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The η − η0 mixing mass term due to the derivative coupling SUð3Þ × SUð3Þ symmetry breaking term,
produces an additional momentum-dependent pole term for processes with η0 but is suppressed in the η

amplitude by a factor m2
η=m2

η0. This seems to be the origin of the two-angle description of the pseudoscalar

decay constants used in the literature. In this paper, by diagonalizing both the mixing mass term and the
momentum-dependent mixing term, we show that the η − η0 system can be described by a meson field
renormalization and a new mixing angle θ which differs from the usual mixing angle θP by a small
momentum-dependent mixing d term. This new mixing scheme with exact treatment of the momentum-
dependent mixing term is actually simpler than the perturbation treatment and should be used in any
determination of the η − η0 mixing angle and the momentum-dependent mixing term. Assuming nonet
symmetry for the η0 singlet amplitude, from the sum rules relating θ and d to the measured vector meson
radiative decay amplitudes, we obtain consistent solutions: θ ¼ −ð13.99� 3.1Þ°, d ¼ 0.12� 0.03 from
ρ → ηγ and η0 → ργ decays, for ω, θ ¼ −ð15.47� 3.1Þ°, d ¼ 0.11� 0.03, and for ϕ, θ ¼ −ð12.66� 2.1Þ°,
d ¼ 0.10� 0.03. It seems that vector meson radiative decays would favor a small η − η0 mixing angle and a
small momentum-dependent mixing term.
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I. INTRODUCTION

The η − η0 mixing angle used in the past to describe the
η − η0 system is based on the assumption that the off-
diagonal octet-singlet mixing mass term does not depend
significantly on the energy of the state [1]. However, as
with the derivative coupling SUð3Þ × SUð3Þ breaking
terms used in the derivation of the fK=fπ ratio and the
Callan-Treiman relation for the vector currents in Kl3
decays [2], recent work [3,4] shows that a quadratic
derivative off-diagonal octet-singlet mixing term could
exist and requires two angles θ8 and θ0 to describe the
pseudoscalar meson decay constants. One could also
describe the η − η0 system by the usual mixing angle θP
with the additional off-diagonal derivative SUð3Þ breaking
mass term treated as a perturbation [5] in which the
momentum-dependent off-diagonal mass term produces
an additional contribution which is suppressed by
Oðm2

η=m2
η0 Þ for processes involving η. Thus, the quadratic

momentum-dependent off-diagonal mixing mass term,
while leaving the amplitude with η almost unaffected,
could enhance or suppress the η0 amplitude. Since the
mixing angle contains a higher-order SUð3Þ breaking term,
to be consistent, we need to include also higher-order terms
in the momentum-dependent mixing terms by diagonaliz-
ing both the momentum-independent and momentum-
dependent mixing terms. In the past 20 years, there have
been only two papers considering diagonalizing the η − η0
Lagrangian with both the off-diagonal mass term and the
full off-diagonal kinetic terms [6,7], which, however,

