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The direct CP asymmetry adirCPðD0 → KSKSÞ involves exchange diagrams which are induced at tree level
in the Standard Model. Since the corresponding topological amplitude EKK can be large, D0 → KSKS is a
promising discovery channel for charm CP violation. We estimate the penguin annihilation amplitude
with a perturbative calculation and extract the exchange amplitude EKK from a global fit to D branching
ratios. Our results are further used to predict the size of mixing-induced CP violation. We obtain
jadirCPðD0 → KSKSÞj ≤ 1.1% (95% C.L.). The same bound applies to the nonuniversal part of the phase
between the D − D̄ mixing and decay amplitudes. If future data exceed our predictions, this will point to
new physics or an enhancement of the penguin annihilation amplitude by QCD dynamics. We briefly
discuss the implications of these possibilities for other CP asymmetries.
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I. INTRODUCTION

While direct CP violation (CPV) is well established in
the down-quark sector [1–11], CPV has not yet been
observed in the decays of up-type quarks. For the discussion
of CPV in some singly Cabibbo-suppressed D decay it is
convenient to decompose the decay amplitude A as

A ¼ λsdAsd −
λb
2
Ab: ð1Þ

Here λq ≡ V�
cqVuq and λsd ¼ ðλs − λdÞ=2 comprise the

elements Vij of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. In the limit λb ¼ 0 all direct and mixing-
induced CP asymmetries vanish in the Standard Model
(SM). The suppression factor Im λb

λsd
∼ −6 × 10−4 makes the

discovery of CKM-induced CPV challenging. At the same
time this parametric suppression rendersCP asymmetries in
charm decays highly sensitive to physics beyond the SM.
In this paper we study the decay D0 → KSKS. For this

decay mode Asd vanishes in the limit of exact SUð3ÞF
symmetry [12–15], so that the branching ratio is sup-
pressed. However, Ab does not vanish in this limit and we
expect jAb=Asdj to be large. Therefore CP asymmetries in
D0 → KSKS may be enhanced to an observable level, even
if the Kobayashi-Maskawa phase is the only source of CPV
in charm decays [14,15]. Moreover, a special feature of
D0 → KSKS is the interference of the decays cū → s̄s and
cū → d̄d, both of which involve the tree-level exchange of
a W boson (exchange topology E; see Fig. 1). This
interference term gives a contribution to Ab owing to
λd þ λs ¼ −λb. That is, contrary to the widely studied
decays D → πþπ−; π0π0; KþK−, no penguin diagrams are

needed for nonzero direct or mixing-induced CP asymme-
tries. Moreover, the exchange diagram E is enhanced by a
large Wilson coefficient. These properties make D0 →
KSKS an interesting discovery channel for CPV in the
charm system.
In this paper we calculate the allowed ranges for

the direct and mixing-induced CP asymmetries in
D0 → KSKS, using the results of our global analysis in
Ref. [17]. There are two ingredients which we cannot
extract from this analysis. The first one is the penguin-
annihilation amplitude PA (see Fig. 1), which we estimate
with the help of a perturbative calculation. The other
undetermined quantity is a strong phase δ, whose value,
however, can be determined from the data once both the
direct and mixing-induced CP asymmetries are measured.
The actual size of δ is not crucial for the potential to

(a)

(b)

FIG. 1. Topological amplitudes: (a) exchange (E) and (b) pen-
guin annihilation (PA). Reference [16] claimed that D0 → KSKS
is Zweig suppressed, but this statement is only true for the PA
diagram.
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discover charm CPV in D0 → KSKS: depending on
whether j sin δj is large or small either the direct or
mixing-induced CP asymmetry will be large.
Our paper is organized as follows. In Sec. II we derive

handy formulas for direct and mixing-induced CP asym-
metries in terms of Asd and Ab. In Sec. III we relate the
CPV observables to topological amplitudes. Subsequently
we estimate the penguin annihilation contribution, which
cannot be extracted from a global fit to current data, with
perturbative methods in Sec. IV. In Sec. V we present our
phenomenological analysis. Finally, we conclude.

