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We present a unitary dispersive model for the η → 3π decay process based upon the Khuri-Treiman
equations which are solved by means of the Pasquier inversion method. The description of the hadronic
final-state interactions for the η → 3π decay is essential to reproduce the available data and to understand
the existing discrepancies between Dalitz plot parameters from experiment and chiral perturbation theory.
Our approach incorporates substraction constants that are fixed by fitting the recent high-statistics WASA-
at-COSY data for η → πþπ−π0. Based on the parameters obtained, we predict the slope parameter for the
neutral channel to be α ¼ −0.022� 0.004. Through matching to next-to-leading-order chiral perturbation
theory, we estimate the quark mass double ratio to be Q ¼ 21.4� 0.4.
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I. INTRODUCTION

Production of three particles plays an important role in
hadron physics. It sheds light on the reaction dynamics, e.g.
the OZI rule, and can amplify production of hadron
resonances, with the mysterious XYZ states seen in the
spectrum of charmonia and bottomonia [1] being the most
recent examples. The need for precision analysis of final
states containing three light hadrons has become even more
pressing given the high quality data emerging from the
various hadron facilities around the world, including
Jefferson Lab, COMPASS and BESIII [2–5]. Recently,
significant progress has been made in analysis of hadron-
hadron interactions at low energies based on the S-matrix
principles of unitarity, analyticity and crossing symmetry
[6–9]. At low energies, unitarity is an important constraint
given that there is only a limited number of contributing
channels. Unitarity also determines the analytical proper-
ties of partial waves and constraints resonant scattering.
Implementation of crossing-symmetry is much more diffi-
cult since it is related to the underlying dynamics. However,
at low energies it can be systematically investigated by
identifying the most important, i.e. closest to the physical
region, singularities of the cross-channel amplitudes, and
for example in reactions involving Goldstone bosons these
can be constrained by chiral symmetry of QCD [10,11].
In this paper we focus on decays of the η meson to three

pions. From the experimental side, the high-quality data
from WASA-at-COSY [12,13], Crystal Barrel [14,15], and
KLOE [16,17], along with the data from CLAS [3], which
is currently being analyzed, present an opportunity for

precision analysis of the Dalitz distribution. In the charged
decay channel, η → πþπ−π0, we only have access to the
binned data from the WASA-at-COSY [12] experiment and
therefore it is the only data set we use in our data-driven
analysis. From the theoretical point of view η → 3π decays
are of interest because of isospin violation. These decays
are dominated by the intrinsic isospin breaking effects in
QCD as electromagnetic effects are expected to be small
[18,19]. Consequently, the decay width for η → 3π is
expected to be proportional to the light quark mass differ-
ence and the decay amplitude is often expressed in terms of
the quantity, 1=Q2 defined by

1

Q2
¼ m2

d −m2
u

m2
s − m̂2

: ð1Þ

Here m̂ ¼ ðmu þmdÞ=2 is the average of the u and d
quark masses. One determines Q by comparing a theo-
retical prediction with the experimental decay width
Γðη → πþπ−π0Þ ¼ 281� 28 eV [1]. However, it is impor-
tant to emphasize that this procedure requires that the
amplitude implements chiral constraints or at least it agrees
with the leading-order chiral perturbation theory (χPT),
which is where Q originates. Once Q is extracted, it can be
combined with the knowledge of the m̂ and ms, e.g. from
lattice simulations, to determine the light-quark mass
difference.
It is necessary to consider the η → 3π decay amplitudes

beyond χPT. This is apparent when considering contribu-
tions to Γðη → πþπ−π0Þ from the first few terms in the low
energy expansion. Specifically, the leading-order χPT
result, ΓLO

η→πþπ−π0 ¼ 66 eV [20,21], is approximately four*pguo@jlab.org

PHYSICAL REVIEW D 92, 054016 (2015)

1550-7998=2015=92(5)=054016(16) 054016-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.054016
http://dx.doi.org/10.1103/PhysRevD.92.054016
http://dx.doi.org/10.1103/PhysRevD.92.054016
http://dx.doi.org/10.1103/PhysRevD.92.054016


times smaller than expected. Inclusion of next-to-leading
(one loop) corrections increases the theoretical prediction
to ΓNLO

