is no strong reason for using the expansion in
Eq. (10) instead of (9). It just developed this way out of
Ref. [7]. To determine the expansion parameters ai by
numerical calculations, one has to truncate the sum at rather
small values of i. For sufficiently large β, this will be an
accurate approximation because ðaΛq

LÞ falls off exponen-
tially with β → ∞ for each q. We define the truncated
functions,

lp;qλ ðβÞ ¼ 1

fqasðβÞ þ
Xp
i¼1

ap;qi ½fqasðβÞ�i−1; ð11Þ

with fqas, given by Eq. (7) and fit data according to

Lk

acp;qk
¼ lp;qλ ðβÞ; ð12Þ

where the 2-loop (q ¼ 0) and 3-loop (q ¼ 1) asymptotic
scaling functions, l0;0λ and l0;1λ , are explicitly known
[Eq. (7)]. The labels p; q on the normalization constants
ck and parameters ai indicate that their values depend on
the choice of p; q. For simplicity, the labels are dropped
when the association is obvious.
For q ¼ 0, as well as for q ¼ 1, it turns out that excellent

fits are obtained using p ¼ 3 parameters ai besides the ck
normalization constants. In the following, we present l3;qλ ,
q ¼ 0; 1, expansions for the Yang-Mills gradient flow data
[5] and for the deconfining transition estimates [6].

III. ANALYSIS OF THE NUMERICAL DATA

For the gradient length scale, a dimensionless variable
t2hEðtÞi is measured as a function of t. Then tX, at which
the observable takes a specific value X, is used as a
reference scale. An operator whose t dependence has been
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extensively studied is EðtÞ ¼ Fa
μνFa

μν=4, where Fμν ¼
∂μAν − ∂νAμ þ ½Aμ; Aν� is the field strength. In Ref. [5]
solutions to the equations

t2hEðtÞijt¼tX ¼ X and t2
d
dt

t2hEðtÞi
���
t¼w2

X

¼ X ð13Þ

have been calculated for X ¼ 0.2; 0.3, and 0.4. The
associated length scales are

ffiffiffiffiffiffi
t0.2

p
,

ffiffiffiffiffiffi
t0.3

p
,

ffiffiffiffiffiffi
t0.4

p
, and,

introduced in Ref. [15], w0.2, w0.3, w0.4. For adaption to
Eq. (12) they are renamed L1;…; L6, according to the first
two rows of Table I. Their estimates are given in Table 1 of
Ref. [5] and are not reproduced here. Instead, we give in our
Table I the error bar percentage of the signal, 100△Lk=Lk,
for the data tagged by a � in their paper, i.e., used in their
analysis.
Estimates of the SU(3) deconfining phase transition

couplings βt are given in Table I of Ref. [6]. Whenever
(for smaller lattices) a comparison is possible, their
estimates are consistent with previous work [16,17]. The
lengths associated with the deconfining phase transition
temperatures Tt are 1=ðaTtÞ ¼ Nτ. However, the statistical
errors are in βt with Nτ fixed. To allow for direct
comparison with the other quantities, we attach to Nτ error
bars relying on the later estimated l3;1λ ðβÞ scaling behavior
from all data sets,

△Nτ ¼ Nτ½l3;1λ ðβt þ△βtÞ − l3;1λ ðβtÞ�=l3;1λ ðβtÞ: ð14Þ

Starting with a guess and iterating the fit, one finds rapid
convergence to the relative errors compiled in theL7 column
of Table I. They are less than 0.25 for βt ≤ 6.33514
(Nτ ≤ 12) and ≥ 0.25 for βt ≥ 6.4473 (Nτ ¼ 14;…; 22),
implying that the fit parameters will be dominated by the
smaller βt values. This is not good since the truncated parts
of our expansion (11) become more important at smaller β.
Therefore, we adjust the L7 error bars for the lower Nτ to

