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CP violation in D’ — KK
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The direct CP asymmetry a‘éif,, (D° — K¢Kj) involves exchange diagrams which are induced at tree level
in the Standard Model. Since the corresponding topological amplitude Exg can be large, D° — K K is a
promising discovery channel for charm CP violation. We estimate the penguin annihilation amplitude
with a perturbative calculation and extract the exchange amplitude Exx from a global fit to D branching
ratios. Our results are further used to predict the size of mixing-induced CP violation. We obtain
|adt(D® — K¢Kg)| < 1.1% (95% C.L.). The same bound applies to the nonuniversal part of the phase
between the D — D mixing and decay amplitudes. If future data exceed our predictions, this will point to
new physics or an enhancement of the penguin annihilation amplitude by QCD dynamics. We briefly

discuss the implications of these possibilities for other CP asymmetries.
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I. INTRODUCTION

While direct CP violation (CPV) is well established in
the down-quark sector [I-11], CPV has not yet been
observed in the decays of up-type quarks. For the discussion
of CPV in some singly Cabibbo-suppressed D decay it is
convenient to decompose the decay amplitude A as

A
A:lsdAsd_EbAb' (1)

Here 1,=V{,V,, and Ay, = (4, —14)/2 comprise the
elements V;; of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. In the limit 4, = 0 all direct and mixing-
induced CP asymmetries vanish in the Standard Model
(SM). The suppression factor Im% ~ —6 x 107* makes the
discovery of CKM-induced CPV challenging. At the same
time this parametric suppression renders C P asymmetries in
charm decays highly sensitive to physics beyond the SM.

In this paper we study the decay D° — KKj. For this
decay mode A, vanishes in the limit of exact SU(3),
symmetry [12—15], so that the branching ratio is sup-
pressed. However, A, does not vanish in this limit and we
expect |4,/ A,,| to be large. Therefore CP asymmetries in
D’ — K (K may be enhanced to an observable level, even
if the Kobayashi-Maskawa phase is the only source of CPV
in charm decays [14,15]. Moreover, a special feature of
D° — KKy is the interference of the decays cit — 5s and
cit = dd, both of which involve the tree-level exchange of
a W boson (exchange topology E; see Fig. 1). This
interference term gives a contribution to .4, owing to
Ag + A, = —4,. That is, contrary to the widely studied
decays D — n2~,72%2% KT K=, no penguin diagrams are
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needed for nonzero direct or mixing-induced CP asymme-
tries. Moreover, the exchange diagram E is enhanced by a
large Wilson coefficient. These properties make D° —
KK an interesting discovery channel for CPV in the
charm system.

In this paper we calculate the allowed ranges for
the direct and mixing-induced CP asymmetries in
D" — KK, using the results of our global analysis in
Ref. [17]. There are two ingredients which we cannot
extract from this analysis. The first one is the penguin-
annihilation amplitude PA (see Fig. 1), which we estimate
with the help of a perturbative calculation. The other
undetermined quantity is a strong phase 6, whose value,
however, can be determined from the data once both the
direct and mixing-induced CP asymmetries are measured.
The actual size of § is not crucial for the potential to

(a)

(b)

FIG. 1. Topological amplitudes: (a) exchange (E) and (b) pen-
guin annihilation (PA). Reference [16] claimed that D — KK
is Zweig suppressed, but this statement is only true for the PA
diagram.
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discover charm CPV in D° — K¢Kg: depending on
whether |sind| is large or small either the direct or
mixing-induced CP asymmetry will be large.

Our paper is organized as follows. In Sec. II we derive
handy formulas for direct and mixing-induced CP asym-
metries in terms of A,,; and A,. In Sec. III we relate the
CPV observables to topological amplitudes. Subsequently
we estimate the penguin annihilation contribution, which
cannot be extracted from a global fit to current data, with
perturbative methods in Sec. I'V. In Sec. V we present our
phenomenological analysis. Finally, we conclude.