II. PRELIMINARIES

In this section we collect the formulas for the CP
asymmetries. We write

AðD0 → KSKSÞ ¼ −
1ffiffiffi
2

p AðD0 → K̄0K0Þ; ð2Þ

accommodating the Bose symmetrization of the two KS’s
with the factor of 1=

ffiffiffi
2

p
. Here we identify KS ¼

ðK0 − K̄0Þ= ffiffiffi
2

p
and assume that the effects of kaon CPV

are properly subtracted from CP asymmetries measured in
D0 → KSKS, as described in Ref. [18]. Adopting the
convention CPjD0i ¼ −jD̄0i [19] the amplitude of
D̄0 → KSKS is

Ā ¼ −λ�sdAsd þ
λ�b
2
Ab: ð3Þ

The direct CP asymmetry reads

adirCP ≡ jAj2 − jĀj2
jAj2 þ jĀj2 ð4Þ

¼ Imλb
jAj Im

Ab

Asd
jAsdj: ð5Þ

Here and in the following we neglect terms of order λ2b and
higher. Furthermore we use the Particle Data Group
convention for the CKM elements, so that λsd is real and
positive up to corrections of order λb.
For the discussion of mixing-induced CPV we also

follow the conventions of Ref. [19]: with the mass
eigenstates jD1;2i ¼ pjD0i � qjD̄0i we define the weak
phase ϕ governing CPV in the interference between the
D − D̄ mixing and the D0 → KSKS decay through

q
p
Ā
A

¼ −
q
p
λ�sd
λsd

1 − λ�b
2λ�sd

Ab
Asd

1 − λb
2λsd

Ab
Asd

;

≡
���� qp

����
���� ĀA

����eiϕ: ð6Þ

In this paper we focus on CPVeffects which are specific to
the decay D0 → KSKS. It is therefore useful to define a CP
phase ϕmix which enters all mixing-induced CP asymme-
tries in a universal way:

−
q
p
λ�sd
λsd

≡
���� qp

����eiϕmix : ð7Þ

Comparing Eqs. (6) and (7) one verifies that ϕmix coincides
with ϕ if one sets λb to zero in Ā=A. In the hunt for new
physics in D − D̄ mixing, which may well enhance ϕmix
over the SM expectation ϕmix ¼ OðImλb=λsdÞ, one fits the
CPV data of all available D0 decays to a common phase
ϕmix [20,21]. In the case of D0 → KSKS, however, we face
the possibility that already the SM contributions lead to the
situation jϕj ≫ jϕmixj. Comparing Eq. (6) with Eq. (7) one
finds

1 − λ�b
2λ�sd

Ab
Asd

1 − λb
2λsd

Ab
Asd

¼
���� ĀA

����eiðϕ−ϕmixÞ

¼ ð1 − adirCPÞeiðϕ−ϕmixÞ; ð8Þ

where we have used Eq. (4), discarding higher-order terms
∼ðadirCPÞ2 as usual. By expanding Eq. (8) to first order in λb
and ϕ − ϕmix we arrive at

ϕ − ϕmix ¼ Im
λb
λsd

Re
Ab

Asd
¼ Imλb

jAj Re
Ab

Asd
jAsdj: ð9Þ

Equations (5) and (9) form the basis of the analysis
presented in the following sections. In Eqs. (5) and (9)
jAj is trivially related to the well-measured branching ratio:

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD → KSKSÞ
PðD;K;KÞ

s
;

PðD;K;KÞ≡ τ
1

16πm2
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D − 4m2
K0

q
: ð10Þ

The experimental value is BðD0 → KSKSÞ ¼ ð0.17�
0.04Þ × 10−3 [22]. The nontrivial quantities entering the
predictions of adirCP and ϕ − ϕmix are Ab and the phase
of Asd.
The time-dependent CP asymmetry reads

