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We study the semileptonic decays of Dþ
s , Dþ, and D0 mesons into the light scalar mesons [f0ð500Þ,

K�
0ð800Þ, f0ð980Þ, and a0ð980Þ] and the light vector mesons [ρð770Þ, ωð782Þ, K�ð892Þ, and ϕð1020Þ].

With the help of a chiral unitarity approach in coupled channels, we compute the branching fractions for
scalar meson processes of the semileptonic D decays in a simple way. Using current known values of the
branching fractions, we make predictions for the branching fractions of the semileptonic decay modes with
other scalar and vector mesons. Furthermore, we calculate the πþπ−, πη, πK, and KþK− invariant mass
distributions in the semileptonic decays ofDmesons, which will help us clarify the nature of the light scalar
mesons.
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I. INTRODUCTION

The recent experimental situation in hadron physics
enables us to utilize huge amounts of data on heavy
hadrons, which contain charm or bottom quark(s), for
the investigation of hadron structures. In particular, decay
properties of heavy mesons can shed more light on the
nature of the light scalar mesons [f0ð500Þ, K�

0ð800Þ,
f0ð980Þ, and a0ð980Þ], which has been a hot topic in
hadron physics [1]. For instance, the decay B0

s → J=ψπþπ−
has been experimentally measured in Refs. [2–6] for the
study of the f0ð500Þ and f0ð980Þ resonances, and they
observed a pronounced peak for the f0ð980Þ while no
evident signal was found for the f0ð500Þ. Then a theoreti-
cal study [7] followed the experiments and reproduced
ratios of experimental branching fractions at a quantitative
level, pointing out that J=ψ þ ðss̄Þ production in the B0

s

decay and a hadronization of ss̄ to KK̄ are essential to
understand the branching fractions of the B0

s decay into
J=ψf0ð980Þ. In the theoretical study, the final state
interaction between two pseudoscalar mesons is calculated
with the so-called chiral unitary approach [8–16], in which
the light scalar mesons are obtained as dynamically
generated resonances, and it is concluded that the
f0ð980Þ has a substantial fraction of the strange quarks.
The same hadronization scheme has been employed in
theoretical studies in Refs. [7,17–19].
In this paper, we consider the semileptonic decay of

D → hadronðsÞ þ lþνl, extending a discussion for the
semileptonic B decays into D�

s0ð2317Þ and D�
0ð2400Þ

resonances in Ref. [19]. The semileptonic D decays have
been experimentally investigated in, e.g., BES [20,21],

FOCUS [22,23], BABAR [24,25], and CLEO [26–30].
Here, in order to grasp how the semileptonic decay takes
place, let us consider the Dþ

s meson. Since the constituent
quark component ofDþ

s is cs̄, we expect a Cabibbo-favored
semileptonic decay of c → slþνl and hence the decay
Dþ

s → ðss̄Þlþνl with ss̄ being the vector meson ϕð1020Þ,
which is depicted in Fig. 1(a). Actually this semileptonic
decay mode has been observed in experiments, and its
branching fraction to the total decay width is B½Dþ

s →
ϕð1020Þeþνe� ¼ 2.49� 0.14% [1] (see Table I, in which
we list branching fractions for the semileptonic decays of
Dþ

s , Dþ, and D0 reported by the Particle Data Group). On
the other hand, we cannot straightforwardly extend the

(a)

(b)

FIG. 1. (a) Semileptonic decay ofDþ
s into lþνl and a primary ss̄

pair. (b) Semileptonic decay of Dþ
s into lþνl and two pseudo-

scalar mesons P with a hadronization.
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discussion to the scalar meson productions in the final state
of the semileptonic decays, since the structure of the scalar
mesons, whether qq̄ or some exotic one, is still contro-
versial. In this study we consider the production of the
f0ð980Þ or f0ð500Þ as dynamically generated resonances in
the semileptonic Dþ

s decay, so we have to introduce an
extra q̄q pair to make a hadronization as shown in Fig. 1(b).
The introduction of an extra q̄q pair to make a hadroniza-
tion has been performed in Refs. [7,17–19]. In this study
we apply the same method of the hadronization to the
semileptonic decays of D mesons so as to investigate the
nature of the light scalar mesons.
Utilizing the semileptonic decay of a heavy hadron

provides us with two advantages when we investigate
the internal structure of hadrons in the final state of the
semileptonic decay. First, Cabibbo-favored and -sup-
pressed processes enable us to specify flavors of quarks
contained in final state hadrons. Second, the semileptonic
decay of the heavy hadron to two light hadrons þlþνl
brings a suitable condition to measure effects of the final
state interaction of the two light hadrons, since the leptons
and hadrons in the final state interact with each other only
weakly.
Theoretical work on the issues of the semileptonic D

decays is already available. In Ref. [31], using QCD sum
rules, the Dþ

s and Dþ semileptonic decays into f0ð980Þ are
considered concluding that the importance of up and down

quarks in the f0ð980Þ is not negligible. In Ref. [32] the
Dþ

s → f0ð980Þeþνe reaction is analyzed from the point of
view of the f0ð980Þ being a qq̄ state, concluding that ss̄
component of the f0ð980Þ may not be dominant. In
Ref. [33] the Dþ

s → πþπ−eþνe reaction is studied con-
cluding that it supports the dominant four quark nature of
the f0ð500Þ and f0ð980Þ. Similar conclusions about the
four quark nature of the scalar mesons are reached in the
work of [34,35]. Research along the same line is done in
Ref. [36], looking for likely reasonable ratios that would
help distinguish between the two and four quark structure
of the scalar mesons.
Another line of research is done using light-cone sum

rules to evaluate the form factors appearing in the process
[37]. This line of research is applied in many related
processes, rare decays like Bs → πþπ−lþl− in [38], Bs →
Kð�Þlν̄ in [39], B0

ðsÞ → J=ψπþπ− and Bs → πþπ−μþμ−

decays in [40], or semileptonic decays [41–43]. In some
cases the meson final state interaction is further imple-
mented using the Omnes representation [37,42], while in
other cases Breit–Wigner or Flatte structures are imple-
mented and parametrized to account for the resonances
observed in the experiment.
In contrast to these pictures, in the present study we treat

the scalar mesons as dynamically generated resonances
from two pseudoscalar mesons in the so-called chiral
unitary approach. Then we describe the semileptonic
decays of D mesons in an economical way for hadroniza-
tion as done in Refs. [7,17–19].
This paper is organized as follows. In Sec. II we

formulate the semileptonic decay widths of Dþ
s , Dþ, and

D0 into the light scalar and vector mesons and give our
model of the hadronization. We also calculate meson–
meson scattering amplitudes to generate dynamically the
scalar mesons. In Sec. III we show our numerical results of
the semileptonic decay widths of Dþ

s , Dþ, and D0. We
predict branching fractions which are not reported by the
Particle Data Group and show invariant mass distributions
of the two pseudoscalar mesons from the scalar and vector
mesons. Section IV is devoted to drawing the conclusion of
this study.

II. FORMULATION

In this section we formulate the semileptonic decay
widths of Dþ

s , Dþ, and D0 into light scalar and vector
mesons:

Dþ
s ; Dþ; D0 →

�
Slþνl; S → PP;

Vlþνl;
ð1Þ

where S, V, and P represent the light scalar, vector, and
pseudoscalar mesons, respectively, and the lepton flavor l
can be e and μ. Explicit decay modes are listed in Table II.
In order to formulate the decay width, we consider first the

TABLE I. Branching fractions for the semileptonic decays of
Dþ

s , Dþ, and D0 reported by the Particle Data Group [1]. In this
table we only show decay modes relevant to this study.

Dþ
s

Mean life [s] ð500� 7Þ × 10−15

B½ϕð1020Þeþνe� ð2.49� 0.14Þ × 10−2

B½ωð782Þeþνe� < 2.0 × 10−3

B½K�ð892Þ0eþνe� ð1.8� 0.7Þ × 10−3

B½f0ð980Þeþνe; f0ð980Þ → πþπ−� ð2.00� 0.32Þ × 10−3

Dþ
Mean life [s] ð1040� 7Þ × 10−15

B½K̄�ð892Þ0eþνe; K̄�ð892Þ0 → K−πþ� ð3.68� 0.10Þ × 10−2

B½ðK−πþÞs-waveeþνe� ð2.32� 0.10Þ × 10−3

B½K̄�ð892Þ0μþνμ; K̄�ð892Þ0 → K−πþ� ð3.52� 0.10Þ × 10−2

B½ρð770Þ0eþνe� ð2.18þ0.17
−0.25 Þ × 10−3

B½ρð770Þ0μþνμ� ð2.4� 0.4Þ × 10−3

B½ωð782Þeþνe� ð1.82� 0.19Þ × 10−3

B½ϕð1020Þeþνe� < 9 × 10−5

D0

Mean life [s] ð410.1� 1.5Þ × 10−15

B½K�ð892Þ−eþνe� ð2.16� 0.16Þ × 10−2

B½K�ð892Þ−μþνμ� ð1.90� 0.24Þ × 10−2

B½K−π0eþνe� ð1.6þ1.3
−0.5 Þ × 10−2

B½K̄0π−eþνe� ð2.7þ0.9
−0.7 Þ × 10−2

B½ρð770Þ−eþνe� ð1.9� 0.4Þ × 10−3
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semileptonic decay amplitudes and widths in Sec. II A and
next hadronizations into scalar and vector mesons in
Sec. II B. Scattering amplitudes of two pseudoscalar
mesons are then constructed in the chiral unitary approach
for the description of the scalar mesons in Sec. II C.
Throughout this study we assume isospin symmetry for
light hadrons.

