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We have recalculated the Mikaelian and Smith radiative corrections to the Dalitz decay π0 → eþe−γ
beyond the soft-photon approximation, i.e. over the whole range of the Dalitz plot and with no restrictions
on the radiative photon. In contrast to the previous calculations, we did not neglect the terms of order higher
than Oðm2Þ and also included the one-photon irreducible contribution at one-loop level and the virtual
muon loop contribution. The results can then be used also for heavier particles in the final state.
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I. INTRODUCTION

Right after the process π0 → γγ, the second most
important decay channel of a neutral pion is the Dalitz
decay π0 → eþe−γ with a branching ratio ð1.174�
0.035Þ% [1]. This decay was named after Richard H.
Dalitz, who first studied it in Ref. [2]. Experimental data of
this process provide information about the semi-off-shell
pion transition form factor F π0γγ�ðQ2=M2Þ in the timelike
region and in particular its slope parameter a.
Radiative corrections to the total decay rate of the Dalitz

decay π0 → eþe−γ were first addressed by D. Joseph [3].
The pioneering study of the corrections to the differential
decay rate was done by B. E. Lautrup and J. Smith [4] using
the soft-photon approximation. This analysis was soon after
extended by K. O. Mikaelian and J. Smith [5] by hard-
photon corrections to the whole range of the bremsstrah-
lung photon energy. As one of the main results of their
work, the table of radiative corrections δðx; yÞ to the
leading-order (LO) differential decay rate was presented.
It turned out that such a table would be very useful for the

Monte Carlo simulations in experiments covering π0

decays, e.g., the NA48 experiment at CERN [6]. In
practice, for the table of values δðx; yÞ, which was
published in Ref. [5], an interpolation or extrapolation
procedure needs to be used in order to get the radiative
correction at any desired point of the Dalitz plot. This might
lead to a large uncertainty.
We have therefore recalculated, generalized, and

extended the results presented in Ref. [5] and prepared
the code which can give a value at any kinematical point
ðx; yÞ. As we have not neglected the higher-order terms in
the electron mass and included also the muon loop
contribution to the vacuum polarization insertion correc-
tion, our result can be in principle also applied to the other
related processes. The decay of an eta meson to a muon pair

and a photon, where the masses of the final state particles
are not anymore negligible in comparison to the decaying
pseudoscalar, is such an example. On the other hand, when
an eta meson and its decays come into play, some
peculiarities inevitably appear. We comment on this a little
in the present work but postpone the details and the results
of the radiative corrections for this case to the paper in
preparation. Nevertheless, we try to be as general as
possible considering the presented results so one can utilize
the formulas without modifications later on.
To proceed even further, we have also included the one-

loop one-photon irreducible contribution, which was con-
sidered to be negligible in the original paper [5] due to its
proportionality to the lepton mass. This statement had been
corrected in Ref. [7] many years before the debate about
this issue was closed; see, e.g., Refs. [8,9]. We provide here
a complete calculation of this contribution making no
approximations considering the lepton masses and energy
of the photon. We show that this correction is indeed
important and changes significantly the values of entries
stated in Table I of Ref. [5] especially for a large invariant
dilepton mass.
Let us also mention that a systematic treatment of the

next-to-leading-order (NLO) corrections to the Dalitz
decay of a neutral pion in the framework of chiral
perturbation theory with dynamical leptons and photons
was studied in Ref. [10]. Here, wewill also use some results
of this work.
It is worth it to notice that throughout the paper we stick

to the notation which was used in Ref. [5] using only
minor modifications. Even though some of the names
may appear to be clumsy, we believe that it would be
confusing to do otherwise. Naturally, such an approach is
also very convenient for the reader who is familiar with the
original work.
Our paper is organized as follows. We recapitulate first

some basic facts about the LO differential decay width
calculation in Sec. II. Then we proceed to the review of the
NLO radiative corrections in the QED sector in Secs. III,
IV, and V. In particular, in Sec. III we discuss the virtual
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corrections including the muon loop contribution, in
Sec. IV we introduce the one-photon irreducible contribu-
tion, and in Sec. V we describe the bremsstrahlung
correction calculation. Some technical details together with
extensive results concerning the bremsstrahlung contribu-
tion to the NLO correction have been moved to the
Appendixes.

II. LEADING ORDER

First, let us briefly introduce some basic notation. In
what follows we denote the 4-momenta of the neutral pion
(of the massM), electron (massm), positron, and photon by
P, p, q, and k, respectively. We also introduce common
kinematic variables x and y defined as

x ¼ ðpþ qÞ2
M2

; y ¼ −
2

M2

P · ðp − qÞ
ð1 − xÞ ; ð1Þ

where x is a normalized square of the total energy of the
eþe− pair in their center-of-mass system (CMS) (or simply
of the electron-positron pair invariant mass) and y has the
meaning of the rescaled cosine of the angle between the
directions of the outgoing photon and positron in the eþe−
CMS. If we introduce ν ¼ 2m=M and

β ¼ βðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ν2

x

r
; ð2Þ

we can write the limits on x and y as

x ∈ ½ν2; 1�; y ∈ ½−β; β�: ð3Þ

The leading-order diagram of the Dalitz decay π0 → eþe−γ
is shown in Fig. 1. The shaded blob corresponds to the
neutral pion semi-off-shell transition form factor1

F
�
Q2

M2

�
¼ F π0γγ�

�
Q2

M2

�
≡ F π0γγ�ð0Þf

�
Q2

M2

�
; ð4Þ

which is related to the double off-shell transition form
factor F π0γ�γ� ðQ2

1=M
2;Q2

2=M
2Þ¼F π0γ�γ� ðQ2

2=M
2;Q2

1=M
2Þ,

defined asZ
d4xeil·xh0jT½jμðxÞjνð0Þ�jπ0ðPÞi

¼ −iϵμναβlαPβF π0γ�γ� ðl2=M2; ðP − lÞ2=M2Þ; ð5Þ
by F π0γγ� ðQ2=M2Þ ¼ F π0γ�γ� ð0; Q2=M2Þ. In Eq. (4), f is a
dimensionless function, which can be linearly expanded in
the chiral perturbation theory in terms of the slope
parameter a as follows:

fðzÞ≃ 1þ az: ð6Þ

In our case it then holdsQ2 ¼ ðP − kÞ2 ¼ M2x, and for the
leading-order matrix element in the QED expansion, we
can write

iMLOðp; q; kÞ

¼ e3

M2x
F ðxÞϵ�ρðkÞf2m½ūðp;mÞγρkγ5vðq;mÞ�

þ ½ūðp;mÞ½γρðk · pÞ − pρk�γ5vðq;mÞ�
− ½ūðp;mÞ½γρðk · qÞ − qρk�γ5vðq;mÞ�g: ð7Þ

Summing the modulus squared of the previous result over
the fermion spins and photon polarizations and taking into
account that, in general, in terms of variables x and y it
holds

dΓðx; yÞ ¼ M
ð8πÞ3 jMðx; yÞj2ð1 − xÞdxdy; ð8Þ

the differential decay rate then reads

d2ΓLO

dxdy
¼ M

ð8πÞ3
e6M2

2
jF ðxÞj2 ð1 − xÞ3

x

�
1þ y2 þ ν2

x

�

¼
�
α

π

�
jfðxÞj2ΓLO

π0→γγ

ð1 − xÞ3
4x

�
1þ y2 þ ν2

x

�
: ð9Þ

Here, we have used the LO expression for the decay rate of
the neutral pion main decay mode

ΓLO
π0→γγ

¼ e4M3

64π
jF ð0Þj2: ð10Þ

Integrating (9) over y, we find

dΓLO

dx
¼
�
α

π

�
jfðxÞj2ΓLO

π0→γγ

8β

3

ð1 − xÞ3
4x

�
1þ ν2

2x

�
: ð11Þ

Moving beyond the leading order, it is convenient to
introduce the NLO correction δ to the LO differential decay

FIG. 1. Leading-order diagram of the Dalitz decay π0 → eþe−γ
in the QED expansion.

