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Within the heavy-quark expansion techniques for the heavy hadron weak decays we analytically
compute the coefficient of the power-suppressed dimension-five chromo-magnetic operator at next-to-
leading order of QCD perturbation theory with the full dependence on the final-state quark mass. We
present explicit expressions for the total width of inclusive semileptonic decays including the power-
suppressed terms and for a few moments of decay differential distributions. One of the important
phenomenological applications of our results is a precision analysis of the decays of bottom mesons to
charmed final states and the extraction of the numerical value for the Cabibbo-Kobayashi-Maskawa matrix
entry jVcbj.
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I. INTRODUCTION

Presently the Standard Model (SM) of fundamental
interactions is being thoroughly tested experimentally at
colliders, but no definite signs of new physics have been
detected beyond the framework of the Standard Model.
New particles have not been explicitly seen and no
significant deviations from the Standard Model values in
the loop-sensitive Wilson coefficients for flavor-changing
observables have been determined in high precision data
(for a review, see e.g. Ref. [1]). Thus, the Standard Model
has successfully passed all tests in the areas where it is
certainly valid as a low-energy effective theory.
However, there is definitely life beyond the SM. Some

new phenomena—like neutrino masses and mixing—can
be readily incorporated in a rather straightforward manner
as simple extensions of the SM. The other new effects like
dark matter and dark energy are of cosmological nature;
they are related to the still poorly understood realm of
gravity and thus are, strictly speaking, outside the particle
physics described by the SM. Nevertheless, it seems certain
that the scale of the traditionally expected extensions
of the Standard Model—like supersymmetry or extra
dimensions—has definitely moved from the few-TeV
region to a higher one at energies that can make it
unreachable at accelerators in the foreseeable future (e.g.
[2]). Since the new physics scale has moved higher, the
direct observation of new physics phenomena will probably
not be explicit even at new machines, although one still has
to wait for the results of the 14 TeV run of the LHC. In the
case that nothing is seen, any new phenomena beyond the
Standard Model can only be identified through detecting
slight discrepancies between theoretical predictions within
the SM and precision measurements at low energy with
available tools.
Accurate theoretical predictions within the SM are of

crucial importance in such a scenario. For these predictions

to be reliable one first needs the precise numerical values
for the key parameters of the SM itself. The least precisely
known sector of the SM is the quark flavor one where the
quark Yukawa couplings to the Higgs field are not well
known numerically. In the Standard Model they translate
into the mixing angles between generations gathered in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix and the vac-
uum expectation value of the Higgs field. The latter can be
determined from the leptonic sector. Note that the flavor
sector is also a most promising place for investigating the
Higgs mechanism that is definitely of an effective origin
and probably will be modified in the future as the presence
of a fundamental scalar in the “final” theory does not look
convincing. All in all, the flavor physics of quarks is a
promising place to search for new physics and should be
thoroughly studied (see, e.g. Refs. [3,4]).
While the quark weak decays are mediated by the

charged weak currents at tree level, which are believed
not to have sizable contributions of possible new physics,
their study is of importance for the precise determination
of the numerical values of the CKM matrix elements.
However, obtaining solid theoretical predictions for proc-
esses with quarks at the fundamental level requires the use
of genuinely nonperturbative computational methods like
QCD lattice calculations since eventually one has to make a
prediction for the experimental quantities that include
hadrons and cannot be described in the perturbation theory
of QCD due to confinement. This is the principal part of the
problem, but there is also a purely technical part. Even if the
direct computation in terms of quarks would be relevant to
the world of hadrons (this partly can be made possible by
choosing proper observables) one will still face the problem
of the computational complexity of the calculation with
sufficient accuracy that requires a rather large order of
perturbation theory. An example is the description of the
process b → sγ.
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In inclusive processes the partonic decay rate is known
to be the leading term of an expansion in inverse powers of
the heavy-quark mass. At that level, the computation of
hadronic processes is technically equivalent to just taking
the parton level of the computation for hadronic processes.
This fact makes the technical part equivalent to that of the
leptonic calculations where the benchmark level for the
up-to-date technology of the computation is the evaluation
of the muon lifetime. The muon decay is a source for the
determination of the Fermi constant GF with high accuracy
from a leptonic sector. The first radiative corrections were
computed a long time ago [5,6]. To match the precision of
the present experimental data for the muon lifetime, the
theoretical calculations have to be performed with very
high accuracy. In this case the calculations are very precise,
since the purely leptonic decays are well described within
perturbation theory and the expansion parameter α ≈ 1=137
is small. The latest theoretical result includes the next-to-
next-to-leading order (NNLO) radiative corrections in the
fine-structure constant expansion [7]

Γðμ → νμeν̄eÞ ¼
G2

Fm
5
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192π3

�
1þ
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Here mμ is the muon mass. The numerical value for the
electron mass me is set to zero everywhere but in the
expression for the expansion parameter

αr ¼ αþ 2α2

3π
ln
mμ

me
:

The expressions that account for a nonvanishing electron
mass are known. The quantity ΔΓhad ¼ −0.042� 0.002 is
the hadronic contribution that is known with an uncertainty
of about 5%. It cannot be computed from first principles for
light quarks and is obtained by integrating the experimental
data for the photon vacuum polarization. Note that a similar
situation emerges with the precision analysis of one of the
key leptonic observables—the muon anomalous magnetic
moment g − 2. At present the hadronic contributions
related to light quarks give the main uncertainty of the
theoretical prediction (e.g. [8,9]). It is a general feature that
the quark sector influences even pure leptonic processes if
the required accuracy is high enough (e.g. [10]).
Equation (1) results in an Oð1 ppmÞ accuracy of the

theoretical expression for the lifetime such that its precision
is comparable with that of modern experimental data. As far
as the quark sector is concerned, there is a good set of data
for s → u weak transitions that corresponds to K → πeν̄e
decays at the hadron level, but it is hopeless to precisely
compute the related rate theoretically at present because of

strong infrared problems in the theoretical treatment of
reactions with light hadrons.
For heavy hadrons the theoretical treatment of the decays

is however possible because the large mass of the heavy
quark constitutes a perturbative scale that is much larger
than ΛQCD. The leading logarithmic effects related to that
scale were discussed long ago [11]. Later a framework
was created for the possibility for an expansion in powers
of ΛQCD=mQ where mQ is the quark mass and ΛQCD ∼
500 MeV is a typical hadronic scale [12–14]. Top quarks
do not form mesons due to their short lifetime, and charmed
mesons are probably not heavy enough, rendering the
convergence of an expansion in the inverse mass marginal,
but the case of bottom-meson decays is certainly tractable
in this way and thus has been intensively studied. The
technique is applicable to the b → u and b → c transitions
and both to semileptonic and purely hadronic inclusive
decays. For definiteness, we will stick to semileptonic
b → c decays.
Subleading terms in this combined expansion in

ΛQCD=mQ and αsðmQÞ have been investigated in some
detail, in particular, for the inclusive semileptonic case. The
tree-level terms are known up to ðΛQCD=mQÞ5 [15], while
the leading term in ΛQCD=mQ, i.e. the partonic rate is
known to NNLO accuracy [16,17]. More recently, the
corrections of order αsðmQÞðΛQCD=mQÞ2 have been inves-
tigated. The contribution αsðmQÞμ2π=m2

Q is linked to the
leading-order one through the reparametrization invariance
[18] (see, the explicit calculation in Ref. [19]) while the
next-to-leading-order (NLO) corrections to the chromo-
magnetic operator contribution require an independent
calculation.
This calculation was performed first in Ref. [20] for the

triply differential rate; in order to obtain the total rate or
moments a numerical integration needs to be performed,
which is subtle due to cancellations of infrared divergences
from different contributions. Nevertheless these results
have recently been implemented in the extraction of Vcb
showing that the impact on Vcb is of the expected size.
In the present paper we perform a fully analytical

calculation of the total rate and selected moments of the
coefficient of the chromomagnetic operator at next-to-
leading order of QCD perturbation theory with the full
dependence on the final-state quark mass. The results of the
analogous computation in the massless limit for the final-
state quark have been presented earlier in Ref. [21]. Here
we present explicit expressions for the total width of
inclusive semileptonic decays and for a few moments of
differential distributions with full dependence on the final-
state quark mass.
The paper is organized as follows. In the next section we

give a general representation for the decay width of a heavy
hadron in a form suitable for computation in QCD. In
Sec. III we give the necessary basics of heavy-quark
effective theory (HQET) which is a working tool for the
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present calculation. In Sec. IV we write down the heavy-
quark expansion (HQE) for the decay rate. The actual
computation and results are described in Sec. V. In the
Appendixes we give the explicit expressions for our master
integrals and some long analytical expressions for the
coefficients of the HQE.

