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I. INTRODUCTION

Light flavor quantum chromodynamics (QCD) with up,
down, and strange quarks is a fascinating theory, that
features only a few parameters. Variations of these param-
eters have been explored in great detail in the last decade.
We mention in particular varying the quark masses to make
contact with lattice simulations, but also variants of the
theory with more light quark flavors or different numbers of
colors have been studied. These studies mostly focused on
the fate and exploration of the dynamical and explicit
symmetry breaking that light flavor QCD exhibits. A much
less explored territory relates to the θ-term of QCD,

Lθ ¼ −
θ

64π2
ϵμνρσGa

μνGa
ρσ; ð1Þ

where a ¼ 1;…; 8 are color indices and Gμν is the gluon
field strength tensor. While the upper limit on the neutron
electric dipole moment poses a stringent limit on the value
of θ, where the latest determination gives jθj < 7.6 × 10−11

[1], it has been argued that based on the string theory
landscape, θ might take natural values and that it is difficult
to achieve a tiny value for it, see, e.g., Ref. [2].
Independently of that, it is interesting to explore QCD at
larger values of θ. QCD at θ ∼ π was already investigated in
Refs. [3,4]. Also, the pion and the nucleon mass were
calculated at fixed topology in Ref. [5] to explore the
connection between lattice QCD and physical observables.
Further, Ubaldi [6] studied the effects that a nonzero strong-
CP-violating parameter would have on the deuteron and
diproton binding energies and on the triple-alpha process
using a somewhat simplified nuclear modeling. Even so the
relevant energy scales in these systems exhibit some fine-
tuning, no dramatic effect of varying θ was found. We also

note a recent study on the relation between confinement
and the θ-vacuum, see Ref. [7].
The θ-dependence of the pion mass1 has been given at

leading order (LO) in chiral perturbation theory (ChPT) [5].
Here, wewant to derive the pion mass in the θ-vacuum up to
next-to-leading order (NLO) as well as the corresponding
pion-pion (ππ) elastic scattering amplitude. Furthermore,
wewill calculate the θ-dependence of the lightest resonances
in QCD, the scalar meson σð500Þ, and the vector meson
ρð770Þ. These are not only interesting by themselves, but
also are important components in precision modelings of
the nuclear forces, as used, e.g., in the work on extracting
limits on variations of the Higgs vacuum expectation value
from the element abundances in Big Bang nucleosynthesis
[9] (for related works using different frameworks, see
Refs. [10,11]). In the following, we assume that the σ and
the ρ are generated from a resummation of pion-pion
interactions evaluated at NLO in ChPT in the θ-vacuum.
Having calculated the θ-dependent pion-pion scattering
amplitude, it is straightforward to implement it into a
unitarization (resummation) scheme that can generate the
light resonances and thus gives their θ-dependent properties.
To be specific, we make use of the so-called (modified)
inverse amplitude method, which is one, but not the only
available, unitarization scheme that allows us to perform
this task.
Our work is organized as follows. In Sec. II we discuss

the chiral effective Lagrangian in the θ-vacuum, with
particular emphasis on the two-flavor formulation and also
including strong isospin breaking. Next, the θ-dependent
ππ scattering amplitude is constructed at NLO in Sec. III.
Armed with that, we then come to the central Sec. IV, where
the mass and the width of the σ and the ρ are calculated as a
function of θ. We end with a short summary and outlook in
Sec. V. The appendix contains some discussion of the
vacuum alignment at NLO.
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1An expression for the θ dependence of the pion mass was also
derived in a model of gluon dynamics in Ref. [8]. Whether this is
consistent with the chiral behavior of QCD remains to be shown.
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II. CHIRAL EFFECTIVE LAGRANGIAN IN
THE θ-VACUUM

At the lowest order,Oðp2Þ, the SU(N) chiral Lagrangian
in the θ vacuum is [12,13]