η→πþπ−π0 ¼ 167� 50 eV [22], which is still signifi-

cantly below the data. The next-to-next-to-leading calcu-
lation (two loops) has been performed recently [23]. It
pushes the decay width further towards the data; however, it
contains a large number of low energy constants. In
addition to the apparent poor convergence, low orders of
χPT give an incorrect result for the shape of the Dalitz
distribution in the neutral 3π0 decay. To the leading order,
this distribution is represented by a single parameter, α,
which χPT predicts to be positive while the experimental
result is α ¼ −0.0317� 0.0016 [1]. The fact that chiral
expansion converges slowly indicates the importance of
final state interactions. This is expected to be a conse-
quence of unitarity, which in χPT is incorporated only order
by order. To fulfill unitarity various dispersive frameworks
were developed [24,25] with recent updates of [26,27] and
[28]. These analyses are based on the Khuri-Treiman (KT)
representation [29]. In the KT approach, partial waves are
given in the elastic approximation with the left-hand cut
contributions computed from cross-channel amplitudes that
are approximated by the same elastic partial waves as in the
direct channel and are bootstrapped. Other calculations
employed, for example, nonrelativistic effective field
theory (NREFT) [30] and alternative dispersive approaches
were studied in [31].
The final state interactions in η → 3π at low energies can

be approximated by elastic ππ scattering. These amplitudes
are available with high precision up to

ffiffiffi
s

p ¼ 1.1 GeV [7].
However, dispersion calculations involve integrals over all
energies. In order to suppress the unknown high-energy
region, the dispersive integrals are usually over-subtracted
and the subtraction constants are fixed by comparing to the
data [27,32]. In [33] the authors used an alternative method
whereby the dispersive integral was split into elastic and
inelastic contributions and the latter was parametrized by a
power series in a suitably chosen conformal variable. In the
current work, we apply yet a different approach. We obtain
the solution of the KT equation using the so-called Pasquier
inversionmethod [34,35]. In this case the dependence on the
unknown high energy region is traded for by the dependence
on the far left-hand cuts. The advantages and disadvantages
of alternative procedures were discussed in [36].
The paper is organized as follows. In Sec. II we present

the basic formalism and discuss how three body effects are
incorporated using the Pasquier inversion. The numerical
results are presented in Sec. III, which we divide into two
parts. In the first part we perform a data-driven dispersive
analysis of the WASA-at-COSY data [12] without input
from χPT. We show the fitted Dalitz plot parameters for the
charged decay and predict the slope parameter for the
neutral decay channel. In the second part we match our
amplitudes to χPT in order to extract the Q value.
Conclusions are summarized in Sec. IV.

II. FORMALISM

A. Kinematics and partial wave expansion

The isospin violating η → 3π decay involves a ΔI ¼ 1

interaction. The transition matrix elements, Aαβγηðs; t; uÞ,
depends on four isospin indices, with the index η referring
to the isospin component of the interaction and α; β; γ to
three pions. In terms of the particle momenta the three
Mandelstam variables are s ¼ ðp1 þ p2Þ2 ¼ ðp4 − p3Þ2,
t ¼ ðp2 þ p3Þ2 ¼ ðp4 − p1Þ2, and u ¼ ðp1 þ p3Þ2 ¼
ðp4 − p2Þ2. The Mandelstam variables satisfy sþ tþ u ¼
m2

η þm2
1 þm2

2 þm2
3, with mη being the mass of the η, also

referred to as particle i ¼ 4 and mi, i ¼ 1::3 to the pions.
On account of crossing symmetry, the following processes
are described by the same complex function (with the bar
denoting an antiparticle): the s-channel scattering
4þ 3̄ → 1þ 2, the t-channel scattering 4þ 1̄ → 2þ 3,
the u-channel scattering, 4þ 2̄ → 1þ 3, and the decay
channel 4 → 1þ 2þ 3. In particular the amplitude in the
decay channel will be derived by analytical continuation of
the s-channel partial wave expansion. In the s channel, the
amplitude Aαβγηðs; t; uÞ has the following partial wave
(p.w.) decomposition,