ACPðtÞ ¼
ΓðD0ðtÞ → KSKSÞ − ΓðD̄0ðtÞ → KSKSÞ
ΓðD0ðtÞ → KSKSÞ þ ΓðD̄0ðtÞ → KSKSÞ

¼ adirCP − AΓ
t
τ
: ð11Þ

Here τ is the D0 lifetime and
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AΓ ¼
�
1

2

����� qp
����
2

− 1

�
− adirCP

�
y cosϕ − x sinϕ: ð12Þ

Equation (12) contains the mass difference ΔM and the
width difference ΔΓ between the mass eigenstates D1 and
D2 through x ¼ τΔM and y ¼ τΔΓ=2. In Eqs. (11)
and (12) all quadratic (and higher) terms in tiny quantities
are neglected. In time-integrated measurements, LHCb
measures the quantity [19,23,24]

ACP ¼ adirCP − AΓ
hti
τ
; ð13Þ

where hti is the average decay time. CLEO has
measured [25]

ACLEO
CP ¼ −0.23� 0.19: ð14Þ

Recently LHCb has reported the preliminary result [26]

ALHCb
CP ¼ −0.029� 0.052� 0.022: ð15Þ

III. TOPOLOGICAL AMPLITUDES

The decomposition of Asd and Ab in terms of topologi-
cal amplitudes reads [17]

Asd ¼
E1 þ E2 − E3ffiffiffi

2
p ; ð16Þ

Ab ¼
2Eþ E1 þ E2 þ E3 þ PAffiffiffi

2
p ð17Þ

¼ −Asd þ
2EKK þ PAffiffiffi

2
p : ð18Þ

Here EKK ≡ Eþ E1 þ E2 is the combination of exchange
diagrams appearing inD0 → KþK−. The exchange (E) and
penguin annihilation (PA) diagrams are shown in Fig. 1.
E1;2;3 account for first-order SUð3ÞF breaking in diagrams
containing s-quark lines (for their precise definition see
Table II of Ref. [17]). As in Ref. [27] PAq denotes the
penguin annihilation diagram with quark q running in the
loop. We use the combinations [15,28,29]

λsPAs þ λdPAd þ λbPAb

¼ λsdðPAs − PAdÞ þ
λs þ λd

2
ðPAs þ PAd − 2PAbÞ

ð19Þ

≡ λsdPAbreak −
λb
2
PA: ð20Þ

We recall that E, E1;2;3, PA;… are defined for D0 → K0K̄0

or D0 → KþK−. Since Asd and Ab instead involve KSKS,
the factor of −1=

ffiffiffi
2

p
of Eq. (2) appears in Eqs. (16)–(18).

Next we define the strong phase

δ≡ arg

�
2EKK þ PA

Asd

�
; ð21Þ

and the positive quantity

R ¼ −
Imλb
jAj

j2EKK þ PAjffiffiffi
2

p : ð22Þ

With Eq. (18) we can write Eq. (9) as

ϕ − ϕmix ¼ Im
λb
λsd

Re
−Asd þ ð2EKK þ PAÞ= ffiffiffi

2
p

Asd

¼ −Im
λb
λsd

− R cos δ: ð23Þ

In the same way one finds

adirCP ¼ −R sin δ: ð24Þ

Equations (23) and (24) mean that adirCP and ϕ − ϕmix lie on
a circle with radius R centered at ð−Im λb

λsd
; 0Þ. The allowed

points are parametrized by the phase δ, which we cannot
predict. The actual value of δ, however, is of minor
importance for the discovery potential of CPV, because δ
only controls how the amount of CPV is shared between
adirCP and ϕ − ϕmix. The crucial parameter is R, which
determines the maximal values of jadirCPj and jϕ − ϕmixj.
Once adirCP and ϕ − ϕmix are precisely measured one can
determine R through

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
adirCP

2 þ
�
ϕ − ϕmix þ Im

λb
λsd

�
2

s
: ð25Þ

The experimental value can then be confronted with the
theoretical estimate presented in the next section. The
impact of our estimate on adirCP and ϕ − ϕmix will be
presented below in Fig. 4.