L2 ¼
F2

4
hDμU†DμUi þ F2

4
hχU† þ χ†Ui; ð2Þ

where F is the pion decay constant in the chiral limit and
χ ¼ 2BM expðiθ=NÞ. Here, M is the real and diagonal
quark mass matrix, and the low-energy constant (LEC)
B ¼ Σ=F2, with Σ the modulus of the flavor-averaged
quark condensate in the chiral limit. The field U ∈ SUðNÞ
collects the Goldstone bosons of the theory. However, only
for θ ¼ 0 the vacuum expectation value of it, which is the
solution of the equations of motion for the zero-momentum
mode, is trivial, i.e.,U0 ¼ 1. In the general case, the vacuum
is shifted from the unit matrix, and the vacuum alignment
can be determined by minimizing the potential energy.
Therefore, it is useful to separate the ground state U0 from
the quantum fluctuation ~U containing the Goldstone boson
fields as UðxÞ ¼ U0

~UðxÞ. Thus, the ground state of the
theory is given by minimizing the potential energy

V2 ¼ −
Σ
2
hðU†

0e
iθ=N þ U0e−iθ=NÞMi: ð3Þ

BecauseM is diagonal,U0 can be taken as diagonal as well
without loss of generality. The special unitary matrixU0 can
be parametrized as

U0 ¼ diagfeiφ1 ; eiφ2 ;…; eiφNg;X
f

φf ¼ 2nπðn ∈ ZÞ: ð4Þ

This leads to

V2 ¼ −ΣRehe−iθ=NU0Mi

¼ −Σ
X
f

cos

�
φf −

θ

N

�
mf; ð5Þ

with mf the quark mass of flavor f.
For θ ¼ π, because the theory is periodic in θ with a

period 2π, the Lagrangian is invariant under CP and P
transformations as they change θ to −θ. However, it is well
known that at θ ¼ π, there is a spontaneous CP breaking,
called Dashen’s phenomenon, because the CP conserving
stationary point of the action is in fact a maximum and there
are two degenerate CP violating vacua which are obtained
by minimizing the potential energy [14].

A. Two-flavor case without isospin symmetry

In the rest of the paper, we will consider the two-flavor
case and use the following parametrization

U0¼ diagfeiφ;e−iφg;

~U¼ ei
ffiffi
2

p
Φ=F; Φ¼ 1ffiffiffi

2
p

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
: ð6Þ

We see that the angle φ and the neutral pion field always
appear in a linear combination φþ π0=F. Therefore,
finding the stationary solution for U0 by minimizing the
potential energy with respect to φ is equivalent to removing
the tree-level tadpole for the neutral pion [14]. The
minimization of V2 gives [5]

ðmu þmdÞ sinφ cos
θ

2
− ðmu −mdÞ cosφ sin

θ

2
¼ 0

⇔ tanφ ¼ −ϵ tan
θ

2
; ð7Þ

where the average light quark mass m̄ ¼ ðmu þmdÞ=2 and
the parameter ϵ ¼ ðmd −muÞ=ð2m̄Þ, that quantifies strong
isospin breaking, are introduced. Actually, at θ ¼ π and
ϵ ¼ 0 the Eqs. (7) do not depend on φ at all. This leads to a
paradoxical situation of continuous vacuum degeneracy
discussed in [3,4] and resolved in [15] taking into account
terms of the NLO chiral Lagrangian.
In the present work we also consider the NLO chiral

Lagrangian [12]. In the SUð2Þ × SUð2Þ notation of, e.g.,
Ref. [16] it reads

L4 ¼
l1
4
hDμU†DμUi2 þ l2

4
hDμU†DνUihDμU†DνUi

þ l3
16

hχ†U þ χU†i2 þ l4
4
hDμχ

†DμU þDμχDμU†i

þ l5
4
hU†FR

μνUFL;μνi − l7
16

hχ†U − χU†i2

þ il6
2
hFR

μνDμUDνU† þ FL
μνDμU†DνUi

þ h1 þ h3
4

hχ†χi þ h1 − h3
2

Reðdet χÞ
− h2hFL

μνFL;μν þ FR
μνFR;μνi; ð8Þ

where

DμO ¼ ∂μO − irμOþ iOlμ for O ¼ U; χ

Fμν
R ¼ ∂μrν − ∂νrμ − i½rμ; rν�;