A. Amplitudes and widths of semileptonic D decays

In general, we can express the decay amplitude of
D → hadronðsÞ þ lþνl, TD, by using the propagator of
theW boson and its couplings to leptons and quarks, which
can be replaced with the Fermi coupling constant GF. At
this stage we do not fix the number of the final state
hadrons. In a similar manner to the formulation in Ref. [19],
the explicit form of TD becomes

TD ¼ −i
GFffiffiffi
2

p LαQα × Vhad: ð2Þ

The factor Vhad consists of the wave function of quarks
inside the D meson, the hadronization contribution in the
final state, and the Cabibbo-Kobayashi-Maskawa matrix
element for the transition from the charm to a light quark.
The explicit form of Vhad will be determined in the next
subsection. The lepton and quark parts of the W boson
couplings are defined as

Lα ≡ ūνγαð1 − γ5Þvl; Qα ≡ ūqγαð1 − γ5Þuc; ð3Þ

respectively, where uν, vl, uq, and uc are the Dirac spinors
corresponding to the neutrino, lepton lþ, light quark q, and
charm quark, respectively.
Let us now calculate the squared amplitude for the

semileptonic D decay widths, in which we average (sum)
the polarizations of the initial-state quarks (final state
leptons and quarks). Therefore, in terms of the amplitude
in Eq. (2), we can obtain the squared decay amplitude as

1

2

X
pol

jTDj2 ¼
jGFVhadj2

4

X
pol

jLαQαj2; ð4Þ

where the factor 1=2 comes from the average of the charm
quark polarization in the initial state. We can further
calculate the lepton and quark parts in the amplitude (3),
by using the conventions of the Dirac spinors and traces of
Dirac γ matrices summarized in Appendix A, which lead to

X
pol

LαL†β ¼ tr

�
γαð1 − γ5Þ

pl −ml

2ml
ð1þ γ5Þγβ

pν þmν

2mν

�

¼ 2
pα
l p

β
ν þ pα

νp
β
l − pl · pνgαβ þ iϵαβρσplρpνσ

mlmν
;

ð5Þ

where pl and pν (ml and mν) are momenta (masses) of the
lepton lþ and neutrino, respectively, and

X
pol

QαQ
†
β ¼ tr

�
γαð1− γ5Þ

pc þmc

2mc
ð1þ γ5Þγβ

pq þmq

2mq

�

¼ 2
pcαpqβ þpqαpcβ −pc ·pqgαβ þ iϵαβρσp

ρ
cpσ

q

mcmq
;

ð6Þ

with the momenta (masses) of the charm and light quarks,
pc and pq (mc and mq), respectively.1 Then with a
straightforward calculation, we have

X
pol

jLαQαj2 ¼
16ðpl · pcÞðpν · pqÞ

mlmνmcmq
: ð7Þ

Now let us rewrite the momenta of quarks by using those of
hadrons in the following manner:

TABLE II. Semileptonic decay modes of Dþ
s , Dþ, and D0

considered in this study. The lepton flavor l is e and μ. We also
specify Cabibbo favored and suppressed process for each decay
mode; the semileptonic decay into two pseudoscalar mesons is
judged with the discussions given in Sec. II B.

Dþ
s

ϕð1020Þlþνl Favored
K�ð892Þ0lþνl Suppressed
πþπ−lþνl Favored
KþK−lþνl Favored
π−Kþlþνl Suppressed

Dþ

K̄�ð892Þ0lþνl Favored
ρð770Þ0lþνl Suppressed
ωð782Þlþνl Suppressed
πþπ−lþνl Suppressed
π0ηlþνl Suppressed
KþK−lþνl Suppressed
πþK−lþνl Favored

D0

K�ð892Þ−lþνl Favored
ρð770Þ−lþνl Suppressed
π−ηlþνl Suppressed
K0K−lþνl Suppressed
π−K̄0lþνl Favored

1The momentum pq is for a quark in the primary qq̄ pair after
the W boson emission, which means that the momentum pq is
carried by the constituent quark. Accordingly, mq is the mass of
the constituent quark rather than of the current quark. In this
sense, mq respects the flavor SU(3) symmetry.
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pμ
c

mc
¼ pμ

D

mD
;

pμ
q

mq
¼ pμ

R

mR
; ð8Þ

where we have neglected the relative internal momenta of
the quarks, which are typically small compared to the
masses of quarks. Here mD and mR (pD and pR) are the
masses (momenta) of the D and R ¼ S, V mesons,
respectively. With these translations the square of LαQα

with polarization summation becomes

X
pol

jLαQαj2 ¼
16ðpl · pDÞðpν · pRÞ

mlmνmDmR
: ð9Þ

Therefore, we obtain the squared decay amplitude as

1

2

X
pol

jTDj2 ¼
4jGFVhadj2
mlmνmDmR

ðpl · pDÞðpν · pRÞ: ð10Þ

With the above squared amplitude, we can compute the
decay width. We will be interested in two types of decays:
three-body decays for vector mesons such as Dþ

s →
ϕð1020Þeþνe and four-body decays for scalar mesons
constructed from two pseudoscalar mesons such as
Dþ

s → πþπ−eþνe. As it will be seen, both decay types
can be described by the amplitude TD with different

assumptions for Vhad: V
ðvÞ
had and VðsÞ

had, respectively.
The formula for the three-body decay is given by [1]

Γ3 ¼
mlmν

128π5m2
D

Z
dMðlνÞ

inv Pcm ~pν

Z
dΩ

Z
d ~Ων

1

2

X
pol

jTDj2;

ð11Þ

where Pcm is the momentum of the final state vector meson
in theD rest frame and ~pν is the momentum of the neutrino
in the lν rest frame, both of which are evaluated as

Pcm ¼ λ1=2ðm2
D; ½MðlνÞ

inv �2; m2
VÞ

2mD
; ð12Þ

~pν ¼
λ1=2ð½MðlνÞ

inv �2; m2
l ; m

2
νÞ

2MðlνÞ
inv

; ð13Þ

with the Källen function λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy −
2yz − 2zx and the vector meson mass mV . The tilde on
characters for leptons indicates that they are evaluated in
the lν rest frame. The solid angles Ω and ~Ων are for the
vector meson in the D rest frame and for the neutrino in the

lν rest frame, respectively, and MðlνÞ
inv is the lν invariant

mass. The integral range of MðlνÞ
inv is ½ml þmν; mD −mV �.

Substituting the squared amplitude with that in Eq. (10), we
obtain

Γ3 ¼
jGFj2

32π5m3
DmV

Z
dMðlνÞ

inv Pcm ~pν

Z
dΩ

Z
d ~Ων

× jVðvÞ
hadj2ðpl · pDÞðpν · pVÞ: ð14Þ

In general, the hadronization part Vhad may depend on the
energy and scattering angles, and hence one cannot put it

out of the integral. In this study, however, VðvÞ
had will be

simply constructed, so that this will not depend onMðlνÞ
inv nor

the angle, as we will see in the next subsection.
Furthermore, the integral of the solid angle ~Ων is performed
in the lν rest frame as [19]

Z
d ~Ωνðpl · pDÞðpν · pVÞ

¼
Z

d ~Ωνð ~El
~ED þ ~pν · ~pDÞð ~Eν

~EV − ~pν · ~pDÞ

¼ 4π ~El
~Eν

~ED
~EV −

4π

3
j~pνj2j~pDj2

¼ π½MðlνÞ
inv �2

�
~ED

~EV −
1

3
j~pDj2

�
; ð15Þ

where ~E and ~p are the energies and momenta in the lν rest
frame. At the first equality we have used relations ~pl ¼ −~pν
and ~pV ¼ ~pD, while at the third equality we have used
relations obtained by neglecting masses of leptons:

~El ¼ ~Eν ¼ j~pνj ¼
MðlνÞ

inv

2
: ð16Þ

The energies and momentum of hadrons in the lν rest frame
can be exactly evaluated as

~ED ¼ m2
D þ ½MðlνÞ

inv �2 −m2
V

2MðlνÞ
inv

; ð17Þ

~EV ¼ m2
D − ½MðlνÞ

inv �2 −m2
V

2MðlνÞ
inv

; ð18Þ

and j~pDj2 ¼ ~E2
D −m2

D. As a consequence, we have

Γ3 ¼
jGFV

ðvÞ
hadj2

8π3m3
DmV

Z
dMðlνÞ

inv Pcm ~pν½MðlνÞ
inv �2

×

�
~ED

~EV −
1

3
j~pDj2

�
; ð19Þ

where we have performed the integral of the solid angle Ω.
In a similar way, we can evaluate the decay width for the

four-body final state. The formula for the four-body decay
is given by
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Γ4 ¼
mlmν