produces an η − η0 Lagrangian with two mixing angles
and two field renormalization parameters. Actually, it is not
necessary to use their full off-diagonal kinetic terms, since
the coefficients of the ∂μη8∂μη8 and ∂μη0∂μη0 terms can be
absorbed into the mass terms after rescaling so that the
η − η0 Lagrangian contains the usual canonical kinetic
terms and only one off-diagonal ∂μη8∂μη0 term. With this
most general kinetic term, in this paper, we will show that
the η − η0 system could be described by the new mixing
angle and the renormalization of the η and η0 meson fields.
The new mixing angle contains the usual mixing angle and
a small additional term coming from d. This new mixing
scheme with exact treatment of the momentum-dependent
mixing terms is actually simpler than the perturbation
treatment in [5] and should be used in any determination
of the η − η0 mixing angle and the momentum-dependent
mixing term. In this paper, we shall apply this new mixing
scheme to vector meson radiative decays. From the sum
rules relating the pure octet and singlet vector meson
radiative decay amplitudes to that for the measured decays
amplitudes, and using nonet symmetry for the pure octet
and singlet amplitudes, we obtain consistent solutions for
the new mixing angle θ and the momentum-dependent
mixing term d. For ρ → ηγ and η0 → ργ decays,
θ ¼ −ð13.99� 3.1Þ°, d ¼ 0.12� 0.03, for ω → ηγ and
η0 → ωγ decays, θ ¼ −ð15.47� 3.1Þ°, d ¼ 0.11� 0.03
for ϕ → ηγ and ϕ → η0γ. It is remarkable that these values
are consistent with each other, to within experimental
errors. For ϕ → η0γ decays, with SUð3Þ breaking from
the s quark magnetic coupling included, we get
θ ¼ −ð12.66� 2.1Þ°, d ¼ 0.10� 0.03, consistent with*pham@cpht.polytechnique.fr
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the values for ρ and ω. After subtracting the d terms, one
would get a value of −ð8 − 10Þ° for the usual mixing angle.
It seems that vector meson radiative decays would favor a
small η − η0 mixing angle as found in a previous analysis;
for example, a value between −13° and −17° or an average
θP ¼ −15.3°� 1.3° is obtained [8] and θP ≈ −11° is
obtained in [9]. Additionally, a recent analysis [10,11]
using the more precise V → Pγ measured branching ratios
[12] found θP ¼ −13.3°� 1.3°. Our values for d are also
smaller than the chiral perturbation values and other
phenomenological analyses in the two-angle mixing
approach [4,13,14]. In the next section, we will obtain
the diagonalized Lagrangian for the η − η0 system with the
new η − η0 mixing angle θ.

II. THE DIAGONALIZED η − η0 LAGRANGIAN

We begin by writing down the Lagrangian for the η − η0

system with the usual nonderivative mixing mass termm2
08,

the pure octet η8 mass m2
8, the singlet η0 mass m2

0, and the
derivative η0 − η8 mixing term

L0 ¼
1

2
ð∂μη8∂μη8 þ ∂μη0∂μη0 þm2

8η
2
8 þm2

0η
2
0Þ

þ d∂μη8∂μη0 þm2
08η8η0; ð1Þ

where the strength d is given by L5 and higher-order
terms in chiral perturbation theory [3,4,15]. The η0 − η8
Lagrangian in Eq. (1) contains the most general kinetic and
mass term. The full off-diagonal kinetic and mass terms
used in previous work [6,7] to diagonalize both the kinetic
and mass terms of the η0 − η8 system can be brought to the
above form since the rescaling of the kinetic terms can be
absorbed into the mass term so that L0 contains only the
off-diagonal ∂μη8∂μη0 and the usual canonical kinetic
terms. Thus, our Lagrangian contains, as mentioned earlier,
besides the usual η − η0 mass parameters, only two mixing
parameters, the usual momentum-independent η − η0 mix-
ing mass term, and the momentum-dependent η − η0 off-
diagonal kinetic terms. This is an important difference
between our approach and that of Refs. [6,7]. In a
straightforward manner, we will show that the η − η0 system
can be described by only one mixing angle and a field
renormalization parameter.
To diagonalize this Lagrangian, we shall first make the

substitution

η8 ¼
ðη01 − η81Þffiffiffi

2
p ; η0 ¼

ðη01 þ η81Þffiffiffi
2

p : ð2Þ

L0 becomes

L1 ¼
ð1 − dÞ

2
∂μη81∂μη81 þ

ð1þ dÞ
2

∂μη01∂μη01

þ 1

2
ðm2

81η
2
81 þm2

01η
2
01Þ þm2

081η81η01: ð3Þ

with

m2
81 ¼

ðm2
0 þm2

8 − 2m2
08Þ

2
;

m2
01 ¼

ðm2
0 þm2

8 þ 2m2
08Þ

2
; m2

081 ¼
ðm2

0 −m2
8Þ

2
:

ð4Þ

To bring the kinetic term in L1 to the canonical form, we
now perform a renormalization of the η81 and η01 meson
field operators

η81 ¼
η82ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p ; η01 ¼
η02ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p ; ð5Þ

and L1 becomes

L2 ¼
1

2

�
∂μη82∂μη82 þ ∂μη02∂μη02 þ

m2
81

ð1 − dÞ η
2
82

þ m2
01

ð1þ dÞ η
2
02

�
þ m2

081ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p η82η02; ð6Þ

which can now be brought back to the octet-singlet basis by
the transformation

η82 ¼
ðη03 − η83Þffiffiffi

2
p ; η02 ¼

ðη03 þ η83Þffiffiffi
2

p : ð7Þ

We have finally,

L3 ¼
1

2
ð∂μη83∂μη83 þ ∂μη03∂μη03 þm2

82η
2
83 þm2

02η
2
03Þ

þm2
082η83η03; ð8Þ

with

m2
82 ¼

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þm2

0 þ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þm2

8

2ð1 − d2Þ þ dm2
08

ð1 − d2Þ ;

m2
02 ¼

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þm2

0 þ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þm2

8

2ð1 − d2Þ þ dm2
08

ð1 − d2Þ ;

m2
082 ¼

m2
08 − dðm2

0 þm2
8Þ=2

ð1 − d2Þ : ð9Þ

Thus, we have been able to bring the original Lagrangian of
the pure octet η8 and singlet η0 mesons with the derivative
coupling SUð3Þ symmetry breaking momentum-dependent
η8 − η0 mixing term to the usual form with only the energy-
independent mixing mass term with L3 having the same
form as L0, except that the mass and mixing terms are
modified by additional contributions from the momentum-
dependent mixing term d and the renormalization of the η8
and η0 meson fields. In the limit of d ¼ 0, we recover the
usual mass term in L0. In terms of the η83 and η03 state, the
pure SUð3Þ octet and singlet state are then given by
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η8 ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 − d
p þ ffiffiffiffiffiffiffiffiffiffiffi

1þ d
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p
�
η83 þ

� ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p
�
η03;

η0 ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 − d
p

−
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p
�
η83 þ

� ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p
�
η03:

ð10Þ

From the above expressions, we see that the η83 and η03
states are a mixture of the pure η8 and η0 and become the
pure octet and singlet state in the limit of d ¼ 0. This is an
example of mixing caused by renormalization of the field
operators due to the momentum-dependent derivative
coupling SUð3Þ breaking terms. The Lagrangian in
Eq. (8) can now be brought to the diagonal form by writing
η83 and η03 in terms of the physical η and η0 states and the
mixing angle θ,

η83 ¼ cosðθÞηþ sinðθÞη0;
η03 ¼ − sinðθÞηþ cosðθÞη0; ð11Þ

with θ given by

tanð2θÞ ¼ 2m2
08 − dðm2

0 þm2
8Þ

ðm2
0 −m2

8Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p ; ð12Þ

or

sinðθÞ ¼
�
cosð2θÞ
cosðθÞ

��
m2

08 − dðm2
0 þm2

8Þ=2
ðm2

0 −m2
8Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
�
; ð13Þ

which takes a simple form for small θ,

sinðθÞ ¼
�
m2

08 − dðm2
0 þm2

8Þ=2
ðm2

0 −m2
8Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
�
: ð14Þ

After this last step, we arrive at the Lagrangian

L ¼ 1

2
ð∂μη∂μηþ ∂μη

0∂μη
0 þmη

2η2 þmη0
2η02Þ; ð15Þ

with mη
2 and mη0

2 given by

mη
2 ¼ ðm2

0 þm2
8 − 2dm2

08Þ
2ð1 − d2Þ −

ðm2
0 −m2

8Þ cosð2θÞ
2

ffiffiðp
1 − d2Þ þ ðdðm2

0 þm2
8Þ − 2m2

08Þ sinð2θÞ;
2ð1 − d2Þ

mη0
2 ¼ ðm2

0 þm2
8 − 2dm2

08Þ
2ð1 − d2Þ þ ðm2

0 −m2
8Þ cosð2θÞ

2
ffiffiðp
1 − d2Þ −

ðdðm2
0 þm2

8Þ − 2m2
08Þ sinð2θÞ

2ð1 − d2Þ : ð16Þ

The pure octet η8 and singlet η0 can now be expressed terms of η and η0. From Eqs. (10) and (11), we have