Fμν
L ¼ ∂μlν − ∂νlμ − i½lμ; lν�; ð9Þ

with rμ and lν the right-handed and left-handed external
fields, respectively.
In principle, with the introduction of the NLO

Lagrangian as well as the one-loop contribution, the
vacuum energy has changed, and the vacuum alignment
needs to be redetermined. In particular, the l7 term in the
NLO Lagrangian is not minimized by the LO solution
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given in Eq. (7). This means that the l7 term induces a shift
to the LO vacuum alignment. However, as shown in
Appendix, this shift does not affect the calculation of
the pion masses and the ππ scattering amplitudes up to
NLO. Therefore, it is sufficient to consider the LO vacuum
alignment in Eq. (7) for our purpose.2

B. θ-dependence of the pion mass

Substituting U0 with φ given by Eq. (7) into the LO
Lagrangian, we get the LO pion mass squared in the
θ-vacuum [5]

M
∘ 2ðθÞ ¼ 2Bm̄ cos

θ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2tan2

θ

2

r
; ð10Þ

which is the same for the neutral and charged pions.
At NLO, the pion masses receive contributions from

both one-loop diagrams and the l3 and l7 terms. The
divergence in the one-loop diagrams cancel exactly with
that from l3. We obtain

M2
πþðθÞ¼M

∘ 2ðθÞþM
∘ 4ðθÞ
F2

�
1

32π2
ln
M
∘ 2ðθÞ
μ2

þ2lr3

þ2l7

�ð1−ϵ2Þtanðθ=2Þ
1þϵ2tan2ðθ=2Þ

�
2
�
;

M2
π0
ðθÞ¼M2

πþðθÞ−2l7
M
∘ 4ðθÞ
F2

ϵ2

cos4ðθ=2Þð1þϵ2tan2ðθ=2ÞÞ2 ;

ð11Þ

where lr3 is the scale-dependent finite part of l3. At θ ¼ 0,
these expressions reduce to the standard SU(2) relations
derived in Ref. [12]. Using the positivity bound for l7
obtained in Ref. [3], we find that the charged pion is always
heavier than the neutral one.
For easy reference, we give the corresponding formulas

for the much simpler isospin symmetric case with
mu ¼ md ¼ m̄. In this case, the stationary solution of the
vacuum energy has φ ¼ 0. The pion mass up to NLO in the
θ-vacuum has one additional term compared with that in
the θ ¼ 0 case, and is given by

M2
πðθÞ¼M2ðθÞþM4ðθÞ

F2

�
1

32π2
ln
M2ðθÞ
μ2

þ2lr3þ2l7tan2
θ

2

�

ð12Þ

with isospin symmetric LO pion mass

M2
πðθÞ ¼ 2Bm̄ cos

θ

2
: ð13Þ

One sees that even in the isospin symmetric case, the NLO
pionmass depends on l7, and this additional term vanishes at
θ ¼ 0. The one-loop correction to theGoldstone bosonmass
expandedup toOðθ2Þhas beenworked out inRef. [17] in the
framework of partially quenched three-flavor ChPT. We
have checked explicitly that at leading order in that expan-
sion our result is fully consistent with the one of Ref. [17].

III. ππ SCATTERING AMPLITUDES
IN A θ-VACUUM

The ππ scattering amplitude at NLO is the building
block to generate the light mesons σð500Þ and ρð770Þ via
unitarization. To be specific, we calculate the amplitude
Aðs; t; uÞ ¼ Aπþπ−→π0π0ðs; t; uÞ which is used to get the
following combinations with definite isospin (I ¼ 0, 1, 2)

T0ðs; tÞ ¼ 3Aðs; t; uÞ þ Aðt; u; sÞ þ Aðu; s; tÞ;
T1ðs; tÞ ¼ Aðt; u; sÞ − Aðu; s; tÞ;
T2ðs; tÞ ¼ Aðt; u; sÞ þ Aðu; s; tÞ: ð14Þ