II. PRELIMINARIES

In this section we collect the formulas for the CP
asymmetries. We write

1

V2

accommodating the Bose symmetrization of the two Kg’s
with the factor of 1/y/2. Here we identify Kg=
(K® — K°)/+/2 and assume that the effects of kaon CPV
are properly subtracted from CP asymmetries measured in
D’ — KKy, as described in Ref. [18]. Adopting the
convention CP|D°) = —|D% [19] the amplitude of
D - KKy is

A(DO = KsKs) - A(DO d I_(OKO), (2)

;l = _ﬂidAsd + %Ab (3)

The direct CP asymmetry reads

ar _ AP = 1A A
AV @
Imb Ab
=——Im—|A_,|.

Here and in the following we neglect terms of order A7 and
higher. Furthermore we use the Particle Data Group
convention for the CKM elements, so that A, is real and
positive up to corrections of order 4,,.

For the discussion of mixing-induced CPV we also
follow the conventions of Ref. [19]: with the mass
eigenstates |D;,) = p|D°) + g|D°) we define the weak
phase ¢ governing CPV in the interference between the
D — D mixing and the D° - K¢K decay through

_ A
a A _qiy TETA
- Ay, Ay’
pA pﬂsdl—ym—;
e 6
pllA
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In this paper we focus on CPV effects which are specific to
the decay D° — K K. It is therefore useful to define a CP
phase ¢,,;x which enters all mixing-induced CP asymme-
tries in a universal way:

q

p

_aha_

ei¢mix . 7
p ﬂsd ( )

Comparing Eqgs. (6) and (7) one verifies that ¢,;, coincides
with ¢ if one sets A, to zero in A/.A. In the hunt for new
physics in D — D mixing, which may well enhance ¢,
over the SM expectation ¢,,;, = O(Im4,/4,,), one fits the
CPV data of all available D° decays to a common phase
@mix 120,21]. In the case of D° — K (K, however, we face
the possibility that already the SM contributions lead to the
situation || > |¢pyix|- Comparing Eq. (6) with Eq. (7) one
finds

XA -
1 — A
C T A A i)
_A A A
2’1341 -Asd
= (1 — adin)el=tum), (8)

where we have used Eq. (4), discarding higher-order terms
~(adlr)? as usual. By expanding Eq. (8) to first order in 4,
and ¢ — ¢, We arrive at

/Ib Ab Imb Ab
¢_¢mix:Im7Re =——Re
)“sd Asd |~A| Asd

[Asal- (9)

Equations (5) and (9) form the basis of the analysis
presented in the following sections. In Eqs. (5) and (9)
|A| is trivially related to the well-measured branching ratio:

~\l P(D.K.K) "’
1 /

The experimental value is B(D° — KsKg) = (0.17 +
0.04) x 1073 [22]. The nontrivial quantities entering the
predictions of ad, and ¢ — ¢, are A, and the phase
of Ay,.

The time-dependent CP asymmetry reads

[(D°(r) - KsKs) —T(D°(1) = K¢K)
I(D°(t) = KsKs) + T(D°(t) = KsK)

. t
:a‘élfo—Ar;- (11)

Acp(t) =

Here 7 is the D° lifetime and
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1/lq
Ar=|=(|—

i LQP
Equation (12) contains the mass difference AM and the
width difference AI" between the mass eigenstates D; and
D, through x =7AM and y =7AI'/2. In Egs. (11)
and (12) all quadratic (and higher) terms in tiny quantities

are neglected. In time-integrated measurements, LHCb
measures the quantity [19,23,24]

2
- 1) —a‘g}]ycosqﬁ—xsinqﬁ. (12)

. t
ACP = a(é};)—Al"<—T>, (13)

where (f) is the average decay time. CLEO has
measured [25]

ASEEO = —0.23 £ 0.19. (14)
Recently LHCb has reported the preliminary result [26]

AL = —0.029 + 0.052 + 0.022. (15)

III. TOPOLOGICAL AMPLITUDES

The decomposition of A, and A, in terms of topologi-
cal amplitudes reads [17]

E, +E, — E;
Aygj=—7-—""2, 16
d \/E ( )
2E+ E E E PA
A, = + 1+\/2§+ 3+ (17)
2Eqx + PA
S el (L 18