100△L7=L7 ¼ 0.2, which is still smaller than the best of the
relative errors at the higher Nτ values.
For the gradient flow data the bias from smaller relative

errors is less severe, and with β ¼ 6.3 the smallest β is not
so small. No adjustments are made in that case.
The χ2dof values of our fits (12) to the seven length scales

are compiled in Table II (ndof ¼ nk − 4 with nk given in the
last row of Table I). All fits are in very good agreement with
the data. Actually the agreement between the fits of the
gradient flows and the data is too good. This could be an
accident; measurements of L1 to L6 were performed on the
same configurations so that they are all correlated, or their
error bars are systematically somewhat too large.
For a visual presentation, we have combined the entire

n ¼ n1 þ � � � þ n7 ¼ 70 data into two l3;qλ ðβÞ, q ¼ 0; 1, fits
for Lk=ðackÞ, which works astonishingly well. This is done
with an extension of the method of Ref. [18]. The constants
ck are defined as functions ckða1; a2; a3; dataÞ, which give
the exact minimum of the fit for the particular constants ai,
effectively reducing the fitting procedure to three param-
eters, though the ck are still counting against the degrees
of freedom. The number of ai parameters is reduced by
6 × 3 to 3 from the 7 × 3 ai parameters used altogether for
the fits of Table II.
In Fig. 1 the two fits are shown jointly with the data

points (i ¼ 1;…; nk)

Lk

ack
ðiÞ �△Lk

ack
ðiÞ for k ¼ 4; 7: ð15Þ

TABLE I. Error bars in percent of the signal, 100△Lk=Lk.

L1 L2 L3 L4 L5 L6 L7

β
ffiffiffiffiffiffiffi
t0.2

p ffiffiffiffiffiffiffi
t0.3

p ffiffiffiffiffiffiffi
t0.4

p
w0.2 w0.3 w0.4 βt Nτ

6.3 0.09 0.11 0.12 0.16 0.17 0.22 5.69275 0.07
6.4 0.07 0.09 0.08 0.11 0.12 0.14 5.89425 0.05
6.5 0.13 0.16 0.19 0.22 0.21 0.24 6.06239 0.06
6.6 0.12 0.14 0.16 0.19 0.21 0.23 6.20873 0.07
6.7 0.26 0.33 0.35 0.40 0.46 0.49 6.33514 0.06
6.8 0.18 0.22 0.25 0.27 0.30 0.32 6.4473 0.25
6.9 0.46 0.57 0.65 0.73 0.81 0.87 6.5457 0.54
7.0 0.14 0.17 0.19 0.21 0.25 0.26 6.6331 0.26
7.2 0.43 0.52 0.59 0.65 0.71 0.75 6.7132 0.34
7.4 0.30 0.34 0.41 0.50 6.7986 0.84
7.5 0.37 0.62
nk 11 10 9 11 10 9 10

TABLE II. χ2dof for our fits to each of the length scales.

q L1 L2 L3 L4 L5 L6 L7

0 0.46 0.34 0.23 0.40 0.47 0.39 0.76
1 0.42 0.32 0.24 0.38 0.46 0.39 0.74
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q=0: χ2
dof = 0.81; 1.05.
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dof = 0.80; 0.95.
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1 / (c7aTt) data

w0.2 / (c4a) data

FIG. 1 (color online). Data for L7=ðc7aÞ and L4=ðc4aÞ versus
the l3;qλ fits [Eq. (12)] using the 2-loop f0as (q ¼ 0) and the 3-loop
f1as (q ¼ 1) asymptotic scaling functions.
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Both fits cover with splendid χ2dof values the impressive
range 5.69275 ≤ β ≤ 7.5. One value of k is picked for the
gradient flow because on the scale of the figure the data for
the other Lk=ðackÞ lie right on top of them. For each q the
first χ2dof value is for a fit that excludes the 1=ðaTtÞ
deconfinement data and the second χ2dof value for the fit
shown, which includes them. However, the increase from
the χ2dof values of Table II should be noted. This and the
fact that the data of L1 to L6 are all correlated, as well as
our “improvement” of the deconfinement data, may well
obscure differences of the ai parameters for distinct
observables. In fact, it is obvious from Fig. 4 (right) of
Ref. [5] that correlations greatly reduce the error bars of
ratios and that

ffiffiffiffiffiffi
t0.3

p
=w0.4 is not entirely flat as in our fits. To

take these correlations into account, it would be best to
jackknife our fits, which requires the original time series. In
the present context of simply demonstrating the almost
identical scaling of all data graphically, this would just be a
distraction. Generally, one expects the a1 parameters to
agree for all Lk, so that corrections to ratios are of order
ðaΛq