Later, we will also need the partial-wave projection for
given isospin I and angular momentum L

TI
LðsÞ ¼

1

64π

Z þ1

−1
dzTIðs; tÞPLðzÞ ð15Þ

with PLðzÞ the pertinent Legendre polynomials.
Up to the order Oðp4Þ, there are several contributions to

the ππ scattering amplitude, as shown in Fig. 1. Diagram (a)
gives

AðaÞðs; t; uÞ ¼
1

3F2
f3sþM

∘ 2

θ − 2½M2
π0
ðθÞ þM2

πþðθÞ�g;
ð16Þ

in terms of M
∘ 2

θ ≡M
∘ 2ðθÞ, M2

πþðθÞ, and M2
π0
ðθÞ given in

Eqs. (10) and (11), respectively. Diagram (b) gives

AðbÞðs; t; uÞ ¼
2l1
F4

ðs − 2M
∘ 2

θÞ
2 þ 8l3

3F4
M
∘ 4

θ

þ l2
F4

½4M∘ 2

θðs − 2M
∘ 2

θÞ þ t2 þ u2�

þ 32l7B2m̄2

3F4
½ð1 − ϵ2Þ2sin2θ − 2ϵ2�: ð17Þ

Diagram (c) includes the tadpole vertex correction from
both the neutral and charged pions, and its contribution is

AðcÞðs; t; uÞ ¼
1

18F4
ð31M∘ 2

θ − 20sÞA0ðM
∘ 2

θÞ; ð18Þ
2We will not discuss the complications at θ ¼ π. In that case,

one needs to include the l7 term as it determines the whole
dynamics [3].
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A0ðm2Þ is the one-point loop integral (the tadpole) in d space-time dimensions

A0ðm2Þ ¼ iμ4−d
Z

ddl
ð2πÞd

1

l2 −m2
; ð19Þ

with μ the scale of dimensional regularization.
The two-point loops, diagram (d) in Fig. 1 and the corresponding t- and u-channel crossed diagrams, give

AðdÞðs; t; uÞ ¼
1

18F4
½9ðM∘ 4

θ − s2ÞB0ðs;M
∘ 2

θ;M
∘ 2

θÞ þ 10sA0ðM
∘ 2

θÞ�

þ 1

6F4

�
½2M∘ 4

θ þ 2M
∘ 2

θðt − 2uÞ þ tðu − tÞ�B0ðt;M
∘ 2

θ;M
∘ 2

θÞ þ
2

3
ðt − 3uÞA0ðM

∘ 2

θÞ þ
1

48π2
ðs − uÞðt − 6M

∘ 2

θÞ
�

þ 1

6F4

�
½2M∘ 4

θ þ 2M
∘ 2

θðu − 2tÞ þ uðt − uÞ�B0ðu;M
∘ 2

θ;M
∘ 2

θÞ þ
2

3
ðu − 3tÞA0ðM

∘ 2

θÞ þ
1

48π2
ðs − tÞðu − 6M

∘ 2

θÞ
�
;

ð20Þ

where the first line corresponds to the s-channel charged
and neutral pion loops, the second line corresponds to the
t-channel loop, and the last line is the u-channel loop. Here
B0 is the scalar two-point loop integral

B0ðq2; m2
1; m

2
2Þ ¼ iμ4−d

Z
ddl
ð2πÞd

1

ðl2 −m2
1Þ½ðlþ qÞ2 −m2

2�
:

ð21Þ
We also need to take into account the wave function

renormalization for all external lines which is represented
by diagram (e). This amounts to

AðeÞðs; t; uÞ ¼
1

2
ð2δZπþ þ 2δZπ0Þ

1

F2
ðs −M

∘ 2

θÞ

¼ 4

3F4
A0ðM

∘ 2

θÞðs −M
∘ 2

θÞ; ð22Þ

where δZπ¼Zπ−1, with the wave function renormalization
constant for both the neutral and charged pions given by