2048π8m2
D

Z
dMðhhÞ

inv

Z
dMðlνÞ

inv P
0
cm ~ph ~pν

×
Z

dΩ0
Z

d ~Ωh

Z
d ~Ων

1

2

X
pol

jTDj2; ð20Þ

whereMðhhÞ
inv is the invariant mass of the two-meson system

(hh), P0
cm is the center-of-mass momentum of the

two-meson system in the D rest frame, and ~ph is the
momentum of a meson in the hh rest frame, both of which
are evaluated as

P0
cm ¼ λ1=2ðm2

D; ½MðhhÞ
inv �2; ½MðlνÞ

inv �2Þ
2mD

; ð21Þ

~ph ¼
λ1=2ð½MðhhÞ

inv �2; m2
h; m

02
h Þ

2MðhhÞ
inv

; ð22Þ

with the meson masses mh and m0
h. The momentum of the

neutrino in the lν rest frame ~pν is given in Eq. (13).
The solid anglesΩ0 and ~Ωh are for the two-meson system in
the D rest frame and for a meson in the hh rest frame,
respectively. The tilde on characters for mesons indicates
that they are evaluated in the hh rest frame. Since we are
interested in the meson–meson invariant mass distributions
for the semileptonic D decay, we calculate the differential

decay width dΓ4=dM
ðhhÞ
inv . Then in a similar manner to the

case of the three-body decay, we have

dΓ4

dMðhhÞ
inv

¼ jGFV
ðsÞ
hadj2

32π5m3
DM

ðhhÞ
inv

Z
dMðlνÞ

inv P
0
cm ~ph ~pν½MðlνÞ

inv �2

×

�
~ED

~ES −
1

3
j~pDj2

�
; ð23Þ

where we have performed the integrals with respect to the

solid angles Ω0 and ~Ωh. We mention that VðsÞ
had will be

simply constructed as well, so that this can be put out of the
integral, as we will see in the next subsection. The two-

meson invariant mass MðhhÞ
inv can take a value within

½mh þm0
h; mD −ml −mν�, while the integral range of

MðlνÞ
inv is ½ml þmν; mD −MðhhÞ

inv �. The energies and momen-
tum of hadrons in the parentheses can be exactly evaluated
as

~ED ¼ m2
D þ ½MðlνÞ

inv �2 − ½MðhhÞ
inv �2

2MðlνÞ
inv

; ð24Þ

~ES ¼
m2

D − ½MðlνÞ
inv �2 − ½MðhhÞ

inv �2
2MðlνÞ

inv

; ð25Þ

and j~pDj2 ¼ ~E2
D −m2

D.

B. Hadronizations

Next we fix the mechanism for the appearance of the
scalar and vector mesons in the final state of the semi-
leptonic decay. We here note that, for the scalar and vector
mesons in the final state, the hadronization processes
should be different from each other according to their
structure. For the scalar mesons, we employ the chiral
unitary approach [8–16], in which the scalar mesons are
dynamically generated from the interaction of two pseu-
doscalar mesons governed by the chiral Lagrangians.
Therefore, in this picture the light quark-antiquark pair
after the W boson emission gets hadronized by adding an
extra q̄q with the quantum number of the vacuum,
ūuþ d̄dþ s̄s, which results in two pseudoscalar mesons
in the final state [see Fig. 1(b)]. Then the scalar mesons are
obtained as a consequence of the final state interaction of
the two pseudoscalar mesons as diagrammatically shown in
Fig. 2. For the vector mesons, on the other hand, hadro-
nization with an extra q̄q is unnecessary since they are
expected to consist genuinely of a light quark-antiquark
pair [see Fig. 1(a)].

1. Scalar mesons

First we consider processes with the scalar mesons in the
final state as the dynamically generated resonances.
The basic idea of the hadronization with an extra q̄q with
the quantum number of the vacuum has already shown in
Refs. [7,17–19]. We start with the qq̄ matrix M:

M ¼

0
B@

uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄

1
CA: ð26Þ

One can easily check that this matrix has the property

M ·M ¼ Mðūuþ d̄dþ s̄sÞ: ð27Þ

With this property, a qfq̄f0 pair after the W boson emission
can be added by an extra q̄q to be

qfq̄f0 → ðM ·MÞff0 ; ð28Þ

FIG. 2. Diagrammatic representation of the direct plus rescat-
tering processes for two pseudoscalar mesons. The solid and
dashed lines denote quarks and pseudoscalar mesons, respec-
tively. The shaded ellipses indicate the hadronization of a quark-
antiquark pair into two pseudoscalar mesons, while the open
circle indicates the rescattering of two pseudoscalar mesons.
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where f denotes the flavor of light quarks: q1 ¼ u, q2 ¼ d, and q3 ¼ s. Next we rewrite the matrixM in terms of the matrix
ϕ for pseudoscalar mesons

ϕ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 K0

K− K̄0 − 1ffiffi
3

p ηþ
ffiffi
2
3

q
η0

1
CCCA; ð29Þ

where we have taken into account the η-η0 mixing in a
standard way [44]. In this scheme we can calculate
the weight of each pair of pseudoscalar mesons in the
hadronization. Namely, the ss̄ pair gets hadronized as
ss̄ðūuþ d̄dþ s̄sÞ≡ ðϕ · ϕÞ33, where

ðϕ · ϕÞ33 ¼ K−Kþ þ K̄0K0 þ 1

3
ηη: ð30Þ

Here and in the following we omit the η0 contribution since
η0 is irrelevant to the description of the scalar mesons due to
its large mass. In similar manners, the ds̄, sd̄, dd̄, sū, and
dū pairs get hadronized as

ðϕ · ϕÞ23 ¼ π−Kþ −
1ffiffiffi
2

p π0K0; ð31Þ

ðϕ · ϕÞ32 ¼ K−πþ −
1ffiffiffi
2

p K̄0π0; ð32Þ

ðϕ · ϕÞ22 ¼ π−πþ þ 1

2
π0π0 þ 1

3
ηη −

ffiffiffi
2

3

r
π0ηþ K0K̄0;

ð33Þ

ðϕ · ϕÞ31 ¼
1ffiffiffi
2

p π0K− þ π−K̄0; ð34Þ

and

ðϕ · ϕÞ21 ¼
2ffiffiffi
3

p π−ηþ K0K−; ð35Þ

respectively.
By using these weights, we can express the hadroniza-

tion amplitude for the scalar mesons, VðsÞ
had, in terms of two

pseudoscalar mesons. For instance, we want to reconstruct
f0ð500Þ and f0ð980Þ from the πþπ− system in the Dþ

s →
πþπ−lþνl decay. Because of the quark configuration in the
parent particleDþ

s , in this decay the πþπ− system should be
obtained from the hadronization of the ss̄ pair and the
rescattering process for two pseudoscalar mesons, as seen
in Fig. 2, with the weight in Eq. (30). Therefore, for the
Dþ

s → πþπ−lþνl decay mode we can express the hadroni-
zation amplitude with a prefactor C and the Cabibbo-
Kobayashi-Maskawa matrix elements Vcs as

VðsÞ
had½Dþ

s ; πþπ−� ¼ CVcs

�
GKþK−TKþK−→πþπ−

þGK0K̄0TK0K̄0→πþπ−

þ 1

3
· 2 ·

1

2
GηηTηη→πþπ−

�
: ð36Þ

In this equation, the decay mode is abbreviated as
½Dþ

s ; πþπ−�, and G and T are the loop function and
scattering amplitude of two pseudoscalar mesons, respec-
tively, whose formulation are given in Sec. II C. We have
introduced extra factors 2 and 1=2 for the identical particles
ηη. The former factor 2 comes from the two ways of
annihilating the ηη operator in Eq. (30) by the jηηi state as
in the usual manner for effective Lagrangians, while the
latter one 1=2 is the symmetry factor for the ηη loop. The
scalar mesons f0ð500Þ and f0ð980Þ appear in the rescatter-
ing process and exist in the scattering amplitude T for two
pseudoscalar mesons. It is important that this is a Cabibbo-
favored process with Vcs. Furthermore, since the ss̄ pair is
hadronized, this is sensitive to the component of the strange
quark in the scalar mesons. In this study we assume that C

is a constant, and hence the hadronization amplitude VðsÞ
had is

a function only of the invariant mass of two pseudoscalar
mesons. Here we emphasize that the prefactor C should be
common to all reactions for scalar meson productions,
because in the hadronization the SU(3) flavor symmetry is
reasonable; i.e., the light quark-antiquark pair qfq̄f0 hadro-
nizes in the same way regardless of the quark flavor f. In
this sense we obtain

VðsÞ
had½Dþ

s ; KþK−� ¼ CVcs

�
1þ GKþK−TKþK−→KþK−

þGK0K̄0TK0K̄0→KþK−

þ 1

3
· 2 ·

1

2
GηηTηη→KþK−

�
; ð37Þ

for the Dþ
s → KþK−lþνl decay. In this case we have to

take into account the direct production of the two
pseudoscalar mesons without rescattering (the first dia-
gram in Fig. 2), which results in the unity in the
parentheses. On the other hand, for the Dþ

s →
π−Kþlþνl decay mode the π−Kþ system should be
obtained from the hadronization of ds̄ and hence this is
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a Cabibbo-suppressed decay mode. The hadronization
amplitude is expressed as