η8 ¼ C8ηηþ C8η0η
0; η0 ¼ C0ηηþ C0η0η

0; ð17Þ

with

C8η ¼
�
−
ð ffiffiffiffiffiffiffiffiffiffiffi

1 − d
p

−
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p Þ sinðθÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p þ ð ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p Þ cosðθÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p
�
;

C8η0 ¼
�ð ffiffiffiffiffiffiffiffiffiffiffi

1 − d
p

−
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p Þ cosðθÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p þ ð ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p Þ sinðθÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p
�
;

C0η ¼
�
−
ð ffiffiffiffiffiffiffiffiffiffiffi

1 − d
p þ ffiffiffiffiffiffiffiffiffiffiffi

1þ d
p Þ sinðθÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p þ ð ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p Þ cosðθÞ
2ð1 − d2Þ

�
;

C0η0 ¼
�ð ffiffiffiffiffiffiffiffiffiffiffi

1 − d
p þ ffiffiffiffiffiffiffiffiffiffiffi

1þ d
p Þ cosðθÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p þ ð ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p Þ sinðθÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − d2Þ

p
�
: ð18Þ

For d ¼ 0, we recover the usual expression given in Eq. (11).
To first order in d, we have

η8 ¼ ðd sinðθÞ=2þ cosðθÞÞηþ ð−d cosðθÞ=2þ sinðθÞÞη0;
η0 ¼ ð− sinðθÞ − d cosðθÞ=2Þηþ ðcosðθÞ − d sinðθÞ=2Þη0: ð19Þ
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Consider now the d terms in Eq. (19). The contribution
to the η0 amplitude from the pure η8 term is proportional to
ð−d cosðθÞ=2þ sinðθÞÞ which gives −d=2 from the first
term, while another −d=2 from the sinðθÞ term. Similarly,
the d term in the η amplitude coming from the pure singlet
η0 term ðsinðθÞ þ d cosðθÞ=2Þ cancels out [sinðθÞ having
the same d term with opposite sign]. More precisely, to first
order in d, and neglecting also the sinðθ=2Þ2 term in cosðθÞ,
we have from Eq. (14),

η8¼ðdsinðθÞ=2þcosðθÞÞηþ
�
sinðθPÞþ

dm2
0

ðm2
0−m2

8Þ
�
η0;

η0¼
�
−sinðθPÞþ

dm2
8

ðm2
0−m2

8Þ
�
ηþ

�
cosðθÞ−dsinðθÞ=2

�
η0;

ð20Þ

where θP is the mixing angle for d ¼ 0 (the usual
mixing angle).
This agrees with the perturbation treatment of the

derivative SUð3Þ × SUð3Þ symmetry breaking terms given
in [5], except for the d sinðθÞ term which is second order in
SUð3Þ breaking.
We see that in the presence of the momentum-dependent

mixing term d, the η and η0 amplitudes now depend on both
θ and d and are given completely by Eq. (18). Obviously,
this simple expression should be used in any physical
processes with η and η0 rather than the perturbation treat-
ment of the momentum-dependent mixing term used in [5].
Given A8; A0, the octet and singlet amplitude for η8 and η0,
respectively, the physical amplitudes are then

Aη ¼ C8ηA8 þ C0ηA0;