Zπ ¼ 1þ 2

3F2
A0ðM

∘ 2

θÞ: ð23Þ

Using dimensional regularization for the loop integrals
and summing up all contributions, we obtain a UV

divergence-free and scale-independent amplitude. The
l3 and l7 terms in Eq. (17) cancel with the same terms
in Eq. (16) that enter through the NLO mass expressions
for the neutral and charged pions. The full amplitude
reads

Aðs; t; uÞ ¼ s −M
∘ 2

θ

F2
þ Bðs; t; uÞ þ Cðs; t; uÞ;

Bðs; t; uÞ ¼ 1

6F4
f3ðs2 −M

∘ 4

θÞJ̄ðsÞ

þ ½tðt − uÞ − 2M
∘ 2

θtþ 4M
∘ 2

θu − 2M
∘ 4

θ�J̄ðtÞ
þ ½uðu − tÞ − 2M

∘ 2

θuþ 4M
∘ 2

θt − 2M
∘ 4

θ�J̄ðuÞg;

Cðs; t; uÞ ¼ 1

96π2F4

�
2

�
l̄1θ −

4

3

�
ðs − 2M

∘ 2

θÞ
2

þ
�
l̄2θ −

5

6

�
½s2 þ ðt − uÞ2�

− 12M
∘ 2

θsþ 15M
∘ 4

θ

�
: ð24Þ

Here, the l̄iθ are the scale-independent but quark mass-
dependent, and thus θ-dependent, LECs which are related
to the renormalized ones as

(b)(a) (c) (d) (e)

FIG. 1. Feynman diagrams for the ππ scattering amplitude up to Oðp4Þ. Here the filled circles and square denote the vertices from the
LO and NLO Lagrangian, respectively. The t and u channel two-point loops are not shown.
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lri ¼
γi

32π2

�
l̄iθþ ln

M
∘ 2

θ

μ2

�
; γ1¼

1

3
; γ2 ¼

2

3
: ð25Þ

The finite loop function J̄ is given by

J̄ðsÞ ¼ 1

16π2

�
σðsÞ ln σðsÞ − 1

σðsÞ þ 1
þ 2

�
;

σðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M
∘ 2

θ

q2

vuut
: ð26Þ

We find that the ππ scattering amplitude up to NLO in a
θ-vacuum, Eq. (24), takes exactly the same form as the
well-known one in the vacuumwith θ ¼ 0 [12], and the only

change is to replace everywhereM
∘ 2ð0Þ ¼ 2Bm̄ byM

∘ 2

θ given
by Eq. (10). The reason is that vertices from terms of the
form hχ†U þ χU†i can always be written in terms of

M
∘ 2

θ, while the l7 term from diagram (b) gets canceled
with the one from diagram (a). Such a property does not
hold at higher orders. For instance, considering the ππ
scattering at Oðp6Þ, there can be a one-pion exchange
diagram with two CP-violating three-pion vertices (see
Appendix), which does not have any correspondence at
θ ¼ 0. This behavior of the ππ scattering amplitude is
reminiscent of the Kaplan-Manohar transformation [18],
which is an accidental symmetry of the chiral Lagrangian
at NLO.

IV. θ-DEPENDENCE OF THE σ AND ρ
IN THE ISOSPIN LIMIT

The σð500Þ and the ρð770Þ are the lightest two-flavor
non-Goldstone mesons. They can be obtained from the
chiral perturbation theory amplitudes by unitarization.
There are various such unitarization schemes on the market,
like the inverse amplitude method (IAM) to be used here
[19]. In most cases, such a unitarization procedure amounts
to a resummation of a certain class of diagrams to ensure
exact two-body unitarity, which is only perturbative in
ChPT, but such resummations are usually at odds with
crossing symmetry. We do not want to enter a more detailed
discussion on these issues here (see, e.g., the early work in
Ref. [20]), but rather employ the IAM as a tool to generate
the light mesons from the θ-dependent pion-pion inter-
action, which automatically leads to θ-dependent properties
of the σ and the ρ.
The scattering amplitude for a given channel (with fixed