LÞ2. There is no reason for a2 or a3 to agree for all Lk.
However, it can be enforced within the accuracy of the
present data. When these fits are applied to a single data set,
there is then a small bias due to the input of the other
data sets.
To make Fig. 1 reproducible, the fit parameters are given

with high precision in Table III. More decent values are
obtained when one redefines the expansion parameters aΛq

L
by multiplicative constants, e.g., so that they become 1 at
β ¼ 6, xqðβÞ ¼ fqasðβÞ=fqasð6Þ. The second row of Table III
gives the fit parameters for this case with their error bars in
the third row. The range covered by the xqðβÞ goes from
xqð5.7Þ ≈ 1.4 down to xqð7.5Þ ≈ 0.18, so that xqð7.5Þ2 ≈
0.032 and xqð7.5Þ3 ≈ 0.0058 become really small.
Figure 2 provides a visual impression for the quality of

the fits by plotting the deviations of the k ¼ 4 and 7 data
points from the q ¼ 1 fit of Fig. 1 in the form

△kl
3;1
λ ðiÞ

l3;1λ ðβiÞ
with △kl

p;q
λ ðiÞ ¼ Lk

ack
ðiÞ − lp;qλ ðβiÞ ð16Þ

together with error bars △Lk=ðackl3;1λ Þ.
Perhaps surprisingly, instead of one satisfactory descrip-

tion of the data, we got two (seven more pairs for the fits
with their χ2dof values listed in Table II). The quality of the
fits is not influenced by the log corrections discussed after

Eq. (8). Instead, the parameters adjust and the normaliza-
tion constants c1 to c7 get shifted as shown in Table IV.
Here the numbers in columns 2 and 3 correspond to the
joint fits of the six gradient flow operators, with the
exception of the last row, which corresponds to the fits
displayed in Fig. 1 for which all seven operators are
combined. Columns 4 and 5 give the results obtained from
individual fits to which one should fall back when it comes
to conservative estimates. Normalization constants of
corresponding q ¼ 0; 1 fits differ by about 12%, while
their statistical errors are much smaller.
For ratios of the normalization constants, ckl ¼ ck=cl,

these differences become tiny and are swallowed by the
statistical error bars, as seen in Table V for ck7 (columns are
arranged as in Table IV). The deconfining transition is used
as a reference scale because L7 is statistically independent
from L1 to L6. The estimates of the last row can be
compared with Asakawa et al. [5]. Using q ¼ 1, our values
c67 ¼ w0.4Tt ¼ 0.28182ð37Þ and 0.286(15) are both con-
sistent with 0.285(5) as given in their Table III. Our value
from column 3 is inconsistent with the precise estimate
given in their Eq. (3.2), 0.2826(3). The discrepancy may be
well explained by the small bias of our result and/or the fact
that Asakawa et al. rely entirely on Nτ ¼ 12, whereas here
we use a continuum fit that gives weight to all lattices,
including Nτ ¼ 14 to 22.

TABLE III. Fit parameters used for Fig. 1.

a3;01 a3;02 a3;03 a3;11 a3;12 a3;13

−155.559 24615.3 −5834850 −104.735 9926.28 −2673493
−0.365 0.135 −0.754 −0.292 0.773 −0.581
(13) (20) (82) (13) (42) (82)

TABLE IV. Normalization constants ck × 100.

q 0 1 0 1

c1 0.4918 (37) 0.5569 (41) 0.492 (06) 0.557 (07)
c2 0.6198 (46) 0.7018 (52) 0.619 (11) 0.701 (12)
c3 0.7152 (53) 0.8099 (59) 0.695 (25) 0.789 (28)
c4 0.5392 (40) 0.6106 (45) 0.548 (10) 0.620 (11)
c5 0.6304 (47) 0.7139 (52) 0.638 (16) 0.722 (17)
c6 0.7028 (53) 0.7958 (59) 0.679 (34) 0.771 (38)
c7 2.4404 (71) 2.7754 (79) 2.357 (46) 2.693 (51)
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FIG. 2 (color online). Relative deviations [Eq. (16)] of the L7