Aαβγηðs; t; uÞ ¼
X∞
L¼0

X
I

ð2Lþ 1ÞPLðzsÞPðIÞ
αβηγAILðsÞ; ð2Þ

where PLðzsÞ is the Legendre polynomial and zs is a cosine
of the center-of-mass scattering angle θs,

zs ≡ cos θs ¼
sðt − uÞ þ ðm2

1 −m2
2Þðm2

η −m2
3Þ

λ1=2ðs;m2
η; m2

3Þλ1=2ðs;m2
1; m

2
2Þ

: ð3Þ

The usual Källén triangle function is given by λða; b; cÞ ¼
a2 þ b2 þ c2 − 2ðabþ bcþ acÞ and ðI; LÞ label isospin
and orbital angular momentum quantum numbers in the s
channel with I þ L ¼ even due to Bose symmetry of pions.

The isospin projection operators PðIÞ
αβγη are given in

Appendix A. We note that at this stage the partial waves
are arbitrarily normalized. The unitary relation, which we
discuss in the following is homogeneous in A and at the end
we will normalize the amplitude by comparing with the
experimental data.
The p.w. amplitudes AILðsÞ have both the right-hand cut

discontinuities demanded by the direct channel unitarity
and left-hand cut discontinuities from exchanges in the t
and u channels. We emphasize that Eq. (2) is exact in
the s-channel physical region, when the infinite sum
over L converges. The amplitudes in the other channels
are obtained by analytical continuation. Low-energy
approaches based on partial wave expansion involve
truncation of the partial waves series at some L ¼ Lmax <
∞, which violates analytical properties of cross-channel
amplitudes. To partially recover those, we represent the
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amplitude as a sum of truncated partial wave series in each
of the three channels [29,34,37–41],

Aαβγηðs; t; uÞ ¼
XLmax

L¼0

X
I

ð2Lþ 1ÞðPLðzsÞPðIÞ
αβηγaILðsÞ

þPLðztÞPðIÞ
βγαηaILðtÞ þ PLðzuÞPðIÞ

γαβηaILðuÞÞ;
ð4Þ

where the amplitudes are aIL defined as having only right-
hand discontinuities demanded by unitarity in the respec-
tive channels. The center of mass scattering angles in the t
and the u channel are given by

zt ¼
tðs − uÞ þ ðm2

3 −m2
2Þðm2

η −m2
1Þ

λ1=2ðt; m2
η; m2

1Þλ1=2ðt; m2
2; m

2
3Þ

;

zu ¼
uðt − sÞ þ ðm2

1 −m2
3Þðm2

η −m2
2Þ

λ1=2ðu;m2
η; m2

2Þλ1=2ðu;m2
1; m

2
3Þ

: ð5Þ

We remark that the decomposition in Eq. (4) satisfies
crossing symmetry explicitly; however, violation of ana-
lyticity remains since the amplitude contains a finite
number of high-spin partial waves in any given channel.
This would be a problem at high energies but hopefully
does not influence our low-energy analysis. What the
representation in Eq. (4) does is to allow for unitarity to
be implemented in all three channels. We also note that
decomposition in Eq. (4) is exact up to NNLO in χPT
[42,43] and is often referred to as “reconstruction theorem.”
It is convenient to express the p.w. amplitude AILðsÞ

[cf. Eq. (2)] in terms of the amplitudes aILðsÞ that are
defined by Eq. (4),

AILðsÞ ¼ aRightIL ðsÞ þ aLeftIL ðsÞ: ð6Þ

Here the amplitude aRightIL ðsÞ has only the right-hand
discontinuity,

aRightIL ðsÞ ¼ aILðsÞ; ð7Þ

and the left-hand discontinuities of aLeftIL ðsÞ originate from
the exchange terms,

aLeftIL ðsÞ¼
XLmax

L0¼0

X
I0

ð2L0 þ1Þ
2

Z
1

−1
dzsPLðzsÞ

× ðPL0 ðztÞCII0
st aI0L0 ðtÞþPL0 ðzuÞCII0

suaI0L0 ðuÞÞ: ð8Þ

Here Cst and Csu are the standard crossing matrices and are
given in Appendix A.