isospin and angular momentum) up to NLO in the IAM is
given by

TðsÞ ¼ ðTð2ÞðsÞÞ2
Tð2ÞðsÞ − Tð4ÞðsÞ

; ð27Þ

where Tð2ÞðsÞ and Tð4ÞðsÞ are the ππ scattering amplitudes of
leading and next-to-leading chiral order. This form is valid in
the channel with I ¼ J ¼ 1 pertinent to the ρ-meson.
As pointed out, e.g., in Ref. [21], it requires modification
in the I ¼ J ¼ 0 channel due to the presence of Adler zeros
in the S-wave. The associated unphysical poles can be
canceled in rather natural way as derived in Ref. [22] which
is called the modified inverse amplitude method (mIAM).
The corresponding scattering amplitude reads

TðsÞ ¼ ðTð2ÞðsÞÞ2
Tð2ÞðsÞ − Tð4ÞðsÞ þ AmIAMðsÞ ;

AmIAMðsÞ ¼ Tð4Þðs2Þ

−
ðs2 − sAÞðs − s2ÞðT 0

ð2Þðs2Þ − T 0
ð4Þðs4ÞÞ

s − sA
;

ð28Þ

where sA denotes the Adler zero of the full partial wave
defined by the condition TðsAÞ ¼ 0, and 0 denotes differ-
entiation with respect to s. The approximative Adler
zeros at LO and NLO correspond to the energies s2 and
s2 þ s4, determined by Tð2Þðs2Þ¼0 and Tð2Þðs2þs4Þþ
Tð4Þðs2þs4Þ¼0, respectively. This mIAM has been used,
e.g., in Ref. [23] to study the quark mass dependence of the
sigma and the rho. In particular, wewill use theLECs lr1 and l

r
2

as determined in that paper at the scale μ ¼ 770 MeV,

lr1 ¼ ð−3.7� 0.2Þ × 10−3; lr2 ¼ ð5.0� 0.4Þ × 10−3:

ð29Þ

Asmentioned inRef. [23], the results of the IAMis insensitive
to the values of lr3 and lr4 as long as they are within the
uncertainties: lr3 ¼ ð0.8� 3.8Þ × 10−3 and lr4 ¼ ð6.2�
5.7Þ × 10−3. Taking the central values and the measured
values of the pionmass and decay constantMπ¼138.04MeV
(isospin averaged) and Fπ ¼ 92.21 MeV, the standard
ChPT one-loop expressions yield M ¼ 139.46 MeV and
F ¼ 86.43 MeV.
The masses and widths of the ρ and σ resonances can be

obtained by searching for the poles in the complex s-plane
of the unitarized amplitudes. When the resonances are
above the ππ threshold, which is the case for the physical
pion mass, we need to search for poles in the second
Riemann sheet. The corresponding pole positions read

ffiffiffiffiffi
sσ

p ¼ ð443.1 − i217.4Þ MeV;ffiffiffiffiffi
sρ

p ¼ ð751.9 − i75.4Þ MeV: ð30Þ

We note that the mass of the ρ comes out somewhat below
the physical value as it is common in such unitarization
procedures. For a more detailed discussion on this issue,
see, e.g., Refs. [24,25].
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When isospin breaking is neglected, mu ¼ md, the
vacuum is not shifted, and we can use the usual ChPT
Lagrangian and amplitudes directly. All the θ-dependence
of physical observables enters through Eq. (13) which
finally leads to the mass and width of the σ and the ρ as a
function of θ, shown in Fig. 2. The θ-dependence of the σ
mass is stronger than the one of the ρmass since the former
is in a S-wave while the latter is in a P-wave. Also, both
widths show a somewhat stronger dependence on θ which
is due to the enlarged phase space as the pion mass
decreases from its physical value when jθj increases from
0. It is easy to understand the behavior of the θ-dependence
of these masses and widths. From Eq. (12), one sees that
when jθj≃ π, the pion mass is dominated by the l7-term
and thus much smaller than the value at θ ¼ 0. For this
reason, both the σ and ρ masses decrease as jθj grows from
0 to π. However, the effect is not drastic when the pion mass
takes the physical value. Thus, as the value of θ grows, the
phase spaces for both the σ and ρ decays into two pions
increase so that the widths of both states increase.