1As it also follows from the definition (4), we will use
shortly F ð0Þ ¼ F π0γγ� ð0Þ, which is complementary to the
double off-shell transition form factor taken at the photon point
F π0γγ� ð0Þ ¼ F π0γ�γ� ð0; 0Þ≡ F π0γγ , which at the LO of the chiral
expansion is equal to FLO

π0γγ
¼ −1=ð4π2FÞ.
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width, which can be in general defined as (in the case of the
two-fold differential decay width)

δðx; yÞ ¼ d2ΓNLO

dxdy

. d2ΓLO

dxdy
ð12Þ

or (in the one-fold differential case)

δðxÞ ¼ dΓNLO

dx

. dΓLO

dx
: ð13Þ

Such a correction can be divided into three parts emphasiz-
ing its origin

δ ¼ δvirt þ δ1γIR þ δBS: ð14Þ

Here, δvirt stands for the virtual radiative corrections; δ1γIR

for the one-photon irreducible contribution, which is
treated separately from δvirt in our approach; and δBS for
the bremsstrahlung. Having knowledge of δðx; yÞ, we can
calculate δðxÞ as a trivial consequence of previous equa-
tions using the prescription

δðxÞ ¼ 3

8β

1

ð1þ ν2

2xÞ

Z
β

−β
δðx; yÞ

�
1þ y2 þ ν2

x

�
dy: ð15Þ

In the following sections, we discuss the individual con-
tributions one by one.

III. VIRTUAL RADIATIVE CORRECTIONS

From the interference terms of the LO diagram shown in
Fig. 1 with the one-loop diagrams presented in Fig. 2, we
get NLO virtual radiative corrections which can be written
as [5]

δvirtðx; yÞ ¼ 2Re

�
−ΠðxÞ þ F1ðxÞ þ

2F2ðxÞ
1þ y2 þ ν2

x

�
ð16Þ

or [through the formula (15)] as

δvirtðxÞ ¼ 2Re

�
−ΠðxÞ þ F1ðxÞ þ

3F2ðxÞ
2ð1þ ν2

2xÞ

�
: ð17Þ

For the correction stemming from the vacuum polarization
insertion in Fig. 2(a), we can write

ΠðxÞ ¼ ΠeðxÞ þ ΠμðxÞ: ð18Þ

Here, we have explicitly written not only the contribution
coming from the electron loop as it was done in Ref. [5] but
also from the muon loop. This becomes both necessary and
convenient when one goes beyond the decay π0 → eþe−γ,
which we discuss throughout this text, and proceeds to the
process η → μþμ−γ. In the end, we might then simply do

the exchange me↔mμ (me and mμ stand for the electron
and muon mass, respectively) in the expression for the
correction δ to vary the final state lepton masses. Let us
remark that, independently of the considered processes, the
loop with the lightest fermion is of the greatest importance.
Thus, taking only the electron loop into account [i.e.
leaving the muon part in (18)] and performing simply
the tempting lepton mass substitution in the whole expres-
sion, we would miss out a very important contribution.
Obviously, the vacuum polarization insertion defined in a
way shown in (18) stays after such an operation intact, as
desired. The other option would be to treat separately the
final state lepton masses m and the masses of the particles
in the vacuum polarization insertion loops me and mμ. This
more universal approach was used in the code which comes
with the paper. Let us now introduce for the later
convenience

γ ¼ γðxÞ ¼ 1 − βðxÞ
1þ βðxÞ : ð19Þ

The individual terms used in (18) are then defined as

ΠlðxÞ ¼
α

π

�
−
1

9
þ 1

3

�
1þ ν2l

2x

�
ð2þ βl log½−γl�Þ

�
: ð20Þ

In the above formula, l stands for e or μ in the loop and
changes the meaning of the so far used electron mass m in
the definitions of ν, β, and γ to me or mμ. Unlike in Ref. [5]
where only the real part of (20) above the threshold x ¼ ν2l
is shown, we quote here the full expression valid in all
kinematical regimes. This is necessary to get right the
contribution from the charged fermion loop when the
transferred momentum is not sufficiently large to produce
the real pair, i.e. for x < ν2l, and lacks therefore the
imaginary part. This situation for instance appears (at least
for a part of the kinematical region) when the pseudoscalar
decays to the electron-positron pair via the muon loop. For
the purpose of real algebra used in the code (i.e. to avoid
complex logarithms and so on), we can extract the real part
of (20). For an arbitrary mass of the charged loop fermion,
we find

(a) (b)

FIG. 2. Virtual radiative corrections for π0 → eþe−γ process:
vacuum polarization insertion (a) and correction to the QED
vertex (b).
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Refβl log½−γl�g

¼ −2jβlj
�
θðβ2lÞarctanhβl þ θð−β2lÞ arctan

1

jβlj
�
: ð21Þ

In the following, we stick exclusively back to the process
π0 → eþe−γ, and m then denotes the outgoing electron
mass as before. Finally, for the electromagnetic form
factors F1ðxÞ and F2ðxÞ stemming from the QED vertex
correction in Fig. 2(b), we have

F1ðxÞ ¼
α

π

�
−1 −

1þ 2β2

4β
logð−γÞ

−
1þ β2

2β

�
Li2ð1 − γÞ þ 1

4
log2ð−γÞ

−
π2

4
− iπ logð1 − γÞ

�

þ
�
1þ 1þ β2

2β
logð−γÞ

�
log

m
λ

�
ð22Þ

and

F2ðxÞ ¼
α

π

ν2

4xβ
log ð−γÞ: ð23Þ

In the above formulae, Li2 stands for the dilogarithm, and λ
is the infrared cutoff. To extract the real parts from the
previous terms (22) and (23) (in a sense of applying
the operator Re), in the kinematically allowed region
where M2x ≥ 4m2, we use logð−γÞ ¼ logðγÞ þ iπ, since
0 ≤ γ ≤ 1. Thus, it is straightforward to see that the real
parts of F1ðxÞ and F2ðxÞ indeed coincide with the form
factors stated in Ref. [5] including the Coulomb term
proportional to −π2=2.

IV. ONE-PHOTON IRREDUCIBLE VIRTUAL
RADIATIVE CORRECTION

One-photon irreducible (1γIR) contributions were exten-
sively studied in Ref. [11] in connection with the brems-
strahlung correction to the π0 → eþe− process. Here, we
will summarize the most important results which are
necessary to proceed toward our purpose considering
NLO corrections to the decay π0 → eþe−γ. Let us empha-
size that this contribution was not included in the calcu-
lations performed in Ref. [5]. On the other hand, it was
shown later on in Ref. [7] within the limit m → 0 that there
is no point in treating the 1γIR correction as negligible. In
the following we show the results of the calculation beyond
this massless limit. For the reasons specified in the previous
sentences, we have devoted to this contribution a separate
section, even though it is of course just one additional
virtual radiative correction.