B. Unitarity and the three-body effects in
the decay channel

In the following we consider both decay modes of the η
meson, the charged decay η → πþπ−π0, and the neutral
decay η → 3π0. When comparing with experimental data it
is important to have an accurate description of the phase
space boundary, thus in the computation of the kinematical
factors we use the physical pion masses. Elsewhere we
assume the isospin limit and use mi ¼ ð2mπþ þmπ0Þ=3≡
mπ , i.e. the isospin averaged mass.
The model is defined by Eq. (8) together with the elastic

unitarity constraint for the right-hand discontinuity [44],

ΔaRightIL ðsÞ≡ 1

2i
ðaRightIL ðsþ iϵÞ − aRightIL ðs − iϵÞÞ

¼ f�ILðsÞρðsÞðaRightIL ðsÞ þ aLeftIL ðsÞÞ; ð9Þ

where ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

. The elastic ππ partial wave
amplitudes are denoted by fIL and normalized by
Imð1=fILðsÞÞ ¼ −ρðsÞ. Therefore, the amplitudes aILðsÞ
satisfy the relation,

ΔaILðsÞ ¼ f�ILðsÞρðsÞ
�
aILðsÞ þ

XLmax

L0¼0

X
I0

2ð2L0 þ 1Þ
KðsÞ=s

×
Z

tþðsÞ

t−ðsÞ
dtPLðzsÞPL0 ðztÞCII0

st aI0L0 ðtÞ
�
: ð10Þ

The first term on the right-hand side of Eq. (10) represents
the contribution from the direct s channel, 4þ 3̄ → 1þ 2,
to the s-channel partial-wave projection of the unitarity
relation, and it is illustrated in the diagram in Fig. 1(a). The
second term, illustrated in Fig. 1(b), gives the contribution
from the exchange contributions in the t channel 4þ 1̄ →
2þ 3 and u channel 4þ 2̄ → 1þ 3. In Eq. (10), using
Eq. (3), we changed the integration over the zs to
integration over t,

Z
1

−1

dzs
2

ð� � �Þ ¼
Z

tþðsÞ

t−ðsÞ

dt
KðsÞ sð� � �Þ; ð11Þ

with the integration limits t�ðsÞ corresponding to zs ¼ �1,

t�ðsÞ ¼
m2

η þ 3m2
π − s

2
� KðsÞ

2s
: ð12Þ

The Kacser function KðsÞ is given by the product of the
triangle functions and has the following determination
[24,45]
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KðsÞ ¼

8>><
>>:

þκðsÞ; 4m2
π ≤ s ≤ ðmη −mπÞ2;

iκðsÞ; ðmη −mπÞ2 ≤ s ≤ ðmη þmπÞ2;
−κðsÞ; ðmη þmπÞ2 ≤ s < þ∞;

κðsÞ ¼ jλðs;m2
η; m2

πÞλðs;m2
π; m2

πÞj1=2: ð13Þ

In the scattering region s ≥ ðmη þmπÞ2 the integral in
Eq. (11) is well defined; however, when 4m2

π ≤ s <
ðmη þmπÞ2, analytical continuation to the decay region
is needed. For this a positive infinitesimal imaginary part is
added to the eta mass [37,45,46], which leads to the
integration contour in the t plane shown in Fig. 2. It is
worth noting that the contour avoids the unitary cut.
Finally, the amplitudes aILðsÞ are obtained by bootstrap-
ping the dispersion reaction,

aILðsÞ ¼
1

π

Z
∞

4m2
π

ds0
ΔaILðs0Þ
s0 − s

; ð14Þ

with aIL appearing on the right-hand side [cf. Eq. (10)]
together with the input two-body scattering ampli-
tudes, fILðsÞ.