VðsÞ
had½Dþ

s ; π−Kþ� ¼ CVcd

�
1þGπ−KþTπ−Kþ→π−Kþ

−
1ffiffiffi
2

p Gπ0K0Tπ0K0→π−Kþ

�
: ð38Þ

In a similar manner we can construct every hadronization
amplitude for the scalar meson. The resulting expressions
are as follows:

VðsÞ
had½Dþ; πþπ−� ¼ CVcd

�
1þ Gπþπ−Tπþπ−→πþπ−

þ 1

2
· 2 ·

1

2
Gπ0π0Tπ0π0→πþπ−

þ 1

3
· 2 ·

1

2
GηηTηη→πþπ−

þGK0K̄0TK0K̄0→πþπ−

�
; ð39Þ

VðsÞ
had½Dþ; π0η� ¼ CVcd

�
−

ffiffiffi
2

3

r
−

ffiffiffi
2

3

r
Gπ0ηTπ0η→π0η

þGK0K̄0TK0K̄0→π0η

�
; ð40Þ

VðsÞ
had½Dþ; KþK−� ¼ CVcd

�
Gπþπ−Tπþπ−→KþK−

þ 1

2
· 2 ·

1

2
Gπ0π0Tπ0π0→KþK−

þ 1

3
· 2 ·

1

2
GηηTηη→KþK−

−
ffiffiffi
2

3

r
Gπ0ηTπ0η→KþK−

þGK0K̄0TK0K̄0→KþK−

�
; ð41Þ

VðsÞ
had½Dþ; πþK−� ¼ CVcs

�
1þ GπþK−TπþK−→πþK−

−
1ffiffiffi
2

p Gπ0K̄0Tπ0K̄0→πþK−

�
; ð42Þ

VðsÞ
had½D0; π−η� ¼ CVcd

�
2ffiffiffi
3

p þ 2ffiffiffi
3

p Gπ−ηTπ−η→π−η

þGK0K−TK0K−→π−η

�
; ð43Þ

VðsÞ
had½D0; K0K−� ¼ CVcd

�
1þ 2ffiffiffi

3
p Gπ−ηTπ−η→K0K−

þGK0K−TK0K−→K0K−

�
; ð44Þ

VðsÞ
had½D0; π−K̄0� ¼ CVcs

�
1þ 1ffiffiffi

2
p Gπ0K−Tπ0K−→π−K̄0

þ Gπ−K̄0Tπ−K̄0→π−K̄0

�
: ð45Þ

The hadronization amplitudes VðsÞ
had½Dþ

s ; π−Kþ�, VðsÞ
had½Dþ;

πþK−�, and VðsÞ
had½D0; π−K̄0� are further simplified by using

the isospin symmetry as

VðsÞ
had½Dþ

s ; π−Kþ� ¼ CVcdAπK; ð46Þ

VðsÞ
had½Dþ; πþK−� ¼ VðsÞ

had½D0; π−K̄0� ¼ CVcsAπK; ð47Þ

where AπK is a function of the invariant mass of two
pseudoscalar mesons and is defined with the scattering
amplitude in the isospin basis as

AπK ≡ 1þ GπKTπKðI¼1=2Þ→πKðI¼1=2Þ: ð48Þ

In a similar manner, we simplify the hadronization

amplitudes VðsÞ
had½Dþ; π0η�, VðsÞ

had½D0; π−η�, and VðsÞ
had½D0;

K0K−� as

VðsÞ
had½Dþ; π0η� ¼ −

1ffiffiffi
2

p VðsÞ
had½D0; π−η� ¼ −

ffiffiffi
2

3

r
CVcdBπη;

ð49Þ

VðsÞ
had½D0; K0K−� ¼ CVcdBKK̄; ð50Þ

with

Bπη ≡ 1þ GπηTπη→πη −
ffiffiffi
3

p

2
GKK̄TKK̄ðI¼1Þ→πη; ð51Þ

BKK̄ ≡ 1þGKK̄TKK̄ðI¼1Þ→KK̄ðI¼1Þ −
2ffiffiffi
3

p GπηTπη→KK̄ðI¼1Þ:

ð52Þ

From the above expressions one can easily specify
Cabibbo-favored and -suppressed processes for the semi-
leptonic decays into two pseudoscalar mesons, which are
listed in Table II.
Finally we note that the use of a constant C factor in our

approach gets support from the work of Ref. [41]. The
evaluation of the matrix elements in these processes is
difficult and problematic. There are however some cases
where the calculations can be kept under control. For the
case of small recoil, namely when final pseudoscalars move
slow, it can be explored in the heavy meson chiral
perturbation theory [45]. Detailed calculations for the case
of semileptonic decay are done in [41]. There one can see
that for large values of the invariant mass of the lepton
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system the form factors can be calculated and the relevant
ones in s wave that we need here are smooth in the range of
the invariant masses of the pairs of mesons that we use here.
To be able to use this behaviour we should prove that in our
case the invariant masses of the lepton pair are large, but
indeed, it was shown in the study of the semileptonic B
decays [19] (and can be done also here) that the mass
distribution of the lepton pair accumulates at the upper
end of the phase space. There is also another limit, at
large recoil, where an approach that combines both hard-
scattering and low-energy interactions has been developed
is also available [37], but this is not the case here.

2. Vector mesons

Next we consider processes with the vector mesons in
the final state. As we have already mentioned, hadroniza-
tion with an extra q̄q is unnecessary for the vector mesons.
As a consequence, we can formulate the hadronization

amplitude for vector mesons, VðvÞ
had, in a very simple way.

In order to see this, we consider the semileptonic decay
Dþ

s → ϕð1020Þlþνl as an example. The decay process is
diagrammatically represented in Fig. 1(a), and the hadro-

nization amplitude VðvÞ
had can be expressed with a prefactor

C0 and the Cabibbo-Kobayashi-Maskawa matrix element
Vcs as

VðvÞ
had½Dþ

s ;ϕ� ¼ C0Vcs; ð53Þ

where the decay mode is abbreviated as ½Dþ
s ;ϕ� in the

equation. Here we emphasize that the prefactor C0 should
be common to all reactions for vector meson productions,
as in the case of the scalar meson productions, because the
SU(3) flavor symmetry is reasonable in the hadronization;
i.e., the light quark-antiquark pair qfq̄f0 hadronizes in the
same way regardless of the quark flavor f. We further
assume that C0 is a constant again. This formulation is
straightforwardly applied to other vector meson produc-
tions and we obtain the hadronization amplitude for vector
mesons:

VðvÞ
had½Dþ

s ; K�0� ¼ C0Vcd; ð54Þ

VðvÞ
had½Dþ; K̄�0� ¼ C0Vcs; ð55Þ

VðvÞ
had½Dþ; ρ0� ¼ −

1ffiffiffi
2

p C0Vcd; ð56Þ

VðvÞ
had½Dþ;ω� ¼ 1ffiffiffi

2
p C0Vcd; ð57Þ

VðvÞ
had½D0; K�−� ¼ −C0Vcs; ð58Þ

VðvÞ
had½D0; ρ−� ¼ C0Vcd; ð59Þ

where we have used K�, ρ, and ω states in the isospin basis
summarized in Appendix A. We note that these equations
clearly indicate Cabibbo-favored and -suppressed proc-
esses with the Cabibbo-Kobayashi-Maskawa matrix ele-
ments Vcs and Vcd, respectively.

C. Scattering amplitudes of two pseudoscalar mesons
in chiral unitary approach

For the scattering amplitude of two pseudoscalar
mesons, we employ the so-called chiral unitary approach
[8–16], which we briefly explain in this subsection. In this
approach we solve a coupled-channels Bethe-Salpeter
equation in an algebraic form,

TijðsÞ ¼ VijðsÞ þ
X
k

VikðsÞGkðsÞTkjðsÞ; ð60Þ

where i, j, and k are channel indices, s is the Mandelstam
variable of the scattering, V is the interaction kernel, and G
is the two-body loop function. For the hadronization in the
previous subsection we need three types of coupled-
channels systems: the ðQ; SÞ ¼ ð0; 0Þ system, for which
we introduce six channels labeled by the indices i ¼
1;…; 6 in the order πþπ−, π0π0, KþK−, K0K̄0, ηη, and
π0η, the KK̄ðI ¼ 1Þ-πη system, and the πKðI ¼ 1=2Þ-ηK
system.
In this study the interaction kernel Vij ¼ Vji is taken as

the simplest one, that is, the leading-order s-wave inter-
action obtained from the chiral perturbation theory. The
interaction kernel for ðQ; SÞ ¼ ð0; 0Þ is summarized as

V11 ¼ 2V13 ¼ 2V14 ¼ 2
ffiffiffi
2

p
V23 ¼ 2

ffiffiffi
2

p
V24

¼ V33 ¼ 2V34 ¼ V44 ¼ −
s

2f2
;

V12 ¼ −
s −m2

πffiffiffi
2

p
f2

;