IV. ESTIMATE OF jPAj AND R

The quantity jEKKj can be determined from our global fit
to branching ratios [17]. For the calculation of PA we
exploit the large momentum

ffiffiffiffiffi
q2

p
∼ 1.5 GeV flowing

through the penguin loop in Fig. 1(b) and calculate this
loop perturbatively as in Ref. [14]. Such methods are
routinely used in B physics [30–35], but their applicability
to charm physics is not clear.
Wework in a five-flavor theory, so that only current-current

operators appear in the effective Hamiltonian. With Q2≡
ðūsÞV−Aðs̄cÞV−AþðūdÞV−Aðd̄cÞV−A−2ðūbÞV−Aðb̄cÞV−A and
the Wilson coefficient C2 ∼ 1.2 we may write
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Ab ¼
GFffiffiffi
2

p C2hKSKSjQ2jD0i; ð26Þ

because the contribution of the color-flipped operator Q1 is
highly suppressed. For our estimate of the ratio PA=EKK in
this section we adopt the SUð3ÞF limit and identify EKK
with E. In this limit we can combine Eqs. (26) and (17) into

GFffiffiffi
2

p C2hKSKSjQ2jD0i ¼ 2Eþ PAffiffiffi
2

p : ð27Þ

The penguin diagram can be written as [36]

PA ¼ GF
αs
4π

C2

×
X6
i¼3

ðrd2i þ rs2i − 2rb2iÞhKSKSjQijD0i; ð28Þ

with the loop function rq24 ≡ rq24ðq2; m2
q; μ2Þ ¼ rq26 defined

in Ref. [36]. μ ∼
ffiffiffiffiffi
q2

p
is the renormalization scale which

also enters αs and C2 in Eq. (28). Q3−6 are the usual four-
quark penguin operators; we will need

Q4;6 ¼ ðūαcβÞV−A
X

q¼u;d;s;c;b

ðq̄βqαÞV∓A: ð29Þ

PA is color suppressed with respect to E and this
suppression is encoded in Eq. (28) through αs ∼ 1=Nc.
The contributions from the matrix elements hQ3;5i are
further suppressed and are neglected in the following. We
write hQ4i þ hQ6i ¼ −2ðMd

VA þMs
VAÞ with

Mq
VA ≡ hKSKSjðq̄αqβÞVðūβcαÞAjD0i: ð30Þ

The other quark flavors in the sum in Eq. (29) contribute to
D0 → KSKS only through another loop diagram, yielding a
contribution of higher order in αs. With

p≡ rd24 þ rs24 − 2rb24; ð31Þ

we can write PA in a compact form:

PA ¼ −GF
αs
π
C2pMd

VA; ð32Þ

where we have invoked the SUð3ÞF limit to setMd
VA¼Ms

VA.
The μ dependence cancels in p, which furthermore does not
depend on mc in the considered leading order. It is an
excellent numerical approximation to expand p to first
order in m2

s=q2 and q2=m2
b (while setting md ¼ 0). The

expanded expression reads

p ¼ −
10

9
−
2

3
iπ −

2m2
s

q2
þ 2q2

15m2
b

þ 2

3
ln

q2

m2
b

: ð33Þ

It is worthwhile to discuss how this result translates into an
expression in a four-flavor theory, in which the b quark is

integrated out at the scale μb ¼ OðmbÞ: in this alternative
approach the piece −2rb2i of Eq. (28) resides in the initial
conditions of the penguin coefficients C3−6 generated at μb.
The four-flavor theory permits the use of the renormaliza-
tion group (RG) to resum the log lnðμb=

ffiffiffiffiffi
q2

p
Þ to all orders

in perturbation theory, but this resummation is inconsistent
since lnðμb=

ffiffiffiffiffi
q2

p
Þ is smaller than the nonlogarithmic terms

in −2rb2i. Without RG summation the four-flavor theory
reproduces exactly the analytic result in Eq. (33), which is
independent of renormalization scale and scheme.
To estimateMd