As in the standard N=D approach, the inhomogeneous
part in Eq. (10) can be accounted for writing aILðsÞ as a
product of fILðsÞ times another function of s, whose
discontinuity is given by the s-channel projection of the
cross-channel amplitudes. It is also convenient to remove
any zeros of fILðsÞ, e.g. the Adler zero, since these are
process dependent. Finally, the partial waves have kin-
ematical singularities, which do not contribute to the
discontinuity relation given by Eq. (10). Thus, we write

aILðsÞ ¼ ZLðsÞF ILðsÞfILðsÞgILðsÞ; ð15Þ
where the first factor removes the kinematical singularities,

ZLðsÞ ¼
�

KðsÞ
s=4 −m2

π

�
L
; ð16Þ

and the second factor removes zeros from the ππ amplitude,

F ILðsÞ ¼

8>><
>>:

ðs − sðIÞχ Þ=ðs − sðIÞA Þ; L ¼ 0;

1; L > 0:

ð17Þ

That is, we assume fIL has zeros in the S wave only. Note
that at leading order in χPT, Adler zeros are located at

sð0ÞA ¼ m2
π=2 and s

ð2Þ
A ¼ 2m2

π in the ππ S-wave isoscalar and

isotensor amplitudes, respectively, and at sð0Þχ ¼ 4=3m2
π for

η → 3π. In the actual calculation we use as input the ππ
amplitudes from the phenomenological analysis of [7]
which have zeros at the same position as the leading order
in χPT; when matching η → 3π with χPT, we use NLO

calculation which places the zeros in η → 3π at sð0Þχ ¼
1.25m2

π and sð2Þχ ¼ 2.7m2
π in the isoscalar and isotensor

channels, respectively.
Finally, it follows from Eq. (10) and Eq. (15) that the

function gIL has the discontinuity given by

ΔgILðsÞ¼−θð−sÞΔfILðsÞ
f�ILðsÞ

gILðsÞ

þθðs−4m2
πÞ
XLmax

L0¼0

X
I0

2ð2L0 þ1Þ
KðsÞ=s

ρðsÞPLðzsÞ
F ILðsÞZLðsÞ

×
Z

tþðsÞ

t−ðsÞ
dtPL0 ðztÞCII0

st ZL0 ðtÞF I0L0 ðtÞfI0L0 ðtÞgI0L0 ðtÞ:

ð18Þ

FIG. 1. A diagrammatic representation of discontinuity relations in Eq. (10). (a) The contribution from the direct s-channel, (b) the
contribution from t and u-exchanges.

FIG. 2 (color online). Integration contour in the complex t
plane. The arrows indicate the direction of increasing s in the
interval from 4m2

π to∞. The points labeled a through i correspond
to specific values of s, with (a) t−ð∞Þ ¼ 0, (b) t−ððmηþmπÞ2Þ ¼
mπðmπ−mηÞ, (c) t−ððmη−mπÞ2Þ¼mπðmηþmπÞ, (d) t−ðm

2
η−m2

π

2
Þ ¼

4m2
π , (e) t�ð4m2

πÞ ¼ m2
η−m2

π

2
, (f) tþðmπðmη þmπÞÞ ¼ ðmη −mπÞ2,

(g) tþððmη −mπÞ2Þ ¼ mπðmη þmπÞ, (h) tþððmη þmπÞ2Þ ¼
mπðmπ −mηÞ, and (i) tþð∞Þ ¼ −∞, respectively.
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The first term on the left-hand side takes into account the
left-hand cut of fILðsÞ; i.e. in addition to the unitary cut, gIL
has a left-hand cut determined by fIL to guarantee that
there is no dynamical left-hand cut in the amplitudes aIL.
The integrand in Eq. (18) is free from kinematical singu-
larities in t and the function gILðsÞ satisfies

gILðsÞ ¼
1

π

Z
∞

−∞
ds0

ΔgILðs0Þ
s0 − s

: ð19Þ

Inserting Eq. (18) into Eq. (19) we obtain a double integral
equations for gILðsÞ, which can be reduced to a single integral
equation by changing the order of dispersive integral (over s)
and the angular projection (internal over t). The procedure,
which we referred to earlier as the Pasquier inversion, was
developed in [34,35] and recently revisited in [36]. It leads to
the following representation,