Aη0 ¼ C8η0A8 þ C0η0A0: ð21Þ

Following the two-angle mixing approach [4], consider
now the quantity

P08 ¼ A8A0ðC8ηC0η þ C8η0C0η0 Þ: ð22Þ

Using Eq. (18), we find

P08 ¼ −A8A0

d
ð1 − d2Þ ¼ −A8A0 sinðθ0 − θ8Þ; ð23Þ

which is precisely the expression obtained in chiral
perturbation theory. To first order in d, sinðθ0 − θ8Þ ¼ d.
This shows clearly that the parameter d is directly propor-
tional to the coefficient LA in the derivative expansion [4].
For d ¼ 0, P08 ¼ 0, we recover the orthogonality of the
unitarity transformation between physical and unmixed
states with the usual mixing angle.
Using Eq. (12) to express m2

08 in terms of tanð2θÞ, the
expressions for η and η0 masses in Eq. (16) are then

mη
2 ¼ ðm2

0 þm2
8Þ

2
−

ðm2
0 −m2

8Þ
2

ffiffiðp
1 − d2Þ cosð2θÞ

−
ðd tanð2θÞÞðm2

0 −m2
8Þ

2
ffiffiðp
1 − d2Þ ;

mη0
2 ¼ ðm2

0 þm2
8Þ

2
þ ðm2

0 −m2
8Þ

2
ffiffiðp
1 − d2Þ cosð2θÞ

−
ðd tanð2θÞÞðm2

0 −m2
8Þ

2
ffiffiðp
1 − d2Þ ; ð24Þ

which now depend only on m2
0, m

2
8, and d. By taking the

mass difference mη0
2 −m2

8 and mη
2 −m2

8, we obtain

mη
2 −m2

8

¼ ðm2
0 −m2

8Þ
2

�
1 −

1
ffiffiðp
1 − d2Þ cosð2θÞ −

d tanð2θÞ
ffiffiðp
1 − d2Þ

�
;

mη0
2 −m2

8

¼ ðm2
0 −m2

8Þ
2

�
1þ 1

ffiffiðp
1 − d2Þ cosð2θÞ −

d tanð2θÞ
ffiffiðp
1 − d2Þ

�
:

ð25Þ

This implies

mη
2 −m2

8 ¼ Rðmη0
2 −m2

8Þ; ð26Þ

with R given by

R ¼ −ð1 −
ffiffi
ð

p
1 − d2Þ cosð2θÞ

þ d sinð2θÞÞð1þ
ffiffi
ð

p
1 − d2Þ cosð2θÞ

− d sinð2θÞÞ−1: ð27Þ

As d is a small SUð3Þ × SUð3Þ breaking parameter, putting
d ¼ sinðαÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
¼ cosðαÞ, the above expression

Eq. (27) takes a simple form,

R ¼ − tanðθ þ α=2Þ2: ð28Þ

For small d, α ≈ sinðαÞ ¼ d, θ þ α=2 ≈ θP, and R is
essentially the usual relation R ¼ − tanðθPÞ2, which is
not affected by the presence of a momentum-dependent
mixing term.

III. MIXING ANGLE FROM VECTOR MESON
RADIATIVE DECAYS

With our Lagrangian in the diagonal form, we shall now
try to determine θ and d using the sum rules [5] obtained by
equating the vector meson radiative decay matrix element
for the pure octet η8 and singlet η0 with the expressions for
these quantities extracted from the measured matrix
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elements with η and η0 given by Eq. (17). Defining as in [5]
the electromagnetic form factor V → P by

hPðpPÞjJemμ jVðpVÞi ¼ ϵμpPpVϵV gVPγ; ð29Þ

where gVPγ is the on-shell VPγ coupling constant with
dimension the inverse of energy. We have for the radiative
decay rates [16]

ΓðV → PγÞ ¼ α

24
g2VPγ

�
m2

V −m2
P

mV

�
3

;