II. QCD REPRESENTATION
FOR THE DECAY RATE

It is difficult to compute a hadronic decay rate, since the
underlying theory of strong interactions—QCD—is for-
mulated in terms of quarks and the hadrons only appear in
the strong coupling regime as bound states. Therefore one
can either use numerical calculation on the lattice or find
special observables for which the perturbation theory
calculation is feasible in some form. Such observables
are inclusive ones, since the sum over hadronic states can
be related to the sum over the quark-gluon states using the
unitarity of the theory. In the case when the initial state is
treatable in perturbation theory, i.e. it is a leptonic one as in
eþe− annihilation into hadrons or hadronic τ-lepton decays
the results can be uniquely obtained in perturbation theory.
In cases when the initial state is hadronic, i.e. it is not
tractable in perturbation theory, one uses factorization to
separate scales and compute the short-distance effects in
perturbation theory while long-distance properties are
encoded in hadronic matrix elements. The famous example
of the latter approach is the analysis of deep inelastic
scattering (DIS) of leptons on hadrons. The analogue of
DIS in heavy-quark physics is the inclusive decay of heavy
hadrons. One can use either fully hadronic (nonleptonic)
decays or semileptonic ones. The number of experimental
observables in inclusive hadronic decays is however limited
to basically the total rate of the process. In semileptonic
decays the presence of leptons in the final states gives more
kinematical flexibility while retaining the rigorous theo-
retical description of the process.
The low-energy effective Lagrangian Leff for semilep-

tonic b → c transitions is the four-fermion interaction

Leff ¼ 2
ffiffiffi
2

p
GFVcbðb̄LγμcLÞðν̄LγμlLÞ þ H:c: ð2Þ

with left-handed fermion fields. The numerical value for
the Fermi constant GF is determined from purely leptonic
weak processes and is known with high precision. The
mixing angle Vcb is the main interest in decay measure-
ments with hadronic initial states [22]. The precision
analysis of such processes is important for both the flavor
sector and Higgs mechanism investigations in searches for
new physics.
Using the unitarity of the S-matrix, the inclusive decay

rate B → Xclν̄l is obtained by taking the absorptive part of
the forward matrix element of the transition operator T [23]
which is the second-order term of the perturbation theory
expansion in the interaction Lagrangian Leff ,

T ¼ i
Z

dxTfLeffðxÞLeffð0Þg: ð3Þ

Note that the transition operator T is a nonlocal operator
composed of the fields. There is not much hope of handling
matrix elements of such an operator in QCD, in particular
when matrix elements are taken with hadronic states.
The idea of HQE is that when taking a matrix element

over a heavy hadron containing a heavy quark with mass
mQ ≫ ΛQCD the correlator does acquire a large internal
scale, mQ, that enables scale separation. For actual sepa-
ration of scales one applies the operator product expansion
techniques. These ideas are formalized through the
notion of effective theories. Within the heavy hadron with
momentum pH and massMH a large part of the momentum
is due to a pure kinematical contribution of the heavy quark
pH ¼ mQvþ Δ with v ¼ pH=MH being the velocity of the
hadron and Δ is related to the light degrees of freedom and
interactions between them and the heavy quark. One can
already extract the factor related to the large quark part
of the momentum explicitly at the level of field variables
when the matrix element over a heavy hadron is taken
afterwards. The heavy-quark field can be separated into the
quickly oscillating phase and a slowly changing field hvðxÞ
with a typical momentum of order Δ ∼ ΛQCD

QðxÞ ∼ e−iðmQvÞxhvðxÞ: ð4Þ

The velocity v ¼ pH=MH is finite in the limit of infinitely
heavy quarks mQ ≫ ΛQCD. This program is realized within
the effective theory for heavy quarks. In order to make the
dependence of the decay width on the heavy-quark mass
mQ explicit and to build up an expansion in ΛQCD=mQ, one
matches the time-ordered product of full QCD operators
entering the transition operator T onto an expansion in
terms of HQET [24,25]. Presently the HQE in inclusive
semileptonic b → c transitions provides a level of theo-
retical precision in the prediction of the total inclusive rate
for B → Xclν̄l within two percent. The structure of the
HQE is given by [26]

ΓðB→Xclν̄lÞ ¼ Γ0jVcbj2
�
a0

�
1þ μ2π

2m2
b

�

þa2
μ2G
2m2

b

þa3
ρ̄3
m3

b

þa4
ρ̄4
m4

b

þO
�
Λ5
QCD

m5
b

��

where Γ0 ¼ G2
Fm

5
b=ð192π3Þ and mb is the b-quark mass.

The precise definition and the proper choice of the most
suitable mass parameter for the heavy-quark field has
been extensively discussed in the literature. The power-
suppressed terms are given by the forward matrix elements
of the local operators of growing dimensionality in HQET
over the heavy hadron state. Their numerical values are
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determined by the corresponding power of the QCD
infrared parameter of ΛQCD. These are nonperturbative
quantities either to be computed within some nonperturba-
tive techniques such as lattice QCD or to be fitted to
experimental data. The kinetic energy parameter μ2π is given
by the nonrelativistic kinetic energy operator of the heavy
quark within the heavy hadron. The chromomagnetic
parameter μ2G is given by the matrix element of the
magnetic dipole operator. These two operators give the
leading power-suppressed contribution and have been
intensively studied. The higher-order power-suppressed
terms are becoming important at present as the experi-
mental data improves. The parameter ρ̄3 describes the
contribution of dimension-six operators which are the
Darwin term and the spin-orbit interaction. The general
parameter ρ̄4 is a contribution of a rather large number of
dimension-seven operators [15]. The coefficients ai are
functions of the quark and lepton masses and have a
perturbative expansion in the strong coupling constant
αsðmbÞ. The leading-term coefficient a0 is known analyti-
cally to Oðα2sÞ precision in the massless limit of the final-
state quark [27]. At this order the mass corrections have
been accounted for analytically for the total width as an
expansion in the final fermion mass in Ref. [28] and
numerically for the differential distribution in Ref. [29].
The coefficient of the kinetic energy parameter is linked to
the coefficient a0 by Lorentz invariance; see the explicit
analysis in Ref. [18]. The NLO correction to the coefficient
of the chromomagnetic parameter a2 has been investigated
recently in Ref. [20] where the differential distribution has
been computed and the total decay rate has been obtained
by a process of numerical integration over the phase space.
The αs correction to the chromomagnetic parameter coef-
ficient a2 has been analytically computed in Ref. [21] in the
massless limit. Here we give the result with full mass
dependence in analytical form. Our calculation of the
coefficient a2 is in fact a matching computation between
QCD and HQET. For this reason we present some facts
about HQET that are relevant for our discussion in the next
section.