gILðsÞ ¼ −
1

π

Z
0

−∞
ds0

1

s0 − s
ΔfILðsÞ
f�ILðsÞ

gILðs0Þ

þ 1

π

Z ðM−mπÞ2

−∞
dt

XLmax

L0¼0

X
I0

KIL;I0L0 ðs; tÞ

× CII0
st fI0L0 ðtÞgI0L0 ðtÞ; ð20Þ

where the kernel function KIL;I0L0 ðs; tÞ is given explicitly in
Appendix B. The left-hand cut contribution to gILðsÞ is
largely unknown. Since we are primarily interested in the
physical decay regionwe therefore parametrize contributions
to gIL from integration over s < 0. In the simplest approxi-
mation these are reduced to a constant. A more elaborated
representation could, for example, involve a conformal map
of the s plane cut along the negative real axis onto a unit circle
[47]. However, in the analysis of the data we find the simple
approximation to be sufficient:

gILðsÞ ¼ gILðs0Þ þ
1

π

Z ðM−mπÞ2

0

dt
XLmax

L0¼0

X
I0

CII0
st

× ðKIL;I0L0 ðs; tÞ −KIL;I0L0 ðs0; tÞÞfI0L0 ðtÞgI0L0 ðtÞ:
ð21Þ

This equation can now be solved using standard matrix
inversion methods with the subtraction constants gILðs0Þ as
fitting parameters. The subtraction point is arbitrary and we
choose it to coincide with the Adler zero of the LO χPT
s0 ¼ 4=3m2

π . After solving the integral equation for gILðsÞ,
we compute aILðsÞ from Eq. (15). Finally, to compare with
the experimental data we convert the isospin amplitudes to
the charge amplitude, ACðs; t; uÞ for the η → πþπ−π0 and
ANðs; t; uÞ for the neutral case. These are given by Eq. (4),

ACðs; t; uÞ ¼
XLmax

L¼0

ð2Lþ 1Þ
2

�
2

3
PLðzsÞða0LðsÞ − a2LðsÞÞ

þ PLðztÞða1LðtÞ þ a2LðtÞÞ

− PLðzuÞða1LðuÞ − a2LðuÞÞ
�
;

ANðs; t; uÞ ¼
XLmax

L¼0

ð2Lþ 1Þ
3

½PLðzsÞða0LðsÞ þ 2a2LðsÞÞ

þ ðs → tÞ þ ðs → uÞ�: ð22Þ

III. NUMERICAL RESULTS

In this section we present our results for the decays η →
πþπ−π0 and η → 3π0. We study the systematic uncertainties
of the model by using different sets of partial waves, i.e.
varyingLmax andmaximal isospin.We have found that partial
waves with (L ≥ 2) are negligible in the physical decay
region, 4m2

π ≤ s ≤ ðmη −mπÞ2. As input we use two-pion
scattering amplitudes from the analysis of [7]. The parameters
of the fit are the subtraction constants, gILðs0Þ, for each
contributing partial wave. Our aim is to fix these by fitting
η → πþπ−π0 decay using the high statistic WASA-at-COSY
data [12] and by matching to NLO χPT [22]. The results for
the η → 3π0 decay mode will then constitute a prediction,
whichwe comparewith theDalitz plot distribution from [48].
We investigate the role of cross-channel exchanges, also
known as final-state interactions in the decay region, by
performing two analyses. In the first, we do not include cross-
channel effects and approximate gILðsÞ in Eq. (21) by a
constant, setting gILðsÞ ¼ gILðs0Þ. It corresponds to a tradi-
tional isobar model, but with a fully incorporated two-pion
interaction. In the second, we include cross-channel rescat-
tering effects and solve Eq. (21). In the following we refer to
the two cases as “two-body” and “three-body,” respectively.