Until now we have not considered any particular form
of the semi-off-shell form factor F ðxÞ in our calculations.
To get the one-photon irreducible contribution in a closed
form, it is though necessary to choose a concrete form of
F π0γ�γ� . Accordingly, we should consider at this moment a
general double off-shell pion transition form factor
F π0γ�γ�ðl2=M2; ðP − lÞ2=M2Þ, where l stands for a loop
momentum. In Fig. 3, we can see the LO of the considered
contribution in chiral perturbation theory. In such a limit,
we take the constant FLO

π0γγ
¼ −1=ð4π2FÞ as the local form

factor, and it is thus clear due to the power counting that a
counterterm is needed. The finite part of such a counter-
term renormalized at scale μ is governed by the parameter
χðrÞðμÞ, which corresponds to the high-energetic behavior
of the complete form factor. This can be theoretically
modeled, e.g., by the lowest-meson-dominance approxi-
mation to the large-NC spectrum of vector meson reso-
nances yielding the value χðrÞðMρÞ ¼ 2.2� 0.9 [12],
which can be further used for numerical results. The
dependance of the correction δ1γIR on χðrÞ can be neglected
for the values given by relevant models as well as
experiments, when a decay with the electrons in the final
state is taken into account. We will comment on this in the
end of this section. Let us emphasize in a more straight-
forward way that using “only” the LO expansion of the
form factor is compensated by the effective value χðrÞ
which differs for particular models. One gets the model
corresponding value of χðrÞ for instance from the matching
to the full calculation. In this sense one loses no infor-
mation. On the contrary, the model dependence of any
such result can be conveniently altered easily just by
changing the value of χðrÞ.
The total matrix element covering all the diagrams

represented in Fig. 3 can be written in such a form which
manifestly satisfies the Ward identities for the conserved
electromagnetic vector current

(a) (b)

FIG. 3. One-loop one-photon irreducible contribution LO Feyn-
man diagrams for π0 → eþe−γ process considering the QED and
χPT expansion: triangle diagrams and related counterterms (a) and
box diagram (b). Note that “cross” accounts for a diagram with a
photon coming from the outgoing positron line. “CT” then stands
for two counterterm diagrams necessary to compensate the UV
divergent parts of the related Feynman diagrams.
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iM1γIRðp; q; kÞ ¼ −
ie5

2
FLO

π0γγ
ϵ�ρðkÞ

× fPðx; yÞ½ðk · pÞqρ − ðk · qÞpρ�½ūðp;mÞγ5vðq;mÞ�
þ Aðx; yÞ½ūðp;mÞ½γρðk · pÞ − pρk�γ5vðq;mÞ�
− Aðx;−yÞ½ūðp;mÞ½γρðk · qÞ − qρk�γ5vðq;mÞ�
þ Tðx; yÞ½ūðp;mÞγρkγ5vðq;mÞ�g: ð24Þ

Here, P, A, and T are scalar form factors, the explicit form
of which can be found in Appendix A of Ref. [11].
To get the NLO one-photon irreducible part of the

correction δ, we need to consider the interference term
of LO matrix element (7) and the 1γIR contribution (24)
and sum it over the photon polarizations with the result

MLO
1γIRðx; yÞ≡

X
polar

½MLOðp; q; kÞ��M1γIRðp; q; kÞ

¼ −
ie8M3

8

ð1 − xÞ2
x

F �ðxÞFLO
π0γγ

f4νTðx; yÞ
þ ½Aðx; yÞM½xð1 − yÞ2 − ν2� þ ðy → −yÞ�g:

ð25Þ
Putting the above formula into (8) and (12) and normalizing
to the LO two-fold differential decay width (9), we get
finally

δ1γIRðx; yÞ ¼ 2RefMLO
1γIRðx; yÞg

Mð1 − xÞ
ð8πÞ3

. d2ΓLO

dxdy

¼ 2Re

�
−
α

π

FLOð0Þ
F ðxÞ

iπ2M

½1þ y2 þ ν2

x �
f4νTðx; yÞ

þ ½Aðx; yÞM½xð1 − yÞ2 − ν2� þ ðy → −yÞ�g
�
:

ð26Þ

For our purpose we can safely set F ðxÞ≃ FLOð0Þ in the
previous formula, considering only the leading order of the
chiral expansion; see also (6) assuming the slope a is small.
It should be mentioned, though, that such an approximation
is only reasonable for the Dalitz decay of a neutral pion. For
the decays of an eta meson, one should be more cautious
and use a better treatment of the full form factor.
Similarly, the dependence on the parameter χðrÞ cannot

be neglected when ν becomes significant. Indeed, consid-
ering the full expression (A.5) from Ref. [11] for the form
factor Tðx; yÞ, one gets for the χ-dependent contribution to
δ1γIRðx; yÞ from (26)

δ1γIR
χðrÞ ðx; yÞ ¼ −

α

π

FLOð0Þ
F ðxÞ

4ν2χðrÞðμÞ
ð1 − xÞð1 − y2Þ

1

½1þ y2 þ ν2

x �
:

ð27Þ

Thus, e.g., for the decay η → μþμ−γ, the one-photon
irreducible contribution may be considerably model de-
pendent. This is, however, not the case for the process
π0 → eþe−γ where the contribution given in (27) is sup-
pressed in comparison to the other terms in (26).

V. BREMSSTRAHLUNG

In this section we recapitulate the approach used in
Ref. [5] for the bremsstrahlung correction calculation. We
think it is useful and convenient to rewrite the whole story
in a more detailed way so it is transparent and easily
understood. As usual, one can then build on that when a
few more pieces come into play. In the Appendixes we then
provide the results themselves. Note also that, especially in
this section, we restrict ourselves to the original notation
used in the work [5].
The diagrams which contribute to the Dalitz decay

bremsstrahlung and are thus important to cancel the IR
divergences stemming from the virtual corrections dis-
cussed in Sec. III are shown in Fig. 4. The corresponding
invariant matrix element (including cross terms) can be
written in the form

iMBS ¼ ūðpÞ½Iρσðk; lÞ þ Iσρðl; kÞ�vðqÞϵ�ρðkÞϵ�σðlÞ; ð28Þ

where2

Iαβðk; lÞ ¼ −i5e4F
�ðlþ pþ qÞ2

M2

�
εðlþpþqÞðkÞμα

ðlþ pþ qÞ2

×

�
γβ

ðlþ pþmÞ
2l · pþ iϵ

γμ − γμ
ðlþ q −mÞ
2l · qþ iϵ

γβ
�
:

ð29Þ
The form factor F ððlþ pþ qÞ2=M2Þ can be expanded
(assuming a is small) in the following way:

F
�ðlþ pþ qÞ2

M2

�
≃ F ðxÞ

�
1þ a

2l · ðpþ qÞ
M2

�
: ð30Þ

Thus, for the process π0 → eþe−γ, it can be approximated
by F ðxÞ, taking into account only the leading order in the

2We use the shorthand notation for the product of the Levi-
Civitá tensor and 4-momenta in which εðkÞ… ¼ εμ…kμ.
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chiral expansion. Let us also introduce Tr for the rescaled
matrix element squared and summed over all spins and
polarizations of final states by the relation

jMBSj2 ≡
X
sp;pol

jMBSj2 ≡ e8

4
jF ðxÞj2Tr: ð31Þ

Inasmuch as an additional photon comes into play, it is
convenient to introduce a new kinematic variable which
describes the normalized invariant mass squared of the two
photons,

xγ ¼
ðkþ lÞ2
M2

: ð32Þ

It has the similar meaning as x in the case of the electron-
positron pair. The limits on xγ are

λ2

M2
≤ xγ ≤ xmax

γ ≡ 1þ x −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xþ y2

β2
ð1 − xÞ2

s
: ð33Þ

The contribution of the bremsstrahlung to the next-to-
leading order can be described [according to (12)] by the
correction

δBSðx; yÞ ¼ d2ΓBS

dxdy

. d2ΓLO

dxdy
; ð34Þ

in which, in agreement with Ref. [5], we can write

d2ΓBS

dxdy
¼ ð1 − xÞ

4Mð2πÞ8
π3M4

16

Z
J½jMBSj2�dxγ

¼ jfðxÞj2
64

�
α

π

�
2

ΓLO
π0→γγ

ð1 − xÞ
Z

J½Tr�dxγ: ð35Þ

The above used operator J is defined for an arbitrary
invariant fðk; lÞ of the momenta k and l as follows:

J½fðk; lÞ� ¼ 1

2π

Z
d3k
k0

d3l
l0

fðk; lÞδð4ÞðP − p − q − k − lÞ:

ð36Þ

Finally, putting the LO differential decay width expression
(9) and the previous result (35) into (34), we get