Here Exx = E + E; + E, is the combination of exchange
diagrams appearing in D° — K*K~. The exchange (E) and
penguin annihilation (PA) diagrams are shown in Fig. 1.
E, 3 account for first-order SU(3) breaking in diagrams
containing s-quark lines (for their precise definition see
Table II of Ref. [17]). As in Ref. [27] PA, denotes the
penguin annihilation diagram with quark ¢ running in the
loop. We use the combinations [15,28,29]

APA, + 2,PA, + A, PA,
A + Ay
2

:ﬂsd(PAS—PAd)‘i‘ (PAS+PAd—2PAb)

(19)
A
= AsaPAvrea == PA. (20)

We recall that E, E| 3, PA, ... are defined for D° — K°K°
or D° - K*K~. Since A,, and A, instead involve KKy,
the factor of —1/+/2 of Eq. (2) appears in Egs. (16)—(18).
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Next we define the strong phase

2E PA
6Earg<Kz+ ) (21)
sd

and the positive quantity

ImA, [2Egx + PA|

R = (22)
Al V2
With Eq. (18) we can write Eq. (9) as
A - 2E PA)/v/2
/,Lsd -Asd
A
= —Im— — Rcos 4. (23)
/Isd
In the same way one finds
adit, = —Rsin 4. (24)

Equations (23) and (24) mean that a3}, and ¢ — ¢,y lie on
a circle with radius R centered at (—Imj—l’l ,0). The allowed

points are parametrized by the phase 8, which we cannot
predict. The actual value of §, however, is of minor
importance for the discovery potential of CPV, because
only controls how the amount of CPV is shared between
adt, and ¢ — ¢ The crucial parameter is R, which
determines the maximal values of |adiL| and |¢p — Ppixl-
Once adf, and ¢ — ¢ are precisely measured one can
determine R through

. Ay \ 2
R = \/acé};)2 + <¢ - ¢mix +Im /Ib> : (25)

sd

The experimental value can then be confronted with the
theoretical estimate presented in the next section. The
impact of our estimate on a‘éi;, and ¢ — ¢ Will be
presented below in Fig. 4.

IV. ESTIMATE OF |PA| AND R

The quantity | Ex k| can be determined from our global fit
to branching ratios [17]. For the calculation of PA we

exploit the large momentum \/;]7 ~1.5 GeV flowing
through the penguin loop in Fig. 1(b) and calculate this
loop perturbatively as in Ref. [14]. Such methods are
routinely used in B physics [30-35], but their applicability
to charm physics is not clear.

We work in a five-flavor theory, so that only current-current
operators appear in the effective Hamiltonian. With Q,=
(is)y_a(5¢)y_n+(ud)y_ys(dc)y_o=2(ib)y_a(bc)y_, and
the Wilson coefficient C, ~ 1.2 we may write
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G
A, = \/—gC2<KsKs|Q2|DO>7 (26)

because the contribution of the color-flipped operator Q; is
highly suppressed. For our estimate of the ratio PA/Eg in
this section we adopt the SU(3), limit and identify Eyg
with E. In this limit we can combine Egs. (26) and (17) into
G 2E + PA
—= Cy(KsKs|Qy|D%) = ———.

V2 V2

The penguin diagram can be written as [36]

(27)

PA=Gr 5,
4

6
X Y (4 + 13— 208 (KK 5|0 D), (28)
=3

2
q

in Ref. [36]. u ~ \/g” is the renormalization scale which
also enters a; and C, in Eq. (28). Q;_¢ are the usual four-
quark penguin operators; we will need

Q46 = (@°cP)y_y Z (qﬂqa)vm- (29)

q=u,d,s,c.b

with the loop function r4, = ri,(g* m2, u*) = ri defined

PA is color suppressed with respect to E and this
suppression is encoded in Eq. (28) through a, ~ 1/N..
The contributions from the matrix elements (Q;s) are
further suppressed and are neglected in the following. We
write (Q4) + (Qs) = —2(M{, + My,) with

MY, = (KsKs/(daqp)v (5¢a) 4l D°). (30)