A. Fitting WASA-at-COSY data

1. η → πþπ−π0

In this subsectionwe summarize the results of the fit to the
recent WASA-at-COSY data on η → πþπ−π0 [12], where a
binned Dalitz plot is given. Up to a normalization factor, the
Dalitz plot distribution is given by the amplitude squared,

d2Γ
dsdt

∝ jAðs; tÞj2: ð23Þ
It is convenient to express the amplitude in terms of two
independent, dimensionless variables ðx; yÞ which are lin-
early related to the Mandelstam variables by

x ¼
ffiffiffi
3

p

2mηQc
ðt − uÞ;

y ¼ 3

2mηQc
ððmη −mπ0Þ2 − sÞ − 1; ð24Þ
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where Qc ¼ mη − 2mþ
π −m0

π (for the neutral decay we use
Qn ¼ mη − 3m0

π). A general property of these variables is
that the physical region of the Dalitz plot lies inside the unit
circle x2 þ y2 ≤ 1 centered at x ¼ y ¼ 0. We fit our model
to the data [12] by minimizing the χ2 defined by

χ2 ¼
XN
bins

�jAj2data − jACðfgILðs0ÞgÞj2
ΔjAj2data

�
2

; ð25Þ

over the set of subtraction constants, gILðs0Þ. In Eq. (25),
jAjdata is the acceptance-corrected number of events in each
of the N ¼ 59, Δx ¼ Δy ¼ 0.2 wide mass bins. The data is
normalized to unity at x ¼ y ¼ 0 and ΔjAjdata is the
statistical uncertainty. Note, that since Eq. (21) is linear
in gIL, the parameter g00ðs0Þ can be factored out and fixed
by the overall normalization. Since normalization of the
data is arbitrary the absolute value of g00ðs0Þ is irrelevant.
Therefore, in Table I, which summarized fit results,
when presenting results of two-body fits we quote
ðg2bILðs0Þ � Δg2bILðs0ÞÞ=g2b00ðs0Þ. When presenting results of
three-body fit we quote ðg3bILðs0Þ � Δg3bILðs0ÞÞ=g2b00ðs0Þ,
where g2b00ðs0Þ is the central value obtained in the two-body
fit with the same number of partial waves.We do the latter to
illustrate the relative change in normalization between two-
and three-body fits.
In the first fit we use a single, scalar-isoscalar, a00 partial

wave. In this case, the model gives a parameter free
prediction for the event distribution. We observe that the
ðI; LÞ ¼ ð0; 0Þ amplitude provides the dominant contribu-
tion that covers approximately 90% of the Dalitz plot. The
calculated χ2=d:o:f. for the two-body and three-body cases
are 2.2 and 15, respectively. In Fig. 3 (upper panels) we
compare our results and the data projected onto the x and y
axes. The error bars associated with the model originate
from the uncertainties in the pion-pion amplitude fIL [7]

and from the statistical error in fitting the overall
normalization.
In the next step, we add the isospin-2 Swave. In this case

we fit two parameters, one gives the overall normalization
and the other contributes to a modification of the shape of
the Dalitz plot. The resulting parameters and χ2=d:o:f are
given in Table I. In both, the two- and three-body fits we
find that the model slightly underestimates the data. The
inclusion of the second ðI; LÞ ¼ ð2; 0Þ wave significantly
improves χ2 and also drastically reduces the difference in
the fit quality between the two- and three-body cases
pertinent in the fit with the single ðI; LÞ ¼ 0 wave.
In the spirit of keeping the number of free parameters as

low as possible, we considered another set of two waves,
ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ, before taking into account a com-
plete sum of S and P waves. In this case there is also one
parameter that affects the shape of the Dalitz distribution
and we find χ2=d:o:f: ¼ 1.45 and χ2=d:o:f: ¼ 0.95 in the
two-body and three-body fits, respectively. Hence, it seems
that the data favor the isovector P-wave contribution over
the isospin-2 S wave. The results of the fit are shown
in Fig. 3.
We now turn to the case when a complete set of S and P

waves is incorporated, i.e. ðI; LÞ ¼ ð0; 0Þ; ð2; 0Þ; ð1; 1Þ.
The two- and three-body fits result in a comparable
χ2=d:o:f. around 0.9.
It is instructive to compare the results of the three-body

fits. In the fit with a single ðI; LÞ ¼ ð0; 0Þ amplitude, the
three-body fit converges poorly indicating importance
of higher partial waves that are brought in by the
cross-channel exchanges. Thus apparent convergence of
the two-body fit in this case is deceptive. With any
combination of higher partial waves all calculated three-
body χ2=d:o:f. are quite similar to the two-body fits, except
for the case when only ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ amplitudes
were considered.