and L4 data points from the l3;1λ fit.
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The χ2dof of the fits [Eq. (12)] are not sensitive to
including or not including the q1g20 term into the scaling
function [Eq. (7)], while there is a remarkable shift in the
normalization constants. It is then tempting, but entirely
wrong, to argue that the g20 dependence is so weak that it
does not matter, and one could replace q1g20 by a constant,
say q1g20 → qc1 ¼ 0.9q1 for our β range. It is easy to see
that, with this or any other qc1, the normalization constants
of the q ¼ 0 fits will not change at all. So, the shift in the
normalization constants comes entirely from the g20 depend-
ence of the q1 term. These contributions resum in a way
that, for large β, they become responsible for the difference
between l0;1λ and l0;0λ .
We use our fits of all n ¼ 70 data to illuminate the

situation by Fig. 3, where for q ¼ 0; 1 the inverse asymp-
totic scaling functions l0;qλ and their l3;qλ fits are plotted
times 100=l0;1λ , i.e., as fractions of the inverse 3-loop
asymptotic scaling function l0;1λ . We see that the gap
between the l0;0λ and l0;1λ asymptotic scaling functions
narrows slowly and the fits l3;0λ and l3;1λ approach rapidly
(exponentially fast for increasing β) their respective
asymptotic behaviors, where the l3;1λ fit stays closer to its
asymptotic form than the l3;0λ fit: l0;1λ =l3;1λ ≈ 0.8l0;0λ =l3;0λ over
the entire β range of the figure.
Why is it that the data do not show us whether q ¼ 0 or

q ¼ 1 gives a better fit? The answer lies in their ratios: If
the ratio of the two fits is a constant, the difference between
them will be entirely absorbed by the normalization.
Defining the change in the ratios with respect to β ¼ 6
as a reference point by

dpðβÞ ¼ 100

�
1 −

lp;0λ ðβÞ=lp;1λ ðβÞ
lp;0λ ð6Þ=lp;1λ ð6Þ

�
; ð17Þ

we find, for the asymptotic scaling (p ¼ 0) functions, a
change by 3.2% at β ¼ 7.5. With 0.16% it is 20 times
smaller for the fits (p ¼ 3).
What is then the effect of including more and more qj

terms in the expansion [Eq. (4)] of fas? We may expect
convergence of the resulting normalization constants ck
towards their correct value. But how fast? Repeating the fits
of all data with fake f2as functions [Eq. (7)] defined by
q2 ¼ �0.19, so that q2 has a similar absolute value as q1,

there is again no sensitivity of the χ2dof of the fits for the
additional term, and corrections to the ck normalization
constants stay less than �10%. On this basis we end up
with the result that our most reliable estimates of the ck are
those of column 5 of Table IV, with a mainly systematic
uncertainty of �10%. From c7 we get

Λ1
L=Tt ¼ c7 � 10% ¼ 0.0269ð27Þ ð18Þ

in good agreement with Francis et al. [6], who give
Tt=ΛMS ¼ 1.24ð10Þ. Using standard relations between
lambda scales [1] this becomes ΛL=Tt ¼ 0.0280ð25Þ.
Similarly, our estimate for w0.4ΛL,

L6Λ1
L ¼ c6 � 10% ¼ 0.0077ð9Þ; ð19Þ

is in agreement with the one of Table III of Asakawa et al.
[5] and the more accurate value of their Eq. (3.3),
which translate, respectively, into w0.4ΛL ¼ 0.00809ð35Þ
and w0.4ΛL ¼ 0.00829ð5Þ.
When we believe in the Padé approximation of Ref. [14],

we find q2 ¼ −0.02467, which is almost 10 times smaller
in magnitude than the range we allowed for our estimate
of the systematic error. Using then fits with f2asðβÞ as
reference, Eqs. (18) and (19) improve to

Λ2
L=Tt ¼ 0.0266ð9Þ and L6Λ2

L ¼ 0.00762ð45Þ; ð20Þ

where contributions of the statistical errors now exceed
the systematic errors. So, it is difficult to understand why
the error in Eq. (3.3) of Asakawa et al. is much smaller.
Anyway, a small q2 suggests rapid convergence of the
systematic errors of the normalization constants under
increasing q for the fqas functions used.