δBSðx; yÞ ¼ 1

64

�
α

π

�
4x

ð1 − xÞ2
R
J½Tr�dxγ

½1þ y2 þ ν2

x �
: ð37Þ

In the remaining part of this section, we discuss the way the
integral

R
J½Tr�dxγ is treated. Most of the explicit formulas

are then moved to the Appendixes.
Being on shell (k2 ¼ 0 ¼ l2) and in the diphoton center-

of-mass system where ~P − ~p − ~q ¼ 0ð¼ ~kþ ~l≡ ~rÞ, we
find

J½fðk; lÞ� ¼ð~r¼0Þ 1
4π

Z
dΩfðk; ~kÞ ¼ 1

4π

Z
dΩfð~l; lÞ: ð38Þ

Here, we have used ~l to mark the 4-momentum l with the

opposite momentum direction; i.e. whenever l ¼ ðl0;~lÞ,
then ~l ¼ ðl0;−~lÞ. We can come back to the invariant form in
a known way through

2l0 ¼ k0 þ l0 ¼ð~r¼0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ lÞ2

q
¼ M

ffiffiffiffiffi
xγ

p ð39Þ

or, for example, due to

p0 ¼
ðk0 þ l0Þp0

ðk0 þ l0Þ
¼ð~r¼0Þ ðkþ lÞ · p

M ffiffiffiffiffixγp : ð40Þ

If we follow the notation of Ref. [5], we define the
propagator denominators in the following way
(suppressingþ iϵ part for now):

A ¼ l · q; B ¼ l · p; C ¼ k · q; D ¼ k · p;

E ¼ ðpþ qþ lÞ2; F ¼ ðpþ qþ kÞ2: ð41Þ

Not only is the whole amplitude invariant under the
interchange of the two photons [and thus of k and l in
(28)], but also the operator J possesses the same symmetry
which can be written for an arbitrary function of the
propagator denominators (41) as

J½fðA;B;C;D; E; FÞ� ¼ J½fðC;D; A; B; F; EÞ�: ð42Þ

The interchange of p and q (which is also a relevant
symmetry in our case) must be compensated on the level of
the operator J by changing the y sign; thus,

J½fðA;B;C;D;E;FÞ� ¼ J½fðB;A;D;C;E;FÞ�jy→−y: ð43Þ

There are also some useful identities which follow from
the definitions (41) such as

E − 2A − 2B ¼ F − 2C − 2D ¼ M2x; ð44Þ

FIG. 4. Bremsstrahlung corrections for π0 → eþe−γ process.
Needless to say, cross stands for the diagrams with outgoing
photons interchanged.
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F þ 2Aþ 2B ¼ Eþ 2Cþ 2D ¼ M2ð1 − xγÞ ð45Þ

and

Aþ C ¼ M2

4
½ð1 − xÞð1þ yÞ − xγ�; ð46Þ

BþD ¼ M2

4
½ð1 − xÞð1 − yÞ − xγ�;

¼ ðAþ CÞjy→−y ð47Þ

Eþ F ¼ M2ð1þ x − xγÞ: ð48Þ

It is convenient to know the above relations for two reasons.
First, we see that we can simply trade one of the above
defined variables for the others, and thus only two more
independent variables in addition to x, y, and xγ (e.g., A and
B) are necessary to describe the kinematics of our decay.
On the other hand, we realize that some special combina-
tions of the variables A;…; F are invariant with respect to
the acting of the operator J (i.e. they depend only on x, y,
and xγ). We can also combine the previous formulas to get
some other J-invariant combinations. If we consider, for
example, that

A ¼ ðAþ CÞ − 1

2
½ðEþ 2Cþ 2DÞ − E − 2D�; ð49Þ

we find

E
2
− AþD ¼ M2

4
½1þ x − xγ − yð1 − xÞ�: ð50Þ

Such expressions are useful when we want to reduce the
complicated J terms, arising naturally during the calcu-
lation of the invariant matrix element squared, to the basic
ones which are simple to handle. First, we use the above
stated relations to simplify the numerators [e.g., we get rid
of A in a term like A=ðDEÞ using the relation (50)].3 Then
also the denominators are treated. For example, consider
the term J½1=ðACEFÞ�. Then

1

ACEF
¼ 1

ðAþ CÞ
1

ðEþ FÞ
ðAþ CÞðEþ FÞ

ACEF

¼ 1

ðAþ CÞðEþ FÞ
�

1

AE
þ 1

AF
þ 1

CE
þ 1

CF

�
:

ð51Þ

After applying the operator J and using the symmetry (42),
we find

J

�
1

ACEF

�
¼ 2

ðAþ CÞðEþ FÞ
�
J

�
1

AE

�
þ J

�
1

CE

��
: ð52Þ

All necessary reductions of this type are summarized in
Appendix B, except for such terms which one can get using
the discussed symmetries (42) and (43). The computational
methods used to calculate the basic terms are introduced in
Appendix C. For the list of the results for these integrals,
see Appendix D. Here, in comparison to Ref. [5], we
include also the new term J½1=ðA2E2Þ� which appears due
to the fact that Oðν4Þ terms were not neglected in our
approach. The completely reduced rescaled matrix element
squared Tr, which represents in terms of J½Tr� an important
ingredient for the bremsstrahlung correction δBSðx; yÞ
[cf. (37)], is presented in Appendix A. We believe we
provide here the results in a more refined way in com-
parison with Ref. [5].
The last step is the integration over xγ. There are basic

integrals which behave like 1=xγ and are divergent when this
integration is performed if no xγ appears in the numerator to
compensate it. The essential divergent integrals are J½1=A2�
and J½1=ðABÞ�. The divergent part of integrals like
J½1=ðA2EÞ� and J½1=ðA2E2Þ� can then be written in terms
of these essential ones. For example, using (44) we get

1

A2E
¼ 1

M2x

�
1

A2
−

2

AE
−

2B
A2E

�
: ð53Þ

Needless to say, there are also A → B counterparts of the
mentioned integrals. This unwelcome behavior can be
extracted from the Tr expression to get the convergent part
TrC, which can be treated numerically, and the divergent part
TrD, which should be treated analytically. In the former case,
we can set λ → 0, and the lower bound on xγ is then zero. In
the latter case, the cutoff λ has to be preserved.
Finally, as expected, the sum of the divergent part of the

bremsstrahlung correction δBSD ðx; yÞ, the explicit form of
which can be found in (A4), and the divergent part of
virtual correction δvirtðx; yÞ, represented in the following
formula by the electromagnetic form factor F1ðxÞ, in
particular

δBSD ðx; yÞ þ 2RefF1ðxÞg; ð54Þ

is IR finite. In other words, terms proportional to logm=λ
cancel each other in the final formula of the correc-
tion δðx; yÞ.
In the end of this section, let us go back to Eq. (30). In

cases when the slope a is no longer negligible in com-
parison to 1, one should consider the entire right-hand side
of (30) instead of onlyF ðxÞ alone. It is then necessary to go
beyond the approach used in Ref. [5]. If we square the

3The combination (50) is of course in some minimalistic sense
redundant for the considered procedure, since we can always
make a two-step substitution instead. In such a case, we would
trade A for C using (46) and then C for E and D using (45).
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bremsstrahlung matrix element (28), we get for the simple
case with a ¼ 0 which we have treated so far

jMa¼0
BS j2 ¼ jIk;l þ Il;kj2 ¼ jIk;lj2 þ jIl;kj2 þ 2I�k;lIl;k: ð55Þ

Here, we have denoted

Ik;l ≡ ūðpÞIρσa¼0ðk; lÞvðqÞϵ�ρðkÞϵ�σðlÞ ð56Þ

and likewise for Il;k. Using the building blocks of the
“no-slope” matrix element modulus squared (55) and
considering the expansion (30), we find the correction
for the bremsstrahlung expression:

jMa≠0
BS j2 ¼ ½1þ að1 − x − xγÞ�jMa¼0

BS j2

þ a
ðE − FÞ
M2

ðjIk;lj2 − jIl;kj2Þ: ð57Þ

If we apply the operator J and take into account the
symmetry (42), the previous formula can be boiled down to

J½jMa≠0
BS j2 − jMa¼0

BS j2�

¼ 2a

�
ð1 − x − xγÞJ½I�k;lIl;k� þ 4J

�ðAþ BÞ
M2

jIk;lj2
��

:

ð58Þ
This expression can be calculated along the same lines as
J½Tr�. One then gets a similar expression to TrC in (A2)
including some new integrals. These need to be calculated
in addition to the known basic terms. Note that there is no
divergent part in (58) which needs to be treated separately.
The above correction does not need to be considered in

the decay π0 → eþe−γ, so we do not present the related
results in this paper. On the other hand, it becomes
important when treating the eta meson decays.