The other quark flavors in the sum in Eq. (29) contribute to
D’ — KK only through another loop diagram, yielding a
contribution of higher order in ;. With

PErﬁl4+”§4_2’”g4’ (31)
we can write PA in a compact form:
_ % d
PA——GF—CszVA, (32)
/2

where we have invoked the SU(3) - limit to set M¢,, =M}, ,.
The u dependence cancels in p, which furthermore does not
depend on m, in the considered leading order. It is an
excellent numerical approximation to expand p to first
order in m2/qg* and ¢*/m? (while setting m, = 0). The
expanded expression reads

10 2. 2m?2 2¢>° 2, ¢

=——— zIn—. (33
P 9 37 q2+15m%+3nmi (33)

It is worthwhile to discuss how this result translates into an
expression in a four-flavor theory, in which the b quark is
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integrated out at the scale y;, = O(my,): in this alternative
approach the piece —2r5; of Eq. (28) resides in the initial
conditions of the penguin coefficients C5_ generated at y;,.
The four-flavor theory permits the use of the renormaliza-
tion group (RG) to resum the log In(u;/ \/?) to all orders
in perturbation theory, but this resummation is inconsistent
since In(u;/ \/q_2 ) is smaller than the nonlogarithmic terms
in —275.. Without RG summation the four-flavor theory
reproduces exactly the analytic result in Eq. (33), which is
independent of renormalization scale and scheme.

To estimate M¢,, we want to relate it to E using Eq. (27).
After Fierz-rearranging O, we can express the lhs of
Eq. (27) in terms of M{,, and

MZV = <KSKS|(Qaqﬂ)A(aﬁca)V|D0>' (34)
The exchange topology reads [cf. Eq. (27)]

E = GzCy(KsKg|(ud)y_s(dc)y_4|D°) — PA,
as
= —GpCy(M4, + M{,) - GF;C2r§4M“1,A. (35)

To leading order in @, we have therefore E =
—GrCy(M4,, + M%,). For the desired estimate of PA/E
we need M¢,/E. We can place a bound on this quantity
with Eq. (35), if we assume that |[M¢,| is not much larger
than [M¢,, + M¢,|; i.e. we do not consider the case of large
cancellations between M4, and M¢, in E. In view of the
fact that E is numerically large [17] this assumption seems
justified. Writing

Mf\i/A :K(MzV‘FM?J/A)’ (36)

we vary k| between 0 and 2. Now Eq. (35) entails

Md

VA _ K s (37)

E —GpCy(1 + k2 75,)

and thus
a

2F PA| = |2E 1+=2p— 38
2Egg + PA| = |2E]| +2HP1+K%},¢214 (38)
< |2Egg| x 1.3. (39)

Here we have used u= \/? =1.5GeV, my(u) =
0.104 GeV, my(u) = 4.18 GeV, and a,(u) = 0.328. (14,
is evaluated in the naive dimensional regularization (NDR)
scheme.) Inserting finally Eq. (39) into Eq. (22) gives the
upper limit

R < —1.3Im’1—”|2E’“<|

Al V2

(40)
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This bound determines the radius of the circle which
defines the allowed area for (¢ — iy, all) via
Eq. (25). Le. Eq. (40) determines the maximal size of
both |adL| and | — Py | [neglecting the small ImA,, /4,4 in
Eq. (23)]. If future data violate Eq. (40), this will signal new
physics or a dynamical enhancement of PA over the
perturbative result in Eq. (32). Section V discusses how
these two scenarios can be distinguished with the help of
other measurements.