ΓðP → VγÞ ¼ α

8
g2VPγ

�
m2

P −m2
V

mP

�
3

: ð30Þ

For convenience, we give in Table I the measured
radiative branching ratios together with the extracted
coupling constant gVPγ in units of GeV−1 and its theoretical
value derived either from an SUð3Þ effective Lagrangian
with nonet symmetry for the V → η0γ amplitude or from
the quark counting rule with the coupling constant gVPγ
given in terms of the quark coupling constant gq,
(q ¼ u; d; s) for the magnetic transition ðqq̄Þð1−Þ →
ðqq̄Þð0−Þγ [8,10,16]. More details on the theoretical values
for V → η8γ and V → η0γ can be found in Ref. [5].
In terms of gVPγ, the sum rules read

SðV → ηγÞ ¼ gVηγC8η þ gVη0γC8η0 ¼
�
gVη8γ
gVπ0γ

�

th:
gVπ0γ;

Sðη0 → VγÞ ¼ gVηγC0η þ gVη0γC0η0 ¼
�
gVη0γ
gVπ0γ

�

th:
gVπ0γ;

ð31Þ

and similarly for other vector meson radiative decays. Thus,
with the updated values of the measured values for gVPγ in
Table I, we have for ρ meson radiative decay

Sðρ → ηγÞ ¼ 1.59C8η þ 1.35C8η0 ¼ 1.12;

Sðη0 → ργÞ ¼ 1.59C0η þ 1.35C0η0 ¼ 1.63; ð32Þ

and for the ω meson,

Sðω → ηγÞ ¼ 0.45C8η þ 0.44C8η0 ¼ 0.29;

Sðη0 → ωγÞ ¼ 0.45C0η þ 0.44C0η0 ¼ 0.53: ð33Þ

From the above sets of equations, we obtain the following
solutions for θ and d:

θ ¼ −ð13.99� 3.1Þ°; d ¼ 0.12� 0.03; for ρ;

θ ¼ −ð15.48� 3.1Þ°; d ¼ 0.11� 0.03; for ω:

ð34Þ

Since η − η0 mixing is an SUð3Þ breaking effect not present
in the η8 and η0 decay amplitudes, ρmeson radiative decays
in which only the u; d quarks are active, offer a rare
opportunity to determine the mixing angle free from
uncertainties from SUð3Þ breaking due to s quark magnetic
coupling, which is present in radiative ϕ meson radiative
decays. With an almost ideal mixing, the ωmeson radiative
decays are also rather insensitive to the s quark magnetic
coupling SUð3Þ breaking, which is rather small, of the
order of 1.5%. In fact, as shown in Ref. [5], instead of ω
radiative decay amplitudes alone, one can use a linear
combination for an ideal mixing state, the ω0 state with the
decay amplitudes with only the u; d quarks active. We have
(φV ¼ ð3.2� 0.1Þ°)

Sðω0 → ηγÞ ¼ cosφVSðω → ηγÞ þ sinφVSðϕ → ηγÞ;
ð35Þ

and a similar expression for Sðη0 → ω0γÞ. The solutions for
this ideal mixing case is then

TABLE I. Theoretical values for V → Pγ with P ¼ η8; η0 together with the measured branching ratios and the extracted gVPγ taken
from Ref. [5].

Decay gVPγ , P ¼ η8; η0 gVPγðexpÞ BR(exp) [12]

ρ� → π�γ ð1=3Þgu 0.72� 0.04 ð4.5� 0.5Þ × 10−4

ρ0 → π0γ ð1=3Þgu 0.83� 0.05 ð6.0� 0.8Þ × 10−4

ρ0 → ηγ 0.58guðfπ=fη0Þ 1.59� 0.06 ð3.00� 0.20Þ × 10−4

ω → π0γ 0.99gu 2.29� 0.03 ð8.28� 0.28Þ%
ω → ηγ 0.17guðfπ=fη0Þ 0.45� 0.02 ð4.6� 0.4Þ × 10−4