VI. RESULTS

For the reader’s convenience, we put here together the
individual pieces (16), (26), and (37) and write the overall
NLO correction

δðx; yÞ ¼ δvirtðx; yÞ þ δ1γIRðx; yÞ þ δBSðx; yÞ

¼ 2Re

�
−ΠðxÞ þ F1ðxÞ þ

2F2ðxÞ
1þ y2 þ ν2

x

−
�
α

π

�
M

½1þ y2 þ ν2

x �
ðiπ2Þf4νTðx; yÞ

þ ½Aðx; yÞM½xð1 − yÞ2 − ν2� þ ðy → −yÞ�g
�

þ 1

64

�
α

π

�
4x

ð1 − xÞ2
R
J½TrC�dxγ

½1þ y2 þ ν2

x �
þ δBSD ðx; yÞ:

ð59Þ

Here, the convergent part of the rescaled bremsstrahlung
invariant matrix element squared (to be integrated over xγ
numerically) TrC is given by (A2), and the analytically
integrated divergent part of the bremsstrahlung correction
δBSD ðx; yÞ is shown in (A4). Let us recall that the explicit
formulas for the scalar form factors A and T can be found in
Appendix A of Ref. [11].
Taking the result (59) and using the formula (15), we get

the overall correction to the one-fold differential leading-
order decay width, which is shown in Fig. 5. For com-
parison, also the sum δvirtðxÞ þ δBSðxÞ, which would have
corresponded to the correction presented in the original
paper [5] if the Oðν4Þ terms and the muon loop had not
been omitted, and one-photon irreducible contribution δ1γIR

are shown. We see that in the case of the decay π0 → eþe−γ
the 1γIR correction is negative for the whole range of
values of x and enhances thus the effect of the sum
δvirtðxÞ þ δBSðxÞ which is also negative in a wide range
of x.
Taking into account all the discussed contributions, a

similar table of values of correction δðx; yÞ, as it was
provided in the original work [5], can be produced at the
very same points according to (59); see Table I.
Considering the contributions introduced in this work
but left out in Ref. [5], the 1γIR correction is the most
important one, especially for large x. The correction of
the old Mikaelian and Smith values is significant and
greater than 10% already for x≃ 0.5. This can be visible
in Fig. 5 and also from the difference of the entry values
between the Table I in Ref. [5] and Table I in the
present work, provided the remaining contributions are
not significant. Indeed, the muon loop vacuum polari-
zation insertion contribution, which is independent on y,

FIG. 5. The overall NLO correction δðxÞ for the decay π0 →
eþe−γ calculated according to the formula (59) (solid line) in
comparison to its constituents. The sum δvirtðxÞ þ δBSðxÞ is
depicted as a dashed line, and the one-photon irreducible
contribution δ1γIR is shown as a dash-dot line. The divergent
behavior of δðxÞ near x ¼ ν2 ≃ 0 has the origin in the electro-
magnetic form factor F1ðxÞ and is connected to the Coulomb self-
interaction of the dilepton at the threshold.
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grows nearly linearly with x from δvirtμ-loopð0.01; yÞ ¼
−0.0005% up to δvirtμ-loopð0.99; yÞ ¼ −0.0616% and is thus
negligible. A similar conclusion holds then also for the
Oðν4Þ contribution, which is most significant for small x
with the value δBS

ν4
ð0.01; 0Þ ¼ 0.0035%.

With our present knowledge, we are now in a position
to calculate the correction to the integrated decay width.
In this case, the transition form factor F ðxÞ cannot be
scaled out anymore. On the other hand, for relevant
examples [13] this model dependence is negligible for
the decay π0 → eþe−γ, and we get δ ¼ 8.30 × 10−3. This
can be rewritten in a common way as

ΓNLO
π0→eþe−γ

ΓLO
π0→γγ

¼ 0.986 × 10−4: ð60Þ

Without the inclusion of the 1γIR contribution, the above
number would become 1.03 × 10−4. The stated values are
consistent with the previous results 1.05 × 10−4 of Joseph
[3] and 0.95 × 10−4 of Mikaelin and Smith, who admitted

that eventual numerical inaccuracy might be present in their
result [5].

VII. SUMMARY

In the preceding sections, we have explored all the
relevant NLO radiative corrections to the Dalitz decay of a
neutral pion in the QED sector. In the direct comparison to
the earlier approach of Mikaelian and Smith [5], we have
included into our treatment the one-photon irreducible
contribution. On the top of that, as announced above we
have enriched the vacuum polarization insertion correction
with the muon loop and have not thrown away the Oðν4Þ
terms. The latter is connected to the calculation of an
additional nontrivial integral. On the other hand, we were
able to write the results in a more compact form even
though more terms needed to be covered. The computa-
tional methods as well as some intermediate results are also
provided, and thus it should be possible for an interested
reader to trace back all the steps made.
From the newly included contributions, only the 1γIR

correction is relevant for the decay π0 → eþe−γ and should
be introduced in the future analyses. Needless to say, the

TABLE I. The overall NLO correction δðx; yÞ given in percent for a range of values of x and y (i.e. the Dalitz-plot corrections) for the
process π0 → eþe−γ.