VA we want to relate it to E using Eq. (27).
After Fierz-rearranging Q2 we can express the lhs of
Eq. (27) in terms of Mq

VA and

Mq
AV ≡ hKSKSjðq̄αqβÞAðūβcαÞV jD0i: ð34Þ

The exchange topology reads [cf. Eq. (27)]

E ¼ GFC2hKSKSjðūdÞV−Aðd̄cÞV−AjD0i − PAd

¼ −GFC2ðMd
AV þMd

VAÞ − GF
αs
π
C2rd24M

d
VA: ð35Þ

To leading order in αs we have therefore E ¼
−GFC2ðMd

AV þMd
VAÞ. For the desired estimate of PA=E

we need Md
VA=E. We can place a bound on this quantity

with Eq. (35), if we assume that jMd
VAj is not much larger

than jMd
AV þMd

VAj; i.e. we do not consider the case of large
cancellations between Md

AV and Md
VA in E. In view of the

fact that E is numerically large [17] this assumption seems
justified. Writing

Md
VA ¼ κðMd

AV þMd
VAÞ; ð36Þ

we vary jκj between 0 and 2. Now Eq. (35) entails

Md
VA

E
¼ κ

−GFC2ð1þ κ αs
π r

d
24Þ

; ð37Þ

and thus

j2EKK þ PAj ¼ j2EKKj
����1þ αs

2π
p

κ

1þ κ αs
π r

d
24

���� ð38Þ

≤ j2EKKj × 1.3: ð39Þ

Here we have used μ ¼
ffiffiffiffiffi
q2

p
¼ 1.5 GeV, msðμÞ ¼

0.104 GeV, mbðμÞ ¼ 4.18 GeV, and αsðμÞ ¼ 0.328. (rd24
is evaluated in the naive dimensional regularization (NDR)
scheme.) Inserting finally Eq. (39) into Eq. (22) gives the
upper limit

R ≤ −1.3
Imλb
jAj

j2EKKjffiffiffi
2

p : ð40Þ
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This bound determines the radius of the circle which
defines the allowed area for ðϕ − ϕmix; adirCPÞ via
Eq. (25). I.e. Eq. (40) determines the maximal size of
both jadirCPj and jϕ − ϕmixj [neglecting the small Imλb=λsd in
Eq. (23)]. If future data violate Eq. (40), this will signal new
physics or a dynamical enhancement of PA over the
perturbative result in Eq. (32). Section V discusses how
these two scenarios can be distinguished with the help of
other measurements.
The relation of rq24ðq2; m2

q; μ2Þ to Gðs; xÞ in Ref. [32] is
given as

rq24ðq2; m2
q; μ2Þ ¼

1

3
−
1

3
log

�
μ2

m2

�

−
1

2
G

�
m2

q − iε

m2
;
q2

m2

�
; ð41Þ

with an arbitrary mass m2. Note that the −iε prescription is
essential here; an erroneous omission of this small imagi-
nary part results in a numerically large mistake. The
prefactor of Gðx; yÞ in Eq. (41) disagrees with Ref. [14].
We further find that the b-quark contribution −2rb24 is
numerically as important as rd24 þ rs24:

rd24ðq2; 0; μ2Þ ¼ −0.22 − i1.05; ð42Þ

rs24ðq2; m2
s ; μ2Þ ¼ −0.23 − i1.05; ð43Þ

− 2rb24ðq2; m2
b; μ

2Þ ¼ −2.02: ð44Þ

V. PHENOMENOLOGY

The last element needed for the calculation of our bound
in Eq. (40) is jEKKj. To find jEKKj we employ our global fit
to all available branching ratios of D decays to two
pseudoscalar mesons [17]. Note that the main constraint
on this quantity stems from BðD0 → KþK−Þ (see Table III
of Ref. [17]). The D decays entering our fit involve other
topological amplitudes in addition to E and PA; in the
following we refer to the color-favored tree (T), color-
suppressed tree (C), annihilation (A) and penguin (P)
amplitudes.
We consider two scenarios: in the first scenario the

SUð3ÞF-limit amplitudes C and E are varied completely
freely. In the second scenario we apply 1=Nc counting
[37–39] to the amplitudes, where Nc ¼ 3 is the number of
colors. To leading order in 1=Nc one can factorize T which
results in

Tfac ≡ GFffiffiffi
2

p a1fπðm2
D −m2

πÞFDπ
0 ðm2

πÞ: ð45Þ

Here a1 ¼ 1.06 is the appropriate combination of Wilson
coefficients, mπ and fπ are the mass and the decay constant
of the pion, respectively, and FDπ

0 is the appropriate D → π
form factor. [Recall that the SUð3ÞF-limit amplitudes are
defined for decays into pions.] In our second scenario we
assume that jðCþ δAÞ=Tfacj; jðEþ δAÞ=Tfacj ≤ 1.3 [27],
where δA parametrizes 1=N2

c corrections to the factorized
annihilation (A) topology [17].
The Δχ2 profile of jEKK=Tfacj returned by our global fit

is shown in Fig. 2(a). Figure 2(b) shows the Δχ2 profile of

FIG. 2 (color online). (a) Δχ2 profile of jEKK j. (b) Δχ2 profile of R [defined in Eq. (22)] for PA ¼ 0. The blue and red
curves correspond to the scenarios without and with 1=Nc counting applied to C and E. Note that the red line lies partially on top of
the blue line.
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R for the special case PA ¼ 0, in which the whole effect
comes from the exchange diagram EKK. The corresponding
95% C.L. bounds on jEKK=Tfacj and R inferred from Fig. 2
and Eq. (40) are given in Table I and illustrated in Fig. 3.
Note that we do not treat Tfac as constant, but also fit the
form factor FDπ

0 . Likewise our fit permits BðD0 → KSKSÞ
to float within the experimental errors.
Figure 4 condenses the main results of this paper into a

single plot: the radial lines correspond to fixed values of the
strong phase δ in Eqs. (23) and (24) in the ϕ − ϕmix–adirCP
plane. The red and blue discs show the allowed regions for
the two considered scenarios. Note that our bounds depend
on branching ratio measurements only and do not involve
correlations to other CP asymmetries. The black circles
correspond to different values of j2EKK þ PAj in Eq. (22).
Future data on ϕ − ϕmix and adirCP will allow us to determine
δ and R. The experimental value of R can then be
confronted with the upper limits in Table I to probe the
color counting in EKK and our estimate of PA. New physics
will mimic a dynamical enhancement of PA. In case an
anomalously large value of R is found, one can proceed in
the following way to discriminate between different
explanations:

(i) Several CP asymmetries involve PA, but do not
grow with jEj. For example,

adirCPðD0 → KþK−Þ;
adirCPðD0 → πþπ−Þ;
adirCPðD0 → π0π0Þ; ð46Þ

all depend on Pþ PA and are expected to be
enhanced with PA as well, unless the increase is
compensated by −P. But in this case instead

adirCPðDþ → KSKþÞ;
adirCPðDþ

s → KSπ
þÞ;

adirCPðDþ
s → Kþπ0Þ; ð47Þ

which involve P rather than Pþ PA, become large.
Thus a breakdown of color counting in EKK can be
distinguished from an enhanced PA.