V. SUMMARY AND OUTLOOK

In this paper, we have studied the θ-dependence of the
lightest resonances in QCD. For that, we have derived the
charged and neutral pion masses and the pion-pion scatter-
ing amplitude at NLO in the θ-vacuum. We found that the
NLO contributions proportional to l3 and l7 and entering
via the pion mass formula and ππ-contact terms cancel each
other exactly. The σ and the ρ have been obtained from
a unitarization of this amplitude using the so-called
(modified) inverse amplitude method. This automatically
generates θ-dependent masses and widths of these reso-
nances. Although the pion mass vanishes at θ ¼ π at LO,
no dramatic effects on the masses and widths of the σ and
the ρ were found. Therefore, we expect that using a
different unitarization method such as the one proposed
in Ref. [21], which also takes into account the Adler zero,
will not make any qualitative difference. However, it still

remains to be seen how such modifications change the
properties of nuclei, as the nuclear binding is fine tuned,
and thus more sensitive to such parameter variations.
We finally notice that if the pion mass takes a large

unphysical value, the behavior for the σ properties and the ρ
width could change. In order to make this point clear, let us
consider the case with θ ¼ 0. As discussed in detail in
Ref. [23], when the pion mass is sufficiently large, the ρ
could become bound below the two-pion threshold and
thus does not decay. Decreasing the pion mass to the point
when the ρ mass coincides with the two-pion threshold,
there will be a nonanalyticity [26]. The case for the σ is
more complicated. It could have two poles in the same or
different Riemann sheets depending on the pion mass. In
the θ-vacuum, the pion mass can be tuned by θ. Thus, if the
pion mass takes a large value at θ ¼ 0, the θ-dependence of
the ρ and, in particular, the σ properties can be complicated.
However, despite the complication, their θ-dependence can
always be studied using the formulas presented in this
paper for a given Mπð0Þ.
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APPENDIX: VACUUM ALIGNMENT AT NLO

In this appendix, we will discuss the vacuum alignment
at NLO induced by the presence of the counterterms
(li-terms) and the one-loop contribution. We will calculate
the vacuum alignment perturbatively.

FIG. 2 (color online). The θ-dependence of the masses (left panel) and widths (right panel) of the σ (blue, full) and the ρ (red, dashed).
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Because the shift of the LO vacuum alignment given in
Eq. (7) is caused by the NLO terms in the chiral expansion,
we assume that the angle φ in U0 ¼ diagfeiφ; e−iφg can be
split into

φ ¼ φ0 þ αφ1 ðA1Þ

with φ0 determined by aligning the vacuum at LO, and αφ1

is the shift coming from the Oðp4Þ contribution to the
vacuum energy. Here, α is a chiral scaling factor to make
explicit that αφ1 is one order higher than φ0 in the
chiral expansion.3 The vacuum energy density up to
NLO is given by

evac ¼ −
F2

4
hχ†U0 þ χU†

0i

−
l3
16

hχ†U0 þ χU†
0i2 þ

l7
16

hχ†U0 − χU†
0i2

−
h1 þ h3

4
hχ†χi − h1 − h3

2
Reðdet χÞ þ eð1-loopÞvac ;

ðA2Þ

where we have neglected those hi-terms which are inde-

pendent of U0, and eð1-loopÞvac is the 1-loop effective potential
whose explicit expression is [27] (see also Ref. [28]
expanded up to θ4)

eð1-loopÞvac ¼ 3M
∘ 4ðθÞ

�
−
λ

2
þ 1

128π2

�
1 − 2 ln

M
∘ 2ðθÞ
μ2

��
:

ðA3Þ

We may decompose the vacuum energy density into the
LO and NLO contributions with the NLO one including all
terms proportional to α

evac ¼ eð2Þvac þ αeð4Þvac: ðA4Þ

Substituting U0 ¼ diagfeiφ; e−iφg and Eq. (A1) into
Eq. (A2), we get

eð2Þvac ¼ −F2M2
φ;