x y

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

0.01 2.761 2.714 2.599 2.449 2.273 2.061 1.786 1.402 0.803 −0.357 −5.657
0.02 2.756 2.720 2.622 2.480 2.300 2.073 1.774 1.355 0.703 −0.546 −5.859
0.03 2.669 2.639 2.552 2.419 2.242 2.012 1.704 1.267 0.586 −0.716 −6.125
0.04 2.558 2.531 2.452 2.327 2.155 1.925 1.611 1.164 0.464 −0.874 −6.372
0.05 2.437 2.412 2.340 2.221 2.053 1.824 1.509 1.054 0.341 −1.025 −6.601
0.06 2.311 2.288 2.221 2.108 1.944 1.717 1.400 0.940 0.216 −1.172 −6.815
0.07 2.184 2.163 2.099 1.990 1.830 1.605 1.288 0.824 0.092 −1.315 −7.017
0.08 2.056 2.036 1.975 1.870 1.714 1.491 1.173 0.707 −0.033 −1.455 −7.211
0.09 1.928 1.909 1.851 1.749 1.596 1.374 1.057 0.588 −0.157 −1.593 −7.397
0.10 1.801 1.783 1.726 1.628 1.477 1.257 0.940 0.469 −0.281 −1.729 −7.578
0.15 1.170 1.154 1.105 1.016 0.874 0.661 0.345 −0.131 −0.900 −2.394 −8.424
0.20 0.546 0.532 0.486 0.402 0.266 0.057 −0.258 −0.738 −1.520 −3.048 −9.219
0.25 −0.079 −0.092 −0.135 −0.217 −0.350 −0.556 −0.871 −1.355 −2.148 −3.704 −9.995
0.30 −0.713 −0.726 −0.768 −0.847 −0.978 −1.184 −1.499 −1.988 −2.790 −4.372 −10.770
0.35 −1.366 −1.378 −1.419 −1.497 −1.627 −1.833 −2.149 −2.641 −3.454 −5.058 −11.558
0.40 −2.044 −2.056 −2.097 −2.174 −2.304 −2.509 −2.827 −3.324 −4.146 −5.773 −12.370
0.45 −2.759 −2.771 −2.811 −2.887 −3.017 −3.222 −3.543 −4.044 −4.875 −6.525 −13.218
0.50 −3.521 −3.533 −3.572 −3.648 −3.777 −3.983 −4.306 −4.811 −5.653 −7.324 −14.115
0.55 −4.344 −4.356 −4.395 −4.470 −4.599 −4.806 −5.130 −5.640 −6.492 −8.186 −15.076
0.60 −5.249 −5.261 −5.299 −5.373 −5.501 −5.708 −6.034 −6.549 −7.410 −9.128 −16.123
0.65 −6.262 −6.273 −6.310 −6.383 −6.510 −6.717 −7.044 −7.563 −8.435 −10.177 −17.284
0.70 −7.425 −7.435 −7.470 −7.541 −7.666 −7.871 −8.198 −8.721 −9.603 −11.371 −18.602
0.75 −8.802 −8.811 −8.844 −8.910 −9.031 −9.232 −9.558 −10.084 −10.976 −12.772 −20.143
0.80 −10.508 −10.516 −10.544 −10.604 −10.717 −10.912 −11.233 −11.759 −12.659 −14.486 −22.024
0.85 −12.779 −12.784 −12.804 −12.851 −12.949 −13.129 −13.438 −13.958 −14.864 −16.724 −24.468
0.90 −16.207 −16.205 −16.206 −16.225 −16.289 −16.434 −16.712 −17.208 −18.108 −20.003 −28.003
0.95 −23.167 −23.144 −23.084 −23.011 −22.960 −22.982 −23.140 −23.532 −24.360 −26.256 −34.451
0.99 −54.287 −54.068 −53.442 −52.496 −51.351 −50.147 −49.029 −48.155 −47.761 −48.467 −55.831
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provided calculation is universal considering the masses of
the particles involved. It can thus be also shown via direct
calculation that, if we change the masses of the particles in
such a way that they correspond to the process η → μþμ−γ,
all the discussed corrections should be taken into account.
In other words, both the muon loop as well as the Oðν4Þ
terms give then a non-negligible contribution to the overall
δðx; yÞ. That is why these corrections should not be
overlooked. If necessary, heavier charged fermions may
be also introduced in the loops in the same way the muon
loop was added.
We believe that this work is a good starting point for a

treatment of some other processes such as theDalitz decays of
η. We have also touched on some particular difficulties that
appear and one needs to be careful about. A more detailed
review of thismatter is beyond the scope of this work andwill
be discussed separately in the paper in preparation.
Let us also say that, after the complete recalculation of

the results given in Ref. [5], we have verified the formulas
therein. The numerical accuracy of the listed values is also
sufficient.
The main message of the present work is the completion

of the list of the NLO corrections and refining of the
expressions. All the formulas necessary for the calculation
of the considered correction are listed in the present paper
in a ready-to-use form. For the eventual future practical use
of an interested reader, we submit together with this text
also (as Supplemental Materials [14]) a C++ code, which

contains all the expressions in a well-arranged way. As a
demonstration, the resulting program calculates the cor-
rection δðx; yÞ.
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APPENDIX A: BREMSSTRAHLUNG MATRIX
ELEMENT SQUARED

For the rescaled bremsstrahlung invariant matrix element
squared Tr [see (31) for the definition], we can write

J½Tr� ¼ J½TrC� þ J½TrD�: ðA1Þ

The explicit forms of the (from the point of view of the
integration over xγ) convergent part TrC and the divergent
part TrD of Tr are shown below.4 The terms are already
reduced (see Appendix B for the reduction procedure) to
the basic integrals (see Appendix D for the explicit
expressions), and the symmetries of the operator J (42)
and (43) were used. This means the relation Tr ¼ TrC þ
TrD holds only effectively (with operator J applied),

TrC ¼ 16 − 4M2

�
ð1 − xÞð3 − yÞ − 3xγ þ 3ν2 þ 2ν2ðxþ xγÞ

ð1 − xÞð1þ yÞ − xγ

�
1

A

−
ν2M4

x

x2γ
A2

þM4

�
2þ ν2

x

�
x2γ
AB

þ 16
B
A
− 4ν2M2

B
A2

− 16M4
1

E2
−

32M2

ð1þ x − xγÞ
1

E

þM4

2

�
ð1 − x − xγÞ2 − 4xxγ − ð1 − xÞ2y2 − 2ν2ðx − 3xγÞ þ

8ν2ðx − xγÞ2
ð1þ x − xγÞ2 − y2ð1 − xÞ2

�
1

AD

þ 8ν2M4ðx − xγÞ2
ð1þ x − xγÞ½1þ x − xγ − yð1 − xÞ�

�
1

AE
−

1

DE

�

− 4M4

�
2ð1 − xÞ2ð1þ y2Þ þ 2x2γ þ ½ð1 − xÞ2ð1 − y2Þ þ x2γ �

ν2

x
− ð1 − 2xÞ ν

4

x2

�
1

AE

− 4M4½ð1 − x − xγÞ2 þ ð1 − xÞ2y2 þ 2ν2ð1þ xγÞ�
1

CE
− 8M6

�
xþ ν2 −

ν4

2x

�
1

AE2

− ν2M6f1þ ½ð1 − xÞy − xþ xγ�2 − 2ν2g
�

1

A2E
−

1

M2x
1

A2

�
− ν4M8

�
1

A2E2
−

1

M4x2
1

A2

�

þ 4M4

ð1þ x − xγÞ
�

1

AE
þ 1

CE

��
ð1þ y2Þ½2 − xþ x3 − 2xγð1 − xÞ2� þ 2y½1 − x − xy − xγð1 − x2Þ�

− xγ½6xþ xxγ þ 2ð1 − xγÞ2� þ 2ν2½1þ 2xþ xγð1þ x − xγÞ� −
4xxγðx2 þ x2γÞ − 2ν2ðxþ xγÞ2

½ð1 − xÞð1þ yÞ − xγ�
�
þ fy → −yg ðA2Þ

4Note that fy → −yg in TrC holds for the entire expression (including terms independent of y).
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TrD ¼ M4ð1 − xÞ2
�
1þ y2 þ ν2

x

��
4

�
1 −

ν2

2x

�
1

AB
−
ν2

x

�
1

A2
þ 1

B2

��
: ðA3Þ

The integration over xγ of J½TrD� has to be done analytically. After substituting the appropriate expressions from (D32)
and (D33) and putting the result into (37), we find for the contribution of the divergent part to the bremsstrahlung correction

δBSD ðx; yÞ ¼ ð−2Þ
�
α

π

���
1þ 1þ β2

2β
log γ

��
log

m
λ
þ log

2xmax
γ

ð1 − xÞ
�
−
1

2
logð1 − y2Þ − 1þ β2

4β
Kðx; yÞ

�
; ðA4Þ

where Kðx; yÞ is given by (D34). It is apparent that the IR divergent part indeed cancels with its counterpart in the virtual
correction δvirtðx; yÞ.