TABLE V. Ratios of normalization constants.

q 0 1 0 1

c17 0.19728 (22) 0.19724 (22) 0.209 (05) 0.207 (05)
c27 0.24861 (28) 0.24856 (28) 0.263 (07) 0.260 (07)
c37 0.28689 (33) 0.28683 (33) 0.295 (12) 0.293 (12)
c47 0.21630 (26) 0.21625 (26) 0.233 (07) 0.230 (06)
c57 0.25288 (32) 0.25283 (32) 0.271 (09) 0.268 (09)
c67 0.28188 (37) 0.28182 (37) 0.288 (16) 0.286 (15)
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FIG. 3 (color online). Approach of the l3;qλ fits to the asymptotic
2-loop and 3-loop scaling functions l0;qλ (q ¼ 0; 1) times 100=l0;1λ .
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IV. SUMMARY AND CONCLUSIONS

It appears that Eq. (6) is a natural parametrization of
lattice spacing corrections to the continuum limit of SU(3)
LGT. Incorporation of asymptotic scaling is still a viable
alternative to other fitting methods for the approach to the
continuum limit, which are utilized in Refs. [5,6] and
elsewhere. In a next step, our fitting procedure should be

tested for other asymptotically free theories, in particular,
full QCD.

ACKNOWLEDGMENTS

This work was in part supported by the U.S. Department
of Energy under Contract No. DE-FG02-13ER41942. I
would like to thank David Clarke for calculating q2 from
the Padé approximation of Ref. [14].

[1] I. Montvay and G. Münster, Quantum Fields on a Lattice
(Cambridge University Press, Cambridge, England 1994).

[2] M. Lüscher, J. High Energy Phys. 08 (2010) 071; 03 (2014)
92.

[3] R. Sommer, Proc. Sci. 187, (Lattice 2013) 015.
[4] S. Necco and R. Sommer, Nucl. Phys. B622, 328 (2002).
[5] M. Asakawa, T. Hatsuda, T. Iritani, E. Itou, M. Kitazawa,

and H. Suzuki, arXiv:1503.06516.
[6] A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, and H.

Ohno, Phys. Rev. D 91, 096002 (2015).
[7] C. R. Allton, Nucl. Phys. B53, 867 (1997).
[8] M. Creutz, Phys. Rev. D 21, 2308 (1980).
[9] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343

(1973).
[10] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[11] D. R. T. Jones, Nucl. Phys. B75, 531 (1974).
[12] W. Caswell, Phys. Rev. Lett. 33, 244 (1974).
[13] B. Allés, A. Feo, and H. Panagopoulos, Nucl. Phys. B491,

498 (1997).
[14] M. Göckeler, R. Horsley, A. C. Irving, D. Pleiter, P. E. L.

Rakow, G. Schierholz, and H. Stüben, Phys. Rev. D 73,
014513 (2006).

[15] S. Borsányi, S. Dürr, Z. Fodor, C. Hoebling, S. D. Katz,
S. Krieg, T. Kurth, L. Lellouch, T. Lippert, C. McNeile, and
K. K. Szabó, J. High Energy Phys. 09 (2012) 010.

[16] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,
M. Lütgemeyer, and B. Peterson, Nucl. Phys. B469, 419
(1996).

[17] B. A. Berg and H. Wu, Phys. Rev. D 88, 074507 (2013).
[18] B. A. Berg, arXiv:1505.07564.

BERND A. BERG PHYSICAL REVIEW D 92, 054501 (2015)

054501-6

http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1007/JHEP03(2014)092
http://dx.doi.org/10.1007/JHEP03(2014)092
http://dx.doi.org/10.1016/S0550-3213(01)00582-X
http://arXiv.org/abs/1503.06516
http://dx.doi.org/10.1103/PhysRevD.91.096002
http://dx.doi.org/10.1016/S0920-5632(96)00804-3
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1016/0550-3213(74)90093-5
http://dx.doi.org/10.1103/PhysRevLett.33.244
http://dx.doi.org/10.1016/S0550-3213(97)00092-8
http://dx.doi.org/10.1016/S0550-3213(97)00092-8
http://dx.doi.org/10.1103/PhysRevD.73.014513
http://dx.doi.org/10.1103/PhysRevD.73.014513
http://dx.doi.org/10.1007/JHEP09(2012)010
http://dx.doi.org/10.1016/0550-3213(96)00170-8
http://dx.doi.org/10.1016/0550-3213(96)00170-8
http://dx.doi.org/10.1103/PhysRevD.88.074507
http://arXiv.org/abs/1505.07564