V15 ¼
ffiffiffi
2

p

3
V22 ¼

ffiffiffi
2

p
V25 ¼

1ffiffiffi
2

p V66 ¼ −
m2

π

3
ffiffiffi
2

p
f2

;

V16 ¼ V26 ¼ V56 ¼ 0;

V35 ¼ V45 ¼ −
9s − 2m2

π − 6m2
η

12
ffiffiffi
2

p
f2

;

V36 ¼ −V46 ¼ −
9s −m2

π − 8m2
K − 3m2

η

12
ffiffiffi
3

p
f2

;

V55 ¼
7m2

π − 16m2
K

18f2
; ð61Þ

where f is the pion decay constant. One must remember
that in the chiral unitary approach when calculating
T ¼ ð1 − VGÞ−1V one uses the unitary normalization
ð1= ffiffiffi

2
p Þjπ0π0i and ð1= ffiffiffi

2
p Þjηηi for identical particles,

which allows to use the general formula in coupled

TAKAYASU SEKIHARA AND EULOGIO OSET PHYSICAL REVIEW D 92, 054038 (2015)

054038-8



channels. At the end the good normalization of the external
particles must be restored and these are the amplitudes that
appear in Eq. (38) and the following ones.
For the KK̄ðI ¼ 1Þ-πη scattering, the interaction kernel

can be written in terms of the interaction kernel for the
ðQ; SÞ ¼ ð0; 0Þ system shown above (see the isospin basis
summarized in Appendix A):

VKK̄ðI¼1Þ→KK̄ðI¼1Þ ¼
1

2
ðV33 − 2V34 þ V44Þ; ð62Þ

VKK̄ðI¼1Þ↔πη ¼ −
1ffiffiffi
2

p ðV36 − V46Þ; ð63Þ

Vπη→πη ¼ V66: ð64Þ

For the πKðI ¼ 1=2Þ-ηK scattering, the interaction kernel
is expressed as

VπKðI¼1=2Þ→πKðI¼1=2Þ ¼
1

8sf2
½−5s2 þ 2ðm2

π þm2
KÞs

þ3ðmπ −mKÞ2�; ð65Þ

VπKðI¼1=2Þ↔ηK ¼ 1

24sf2
½9s2 − ð7m2

π þ 2m2
K þ 3m2

ηÞs

−9ðm2
π −m2

KÞðm2
K −m2

ηÞ�; ð66Þ

VηK→ηK ¼ 1

24sf2
½9s2 þ 2ð2m2

π − 9m2
K − 3m2

ηÞs

þ9ðmK −mηÞ2�: ð67Þ

For the loop function G, on the other hand, we use the
following expression:

GiðsÞ≡ i
Z

d4q
ð2πÞ4

1

q2 −m2
i þ i0

1

ðP − qÞ2 −m02
i þ i0

;

ð68Þ

where Pμ ¼ ð ffiffiffi
s

p
; 0Þ and mi and m0

i are masses of pseu-
doscalar mesons in channel i. In this study we employ a
three-dimensional cutoff qmax as

GiðsÞ ¼
Z

d3q
ð2πÞ3

ωiðqÞ þ ω0
iðqÞ

2ωiðqÞω0
iðqÞ

θðqmax − jqjÞ
s − ½ωiðqÞ þ ω0

iðqÞ�2 þ i0
:

ð69Þ

In this expression we have performed the q0 integral and
ωiðqÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2
p

and ω0
iðqÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m02

i þ q2
p

are the on-
shell energies.
In this framework, with a small number of free param-

eters we can reproduce experimental observables of meson-
meson scatterings fairly well. In this study we take
the model parameters of the chiral unitary approach as

f ¼ 93 MeV and qmax ¼ 600 MeV, which dynamically
generates resonance poles in the complex energy plane:
453–253i MeV for f0ð500Þ, 982–5i MeV for f0ð980Þ, and
721–236i MeV for K�

0ð800Þ. The a0ð980Þ appears as a
cusp at the KK̄ threshold.

III. NUMERICAL RESULTS

Now let us calculate the semileptonic decay widths of D
mesons into scalar and vector mesons. As we have
formulated, we have only one model parameter for scalar
and vector meson productions, respectively. Namely, one
can calculate the decay widths of the scalar meson
productions with one common parameter C and, similarly,
with C0 for the vector meson productions.
First, we consider the scalar meson production in

Sec. III A and then move to the vector meson production
in Sec. III B. Finally, in Sec. III C we compare the two
contributions of the mass distributions from the scalar and
vector mesons.

A. Production of scalar mesons

In order to calculate the branching fractions of the scalar
meson productions, we first fix the prefactor constant C
so as to reproduce the experimental branching fraction
which has the smallest experimental error for the
process with the s-wave two pseudoscalar mesons, that
is, B½Dþ → ðπþK−Þs-waveeþνe� ¼ ð2.32� 0.10Þ × 10−3.
By integrating the differential decay width, or mass dis-

tribution, dΓ4=dM
ðhhÞ
inv in an appropriate range, in the case

of πþK− [mπ þmK , 1 GeV], we find that C ¼ 4.597 can
reproduce the branching fraction of ðπþK−Þs-waveeþνe.
By using the common prefactor C ¼ 4.597, we can

calculate the mass distributions of two pseudoscalar mes-
ons in s wave for all scalar meson modes, which are plotted
in Figs. 3, 4, and 5 for Dþ

s , Dþ, and D0 semileptonic
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FIG. 3. Meson–meson invariant mass distributions for the
semileptonic decay Dþ

s → PPeþνe with PP ¼ πþπ−, KþK−,
and π−Kþ in s wave. We multiply the π−Kþ mass distribution,
which is a Cabibbo-suppressed process, by 10.
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decays, respectively. We show the mass distributions with
the lepton flavor l ¼ e; the contribution from l ¼ μ is
almost the same as that from l ¼ e in each meson-meson
mode due to the small lepton masses. In each figure we
multiply the mass distributions which are Cabibbo-
suppressed processes by 10 so that we can easily compare
the shape of the mass distributions. As one can see, the

largest value of the mass distribution dΓ4=dM
ðhhÞ
inv is

obtained in the Dþ
s → πþπ−eþνe process, in which we

can see a clear f0ð980Þ peak. It is interesting to note that in
the Dþ

s → πþπ−eþνe process we find a clear f0ð980Þ
signal while the f0ð500Þ contribution is negligible, which
strongly indicates a substantial fraction of the strange
quarks in the f0ð980Þ meson, as we will discuss later.
For the Dþ

s semileptonic decay, we also observe a rapid
enhancement of the KþK− mass distribution at the thresh-
old, as a tail of the f0ð980Þ contribution, although its height
is much smaller than the πþπ− peak. For the Dþ and D0

semileptonic decays, we can see the πþK− and π−K̄0 as
Cabibbo-favored processes, respectively. We note that the
πþK− and π−K̄0 mass distributions are almost the same due
to isospin symmetry. It is interesting to see that the shape of
the πþK− and π−K̄0 mass distributions is determined by, in
addition to the K�

0ð800Þ resonance, the kinetic factor of the
squared decay amplitude. Namely, we have the matrix
element of Eq. (10) that is roughly proportional to jpνj2 and
this momentum gets bigger the smaller the meson–meson
invariant mass. This kinetic factor of the squared decay
amplitude affects the πþπ− distribution in the Dþ semi-
leptonic decay in a similar manner, and also provides more
weight at low invariant masses for the shape for πη in
Figs. 4 and 5 than the π0η distributions in the D0 → K̄0π0η
decay evaluated in Ref. [18]. The πη mass distributions in
Figs. 4 and 5 of the Dþ and D0 decays show peaks

corresponding to a0ð980Þ, but its peak is not high compared
to the f0ð980Þ peak in the πþπ− mass distribution of theDþ

s
decay since they are obtained in Cabibbo-suppressed
processes. The Dþ → πþπ−eþνe decay is Cabibbo-
suppressed and it has a large contribution from the
f0ð500Þ formation and a small one of the f0ð980Þ, similar
to what is found in the B̄0 → J=ψπþπ− decay in Ref. [7]. A
different way to account for the PP distribution is by means
of dispersion relations, as used in Ref. [41] in the semi-
leptonic decay of B, where the πþπ− s-wave distribution
has a shape similar to ours.
The theoretical πþπ− mass distribution of the semi-

leptonic decay Ds → πþπ−eþνe is compared with the
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FIG. 4. Meson–meson invariant mass distributions for the
semileptonic decay Dþ → PPeþνe with PP ¼ πþπ−, π0η,
KþK−, and πþK− in s wave. We multiply the πþπ−, π0η,
and KþK− mass distributions, which are Cabibbo-suppressed
processes, by 10.
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FIG. 5. Meson–meson invariant mass distributions for the
semileptonic decay D0 → PPeþνe with PP ¼ π−η, K0K−, and
π−K̄0 in s wave. We multiply the π−η and K0K− mass
distributions, which are Cabibbo-suppressed processes, by 10.
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Exp. fit (BW)

Theory (fold)