APPENDIX B: REDUCTION OF J TERMS

In this Appendix we summarize all the necessary reductions of the J terms to the basic integrals, the results of which can
be found in Appendix D. The following formulas are used to get the matrix element squared in the form shown in
Appendix A:

J

�
1

EF

�
¼ 2

ðEþ FÞ J
�
1

E

�
¼ 2

M2ð1þ x − xγÞ
J

�
1

E

�
ðB1Þ

J

�
A
EF

�
¼ ðAþ CÞ

ðEþ FÞ J
�
1

E

�
¼ ½ð1 − xÞð1þ yÞ − xγ�

4ð1þ x − xγÞ
J

�
1

E

�
ðB2Þ

J

�
1

AC

�
¼ 2

ðAþ CÞ J
�
1

A

�
¼ 8

M2½ð1 − xÞð1þ yÞ − xγ�
J

�
1

A

�
ðB3Þ

J

�
1

BD

�
¼ 2

ðBþDÞ J
�
1

B

�
¼ 8

M2½ð1 − xÞð1 − yÞ − xγ�
J

�
1

A

�
y→−y

¼ J

�
1

AC

�
y→−y

ðB4Þ

J

�
1

AEF

�
¼ 1

ðEþ FÞ
�
J

�
1

AE

�
þ J

�
1

CE

��
¼ 1

M2ð1þ x − xγÞ
�
J

�
1

AE

�
þ J

�
1

CE

��
ðB5Þ

J

�
1

ABE

�
¼ 1

ðE − 2A − 2BÞ
�
J

�
1

AB

�
− 2J

�
1

AE

�
− 2J

�
1

BE

��

¼ 2

M2x

�
1

2
J

�
1

AB

�
− J

�
1

AE

�
− J

�
1

AE

�
y→−y

�
ðB6Þ

J

�
1

ABE2

�
¼ 1

ðE − 2A − 2BÞ
�
J

�
1

ABE

�
− 2J

�
1

AE2

�
− 2J

�
1

BE2

��

¼
�

2

M4x2

�
1

4
J

�
1

AB

�
− J

�
1

AE

��
−

2

M2x
J

�
1

AE2

��
þ fy → −yg ðB7Þ

J

�
1

ACE

�
¼ 1

ðAþ CÞ
�
J

�
1

AE

�
þ J

�
1

CE

��
¼ 4

M2½ð1 − xÞð1þ yÞ − xγ�
�
J

�
1

AE

�
þ J

�
1

CE

��
ðB8Þ

J

�
1

ADE

�
¼ 1

ðE
2
− AþDÞ

�
1

2
J

�
1

AD

�
þ J

�
1

AE

�
− J

�
1

DE

��

¼ 4

M2½1þ x − xγ − yð1 − xÞ�
�
1

2
J

�
1

AD

�
þ J

�
1

AE

�
− J

�
1

CE

�
y→−y

�
ðB9Þ
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J

�
1

ACEF

�
¼ 2

ðAþ CÞ J
�

1

AEF

�
¼ 8

M4ð1þ x − xγÞ½ð1 − xÞð1þ yÞ − xγ�
�
J

�
1

AE

�
þ J

�
1

CE

��
ðB10Þ

J

�
1

ADEF

�
¼ 1

ðEþ FÞ
�
J

�
1

ADE

�
þ J

�
1

BCE

��

¼ 1

M2ð1þ x − xγÞ
�
J

�
1

ADE

�
þ J

�
1

ADE

�
y→−y

�

¼
�

4

M4ð1þ x − xγÞ½1þ x − xγ − yð1 − xÞ�
�
1

2
J

�
1

AD

�
þ J

�
1

AE

�
− J

�
1

CE

�
y→−y

��
þ fy → −yg: ðB11Þ

APPENDIX C: COMPUTATIONAL METHODS

In this Appendix we show the approaches we used to evaluate the basic integrals listed in Appendix D.

1. Feynman parametrization

With the help of the Feynman parametrization

1

Aα1
1 � � �Aαn

n
¼ Γðα1 þ � � � þ αnÞ

Γðα1Þ � � �ΓðαnÞ
Z

1

0

du1 � � �
Z

1

0

dun
δðPn

k¼1 uk − 1Þuα1−11 � � � uαn−1n

½u1A1 þ � � � þ unAn�
P

n
k¼1

αk
; ðC1Þ

we can prepare, for example, the following terms for further integration:

1

AE
¼ 2

Eð2AÞ ¼ 2

Z
1

0

dα
1

½ðE − 2AÞαþ 2A�2 ¼ð44Þ2
Z

1

0

dα
1

½2ðAþ αBÞ þ αM2x�2 ≡ 2

Z
1

0

dα
η2

ðC2Þ

1

A2E
¼ 4

Eð2AÞð2AÞ ¼ 8

Z
1

0

dα
Z

1−α

0

dβ
1

½ðE − 2AÞαþ 2A�3 ¼ 8

Z
1

0

ð1 − αÞdα
η3

ðC3Þ

1

AE2
¼ 2

E2ð2AÞ ¼ 4

Z
1

0

αdα
η3

ðC4Þ

1

A2E2
¼ 4

E2ð2AÞ2 ¼ 24

Z
1

0

αð1 − αÞdα
η4

; ðC5Þ

where we have defined η ¼ 2l · ðαpþ qÞ þ αM2xþ iϵ. Now, let us calculate the following (simplest) integral:

J

�
1

AE

�
¼ 2J

�Z
1

0

dα
η2

�
¼ 2

4π

Z
dΩ
Z

1

0

dα
η2

¼ 1

2π

Z
1

0

dα
Z

dΩ
½2l · ðαpþ qÞ|fflfflfflfflffl{zfflfflfflfflffl}

u

þ αM2xþ iϵ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2l0V

�2

¼ 1

4l20

Z
1

0

dα
Z

1

−1

dz
ðu0 − j~ujzþ VÞ2 ¼

1

2l20

Z
1

0

dα
u2 þ V2 þ 2u0V

¼ 2

M4

Z
1

0

dα
w2α

2 þ w1αþ w0

: ðC6Þ

We have introduced

w2 ¼ x2 þ 4l0p0x
M2

þ 4l20m
2

M4
¼ð~r¼0Þ

x2 þ 1

2
x½ð1 − xÞð1 − yÞ − xγ� þ

1

4
ν2xγ ðC7Þ

w1 ¼
4l20x
M2

þ 4l0q0x
M2

−
8l20m

2

M4
¼ð~r¼0Þ

xxγ þ
1

2
x½ð1 − xÞð1þ yÞ − xγ� −

1

2
ν2xγ ðC8Þ

w0 ¼
4l20m

2

M4
¼ð~r¼0Þ 1

4
ν2xγ: ðC9Þ
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The last integral can be evaluated asZ
1

0

dα
w2α

2 þ w1αþ w0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 − 4w0w2

p log

 
2w0 þ w1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 − 4w0w2

p
2w0 þ w1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 − 4w0w2

p
!

≡ 1ffiffiffi
κ

p log

�
ρþ ffiffiffi

κ
p

ρ −
ffiffiffi
κ

p
�
: ðC10Þ

The other integrals which belong to this section can be
treated in the following way:

1

AB
¼ ð−1Þ

Bð−AÞ ¼ −
Z

1

0

dα
1

½ðAþ BÞα − A�2 ðC11Þ

1

CE
¼ ð−2Þ

Eð−2CÞ ¼ −2
Z

1

0

dα
1

½ðEþ 2CÞα − 2C�2

¼ð45Þ − 2

Z
1

0

dα
1

½2ðCþ αDÞ þ αM2ðxγ − 1Þ�2 ðC12Þ

1

BC
¼ 1

½ðAþ CÞ − A�B
¼
Z

1

0

dα
1

½ðAþ BÞα − B − αðAþ CÞ|fflfflfflffl{zfflfflfflffl}
ð46Þ

�2 : ðC13Þ

2. Legendre polynomials and functions
of the second kind

Finally, two basic integrals can be evaluated by expand-
ing to the Legendre functions. We can write

B
A
¼ l · p

l · q
¼ l0p0 − j~ljj~pj cos θp

l0q0 − j~ljj~qj cos θq

¼ j~pj
j~qj ·

p0

j~pj − cos θp
q0
j~qj − cos θq

≡ j~pj
j~qj ·

a − cos θp
b − cos θq

; ðC14Þ

where we have introduced a ¼ p0=j~pj and b ¼ q0=j~qj.
Now, consider first two Legendre polynomials and
Legendre functions of the second kind, i.e.