(ii) PA can be enhanced by QCD dynamics or by new
physics. In the first case the CP asymmetries in
Eqs. (46) and (47) will still obey the sum rules of
Ref. [27]. New physics will violate these sum rules if
it couples differently to down and strange quarks.

We close this section by comparing our result with other
estimates of adirCPðD0 → KSKSÞ in the literature. Using
generic SUð3ÞF counting Ref. [14] quotes

FIG. 3 (color online). Theoretical upper bounds on R. Pre-
dictions with (without) 1=Nc counting are labeled “small E”
(“large E”). To visualize the contribution from exchange dia-
grams, we also show the result for PA ¼ 0. The case PA ≠ 0 is
based on the estimate in Eq. (40).

TABLE I. 95% C.L. upper limits (Δχ2 ¼ 3.84), with or without
1=Nc input for C and E.

with 1=Nc without 1=Nc
PA ¼ 0 PA ≠ 0 PA ¼ 0 PA ≠ 0

jEKK=Tfacj ≤ 1.5 2.6
R ≤ 0.004 0.006 0.009 0.011

FIG. 4 (color online). Correlation of direct and mixing-induced
CPV for D0 → KSKS from Eqs. (23) to (25). The one-
dimensional 95% C.L. (Δχ2 ¼ 3.84) upper limits on
adirCPðD0 → KSKSÞ and ϕ − ϕmix are shown in blue. If in addition
1=Nc counting is applied to the topological amplitudes C and E,
the allowed region shrinks to the red area. The black dashed lines
show the radii which are obtained when setting j2EKKþ
PAj=2.52 × 10−6 GeV to the annotated values. The chosen
reference value is the typical size of a factorized tree amplitude
in D decays, Tfac ¼ 2.52 × 10−6 GeV. Further, for the black
dashed lines BðD0 → KSKSÞ ¼ 0.17 × 10−3 is used. The circle is
centered at ð−ImðλbÞ=λsd; 0Þ ¼ ð6 × 10−4; 0Þ.
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jadirCPðD0 → KSKSÞj≲ 2jVcbVubj
εjVcsVusj

∼ 0.6%; ð48Þ

where ε quantifies SUð3ÞF breaking. Our result in Table I
agrees with this estimate. However, if the possibility of a
large, 1=Nc-unsuppressed jEKKj is realized in nature, jadirCPj
can be twice as large.
Reference [15] relates adirCPðD0 → KSKSÞ to ΔadirCP ≡

adirCPðKþK−Þ − adirCPðπþπ−Þ. With present data this relation
reads

jadirCPj≲ 3

2
× ΔadirCP ¼ 0.4%: ð49Þ

This estimate assumes that two matrix elements corre-
sponding to different SUð3ÞF representations are similar in
magnitude. We remark that there is no strict correlation
between adirCPðD0 → KSKSÞ and ΔadirCP, because the two
quantities involve different topological amplitudes.

VI. CONCLUSIONS

We have studied the direct and mixing-induced CP
asymmetries in D0 → KSKS in the Standard Model. The
allowed region for the corresponding two quantities adirCP
and ϕ − ϕmix is a disc whose radius can be calculated in
terms of the exchange amplitude EKK and the penguin
annihilation amplitude PA. We estimate PA=EKK with a
perturbative calculation and obtain EKK from a global fit to
D branching fraction as described in Ref. [17]. We find

jadirCPj ≤ 1.1% ð95% C:L:Þ; ð50Þ

jϕ − ϕmix þ Im
λb
λsd

j ≤ 1.1% ð95% C:L:Þ: ð51Þ

A simultaneous measurement of adirCP and ϕ − ϕmix will
determine j2EKK þ PAj. A violation of the bound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
adirCP

2 þ
�
ϕ − ϕmix þ Im

λb
λsd

�
2

s
≤ 1.1%

will point to an anomalously enhanced PA. In this case
other CP asymmetries will also be enhanced.
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