Exp. data

FIG. 6. πþπ− invariant mass distribution for the semileptonic
decay Dþ

s → πþπ−eþνe. The theoretical calculation is folded
with the size of experimental bins, 25 MeV. The experimental
data are taken from Ref. [27] and are scaled so that the fitted
Breit-Wigner distribution (dashed line) reproduces the branching
fraction of B½Dþ

s → f0ð980Þeþνe; f0ð980Þ → πþπ−� ¼ 0.2% by
the Particle Data Group (see Table I).
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experimental data [27] in Fig. 6. We note that we plot the
figure in unit of ns−1=GeV, not in arbitrary units. The
theoretical mass distribution is folded with 25 MeV spans
since the experimental data are collected in bins of 25 MeV.
The experimental data, on the other hand, are scaled so that
the fitted Breit-Wigner distribution reproduces the branch-
ing fraction of B½Dþ

s → f0ð980Þeþνe; f0ð980Þ → πþπ−� ¼
0.2% [1]. The mass and width of the Breit-Wigner
distribution are fixed as M ¼ 966 and Γ ¼ 89 MeV,
respectively, taken from Ref. [27]. In Fig. 6 we can see
a qualitative correspondence between the theoretical and
experimental signals of f0ð980Þ. We emphasize that, both
in experimental and theoretical results, the πþπ− mass
distribution shows a clear f0ð980Þ signal while the f0ð500Þ
contribution is negligible. This strongly indicates that the
f0ð980Þ has a substantial fraction of the strange quarks
while the f0ð500Þ has a negligible strange quark compo-
nent. It is interesting to recall that the appearance of the
f0ð980Þ in the case one has a hadronized ss̄ component at
the end, and no signal of the f0ð500Þ, is also observed in B0

s

and B0 decays in Refs. [2–6]. The explanation of this
feature along the lines used in the present work was given
in Ref. [7]. However, although the peak height of the
f0ð980Þ is very similar, the Breit-Wigner fit would provide
larger branching fraction B½Dþ

s → f0ð980Þeþνe� than the
theoretical one. Actually, integrating the theoretical mass
distribution in the range [0.9, 1.0 GeV], we obtain the
branching fraction B½Dþ

s → f0ð980Þeþνe; f0ð980Þ →
πþπ−� ¼ 5.10 × 10−4, which is about four times smaller
than the experimental value 2.00 × 10−3. Actually, in the
experimental analysis of Ref. [27] different sources of
background are considered that make up for the lower
mass region of the distribution. The width of the
f0ð980Þ extracted in the analysis of Ref. [27] is
Γ ¼ 91þ30

−22 � 3 MeV, which is large compared to most
experiments [1], including the LHCb experiment of [46],
although the admitted uncertainties are also large. One
should also take into account that, while a Breit-Wigner
distribution for the f0ð980Þ is used in the analysis of
Ref. [27], the large coupling of the resonance to KK̄
requires a Flatte form that brings down fast the πþπ− mass
distribution above the KK̄ threshold. Our normalization in
Fig. 6 is done with the central value of the B½Dþ →
ðπþK−Þs-waveeþνe� and no extra uncertainties from this
branching fraction are considered. However, we find it
instructive to do an exercise, adding to our results a
“background” of 10 ns−1=GeV from different sources that
our calculation does not take into account, and then our
signal for the f0ð980Þ has a good agreement with the peak
of the experimental distribution.
As mentioned above, the value extracted in [27] for the

f0ð980Þ signal is tied to the assumptions made, including
parts of the background that lead to a very large width of the
resonance, assuming a Breit–Wigner shape, etc. Actually,
in a more recent paper [47] the same CLEO data of [27]

are reanalyzed taking a band of f0ð980Þ masses within
60 MeV of 980 MeV and assuming a Flatte form of the
resonance and a rate for B½Dþ

s → f0ð980Þeþνe; f0ð980Þ →
ππ� ¼ ð0.13� 0.02� 0.01Þ% is obtained. This value is
about a factor of two smaller than the one reported in [27]
and more in agreement with our results.
Next we consider the differential decay width with

respect to the squared momentum transfer q2, which
coincides with the squared invariant mass of the lepton

pair: q2 ¼ ½MðlνÞ
inv �2. The differential decay width for the

scalar meson production is expressed as

dΓ4

dq2
¼ jGFj2

64π5m3
D

Z
dMðhhÞ

inv
jVðsÞ

hadj2P0
cm ~ph ~pνM

ðlνÞ
inv

MðhhÞ
inv

×

�
~ED

~ES −
1

3
j~pDj2

�
: ð70Þ

This differential decay width was experimentally observed
in Ref. [27] for the Dþ

s → f0ð980Þeþνe decay mode
followed by f0ð980Þ → πþπ−. In this study we compare
our theoretical value for this decay mode with the exper-

imental data in Fig. 7. The range of the integral forMðhhÞ
inv is

[0.9 GeV, 1.0 GeV]. As one can see, we can to some extent
reproduce the shape of the differential decay width
dΓ4=dq2 in experiment, but the absolute value of the
theoretical calculation is several times smaller than the
experimental one. This can be, as we have explained,
solved by introducing background contributions when
extracting the amount of the f0ð980Þ signal from exper-
imental data. Actually, as we have commented before, the
reanalysis of [47] leads to absolute values of the rate for the
f0ð980Þ production about a factor of two smaller, and again
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FIG. 7. Differential decay width of the Dþ
s → f0ð980Þeþνe

decay mode followed by f0ð980Þ → πþπ−, with q2 ¼ ½MðlνÞ
inv �2.

The experimental data are taken from Ref. [27]. The experimental
points should be rescaled dividing by about a factor of two if the
absolute rate for the f0ð980Þ production of the reanalysis of
Ref. [47] were used.
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if we scale the q2 distribution of in Fig. 7 by the factor the
agreement is much better.
Moreover, integrating the mass distributions we calculate

the branching fractions of the semileptonic D mesons into
two pseudoscalar mesons in s wave, which are listed in
Table III. We note that the branching fraction B½Dþ →
ðπþK−Þs-waveeþνe� ¼ 2.32 × 10−3 is used as an input
to fix the common constant, C ¼ 4.597. Among the
listed values, we can compare the theoretical and exper-
imental values of the branching fraction B½Dþ

s →
ðKþK−Þs-waveeþνe�. Namely, in Ref. [24] this branching
fraction is obtained as ð0.22þ0.12

−0.08 � 0.03Þ% of the total
Dþ

s → KþK−eþνe, which is dominated by the ϕð1020Þ
vector meson. This indicates, together with the branching
fraction Dþ

s → ϕð1020Þeþνe, we can estimate B½Dþ
s →

ðKþK−Þs-waveeþνe� ¼ ð5.5þ3.1
−2.1Þ × 10−5. Theoretically, this

is 1.42 × 10−4. Although our value overestimates the mean
value of the experimental data, it is still in 3σ errors of the
experimental value.

B. Production of vector mesons

Let us move to the vector meson productions in the
semileptonic D decays. For the vector mesons we fix the
common prefactor C0 so as to reproduce the 10 available
experimental branching fractions listed in Table I. From the
best fit we obtain the value C0 ¼ 1.563 GeV, which gives
χ2=Ndof ¼ 22.8=9 ≈ 2.53. The theoretical values of the
branching fractions are listed in Table IVand are compared
with the experimental data in Fig. 8, where we plot the ratio
of the experimental to theoretical branching fractions. We
calculate the experimental branching fraction of the Dþ →
K̄ð892Þ0lþνl (l ¼ e and μ) process by dividing the value in

Table I by the branching fraction B½K̄�ð892Þ0 → K−πþ� ¼
2=3, which is obtained with isospin symmetry. As one can
see from Fig. 8, the experimental values are reproduced
well solely by the model parameter C0 with χ2=Ndof ≈ 2.53.
Next for the Dþ

s → ϕð1020Þeþνe decay mode we con-
sider the differential decay width with respect to the
squared momentum transfer q2, which coincides with the

squared invariant mass of the lepton pair: q2 ¼ ½MðlνÞ
inv �2.

This differential decay width was already measured in
an experiment [27] for the Dþ

s → ϕð1020Þeþνe decay
mode. In a similar manner to the previous case, the
differential decay width for the vector meson production
is expressed as

dΓ3

dq2
¼ jGFV

ðvÞ
hadj2

16π3m3
DmV

Pcm ~pνM
ðlνÞ
inv

�
~ED

~EV −
1

3
j~pDj2

�
: ð71Þ

TABLE III. Branching fractions of semileptonic D decays into
two pseudoscalar mesons in swave. The branching fraction of the
Dþ → ðπþK−Þs-waveeþνe mode is used as an input.