M2
φ ¼ 2Bm̄

�
cos

θ

2
cosφ0 − ϵ sin

θ

2
sinφ0

�
;

eð4Þvac ¼ φ1

∂eð2Þvac

∂φ0

þ eð1-loopÞvac −
l3
F4

ðeð2ÞvacÞ2

− 4l7B2m̄2

�
sin

θ

2
cosφ0 þ ϵ cos

θ

2
sinφ0

�
2

; ðA5Þ

where we have neglected the terms independent of φ. The

LO vacuum alignment is obtained by minimizing eð2Þvac,

∂eð2Þvac

∂φ0

¼ 0; ðA6Þ

whose solution is given by φ0 ¼ φ̄0 with

φ̄0 ¼ arctan
�
−ϵ tan

θ

2

�
: ðA7Þ

With this value of φ0, the LO vacuum energy density,
normalized to 0 at θ ¼ 0, is [5]

eð2Þvac ¼ F2½M2ð0Þ −M
∘ 2ðθÞ�; ðA8Þ

where M2ð0Þ ¼ 2Bm̄, and M
∘ 2ðθÞ is given in Eq. (10). The

NLO vacuum energy density is

eð4Þvac ¼ eð1-loopÞvac −M
∘ 4ðθÞ

�
l3 þ l7

�ð1 − ϵ2Þ tanðθ=2Þ
1þ ϵ2tan2ðθ=2Þ

�
2
�
:

ðA9Þ

The perturbation φ1 due to the NLO terms is then
determined by

∂eð4Þvac

∂φ0

				
φ0¼φ̄0

¼ 0: ðA10Þ

From Eq. (A6), it is easy to see that the l3 term does not
have any effect. The vacuum alignment is equivalent to
removing the tadpole of the neutral pion which causes
vacuum instability [14] (see also, e.g., Refs. [29–32]). In
fact, with φ0 ¼ φ̄0, the SU(2) LO chiral Lagrangian does
not have any term with odd number of pions because such a
term is always proportional to

cos
θ

2
sinφ0 þ ϵ sin

θ

2
cosφ0 ∝

∂eð2Þvac

∂φ0

: ðA11Þ

This implies that the one-loop diagrams for producing a π0

from the vacuum as shown in Fig. 3 have a vanishing

amplitude. Thus, we have ð∂eð1-loopÞvac =∂φ0Þφ0¼φ̄0
¼ 0. This

can be checked explicitly with Eq. (A3) noticing that

M
∘ 2ðθÞ ¼ M2

φjφ0¼φ̄0
. Therefore, Eq. (A10) leads to a

solution φ1 ¼ φ̄1 with

φ̄1 ¼
4l7Bm̄
F2

ϵð1 − ϵ2Þ tanðθ=2Þ secðθ=2Þ
½1þ ϵ2tan2ðθ=2Þ�3=2 : ðA12Þ

This is the NLO perturbation to the LO vacuum alignment.
Expanding it around θ ¼ 0, we reproduce the result derived
in Ref. [32]

3The introduction of the scaling factor is only for convenience.
It will be set to α ¼ 1 after φ1 is calculated.
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φ̄1 ¼
2l7Bm̄
F2

ϵð1 − ϵ2Þθ þOðθ2Þ: ðA13Þ

This perturbation produces a CP violating three-pion
vertex [31–33] by substituting U0 with φ ¼ φ̄0 þ φ̄1 into
the LO Lagrangian, which turns out to be ofOðp4Þ. Such a
vertex contributes to the ππ scattering from Oðp6Þ and to
the pion mass only starting at Oðp8Þ. Furthermore, terms
with even number of pions are CP conserving and receive

contributions with an even power of φ̄1, so that the φ̄1-
induced terms in the Lagrangian also start from Oðp6Þ.
Therefore, it is safe to make the vacuum alignment at LO
for our calculation. It is for the same reason that the
topological susceptibility up to NLO in the chiral expan-
sion calculated in Ref. [28] agrees with that in Ref. [34],
where the vacuum was aligned by minimizing the vacuum
energy at LO and NLO, respectively.
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