P0ðxÞ ¼ 1; P1ðxÞ ¼ x; ðC15Þ

Q0ðxÞ ¼
1

2
log

xþ 1

x − 1
; Q1ðxÞ ¼ xQ0ðxÞ − 1: ðC16Þ

The numerator in (C14) can thus be rewritten in
terms of the Legendre polynomials, and the denominator
can be expanded in the following way5:

a − cos θp
b − cos θq

≡ a − ~̂l · ~̂p

b − ~̂l · ~̂q
¼ ½aP0ð~̂l · ~̂pÞ − P1ð~̂l · ~̂pÞ�

×
X
m

ð2mþ 1ÞPmð~̂l · ~̂qÞQmðbÞ: ðC17Þ

Since there is a useful integral formula for unit vectors ~n
and ~ni, Z

Pmð~n · ~n1ÞPm0 ð~n · ~n2ÞdΩð~nÞ

¼ 4π

ð2mþ 1Þ δmm0Pmð~n1 · ~n2Þ; ðC18Þ

the infinite sum in (C17) reduces in the final result to only
two terms:

j~qj
j~pj J

�
B
A

�
¼ 1

4π

j~qj
j~pj
Z

B
A
dΩ ¼ aQ0ðbÞP0ð ~̂p · ~̂qÞ

−Q1ðbÞP1ð ~̂p · ~̂qÞ ¼ aQ0ðbÞ − ð ~̂p · ~̂qÞQ1ðbÞ:
ðC19Þ

We can differentiate the previous terms in order to get the
last missing piece, since

B
A2

¼ l · p
ðl · qÞ2 ≡

j~pj
l0j~qj2

·
a − cos θp

ðb − cos θqÞ2

¼ −
1

l0j~qj
·
∂
∂b
�j~pj
j~qj ·

a − cos θp
b − cos θq

�
¼ −

1

l0j~qj
∂
∂b
�
B
A

�
:

ðC20Þ

Hence,

J

�
B
A2

�
¼ −

1

l0j~qj
∂
∂b
�
J

�
B
A

��
: ðC21Þ

The results can be written in the form

J

�
B
A

�
¼ p0

j~qjQ0

�
q0
j~qj
�
þ

1
2
ðM2x − 2m2Þ − p0q0

j~qj2 Q1

�
q0
j~qj
�

ðC22Þ

J

�
B
A2

�
¼ −

p0

l0j~qj2
Q0

0

�
q0
j~qj
�

−
1
2
ðM2x − 2m2Þ − p0q0

l0j~qj3
Q0

1

�
q0
j~qj
�
; ðC23Þ

where

Q0
0ðxÞ ¼

1

1 − x2
; Q0

1ðxÞ ¼ Q0ðxÞ þ xQ0
0ðxÞ: ðC24Þ

5We use the hat sign to stand for the unit vector, i.e. ~̂l ¼ ~l=j~lj.
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APPENDIX D: BASIC J TERMS

In this Appendix we list the results of the basic set of
integrals generated by acting with the operator J on the
desired combinations of variables A;B;…; F [see
Eq. (38)]. First, we define a useful logarithmic function,

Lða; bÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b

p log





 aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b

p

a −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b

p






¼a>0 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b

p log






 − 1þ 2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b

a2

q





; ðD1Þ

and variables, in which the results have the simple forms

v1 ¼
1

4
½ð1 − xÞð1þ yÞ − xγ� ðD2Þ

v2 ¼
1

4
½ð1 − xÞð1 − yÞ − xγ� ðD3Þ

v0 ¼ v1 þ v2 þ x ¼ 1

2
ð1þ x − xγÞ ðD4Þ

ρ ¼ xxγ þ 2xv1 ðD5Þ

ρ0 ¼ xxγ − 2ð1 − xγÞv1 ðD6Þ

κ ¼ ρ2 − ν2xxγ ðD7Þ

ω ¼ −v20 þ xþ 1

4
ð1 − xÞ2y2 ðD8Þ

ξ0 ¼ ν2ðv0 − 1Þ þ ρ ðD9Þ

ξ1 ¼ ρðv0 − 1Þ þ xxγ ðD10Þ

ξ2 ¼
κ

2x
−
xγ
2
ξ0 ðD11Þ

ξ ¼ 1 −
12

ν2xγ

�
v21 −

ξ22
κ

�
: ðD12Þ

Using standard integration techniques, we find the
following integrals:

J½1� ¼ 1 ðD13Þ

J

�
1

A

�
¼ 2

M2
Lð2v1; ν2xγÞ ðD14Þ

J

�
1

A2

�
¼ 16

M4ν2xγ
ðD15Þ

J

�
1

E

�
¼ 1

2M2
Lðv0; xÞ ðD16Þ

J

�
1

E2

�
¼ 1

M4x
: ðD17Þ

With the help of the Feynman parametrization (for
details see Appendix C 1), we are able to calculate

J

�
1

AB

�
¼ 8

M4xγ
Lðx; ν2xÞ ðD18Þ

J
�
1

AE

�
¼ 2

M4
Lðρ; ν2xxγÞ ðD19Þ

J

�
1

CE

�
¼ 2

M4
Lðρ0; ν2xxγÞ ðD20Þ

J

�
1

BC

�
¼ 8

M4
Lðω; ν2xγωÞ ðD21Þ

J

�
1

AE2

�
¼ 4ξ1

M6κx
þ 2ξ2
M2κ

J

�
1

AE

�
ðD22Þ

J

�
1

A2E

�
¼ 32ξ2

M6ν2κxγ
þ 4ξ1
M2κ

J

�
1

AE

�
ðD23Þ

as well as the integral, which did not need to be evaluated in
the original work [5] due to the systematic neglecting of the
terms of order higher than m2,

J

�
1

A2E2

�
¼ 16

M8κ

�
4v21
ν2xγ

þ v20
x
þ ξ

�

−
4

M4κ
ð4v0v1 þ ρξÞJ

�
1

AE

�
: ðD24Þ

Using the expansion to the Legendre polynomials and
functions of the second kind (see Appendix C 2), we find

J

�
B
A

�
¼ −

ζ1
ζ
þM2xγζ2

2ζ
J

�
1

A

�
ðD25Þ

J

�
B
A2

�
¼ 8ζ2

M2ν2ζ
−
ζ1
ζ
J

�
1

A

�
; ðD26Þ

where we have introduced

ζ1 ¼ 2xxγ − ν2xγ − 4v1v2 ðD27Þ

ζ2 ¼ 2xv1 − ν2ðv0 − xÞ ðD28Þ

ζ ¼ 4v21 − ν2xγ: ðD29Þ

We can extract the divergent parts of the integrals (D23)
and (D24) through

J

�
1

A2E

�
¼ 1

M2x
J

�
1

A2

�
−

16ξ0
M6ν2κ

þ 4ξ1
M2κ

J

�
1

AE

�
ðD30Þ
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J

�
1

A2E2

�
¼ 1

M4x2
J

�
1

A2

�
þ 16

M8κ

�
1þ 1

x

�
v20 − 2 −

6ξ0
ν2

�

þ 2

ν2

�
4v1 þ xγ þ

3xγξ20
2κ

��

−
4

M4κ
ð4v0v1 þ ρξÞJ

�
1

AE

�
: ðD31Þ

The above formulas have a very convenient form and are to
be substituted into (A2).
The divergent integrals alone have to be integrated over

xγ analytically. The calculation is done in detail in Ref. [5],
and the results can be written in a simple form,

Z
J

�
1

A2

�
dxγ ¼

16

ν2M4

�
log

m
λ
þ log

2xmax
γ

ð1 − xÞð1þ yÞ
�
ðD32Þ

Z
J

�
1

AB

�
dxγ ¼ −

8

M4xβ

�
log

m
λ
þ log

2xmax
γ

ð1 − xÞ
�
logðγÞ

þ 4

M4xβ
Kðx; yÞ; ðD33Þ

where

Kðx; yÞ ¼
�
2 log

�
yþ β

2β

�
þ log

ν2

x

�
logðγÞ

−Li2
�
γðy − βÞ
yþ β

�
þ Li2

�
y − β

γðyþ βÞ
�
: ðD34Þ

These terms are to be used to evaluate
R
J½TrD�dxγ .
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