Dþ
s

Mode Range of MðhhÞ
inv [GeV] l ¼ e l ¼ μ

πþπ− [0.9, 1.0] 5.10 × 10−4 4.71 × 10−4

KþK− [2mK , 1.2] 1.42 × 10−4 1.30 × 10−4

π−Kþ [mπ þmK , 1.0] 8.11 × 10−5 7.63 × 10−5

Dþ
Mode Range of MðhhÞ

inv [GeV] l ¼ e l ¼ μ
πþπ− [2mπ , 1.0] 5.11 × 10−4 4.85 × 10−4

π0η [mπ þmη, 1.1] 6.37 × 10−5 5.86 × 10−5

KþK− [2mK , 1.2] 2.24 × 10−6 2.01 × 10−6

πþK− [mπ þmK , 1.0] 2.32 × 10−3 2.16 × 10−3

D0

Mode Range of MðhhÞ
inv [GeV] l ¼ e l ¼ μ

π−η [mπ þmη, 1.1] 4.93 × 10−5 4.53 × 10−5

K0K− [2mK , 1.2] 5.47 × 10−6 4.88 × 10−6

π−K̄0 [mπ þmK , 1.0] 8.99 × 10−4 8.38 × 10−4

TABLE IV. Branching fractions of semileptonic D decays into
vector mesons.

Dþ
s

Mode l ¼ e l ¼ μ
ϕð1020Þ 2.12 × 10−2 1.94 × 10−2

K�ð892Þ0 2.02 × 10−3 1.89 × 10−3

Dþ
Mode l ¼ e l ¼ μ
K̄�ð892Þ0 5.56 × 10−2 5.12 × 10−2

ρð770Þ0 2.54 × 10−3 2.37 × 10−3

ωð782Þ 2.46 × 10−3 2.29 × 10−3

D0

Mode l ¼ e l ¼ μ
K�ð892Þ− 2.15 × 10−2 1.98 × 10−2

ρð770Þ− 1.97 × 10−3 1.84 × 10−3
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FIG. 8. Ratio of the experimental to theoretical branching
fractions for the semileptonic D decays into vector mesons.
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In Fig. 9 we compare our result for this reaction with the
experimental one. As one can see, our theoretical result
reproduces the experimental value of the differential
decay width quantitatively well. This means that our
method to calculate the semileptonic decays of D mesons
is good enough to describe the decays into vector
mesons.
In this study we have not evaluated the Dþ →

ϕð1020Þeþνe decay. This decay proceeds like the Dþ →
ωð782Þeþνe decay that we have evaluated and one has a
dd̄ at the end. Since the ϕ is ss̄ then this is forbidden in our
approach, at the tree level that we have considered for the
vector production. Experimentally, this rate is< 9 × 10−5.
This is an upper bound about 30 times smaller than the
rate of the omega production that we have evaluated. We
do not want to go beyond, but can give some idea on how
a finite rate could be obtained in our approach. For this
one would have to hadronize the dd̄ into a K0K̄0, then
have a loop for K0K̄0 propagation in p-wave and finally
have the K0K̄0 couple to the ϕ. Some technical details
could be borrowed from the study of ϕ → ππ decay
studied in [48] but one can get an indication that the
rate should be rather small by simply noting that the
hadronization to meson–meson pairs has a reduction
factor, as one can see by comparing for instance
f0ð500Þ production with ρ production [49]. On the other
hand, the coupling of ϕ to K0K̄0 is intrinsically small, as
one can see from the 1.5 MeV partial decay width of this
channel [comparatively the Δð1232Þ partial decay width
to the πN channel would be about 15 MeV for a pion with
the same momentum as the kaon in the ϕ decay]. There
are other factors to consider, but this can give us a feeling
that the rate could be some orders of magnitude smaller
than for omega production.

C. Comparison between scalar and vector
meson contributions

Finally we compare the mass distributions of the two
pseudoscalar mesons in s- and p-wave contributions. In the
present approach the s-wave part comes from the rescatter-
ing of two pseudoscalar mesons including the scalar meson
contribution, while the p-wave one from the decay of a
vector meson. In this study we consider three decay
modes: Dþ

s → πþπ−eþνe, Dþ
s → KþK−eþνe, and Dþ →

πþK−eþνe. The Dþ → πþπ−eþνe decay mode would have
a large p-wave contribution from ρð770Þ, but we do not
consider this decay mode since it is a Cabibbo-suppressed
process.
First we consider the Dþ

s → πþπ−eþνe decay mode.
This is a specially clean mode, since it does not have vector
meson contributions and is dominated by the s-wave part.
Namely, while the πþπ− can come from a scalar meson, the
primary quark-antiquark pair in the semileptonic Dþ

s decay
is ss̄, which is isospin I ¼ 0 and hence the ρð770Þ cannot
contribute to the πþπ− mass distribution. The primary ss̄
can be ϕð1020Þ, but it decays dominantly to KK̄ and the
ϕð1020Þ → πþπ− decay is negligible. This fact enables us
to observe the scalar meson peak without a contamination
from vector meson decays and discuss the quark configu-
ration in the f0ð980Þ resonance as in Sec. III A.
Next let us consider the Dþ

s → KþK−eþνe decay mode.
As we have seen, theKþK− mass distribution in swave is a
consequence of the f0ð980Þ tail. However, its contribution
should be largely contaminated by the ϕð1020Þ → KþK−

in p wave, which has a larger branching fraction than the
ðKþK−Þs-wave in the semileptonic decay. In order to see this,
we calculate the p-wave KþK− mass distribution for
Dþ

s → KþK−eþνe, which can be formulated as

dΓ3

dMðhhÞ
inv

¼ −
2mV

π
Im

Γ3 × B½V → hh�
½MðhhÞ

inv �2 −m2
V þ imVΓVðMðhhÞ

inv Þ
;

ð72Þ

where mV is the vector meson mass and the energy

dependent decay width ΓVðMðhhÞ
inv Þ is defined as

ΓVðMðhhÞ
inv Þ≡ Γ̄V

�
poffðMðhhÞ

inv Þ
pon

�
3

; ð73Þ

poffðMðhhÞ
inv Þ≡ λ1=2ð½MðhhÞ

inv �2; m2
h; m

02
h Þ

2MðhhÞ
inv

; ð74Þ

pon ≡ λ1=2ðm2
V;m

2
h; m

02
h Þ

2mV
: ð75Þ

For the ϕð1020Þ meson we take Γ̄ϕ ¼ 4.27 MeV and
B½ϕ → KþK−� ¼ 0.489 [1]. The numerical result for the
ðKþK−Þp-wave mass distribution is shown in Fig. 10
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FIG. 9. Differential decay width of the Dþ
s → ϕð1020Þeþνe

decay mode followed by ϕð1020Þ → KþK−, with q2 ¼ ½MðlνÞ
inv �2.

The experimental data are taken from Ref. [27]. The theoretical
value is multiplied by the branching fraction of the ϕð1020Þ
meson to KþK−, B½ϕð1020Þ → KþK−� ¼ 48.9% [1].

INVESTIGATING THE NATURE OF LIGHT SCALAR … PHYSICAL REVIEW D 92, 054038 (2015)

054038-13



together with the ðKþK−Þs-wave. From the figure, compared
to the ðKþK−Þp-wave contribution we cannot find any
significant ðKþK−Þs-wave contribution, which was already
noted in the experimental mass distribution in Ref. [24].
Nevertheless, we emphasize that the ðKþK−Þs-wave fraction
of the semileptonic Dþ

s decay is large enough to be
extracted [24]. Actually in Ref. [24] they extracted the
ðKþK−Þs-wave fraction by analysing the interference
between the s- and p-wave contributions. This fact, and
the qualitative reproduction of the branching fractions in
our model, implies that the f0ð980Þ resonance couples to
the KK̄ channel with a certain strength, which can be
translated into the KK̄ component in f0ð980Þ, in a similar
manner to the KD component in D�

s0ð2317Þ [19,50], in
terms of the compositeness [51]. Anyway, in order to
conclude the structure of the f0ð980Þ more clearly, it is
important to reduce the experimental errors on
the ðKþK−Þs-wave.

Finally we consider the Dþ → πþK−eþνe decay mode.
In this mode the ðπþK−Þs-wave from the K�

0ð800Þ and the
ðπþK−Þp-wave from the K�ð892Þ are competing with each
other. In a similar manner to the Dþ

s → KþK−eþνe case,
we calculate the mass distribution also for the p-wave

πþK− contribution dΓ3=dM
ðhhÞ
inv with Γ̄K� ¼ 49.1 MeV [1],

and the result is shown in Fig. 11. As one can see, thanks to
the width of ∼50 MeV for the K�ð892Þ, the s-wave
component can dominate the mass distribution below
0.8 GeV. We note that we would obtain an almost similar
result for the D0 → π−K̄0eþνe decay mode due to isospin
symmetry.
As to the theoretical uncertainties, we can play a bit with

the cutoffs used to regularize the loops, such that the masses
of the states do not change appreciably. This exercise has
been done a number of times and given us the feeling that
within our models the uncertainties are below 10%. For the
case of scalar production where we have a range of
invariant masses and rely upon a constant production
vertex C, the changes with the invariant mass in the
primary form factors, prior to the final state interaction
of the mesons, as found in [41], would add some extra
uncertainty. In total it would be fair to accept about 20%
uncertainties in this case in the limited range of energies
that we move.