The relation of (¢ m2, u?) to G(s,x) in Ref. [32] is

given as
1 ) u?
—_—— 0 _
3 g m?

m2 —ie ¢?
<q2 ,—2>, (41)

m m

W | =

ra(q* my. ) =

Q

I
2

with an arbitrary mass m?. Note that the —ie prescription is
essential here; an erroneous omission of this small imagi-
nary part results in a numerically large mistake. The
prefactor of G(x,y) in Eq. (41) disagrees with Ref. [14].
We further find that the b-quark contribution —2r5, is
numerically as important as r4, + r5,:

r,(¢%,0,4%) = —0.22 — i1.05, (42)
ra(q? m2,u?) = =0.23 — i1.05, (43)
— 218, (q* mp, i) = =2.02. (44)
9 T . -
| J
71
6l

00 05 10 15 20 25 30 35 40
| EKK /Tfa‘c|

(a)

FIG. 2 (color online).
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V. PHENOMENOLOGY

The last element needed for the calculation of our bound
in Eq. (40) is | Egk|- To find | Eg x| we employ our global fit
to all available branching ratios of D decays to two
pseudoscalar mesons [17]. Note that the main constraint
on this quantity stems from B(D° — K*K~) (see Table III
of Ref. [17]). The D decays entering our fit involve other
topological amplitudes in addition to £ and PA; in the
following we refer to the color-favored tree (T), color-
suppressed tree (C), annihilation (A) and penguin (P)
amplitudes.

We consider two scenarios: in the first scenario the
SU(3) z-limit amplitudes C and E are varied completely
freely. In the second scenario we apply 1/N. counting
[37-39] to the amplitudes, where N. = 3 is the number of
colors. To leading order in 1/N, one can factorize 7 which
results in

G
1 = O af o = ) FET (). (45)

V2

Here a; = 1.06 is the appropriate combination of Wilson
coefficients, m, and f, are the mass and the decay constant
of the pion, respectively, and F5” is the appropriate D — «
form factor. [Recall that the SU(3),-limit amplitudes are
defined for decays into pions.] In our second scenario we
assume that |(C + 8,)/T™|, |(E +64)/T™| < 1.3 [27],
where 8, parametrizes 1/N? corrections to the factorized
annihilation (A) topology [17].

The Ay? profile of |Exg/T™| returned by our global fit
is shown in Fig. 2(a). Figure 2(b) shows the Ay? profile of

9

¢°000 0-002 0,004 0.006 0,008 0.010 0.012 0.014 0.016 0018
R with PA=0

(b)

(a) Ay? profile of |Egkl|. (b) Ay? profile of R [defined in Eq. (22)] for PA = 0. The blue and red

curves correspond to the scenarios without and with 1/N, counting applied to C and E. Note that the red line lies partially on top of

the blue line.
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TABLEL 95% C.L. upper limits (Ay*> = 3.84), with or without
1/N, input for C and E.

with 1/N, without 1/N,
PA=0 PA#0 PA=0 PA#0
|Exg /T < 1.5 2.6
R < 0.004 0.006 0.009 0.011

R for the special case PA = 0, in which the whole effect
comes from the exchange diagram E . The corresponding
95% C.L. bounds on |Eg/T™| and R inferred from Fig. 2
and Eq. (40) are given in Table I and illustrated in Fig. 3.
Note that we do not treat 7 as constant, but also fit the
form factor F2”. Likewise our fit permits B(D? - KsKy)
to float within the experimental errors.

Figure 4 condenses the main results of this paper into a
single plot: the radial lines correspond to fixed values of the
strong phase ¢ in Eqgs. (23) and (24) in the ¢ — qﬁmix—a?:i},
plane. The red and blue discs show the allowed regions for
the two considered scenarios. Note that our bounds depend
on branching ratio measurements only and do not involve
correlations to other CP asymmetries. The black circles
correspond to different values of [2Exx + PA| in Eq. (22).
Future data on ¢ — ¢, and a‘éi}, will allow us to determine
0 and R. The experimental value of R can then be
confronted with the upper limits in Table I to probe the
color counting in Exg and our estimate of PA. New physics
will mimic a dynamical enhancement of PA. In case an
anomalously large value of R is found, one can proceed in
the following way to discriminate between different
explanations:

(i) Several CP asymmetries involve PA, but do not

grow with |E|. For example,

0.014

0.012 ¢

0.010

0.008

0.006

R at 95% CL

0.004

0.002

0.000

small £/
PA=0 PA#0

large £
PA=0 PA#0

FIG. 3 (color online). Theoretical upper bounds on R. Pre-
dictions with (without) 1/N, counting are labeled “small E”
(“large E”). To visualize the contribution from exchange dia-
grams, we also show the result for PA = 0. The case PA # 0 is
based on the estimate in Eq. (40).
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0.015 m—— ‘ -
‘\\6 = —% o = —%:r'l
>
0.010F o it
o 0.005F
©n
g 5
T 0.000f-- =3
8
55 —0.005}
[S]
—0.010F  ,* R
’
l’(s_ﬂ' § == 5_37\'\‘
ol T4 T 2 T4
~0.015 —0.010 —0.005 0.000 0.005 0.010 0.015
¢ - ¢mix

FIG. 4 (color online). Correlation of direct and mixing-induced
CPV for D° — K¢K from Egs. (23) to (25). The one-
dimensional 95% C.L. (Ay?>=3.84) upper limits on
alit(D® — KsKy) and ¢ — ¢y are shown in blue. If in addition
1/N, counting is applied to the topological amplitudes C and E,
the allowed region shrinks to the red area. The black dashed lines
show the radii which are obtained when setting [2Egx+
PA[/2.52 x 107% GeV to the annotated values. The chosen
reference value is the typical size of a factorized tree amplitude
in D decays, T™ =2.52 x 10~ GeV. Further, for the black
dashed lines B(D® — K4Kg) = 0.17 x 1073 is used. The circle is
centered at (—Im(1,)/4,0) = (6 x 1074,0).

adr (D —» K*K"),
alt(D° - zta),

adin(D® - 7%2%), (46)

all depend on P+ PA and are expected to be
enhanced with PA as well, unless the increase is
compensated by —P. But in this case instead

adr (Dt — KsK+),
a®(Df - Ksn"),

adr(Df - K*n°), (47)

which involve P rather than P + PA, become large.
Thus a breakdown of color counting in Exg can be
distinguished from an enhanced PA.
(i) PA can be enhanced by QCD dynamics or by new
physics. In the first case the CP asymmetries in
Egs. (46) and (47) will still obey the sum rules of
Ref. [27]. New physics will violate these sum rules if
it couples differently to down and strange quarks.
We close this section by comparing our result with other
estimates of adif (DY — K¢Kj) in the literature. Using
generic SU(3), counting Ref. [14] quotes
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2|Vcbvuh|

lafp(D° — KsKs)| <
CP 8| VCS VMS |

~0.6%, (48)

where ¢ quantifies SU(3), breaking. Our result in Table I
agrees with this estimate. However, if the possibility of a
large, 1/N -unsuppressed |Eg/| is realized in nature, |ad,
can be twice as large.

Reference [15] relates adiL(D? — K¢Kg) to Aadl, =
adlr (K*K~) — adit,(z"x~). With present data this relation
reads

. 3 .
ladin] < 5% Aall, = 0.4%. (49)
This estimate assumes that two matrix elements corre-
sponding to different SU(3) representations are similar in
magnitude. We remark that there is no strict correlation
between allL(D? — K¢Kg) and AadlL, because the two
quantities involve different topological amplitudes.

VI. CONCLUSIONS

We have studied the direct and mixing-induced CP
asymmetries in D° — K¢K in the Standard Model. The
allowed region for the corresponding two quantities ad,
and ¢ — ¢™* is a disc whose radius can be calculated in
terms of the exchange amplitude Exg and the penguin
annihilation amplitude PA. We estimate PA/Egx with a
perturbative calculation and obtain Exx from a global fit to
D branching fraction as described in Ref. [17]. We find

ladr] < 1.1%

(95% C.L.), (50)

PHYSICAL REVIEW D 92, 054036 (2015)

|¢—¢mix+lmj—b|ﬁl.l% (95% C.L.). (51)
sd

A simultaneous measurement of alf, and ¢ — ¢ will
determine |2Egg + PA|. A violation of the bound

. A\ 2
a‘é};—"z + <¢ - ¢mix + Imb> < 1.1%
)“sd
will point to an anomalously enhanced PA. In this case
other CP asymmetries will also be enhanced.
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