III. BASICS OF HQET

A heavy quark near its mass shell is described by a field
hvðxÞ which is a remnant of the whole QCD fermion field
QðxÞ. In fact, it effectively contains only large components
of the Dirac bispinor that describes the quark and not the
antiquark. One achieves the separation of the components
by using the projector Pþ ¼ ð1þ vÞ=2 where v is the
external velocity of the heavy hadron containing the heavy
quark. Note that obtaining HQET as the effective theory
from QCD is very close in spirit to the well-known
procedure of obtaining the nonrelativistic limit of QCD
or, earlier, QED. The quark velocity v is fixed in the
presence of the heavy hadron by its momentum. Usually

the common choice for the velocity is v ¼ pH=MH. The
behavior of the time and space components of the
formal Lorentz four-tensors differs in HQET. It is useful
to split a four-vector pμ into longitudinal and transverse
parts, namely pμ ¼ vμðvpÞ þ pμ

⊥. The covariant deriva-
tive of QCD is πμ ¼ i∂μ þ gsAμ with the splitting
πμ ¼ vμðvπÞ þ πμ⊥.
The quantity hv is the heavy-quark field entering the

HQET Lagrangian [24,25]. The effective Lagrangian of
HQET can be obtained in a concise form at tree level by
integrating out the P− part of the heavy quark field Hv,
Hv ¼ P−Hv, with the result

LHQET ¼ h̄vðπvÞhv þ h̄vπ⊥
1

2mþ πv
π⊥hv: ð5Þ

Here the first term is just the residual energy of the quark
while the second one describes the effects of the removed
(integrated out) antiquark. It is nonlocal, but in the limit
m ≫ πv one can expand the second term in a series in the
inverse large mass and obtain a local Lagrangian up to a
given order in the HQE

LHQET¼ h̄vðπvÞhvþ h̄vπ⊥
1

2m
π⊥h̄v− h̄vπ⊥

πv
4m2

π⊥hv: ð6Þ

It is inconvenient to have time derivatives in a term that is
formally a correction, since then the fields hv are not
correctly canonically normalized. Therefore the redefini-
tion of the fields is used to remove time derivatives up to
order 1=m2

hv →

�
1þ π⊥π⊥

8m2

�
hv: ð7Þ

One gets the Lagrangian for the new modes hv (for which
we retain the same notation) in the form

LHQET ¼ Ov þ
1

2m
ðOπ þ CmagðμÞOGÞ

þ 1

2m2
O3 þO

�
Λ3
QCD

m3

�
ð8Þ

with

CmagðμÞ ¼ 1þ αsðμÞ
2π

�
CF þ CA

�
1þ ln

μ

mb

��
ð9Þ

being the coefficient of the chromomagnetic operator OG
including the QCD radiative correction of the order αs [30].
For new modes hv the terms of order Oð1=m2

bÞ in the
Lagrangian contain no time derivative [25,31]. In Eq. (8)
we introduced the following notation. The quantity Ov ¼
h̄vvπhv is the leading power energy operator that is
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independent of the heavy-quark mass and spin and
gives the famous spin-flavor symmetry of HQET. The
quantity Oπ ¼ h̄vπ2⊥hv is a kinetic energy operator and
OG ¼ 1

2
h̄vσμν½πμ⊥; πν⊥�hv is a chromomagnetic operator.

They constitute the operators appearing at subleading
order. Higher terms are given by the operator
O3 ¼ h̄v½π⊥; ½π⊥; πv��hv that can further be converted
into a linear combination of the Darwin OD ¼
h̄v½πμ⊥; ½πμ⊥; πv��hv and spin-orbit term OSL ¼
h̄vσμν½πμ⊥; ½πν⊥; πv��hv, O3 ¼ cDOD þ cSLOSL with coeffi-
cients cD; cSL known at the next-to-leading order of
perturbative expansion in the strong coupling constant.
The discussion of order 1=m2

Q terms in the HQET
Lagrangian is relevant for our computation because of
the necessity to precisely fix the definition of the fields hv
entering the HQE.

IV. HQE FOR THE WIDTH CORRELATOR

For further convenience we introduce a normalized
transition operator ~T through the relation

ImT ¼ Γ0jVcbj2 ~T : ð10Þ

With the use of HQET, the HQE is simply a matching from
QCD to HQET

~T ¼ C0O0 þ Cv
Ov

mb
þ Cπ

Oπ

2m2
b

þ CG
OG

2m2
b

: ð11Þ

The local operators Oi in the expansion (11) are ordered
by their dimensionality O0 ¼ h̄vhv, Ov ¼ h̄vvπhv,
Oπ ¼ h̄vπ2⊥hv, OG ¼ h̄v 1

2
½π⊥; π⊥�hv. The coefficients of

these operators are obtained by matching the relevant
matrix elements between QCD and HQET. Note that
after taking a matrix element over the hadronic state (like
the B meson) one can use the equations of motion for
HQET fields hv to eliminate the operator Ov. By the
same token, there is an operator O5 ¼ h̄vðvπÞ2hv that is of
higher order in the large mass expansion after going on
shell using the equations of motion of HQET. Thus, the
expansion (11) is a matching relation from QCD to HQET
with proper operators up to dimension five with the
corresponding coefficient functions. The coefficients are
independent of external states and so we may use a heavy
quark and gluons (on shell) as external states for matching
to QCD.
Note that one can use the full QCD fields for the HQE as

well. However, the choice of the proper basis of operators is
not so straightforward as in HQET. Still it is convenient to
choose the local operator b̄vb defined in full QCD as a
leading term of the heavy-quark expansion [32]. Indeed, the

current b̄γμb is conserved and its forward matrix element
with hadronic states is absolutely normalized. For imple-
menting this setup one needs an expansion (matching) of a
full QCD local operator b̄vb in HQE through HQET
operators. The expansion reads [33]

b̄vb ¼ O0 − ~Cπ
Oπ

2m2
b

þ ~CG
OG

2m2
b

þOðΛ3
QCD=m

3
bÞ ð12Þ

up to the necessary order in the strong coupling αs. The
coefficient of the leading power operator O0 has no
radiative corrections and the kinetic operator has the
coefficient related to the leading one due to Lorentz
(reparametrization) invariance.
Substituting the expansion (12) into Eq. (11) one obtains

after using the equation of motion for the operatorOv in the
forward matrix elements

~T ¼C0

�
b̄vb−

Oπ

2m2
b

�
þf−CvCmagðμÞþCG− ~CGC0g

OG

2m2
b

:

ð13Þ

Note that for phenomenological applications the numerical
value for the chromomagnetic moment parameter μ2G,
related to the forward matrix element of the operator
OG, is usually taken from the mass splitting between
the pseudoscalar and vector ground-state mesons. The
mass difference of bottom mesons m2

B� −m2
B ¼ Δm2

B ¼
0.49 GeV2 is given by

1

2MB
CmagðμÞhBðpBÞjOGðμÞjBðpBÞi ¼

3

4
Δm2

B; ð14Þ

up to higher-order 1=mQ corrections, where we use the
relativistic normalization of states. Therefore the coefficient
in front of the renormalization-group-invariant combination
CmagðμÞOGðμÞ can be defined independently of the renorm-
alization scale. Using this normalization one gets after
taking the forward matrix element of the expansion in
Eq. (13) the representation