IV. CONCLUSION

In this study we have discussed the semileptonic decays
of D mesons into light scalar and vector mesons. For the
scalar meson production, we have formulated the semi-
leptonic decay as the combination of two parts. One is the
weak decay of the charm quark and the emission of a lepton
pair via theW boson. The other is a simple hadronization of
light qq̄ pair plus an extra q̄q from vacuum into two
pseudoscalar mesons after the W boson emission, so as to
generate the scalar mesons dynamically in the meson–
meson final state interaction. The hadronization naturally
gives the weight of each pair of pseudoscalar mesons in the
decay process, which governs which scalar meson appears
in the decay mode. For the vector mesons, on the other
hand, we have not considered the hadronization with an
extra q̄q and have directly used the light qq̄ pair after theW
boson emission as a weight for the vector mesons, which
are expected to be genuinely qq̄ states. We note that we can
specify flavors of quarks contained in the final state
scalar and vector mesons by considering Cabibbo-favored
and -suppressed processes. In addition, since the leptons
interact only weakly, the semileptonic decay of the heavy
meson to two light mesons þlþνl brings a suitable
condition to measure effects of the final state interaction
of the two light mesons.
In our model of the semileptonic decay, the production

yields of the scalar and vector mesons are respectively
determined solely by constant prefactors C and C0 as model
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FIG. 10. KþK− invariant mass distribution for the semileptonic
decay Dþ

s → KþK−eþνe both in s and p waves.
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FIG. 11. πþK− invariant mass distribution for the semileptonic
decay Dþ → πþK−eþνe both in s and p waves.
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parameters. Fixing C from the branching fraction of
the Dþ → ðπþK−Þs-waveeþνe decay, we have calculated
branching fractions of scalar meson productions. We
have qualitatively reproduced the experimental value of
the branching fractions of Dþ

s → ðπþπ−Þs-waveeþνe and
ðKþK−Þs-waveeþνe decay modes. Some deviations of these
branching fractions compared to the experimental values
can be explained by taking into account the background of
the mass distribution for the πþπ− case and by the large
experimental error for the KþK− case. For the vector
mesons, we have determined the constant C0 so as to fit
our numerical values to the available experimental values of
the branching fractions, and we have reproduced the
experimental values at a quantitative level. We also com-
pared the mass distributions of the two pseudoscalar
mesons in s- and p-wave contributions, which come from
decays of the scalar and vector mesons, respectively.
We have found that the Cabibbo-favored decay mode

Dþ
s → f0ð980Þlþνl followed by f0ð980Þ → πþπ− and

KþK− is of special interest. For the f0ð980Þ → πþπ−
mode, we have found that there is no p-wave contamina-
tion from ρð770Þ decay and hence it should be dominated
by the s-wave part. Then, we have confirmed the exper-
imental fact that the πþπ− mass distribution shows a clear
f0ð980Þ signal while the f0ð500Þ contribution is negligible.
This strongly indicates that the f0ð980Þ has a substantial
fraction of the strange quarks while the f0ð500Þ has a
negligible strange quark component. For the f0ð980Þ →
KþK− mode, on the other hand, the ðKþK−Þs-wave con-
tribution is highly contaminated by the ϕð1020Þ → KþK−

decay in p wave. Nevertheless, the ðKþK−Þs-wave fraction
of the semileptonic Dþ

s decay is large enough to be
extracted experimentally, which implies that the f0ð980Þ
resonance couples to the KK̄ channel with a certain
strength and hence implies a certain amount of the KK̄
component in f0ð980Þ.
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APPENDIX: CONVENTIONS

In this Appendix we summarize conventions used in
this study.

1. Metric and Lorentz indices

In this article the metric in four-dimensional Minkowski
space is gμν ¼ gμν ¼ diagð1;−1;−1;−1Þ and the Einstein
summation convention is used unless explicitly mentioned.
The scalar product of two vectors aμ and bμ is represented
as a · b ¼ aμbμ ¼ a0b0 − a · b.

2. Dirac spinors and matrices

As the positive and negative energy solutions of the
Dirac equation, we express the Dirac spinors respectively
as uðp; sÞ and vðp; sÞ, where p is three-momentum of the
field and s represents its spin. The Dirac spinors are
normalized as follows:

ūðp; sÞuðp; s0Þ ¼ δss0 ; v̄ðp; sÞvðp; s0Þ ¼ −δss0 ; ðA1Þ
with ū≡ u†γ0 and v̄≡ v†γ0, and hence we have

X
s

uðp; sÞūðp; sÞ ¼ pþm
2m

;

X
s

vðp; sÞv̄ðp; sÞ ¼ p −m
2m

; ðA2Þ

wherem is the mass of the field, p≡ γμpμ with γμ being the

Dirac γ matrices, and pμ ≡ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
; pÞ is the on-shell

four-momentum of the solution.
The identities for the Dirac matrices used in this study

are summarized as follows:

γ0ðγμÞ†γ0 ¼ γμ; ðγ5Þ† ¼ γ5; ðA3Þ

tr½γμγνγργσ� ¼ 4ðgμνgρσ − gμρgνσ þ gμσgνρÞ; ðA4Þ

tr½γ5γμγνγργσ� ¼ −4iϵμνρσ; ðA5Þ

tr½γμγνγρ� ¼ tr½γ5γμγνγρ� ¼ 0; ðA6Þ

where γ5 ≡ iγ0γ1γ2γ3 and ϵμνρσ is the Levi-Civita symbol
with the normalization ϵ0123 ¼ 1. The Levi-Civita symbol
satisfies the following identity

ϵαβμνϵαβρσ ¼ −2ðgμρgνσ − gμσgνρÞ: ðA7Þ

3. Isospin basis

In terms of the isospin states jI; I3i, the phase convention
for pseudoscalar mesons is given by
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jπþi ¼ −j1; 1i; jK−i ¼ −j1=2;−1=2i; ðA8Þ

while other pseudoscalar mesons are represented without
phase factors. As a result, we can translate the physical two-
pseudoscalar meson states into the isospin basis, which we
specify as ðI; I3Þ, as

jKK̄ð0; 0Þi ¼ −
1ffiffiffi
2

p jKþK−i − 1ffiffiffi
2

p jK0K̄0i; ðA9Þ

jηηð0; 0Þi ¼ jηηi; ðA10Þ

jKK̄ð1; 0Þi ¼ −
1ffiffiffi
2

p jKþK−i þ 1ffiffiffi
2

p jK0K̄0i; ðA11Þ

jKK̄ð1;−1Þi ¼ −jK0K−i; ðA12Þ

jπηð1; 0Þi ¼ jπ0ηi; ðA13Þ

jπηð1;−1Þi ¼ jπ−ηi; ðA14Þ

jπKð1=2;−1=2Þi ¼ 1ffiffiffi
3

p jπ0K0i −
ffiffiffi
2

3

r
jπ−Kþi; ðA15Þ

jπK̄ð1=2; 1=2Þi ¼
ffiffiffi
2

3

r
jπþK−i − 1ffiffiffi

3
p jπ0K̄0i; ðA16Þ

jπK̄ð1=2;−1=2Þi ¼ −
1ffiffiffi
3

p jπ0K−i −
ffiffiffi
2

3

r
jπ−K̄0i. ðA17Þ

Furthermore, the vector meson states are represented in
terms of quarks as

jρ0i ¼ 1ffiffiffi
2

p juūi − 1ffiffiffi
2

p jdd̄i; jρ−i ¼ jdūi; ðA18Þ

jωi ¼ 1ffiffiffi
2

p juūi þ 1ffiffiffi
2

p jdd̄i; ðA19Þ

jK�0i¼ jds̄i; jK̄�0i¼ jsd̄i; jK̄�−i¼−jsūi: ðA20Þ

4. Feynman rules

The Wνl coupling is expressed as

−iVμ
Wνl ¼ i

gWffiffiffi
2

p γμ
1 − γ5
2

; ðA21Þ

with gW being the coupling constant of the weak inter-
action, and the Wcq coupling as

−iVμ
Wcq ¼ i

gWVcqffiffiffi
2

p γμ
1 − γ5
2

; ðA22Þ

where Vcq is the Cabibbo-Kobayashi-Maskawa matrix
elements for the transition from the charm to light quark
q. The W boson propagator with four-momentum pμ is
written as

iPμν
W ðpÞ ¼ −igμν

p2 −M2
W þ i0

; ðA23Þ

with the mass of the W boson MW . The coupling constant
gW and the mass of the W boson MW are related to the
Fermi coupling constant GF as

GF ¼ g2W
4

ffiffiffi
2

p
M2

W

: ðA24Þ

5. Physical constants

In this article we use the following values for physical
constants. The Fermi coupling constant: GF ≈ 1.166×
10−5 GeV−2. The Cabibbo-Kobayashi-Maskawa matrix
elements: jVcsj ≈ 0.986 and jVcdj ≈ 0.225. The masses
of heavy mesons: mDþ

s
¼ 1968.30, mDþ ¼ 1869.61, and

mD0 ¼ 1864.84 MeV. Isospin symmetric masses are used
for the light mesons: mπ ¼ 138.04, mK ¼ 495.67, and
mη ¼ 547.85 MeV for the pseudoscalar mesons, and
mρ ¼ 775.19, mω ¼ 782.65, mK� ¼ 893.74, and mϕ ¼
1019.46 MeV for the vector mesons. The masses of
the leptons: me ¼ 0.511, mμ ¼ 105.66, and mνe ¼
mνμ ¼ 0 MeV.
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