ϕ → π0γ 0.06gu 0.13� 0.003 ð1.27� 0.06Þ × 10−3

ϕ → ηγ 0.47guðfπ=fη0Þ 0.71� 0.01 ð1.309� 0.024Þ%
ϕ → η0γ −0.31guðfπ=fη0Þ −ð0.72� 0.01Þ ð6.25� 0.21Þ × 10−5

η0 → ρ0γ 0.82guðfπ=fη0Þ 1.35� 0.02 ð29.1� 0.5Þ%
η0 → ωγ 0.29guðfπ=fη0Þ 0.44� 0.02 ð2.75� 0.23Þ%
K�� → K�γ 0.38guðfπ=fKÞ 0.84� 0.04 ð9.9� 0.9Þ × 10−4

K�0 → K0γ −0.62guðfπ=fKÞ −ð1.27� 0.05Þ ð2.46� 0.22Þ × 10−3
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θ ¼ −ð15.40� 2.1Þ°; d ¼ 0.12� 0.03; for ω0;

ð36Þ
which is very close to the solution for ω. This indicates that
SUð3Þ breaking due to s quark magnetic coupling in ω
radiative decay is, indeed, quite small and can be neglected.
This ideal mixing solution is also consistent with the
solution for ρ. Taking an average of the solution for ρ
and ω0, we have

θ ¼ −ð14.68� 3.1Þ°; d ¼ 0.115� 0.03: ð37Þ
For the ϕ meson, from the sum rules

Sðϕ → ηγÞ ¼ 0.71C8η − 0.72C8η0 ¼ 0.88;

Sðϕ → η0γÞ ¼ 0.71C0η − 0.72C0η0 ¼ −0.59; ð38Þ

the solution is then

θ ¼ −ð12.66� 2.1Þ°; d ¼ 0.10� 0.03; for ϕ;

ð39Þ
consistent with the corresponding values for ρ and ω given
by Eqs. (33) and (37). This indicates that SUð3Þ breaking
for ϕ meson radiative decays is correctly given by K� →
Kγ decays for which the new measured branching ratio
gives k ¼ 0.83� 0.04, close to the value k ¼ 0.85 given
above. Thus, the values we obtained from ϕ meson
radiative decays are used as a way to check the SUð3Þ
breaking effect in ϕ → ηγ; η0γ decays rather than a deter-
mination of the mixing angle. The value for d,
(d ¼ sinðθ0 − θ8Þ) obtained above with our diagonalized

Lagrangian is smaller than the values obtained in chiral
perturbation and other phenomenological analyses
[4,13,14], which give ðθ0 − θ8Þ in the range ð12− 17Þ°
in the two-angle mixing approach.
Thus, by treating exactly the derivative coupling mixing

term with our diagonalized Lagrangian, we have found a
small mixing angle in vector meson radiative decays which
are also found to have a small mixing angle (the usual
mixing angle) in previous work [8–11]. By subtracting the
d term in θ, we obtain a value −ð8 − 10Þ° for the usual
mixing angle. This value is smaller by a few degrees than
the values we obtained in our previous work [5]. This could
be due to the exact treatment of the momentum-dependent
mixing term in our Lagrangian.

IV. CONCLUSION

In conclusion, we have diagonalized both the mass term
and the momentum-dependent mixing term in the η − η0
Lagrangian and showed that the η − η0 system can be
described by two parameters, the meson field renormaliza-
tion and a new η − η0 mixing angle, which differs from the
usual mixing angle by a small momentum-dependent
mixing term. The expressions for the η and η0 amplitude
in our new mixing scheme are actually quite simple and
should be used for any process with η and η0. Using the
measured vector meson radiative decays, we have obtained
consistent solutions for the mixing angle and the momen-
tum-dependent mixing term. The small mixing angle we
found is consistent with previous determinations. It seems
that vector meson radiative decays would favor a small
η − η0 mixing angle θ and a small momentum-dependent
mixing term d.
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