ΓðB→Xcν̄llÞ ¼ Γ0jVcbj2
�
C0

�
1þ μ2π

2m2
b

�

þ
�
−Cvþ

CG − ~CGC0

Cmag

�
3Δm2

B

8m2
b

�
: ð15Þ

V. DESCRIPTION OF THE CALCULATION
AND RESULTS

A. Generalities and techniques

The matching procedure consists in computing matrix
elements with partonic states (on-shell quarks and gluons)
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on both sides of the relation (11). The coefficient function
C0 of the dimension-three operator h̄vhv is the total width
of a freely decaying heavy quark, and at the same time
the leading contribution to the width of a bottom hadron
within HQE techniques. At NLO the calculation of the
transition operator ~T in Eq. (3) requires one to consider
three-loop diagrams with external heavy-quark lines
on shell. The leading-order result is well known and
requires the calculation of the two-loop Feynman integrals
of the simplest topology—the sunset-type ones [34]. At
the NLO level one needs to compute the on-shell three-
loop integrals with massive lines due to the massive c
quark. In Fig. 1 we show some typical three-loop diagrams
both for the partonic part and power corrections of the
decay rate.
The computation has been performed in dimensional

regularization, which is used for both ultraviolet and
infrared singularities. We used the systems of symbolic
manipulations REDUCE [35] and MATHEMATICA [36] with
original codes written for the calculation. The package
FeynCalc [37] is used for manipulating Dirac matrices and
four-vectors in MATHEMATICA. The reduction to master
integrals has been done within the integration by parts
technique [38]. The original codes have been used for most
of the diagrams and then the program LiteRed [39] has been
used for checking and further application to complicated
diagrams. The master integrals have been computed
directly and then checked with the program HypExp [40].
The renormalization is performed on shell by the

multiplication of the bare (directly from diagrams) results
by the on-shell renormalization constant ZOS

2

ZOS
2 ¼ 1 − CF

αsðμÞ
4π

�
3

ϵ
þ 3 ln

�
μ2

m2
b

�
þ 4

�
: ð16Þ

It is convenient to fix the normalization point to the b-quark
mass μ ¼ mb in the practical computation. The μ depend-
ence can be easily restored from the knowledge of
anomalous dimensions.
We use the rest of this section to present the technical

details of the calculation and to present our results.

B. The leading power coefficient C0: partonic width

By using the described methods we reproduce the
known result for the heavy-quark width which is given
by the contribution of the leading operator O0. The
coefficient C0 is

C0 ¼ CLO
0 þ CF

αs
π
CNLO
0 ð17Þ

where the leading-order (LO) contribution reads

CLO
0 ¼ 1 − 8r − 12r2 lnðrÞ þ 8r3 − r4 ð18Þ

and the NLO contribution reads

CNLO
0 ¼ ð1 − r2Þ

��
25

8
−
239

6
rþ 25

8
r2
�
þ
�
−
17

6
þ 32

3
r −

17

6
r2
�
lnð1 − rÞ

�

þ
�
−10 − 45rþ 2

3
r2 −

17

6
r3
�
r lnðrÞ þ

�
−18 −

r2

2

�
r2ln2ðrÞ

þ ð2þ 60r2 þ 2r4Þ lnð1 − rÞ lnðrÞ þ ð1þ 16r2 þ r4Þð3Li2ðrÞ − π2=2Þ

þ 16r3=2ð1þ rÞ
�
π2 − 4ðLi2ð

ffiffiffi
r

p Þ − Li2ð−
ffiffiffi
r

p ÞÞ þ 2 lnðrÞ ln 1þ
ffiffiffi
r

p
1 −

ffiffiffi
r

p
�

ð19Þ

FIG. 1. Perturbation theory diagrams for the matching computation at the NLO level. Left: Partonic type. Right: Power-correction type
with the insertion of an external gluon.
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with r ¼ m2
c=m2

b. Here Li2ðrÞ is the polylogarithm,
Li2ðrÞ ¼

P
nr

n=n2. The combination

r1=2
�
π2 − 4fLi2ð

ffiffiffi
r

p Þ − Li2ð−
ffiffiffi
r

p Þg þ 2 lnðrÞ ln 1þ
ffiffiffi
r

p
1 −

ffiffiffi
r

p
�

ð20Þ

is a part of one master integral in the computation and it
always appears in this form. It contains a specific con-
tribution r1=2π2 with an odd power of mc (in fact jmcj)
while the rest is formally even in mc. The analytical
expression at NLO was first given by Nir [41]. It coincides
with that given in Eq. (19).
The behavior near the border of the decay phase space

(r ∼ 1Þ of the NLO correction

CNLO
0 ðr → 1Þ ¼ 3

10
ð1 − rÞ5 þOðð1 − rÞ6Þ ð21Þ

is similar to that of the LO which is

CLO
0 ðr → 1Þ ¼ 2

5
ð1 − rÞ5 þOðð1 − rÞ6Þ: ð22Þ

We define the bottom-quark mass to be the pole mass,
because it is convenient for computing the relevant matrix
elements in QCD with on-shell quark states. The charmed-
quark mass can be taken as either the pole mass, or it can be
defined in the MS scheme. The relation between the two
definitions up to the necessary order is

mpol
c ¼ mMS

c ðμÞ
�
1þ CF

αs
4π

�
3 ln

μ2

m2
c
þ 4

��
: ð23Þ

The numerical value for the charmed-quark mass is best
known in the MS scheme [42,43]. It is rather small and
cannot be perturbatively cast into the pole mass scheme
with any reliable control over uncertainties due to the poor
convergence of the perturbative expansion [44]. The
numerical value for the bottom-quark mass has been
discussed in the literature for a long time and many
estimates are available. In addition, there is an extensive
discussion on what particular scheme of defining the quark
mass parameter is the most suitable one for this particular
observable [45,46].
In Fig. 2 we give the plot of the coefficient CLO

0 ðrÞ and
also the normalized next-to-leading coefficient ĈNLO

0 ðrÞ in
the pole mass scheme for mc.
In Fig. 3 we give the plot of the mass dependence of the

coefficient CNLO
0 ðrÞ in different mass schemes for mc. In

phenomenological applications the MS-scheme definition
of the charm-quark mass is usually used.

In the small-mass limit for the charmed quark one finds

CNLO
0 ðrÞjr→0 ¼

�
25

8
−
π2

2

�
− 2rð6 lnðrÞ þ 17Þ

þ 16π2r3=2 þOðr2ln2rÞ: ð24Þ

We have computed the results for the coefficient C0 in the
massless limit, C0ð0Þ, independently which serves partly as
a check of our full mass calculation.
The relative magnitude of the NLO contribution at a

typical value of the mass ratio r ¼ 0.07 is

C0ð0.07Þ¼ 0.60−0.78CF
αs
π
¼ 0.6

�
1−CF

αs
π
1.31

�
ð25Þ

while in the massless limit it is

FIG. 3 (color online). Mass dependence of the coefficient
CNLO
0 ðrÞ in the pole and MS schemes with μ ¼ mb and μ ¼ mc.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2 (color online). The mass dependence of the coefficient
C0ðrÞ in the pole mass scheme for mc at LO (solid line) and
NLO (dash-dotted line) normalized to CNLO

0 ð0Þ: ĈNLO
0 ðrÞ¼

CNLO
0 ðrÞ=CNLO

0 ð0Þ, ĈLO
0 ðrÞ ¼ CLO

0 ðrÞ.
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C0ð0Þ ¼ 1 − CF
αs
π
1.8: ð26Þ

The numerical value for the bottom-quark mass mb is
important for phenomenological applications and has been
discussed in the literature (see, e.g. Ref. [45]). The
dependence on the charm-quark mass is essential but it
still mainly follows the pattern of that at leading order. This
similarity supports the idea of Ref. [21] that the compu-
tation in the massless limit can be useful for physical
applications as the normalization and the extrapolation with
the leading-order massive result can be a reasonable
approximation for the mass dependence at NLO. We will
see how it works or does not work for other coefficients
later.

C. The vD-operator coefficient Cv

In this subsection we present the result for the coefficient
Cv which is an auxiliary quantity in our approach since the
operator is reexpressed through the other contributions at
the level of matrix elements. The coefficient Cv is singled
out by taking the matrix element between b quarks on shell
and one gluon with vanishing momentum and longitudinal
polarization, i.e. the gluon field is chosen in the form
Aμ ¼ vμðvAÞ. Here Aμ is a matrix in color space Aμ ¼ Aa

μta.
The result for the coefficient Cv

Cv ¼ CLO
v þ CF

αs
π
CNLO
v ð27Þ

reads

CLO
v ¼ 5 − 24r − 12r2 lnðrÞ þ 24r2 − 8r3 þ 3r4:

In Fig. 4 we plot the charmed-quark mass dependence
of Cv.
For the NLO part CNLO

v we give explicitly only the
expression for the small-r expansion. The structure of the

whole contribution is very similar to that of CNLO
0 . The

expression is rather long and given in Appendix B. Its
small-mass expansion reads

CNLO
v ¼

�
−
25

24
−
π2

2

�
þ48r−8π2r3=2þOðr2ln2rÞ: ð28Þ

The leading term of the expression coincides with the
independent computation in the massless limit done in
Ref. [21]

Cvjr¼0 ¼ 5þ CF
αs
π

�
−
25

24
−
π2

2

�
: ð29Þ

For the mass dependence of the coefficient Cv, for the
typical value of r ¼ 0.07, one finds

Cvð0.07Þ ¼ 3.6 − 3.8CF
αs
π
¼ 3.6

�
1 − CF

αs
π
1.1

�
ð30Þ

while in the massless limit one has

Cvð0Þ ¼ 5

�
1 − CF

αs
π
1.2

�
: ð31Þ

One sees again a rather reasonable accuracy for the
extrapolation to mc ≠ 0 at NLO.
The coefficient Cv has no CA color structure; it contains

only the CF color group invariant. This property matches
the possibility to compute this coefficient using a
small-momentum expansion near the quark mass shell,
p ¼ mvþ k. Still, an explicit cancellation of the contri-
bution proportional to the color structure CA and a
cancellation of poles with the same renormalization con-
stant ZOS

2 shown in Eq. (16) is a powerful check of the final
result.
The large-mc behavior at the border of phase space is

CNLO
v ðr → 1Þ ¼ −3ð1 − rÞ4 þOðð1 − rÞ5Þ ð32Þ

and

CLO
v ðr → 1Þ ¼ 4ð1 − rÞ4 þOðð1 − rÞ5Þ: ð33Þ

D. The coefficient CG − C0
~CG ≡ Cr

G:
chromomagnetic operator

For the chromomagnetic-operator coefficient we directly
compute the difference between contributions to the
width correlator in Eq. (11) and the local b̄vb operator
in Eq. (12) multiplied by the leading power coefficient
C0ðrÞ, Cr

G ¼ CG − C0
~CG. We write this coefficient as a

sum of a leading-order term and a radiative correction in the
form

FIG. 4 (color online). Mass dependence of the coefficient
CvðrÞ.

MANNEL, PIVOVAROV, AND ROSENTHAL PHYSICAL REVIEW D 92, 054025 (2015)

054025-8



Cr
GðrÞ ¼ Cr;LO

G ðrÞ þ αs
π

n
CAC

r;NLO;A
G ðrÞ þ CFC

r;NLO;F
G ðrÞ

o

ð34Þ

where the NLO coefficient is separated into two color
structures with CA and CF color group invariants. In Fig. 5
we present the plot of the mass dependence for the
coefficient of the chromomagnetic operator for QCD with
CA ¼ 3 and CF ¼ 4=3. One sees that the mass dependence
of Cr

G at NLO is much sharper than in previous cases. This
is unexpected and makes the conjecture used in Ref. [21]
about a uniform phas- space suppression for the coeffi-
cients less accurate. The explicit leading-order expression
reads

Cr;LO
G ¼ 2 − 16r − 24r2 lnðrÞ þ 16r3 − 2r4 ¼ 2CLO

0 : ð35Þ

The NLO coefficients with full mass dependence are too
long to be displayed here, whereas the expanded results are

Cr;NLO;A
G ¼ −

8π2
ffiffiffi
r

p
3

þ r

�
ln2ðrÞ − 25 lnðrÞ þ 2π2

3
− 25

�

−
π2

9
þ 49

18
;

Cr;NLO;F
G ¼ 32π2

ffiffiffi
r

p
3

þ rð−4ln2ðrÞ þ 68 lnðrÞ − 4π2 þ 21Þ

−
7π2

9
−
47

36
: ð36Þ

At the border of phase space we obtain

Cr;NLO
G ðr → 1Þ ¼ CFð1 − rÞ4

þ 1

5
½2CF − 3CA�ð1 − rÞ5 þOðð1 − rÞ6Þ

ð37Þ

and

Cr;LO
G ðr → 1Þ ¼ 4

5
ð1 − rÞ5 þOðð1 − rÞ6Þ: ð38Þ

In the massless limit the Cr
G coefficient is given by

Cr
Gð0Þ ¼ 2þ αs

π

�
CA

�
49

18
−
π2

9

�
þ CF

�
−
47

36
−
7π2

9

��
:

ð39Þ

This result has been independently determined by direct
computation using the technology developed for the
massless case.

E. COEFFICIENT Cμ̄2G
¼ −Cv þ Cr

G=Cmag:

THE MATRIX ELEMENT OF CmagOG

This coefficient is the final result after the use of the
equations of motion. We prefer to place the coefficient in
front of the renormalization-group-invariant combination

FIG. 5 (color online). Mass dependence of the coefficient Cr
G ¼

CG − C0
~CG with μ ¼ mb.
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−0.5

0.0
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1.0

r = mc
2/mb

2

CµG
2 , LO

^

CµG
2 , NLO

^_

_
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−0.5

0.0
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1.0

r = mc
2/mb

2

CµG
2 , LO

^

CµG
2 , NLO

^_

_

FIG. 6 (color online). The mass dependence of the coefficient Cμ̄2G
ðrÞ at LO and NLO in the pole mass scheme. QCD color factors:

CA ¼ 3, CF ¼ 4=3. Left panel: The whole phase space. Right panel: Zoomed image of the small-mass region 0 < r < 0.1.
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that enters the HQET Lagrangian. This combination also
determines the mass splitting in the ground-state multiplets
due to spin orientation.
Thus, the final coefficient of the matrix element of the

chromomagnetic operator with account of the equation of
motion after taking the hadronic matrix elements reads

Cμ̄2G
ðrÞ ¼ −CvðrÞ þ

Cr
GðrÞ

CmagðμÞ
: ð40Þ

This is a coefficient in front of the matrix element of the
renormalization-invariant combination CmagðμÞOGðμÞ.
In Fig. 6 we plot the mass dependence of this final

coefficient.
Writing again the decomposition of the whole coefficient

at NLO

Cμ̄2G
ðrÞ ¼ CLO

μ̄2G
þ αs

π
fCACμ̄2G

ðrÞNLO;A þ CFCμ̄2G
ðrÞNLO;Fg

ð41Þ

we obtain at the leading order the well-known result

CLO
μ̄2G

¼ −3þ 8r − 24r2 − 12r2 lnðrÞ þ 24r3 − 5r4: ð42Þ

The complete expressions are given in Appendix C. Here
we present the new result at NLO as a small-r expansion
only

CNLO;A
μ̄2G

¼ 2π2r
3

− 17r −
8π2

ffiffiffi
r

p
3

þ rlog2ðrÞ

− 25r logðrÞ − π2

9
þ 31

18
;

CNLO;F
μ̄2G

¼ −4π2r − 19rþ 32π2
ffiffiffi
r

p
3

− 4rlog2ðrÞ

þ 68r logðrÞ − 5π2

18
−
91

72
: ð43Þ

After inserting the QCD color factors CA ¼ 3, CF ¼ 4=3
one gets

CNLO
μ̄2G

¼
�
94

27
−
19π2

27

�
þ56π2

ffiffiffi
r

p
9

þ1

3
rð−7ln2ðrÞþ47lnðrÞ−10π2−229Þþ280

27
π2r3=2

þ 1

81
r2ð−1251ln2ðrÞ−1917lnðrÞ−216π2−5750Þ

þOðr5=2Þ: ð44Þ

The very large contribution of the
ffiffiffi
r

p
term leads to a

very fast change of the coefficient CNLO
μ̄2G

from its massless

limit value with an increase of the charm-quark mass.
Numerically one finds

CNLO
μ̄2G

¼ −3.46þ 61.41
ffiffiffi
r

p þ rð−2.3ln2ðrÞ
þ 15.7 lnðrÞ − 109.2Þ þOðr3=2Þ: ð45Þ

In the massless limit the new result is

Cμ̄2G
¼ −3þ αs

π

�
CA

�
31

18
−
π2

9

�
− CF

�
91

72
þ 5π2

18

��
:

Note that the CF part of this coefficient differs from the
result given in Ref. [21]. The difference is given by 2CNLO

0

and it emerged because in Ref. [21] only the leading order
of the C0 coefficient was used for subtracting the con-
tribution of the local b̄vb operator.
The μ dependence of the prefactor of OG in Eq. (13)

matches the leading-order anomalous dimension of the
chromomagnetic operator [30], such that Cμ̄2G

is μ

independent.
The end-of-spectrum behavior reads

CNLO
μ̄2G

ðr → 1Þ ¼ 4CFð1 − rÞ4

þ
�
3

10
CF − CA

�
ð1 − rÞ5 þOðð1 − rÞ6Þ

ð46Þ

for NLO and

CLO
μ̄2G
ðr → 1Þ ¼ −4ð1 − rÞ4 þOðð1 − rÞ6Þ ð47Þ

for the LO contribution.
The mass parameter of the heavy quark mb is chosen

to be the pole mass which is a proper formal parameter
for perturbative computations in HQET (see the discussion
in Ref. [26]). After having obtained the results of the
perturbation theory computation for the coefficients of
HQE, one is free to change this parameter to any other
choice [46].

VI. DISCUSSION OF THE RESULTS

A. The total width

The radiative corrections are of reasonable magnitude
and are well under control for the numerical values of the
coupling constant for μ ∼ 2–4 GeV (for the numerical
value see, e.g. Ref. [47]). This provides a clean application
of the results to phenomenology. However, the final quark-
mass dependence is remarkable. It is very steep for small
mc and therefore the decays into light quarks u for bottom
mesons and d for charmed mesons should be treated
with care.
The coefficients of HQE have been also calculated

in Ref. [20] where the analytical computation has been
performed for the hadronic tensor and the final integra-
tion over the phase space has been done numerically.
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Such a setup has advantages for direct comparison with
experimental data since the experimental cuts in the phase
space can be readily introduced.
We can make a literal comparison with the results of

Ref. [20] for the total width. Our result in the format of
Ref. [20] is

Γ ¼ Γm
0

��
1 − 1.7776

αs
π

��
1 −

μ2π
2m2

b

�

− ð1.9449þ 2.4235
αs
π

�
μ2G
m2

b

�
ð48Þ

for r ¼ 0.0625 which literally coincides with the results
of Ref. [20].
For phenomenological applications and comparison with

experiment within our approach one can compute moments
of the differential distribution (see, e.g. Ref. [48]). It is
straightforward to compute almost any moment in the
invariant lepton pair mass, lepton pair energy or invariant

mass of the hadronic system. We present a few such
moments below.

B. Moments of the differential distribution

Note that our computation is organized such that it
allows for the computation of certain moments of the
differential distribution. We can build up moments over the
leptonic pair invariant mass squared q2, (q ¼ pl þ pν) and
the partonic invariant mass squared ðp − qÞ2, where p is
the momentum of the bottom quark and p ¼ mbv. This is
possible because we have the leptonic part and the partonic
parts separately in an intermediate representation of com-
puted diagrams—one can compute the moments in q2 and/
or in ðp − qÞ2. The total lepton energy moments (the
moments in the variable pq) are just the linear combina-
tions of those two sets. We present the analytical results for
a few moments in the small-r expansion for brevity. The
analytical expression for the total width is given for further
comparison with the moments. It reads

Γ=Γ0 ¼ 1 − 8rþ CF
αs
4π

�
25

2
− 2π2 − 8rð6 lnðrÞ þ 17Þ

�

þ μ̄2G
2m2

b

�
−3þ 8rþ αs

4π
×

�
CA

�
2π2r
3

− 17r −
8π2

ffiffiffi
r

p
3

þ rln2ðrÞ − 25r lnðrÞ − π2

9
þ 31

18

�

þ CF

�
−4π2r − 19rþ 32π2

ffiffiffi
r

p
3

− 4rln2ðrÞ þ 68r lnðrÞ − 5π2

18
−
91

72

���
ð49Þ

where μ̄2G ¼ CmagðμÞμ2GðμÞ.
The normalized q2 moments of the total width with the

Cμ̄2G
coefficient are given below. For convenience they are

normalized to unity at leading order of the power, small
mass, and perturbative expansions. The normalization can
be obtained independently. Indeed, the x ¼ q2=m2

b distri-
bution in the massless limit at LO is given by

1

Γ0

dΓ
dx

¼ 2ð1 − xÞð1þ 2xÞ: ð50Þ

The normalization factors for the moments n ¼ 1–3 are
then NðMq

nÞ ¼ f3=10; 2=15; 1=14g. For example,

NðMq
1Þ ¼

Z
1

0

2ð1 − xÞð1þ 2xÞxdx ¼ 3=10: ð51Þ

The first moment ðq2=m2
bÞ1 is

Mq
1 ¼ 1 − 15rþ CF

αs
4π

�
13 − 2π2 − r

�
90 lnðrÞ þ 10π2

9
þ 355

��

þ μ̄2G
2m2

b

�
−
25

3
þ αs

π

�
CA

�
−
80π2

ffiffiffi
r

p
9

−
25π2

27
þ 260

27

�
þ CF

�
320π2

ffiffiffi
r

p
9

þ 65π2

54
−
763

36

���
:

The second moment ðq2=m2
bÞ2 is

Mq
2 ¼ 1 − 24rþ CF

αs
4π

�
604

45
− 2π2 þ r

�
−144 lnðrÞ − 2π2 −

6813

10

��

þ μ̄2G
2m2

b

�
−15þ αs

π

�
CA

�
−20π2

ffiffiffi
r

p
−
17π2

12
þ 541

40

�
þ CF

�
80π2

ffiffiffi
r

p þ 7π2

3
− 41

���
: ð52Þ
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The third moment ðq2=m2
bÞ3 is

Mq
3 ¼ 1 − 35rþ CF

αs
4π

�
1243

90
− 2π2 þ r

�
−210 logðrÞ − 14π2

5
−
20195

18

��

þ μ̄2G
2m2

b

�
−23þ αs

π

�
CA

�
−
112π2

ffiffiffi
r

p
3

−
35π2

18
þ 27217

1620

�

þ CF

�
448π2

ffiffiffi
r

p
3

þ 67π2

18
−
1088429

16200

���
:

The q2 moments are very stable and hardly change with
n besides the total normalization. Usually one argues that
radiative corrections should increase or decrease depending
on the momentum flow through the diagram—we see no
simple explanation for the change of radiative corrections.
The moments in the partonic variable ðp − qÞ2 −m2

c are
defined through the relation

MH
n ¼

Z ððp − qÞ2 −m2
cÞn

m2n
b

dΓ
Γ0

ð53Þ

and have been considered in Ref. [48]. They are given below
for n ¼ 1–3 analytically within the small-r expansion.
The first moment ððp − qÞ2 −m2

cÞ1 is

MH
1 ¼ CF

αs
π

�
71r
24

þ 3

2
r logðrÞ þ 91

600

�

þ μ̄2G
2m2

b

�
αs
π

�
CA

�
−
611r
108

−
22

9
r logðrÞ − 29

180

�

þ CF

�
−
73π2r
36

þ 457r
108

−
67

36
r logðrÞ − π2

4
þ 77

45

��
−
3r
2
þ 1

2

�
: ð54Þ

The second moment ððp − qÞ2 −m2
cÞ2 is

MH
2 ¼ CF

αs
π

�
5

432
−
137r
600

�
þ μ̄2G
2m2

b

αs
π

�
CA

�
r

�
lnðrÞ
18

þ 163

1080

�
þ 1

72

�
þ CF

�
r

�
25 lnðrÞ

18
þ 3703

1080

�
þ 347

3600

��
: ð55Þ

The third moment ððp − qÞ2 −m2
cÞ3 is

MH
3 ¼ CF

αs
π

�
377

176400
−
119r
3600

�
þ μ̄2G
2m2

b

αs
π

�
CA

43

16200
þ CF

11537

1587600

�
:

This set is such that moments vanish at leading order. Therefore one cannot discuss the relative magnitude of radiative
corrections. Our results for n ¼ 1–2 coincide with those of Ref. [48].
We also compute the relevant moments numerically with full mass dependence for a typical value of the mass ratio. For

the q2 moments up to third order we obtain with r ¼ 0.0625

Mq
0 ¼

�
1 − 1.7776

αs
π

�
− 3.8898

�
1 − 0.9206

αs
π

�
μ̄2G
2m2

b

;

Mq
1 ¼

�
1 − 1.6500

αs
π

�
− 8.9901

�
1 − 0.6834

αs
π

�
μ̄2G
2m2

b

;

Mq
2 ¼

�
1 − 1.5575

αs
π

�
− 14.394

�
1 − 0.5578

αs
π

�
μ̄2G
2m2

b

;

Mq
3 ¼

�
1 − 1.4847

αs
π

�
− 19.997

�
1 − 0.4666

αs
π

�
μ̄2G
2m2

b

: ð56Þ
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Numerically for partonic moments in H ¼ ðp − qÞ2 −m2
c

with r ¼ 0.0625 one obtains

MH
1 ¼ 0.0569

αs
π
þ 0.397

�
1 − 2.304

αs
π

�
μ̄2G
2m2

b

;

MH
2 ¼ 0.00575

αs
π
þ 0.0554

αs
π

μ̄2G
2m2

b

;

MH
3 ¼ 0.00114

αs
π
þ 0.00694

αs
π

μ̄2G
2m2

b

; ð57Þ

with μ̄2G ¼ CmagðμÞμ2GðμÞ.
It is also possible to compute the moments of the lepton

energy spectrum that are of interest from the experimental
point of view. However, here a few more technical
problems arise. On the one hand the whole set up of the
analytical calculation has to be modified, since the leptonic
tensor has to be taken as a differential distribution rather
than fully integrated over the lepton phase space. On the
other hand there is the question of how to deal with γ5 in
dimensional regularization. For the cases we discussed here
we always have a situation when there is an even (in fact
two) number of γ5 matrices within the trace over Dirac
matrices both in the leptonic and hadronic parts, so we
simply and consistently use anticommuting γ5. However, in
the calculation of the moments of the charged-lepton
energy one also has to consider an odd number of γ5
matrices in the traces, which causes an additional compli-
cation of the calculation. Nevertheless, with the technology
developed here, these problems can be tackled and we plan
to present a calculation of lepton-energy moments in a
separate publication.

C. Phenomenological outlook

This paper has been devoted to the description of the
technical aspects of the calculation of the perturbative QCD
corrections for subleading powers in the 1=m expansion.
Aside from a more theoretical consideration, such as the
discussion of the mass dependence of the various terms of
the HQE, such a calculation has a variety of phenomeno-
logical applications, of which the most prominent one is its
application to inclusive semileptonic b → c transitions.
These decays are currently believed to be the most

precise method to determine the CKM matrix element Vcb.
In this method, Vcb is extracted form the heavy quark
expansion for the total rate, while the HQE parameters μπ,
ρD etc. are extracted from the moments of the differential
rates. Based on this methodology, the theoretical uncer-
tainty in Vcb has been reduced to a level below 1%, while
the total uncertainty (including the experimental uncer-
tainty as well as the uncertainty in the extraction of the
HQE parameters) is at the level of 2%. As it has been shown
in Ref. [49] the impact of the αsμ2G contribution is in fact of

the expected size, shifting the central value of Vcb by
about −0.5%.
From the experimental side, the lepton energies cannot

be measured to arbitrarily low values. Thus either an
extrapolation is necessary or one has to include a cut in
the theoretical predictions. Since an extrapolation involves
a model dependence, it is more favorable to include a
lepton-energy cut in the theoretical prediction. However,
unlike in the numerical study of Refs. [20,50], such a cut
cannot be implemented in an analytical calculation, at least
not exactly. Thus in order to make phenomenological use of
the analytical calculation one needs to take into account the
effects of such a cut, which needs further study. We plan to
return to this in a separate publication.

ACKNOWLEDGMENTS

We acknowledge discussions with A. G. Grozin, B. O.
Lange, J. Heinonen, and T. Huber. We thank P. Gambino
for communication on their ongoing work on radiative
corrections to inclusive weak decays. This work is sup-
ported by the Deutsche Forschungsgemeinschaft (DFG)
within research unit FOR 1873 “Quark Flavors Physics and
Effective Theories.”

APPENDIX A: MASTER INTEGRALS

In this section we present the results for the master
integrals entering our calculation in the dimensional regu-
larization with D ¼ 4 − 2ε. The general integral

Sða; b;m2; p2Þ ¼ 1

iπD=2

Z
dDk

ðm2 − k2Það−ðp − kÞ2Þb ðA1Þ

develops a cut at p2 ¼ s > m2 with a discontinuity
ρða; b;m2; sÞ that is

ρða;b;m2;sÞ¼ 1

2πi
ðSða;b;m2;sþ i0Þ−Sða;b;m2;s− i0ÞÞ:

ðA2Þ

It is a spectrum of a general sunset diagram [34]

ρða; b;m2; sÞ ¼ ΓðD=2 − bÞ
ΓðaÞΓðbÞΓðD − a − 2bþ 1Þ

zD−a−2bsD=2−a−b
2F1ðD=2 − b; 1 − b;D − a − 2bþ 1; zÞ

ðA3Þ

with z ¼ 1 −m2=s. Here 2F1ða; b; c; zÞ is a hypergeomet-
ric function. In our case m ¼ mc and s ¼ m2

b.

1. Master integrals at LO: two loop

At LO there are two master integrals. In both cases it is a
two-loop sunset with one heavy (mc) line. The internal
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massive line can be a normal one or doubled which is
denoted by a dot; see Fig. 7.
The closed form for a master integral with a normal line

is

M00 ¼ Sð1; 1; 0;−1Þρð1; 2 −D=2;m2
c; m2

bÞ ðA4Þ

where Sð1; 1; 0;−1Þ is a scalar massless loop that is
expressible through Γ functions

Sða; b; 0;−1Þ ¼ Γðaþ b −D=2ÞΓðD=2 − aÞΓðD=2 − bÞ
ΓðaÞΓðbÞΓðD − a − bÞ :

ðA5Þ

We usually setmb ¼ 1 in the computation. The ε expansion
of this integral can be obtained with the program HypExp

or independently. At the leading order of the ε expansion
one has

M00 ¼
1

2
þm2 lnðm2Þ −m4

2
þOðεÞ ðA6Þ

with m ¼ mc and mb ¼ 1.
The second master integral (dotted) belongs to the same

class of sunsets and can be obtained as a derivative in mc

M01 ¼ −
d

dm2
c
M00: ðA7Þ

The closed form for this dotted leading-order master
integral is

M01 ¼ Sð1; 1; 0;−1Þρð2; 2 −D=2;m2
c; m2

bÞ: ðA8Þ

2. Master integrals at NLO: three loop

At NLO there are master integrals that are factorizable,
of sunset type, and nontrivial.

a. Factorizable integrals

The factorized master integrals contain a closed massive
loop that can be a loop of either a charmed quark or a
bottom quark; Fig. 8.

These master integrals are

M11 ¼ T0ðmcÞM00 ðA9Þ

with T0ðmÞ being a massive tadpole

T0ðmÞ ¼ mD−2Γð1 −D=2Þ ðA10Þ

and the other one is

M12 ¼ T0ðmcÞM01: ðA11Þ

The master integrals with a b-quark tadpole are

M41 ¼ T0ðmbÞM00 ðA12Þ

and the other one is

M42 ¼ TðmbÞM01: ðA13Þ

In the actual computation the bottom-quark mass is set
to unity.

b. Sunset-type integrals

The nonfactorizable but still simple master integrals
M21;M22 are of the sunset type; Fig. 9.
The normal one is given by the basic integral

M21¼ Sð1;1;0;−1ÞSð1;2−D=2;0;−1Þρð1;3−D;m2
c;m2

bÞ:
ðA14Þ

The dotted one is its derivative in the loop (charmed-quark)
mass

M22n ¼ −
d

dm2
c
M21 ðA15Þ

which is again a three-loop sunset

FIG. 7. Two-loop master integral. A dotted line indicates one
additional power of the propagator.

FIG. 8. Factorizable three-loop master integrals.

FIG. 9. Sunset-type three-loop master integrals.
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M21¼ Sð1;1;0;−1ÞSð1;2−D=2;0;−1Þρð2;3−D;m2
c;m2

bÞ:
ðA16Þ

c. Nontrivial master integrals

There are two nontrivial master integrals that can be
chosen in a variety of ways. We define the first nontrivial
master integral Np as a sum of the left (dotted at the
bottom line) and right (dotted on the charm line)
diagrams in Fig. 10. This can be expressed in words as
Np ¼ dot:mb þ dot:mc.

We managed to compute the ε expansion of Np up to a
necessary order. It reads

Np ¼ NLO
p þ εNNLO

p ðA17Þ

with

NLO
p ¼ −2ð1 − rÞ − ð1þ rÞ logðrÞ ðA18Þ

and

NNLO
p ¼ 4

ffiffiffi
r

p �
4ðLi2ð−

ffiffiffi
r

p Þ − Li2ð
ffiffiffi
r

p ÞÞ þ π2 þ 2 lnðrÞ ln
ffiffiffi
r

p þ 1

1 −
ffiffiffi
r

p
�

þ
�
1

2
−
r
2

�
ln2ðrÞ − 3ðrþ 1Þ lnðrÞ

þ 4ðrþ 1Þ lnð1 − rÞ lnðrÞ þ 8ð1 − rÞ lnð1 − rÞ þ 14ðr − 1Þ: ðA19Þ

These are master integrals entering the partonic contribu-
tion for the total width and the Cv coefficient.
At NLO one more master integral appears to be

necessary for the CG coefficient. It is represented by the
difference of the left and right diagrams in Fig. 10. This can
be expressed in words as Nm ¼ dot:mb − dot:mc. We need
only the leading term of its ε expansion which reads

Nm ¼ ð1− rÞ
�
−4Li2ðrÞþ

2π2

3
−4 lnð1− rÞ lnðrÞþ2 lnðrÞ

�

−2rln2ðrÞ: ðA20Þ

3. Master integrals in the massless case

We have calculated all quantities in the massless limit
independently. The reduction procedure and master inte-
grals have been obtained independently as well. In the
massless case master integrals can be found in a concise
form. These master integrals are represented by the
Feynman diagrams given in Fig. 11.
At leading order there is one master integral

M0
00 ¼ Sð1;1;0;−1ÞSð1;2−D=2;0;−1Þ sinð2πεÞ

π
: ðA21Þ

At NLO in the massless case there are three master
integrals:
(a) a factorizable integral

M0
11 ¼ T0ðmbÞM0

00; ðA22Þ

(a) (b) (c)

FIG. 11. Massless two- and three-loop master integrals.

FIG. 10. Nontrivial three-loop master integrals.
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(b) a sunset integral

M0
21 ¼ Sð1; 1; 0;−1ÞSð1; 2 −D=2; 0;−1ÞSð1; 3 −D; 0;−1Þ sinð3πεÞ

π
; ðA23Þ

(c) a complicated integral

N0 ¼ −Sð1; 1; 0;−1Þ Γð1 − εÞ2
Γð2 − εÞΓð3 − 3εÞ 3F2ðfε; 1 − ε; 1g; f3 − 3ε; 2 − εg; 1Þ; ðA24Þ

where 3F2ðfε; 1 − ε; 1g; f3 − 3ε; 2 − εg; 1Þ is a pFq-type hypergeometric function.

APPENDIX B: Cv COEFFICIENT AT NLO WITH FULL MASS DEPENDENCE

The expression for the coefficient Cv is

CNLO
v ¼

�
3Li2ðrÞ −

1

2
π2
�
ð1 − 16r2 − 3r4Þ − 1

24
ð1 − rÞð25 − 1011r − 1487r2 þ 189r3Þ

þ 1

6
rð12þ 450rþ 4r2 þ 45r3Þ lnðrÞ − 1

6
ð1 − rÞð11þ 11rþ 83r2 − 45r3Þ lnð1 − rÞ

þ 3

2
r2ð4þ r2Þln2ðrÞ þ 2ð1 − 30r2 − 3r4Þ lnð1 − rÞ lnðrÞ

þ 8r3=2ð1þ 3rÞ
�
4Li−2 − π2 − 2 ln

�
1þ ffiffiffi

r
p

1 −
ffiffiffi
r

p
�
lnðrÞ

�
ðB1Þ

where Li−2 ¼ Li2ð
ffiffiffi
r

p Þ − Li2ð−
ffiffiffi
r

p Þ.

APPENDIX C: CG COEFFICIENT AT NLO WITH FULL MASS DEPENDENCE

Here we give results for the CNLO
μ̄2G

coefficient. At NLO we give both color structures.
The CA color structure coefficient of αs=π reads

CNLO;CA

μ̄2G
¼ 1

108
ð1 − rÞð156 − 4081r − 354r2 − 405r3Þ

þ 1

9
ð6Li2ðrÞ − π2Þð1 − 6rþ 24r2 − 11r3Þ

−
ð1 − rÞ
54r

ð15þ 20r − 196r2 − 292r3 − 27r4Þ lnð1 − rÞ

−
1

54
rð786þ 972rþ 131r2 − 27r3Þ lnðrÞ − 2

9
ð1þ 9r − 93r2 þ 19r3Þ lnð1 − rÞ lnðrÞ

þ 1

9
rð9 − 33rþ 5r2Þ lnðrÞ2

þ 8

3
r1=2

�
1 −

11

3
r

��
4Li−2 − π2 − 2 lnðrÞ ln

�
1þ ffiffiffi

r
p

1 −
ffiffiffi
r

p
��

: ðC1Þ
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The CF color structure is

CNLO;CF

μ̄2G
¼ −

1

216
ð1 − rÞð321 − 13747rþ 5421r2 − 3807r3Þ

þ 1

18
ð6Li2ðrÞ − π2Þð5þ 72r − 72r2 − 88r3 þ 45r4Þ

−
ð1 − rÞ
54r

ð12 − 19rþ 917r2 − 1795r3 þ 585r4Þ lnð1 − rÞ

þ 1

54
rð1500 − 330rþ 2668r2 − 585r3Þ lnðrÞ

þ 2

9
ð11þ 54r − 48r2 − 94r3 þ 45r4Þ lnð1 − rÞ lnðrÞ

−
1

18
rð72þ 60r − 112r2 þ 45r3Þ lnðrÞ2

þ 32

3

�
1 −

4

3
r

�
r1=2

�
4Li−2 − π2 − 2 lnðrÞ ln

�
1þ ffiffiffi

r
p

1 −
ffiffiffi
r

p
��

: ðC2Þ
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