TABLE I. Results of two-body and three-body fits for different wave sets.

g00ðs0Þ=gð2bÞ00 g20ðs0Þ=gð2bÞ00 g11ðs0Þ=gð2bÞ00
χ2=d:o:f.

ðI; LÞ ¼ ð0; 0Þ
Two-body 1.000� 0.002 � � � � � � 2.2
Three-body 1.062� 0.002 � � � � � � 15

ðI; LÞ ¼ ð0; 0Þ; ð2; 0Þ
Two-body 1.000� 0.003 0.04� 0.01 � � � 1.69
Three-body 1.138� 0.003 0.29� 0.01 � � � 1.67

ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ
Two-body 1.000� 0.002 � � � 0.058� 0.009 1.45
Three-body 1.043� 0.005 � � � 0.233� 0.009 0.95 (set 1)

ðI; LÞ ¼ ð0; 0Þ; ð2; 0Þ; ð1; 1Þ
Two-body 1.00� 0.02 −0.26� 0.05 0.38� 0.07 0.94
Three-body 1.19� 0.01 0.14� 0.03 0.28� 0.04 0.90 (set 2)
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Often, an effective range expansion of the Dalitz plot
near x ¼ y ¼ 0 is used to parametrize the η decay dis-
tribution. For the charged decay it leads to

jACðx; yÞj2
jACð0; 0Þj2 ¼ 1þ ayþ by2 þ cxþ dx2

þ exyþ fy3 þ gx2yþ � � � : ð26Þ
The charge conjugation symmetry, x → −x requires terms
odd in x to vanish, i.e. c ¼ e ¼ 0. In Table II we give the

Dalitz plot parameters from our three-body fits based
on the ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ (set 1) and ðI; LÞ ¼ ð0; 0Þ;
ð2; 0Þ; ð1; 1Þ (set 2) wave sets. For comparison we quote the
results of next-to-leading order (NLO) and next-to-next-to-
leading order (NNLO) of χPT [22,23], the dispersive
analysis from [24], NREFT [30] and alternative dispersive
approach [31]. We also include Dalitz parameters extracted
from direct fits to the experimental data [12,14,16,49,50].
The most recent analyses where performed by the
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FIG. 3 (color online). Upper and middle panels are the x- and y-projection plots. Black circles are the data. Red squares and blue
squares represent results of the two-body and three-body fits, respectively. The fits are performed on the Dalitz distribution [12] sown in
the bottom left panel using a single, ðI; LÞ ¼ ð0; 0Þwave (upper panels) and twowaves, ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ (central panels). For better
visualization fit results are shifted horizontally (three-body to right and two-body to left) from the experimental points. The bottom right
panel is the Dalitz distribution from the three-body fit with ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ waves.
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WASA-at-COSY [12] and KLOE [16] collaborations. As
expected, our Dalitz plot parameters are consistent with the
WASA-at-COSY parameters within the error bars. We also
observe that central values of the fit tend toward the KLOE
results.

2. η → 3π0

The results obtained in the charged mode can be used to
predict the Dalitz plot parameters for the neutral channel.
The Dalitz parameters are defined as coefficients in the
expansion around the center of the Dalitz plot using
the polar coordinates x ¼ ffiffiffi

z
p

cosϕ and y ¼ ffiffiffi
z

p
sinϕ in

Eq. (24),

jANðz;ϕÞj2
jANð0; 0Þj2 ¼ 1þ 2αzþ 2βz3=2 sin 3ϕþ � � � : ð27Þ

The slope parameter α has been extracted from several
experiments, while to the best of our knowledge, there is no
determination of β or higher moments. In Table III we
compare our findings with the experimental measurements
and other theoretical predictions. The average of exper-
imental results compiled by the PDG is α ¼ −0.0317�
0.0016 [1].
As in the case of the charged mode, our results obtained

with the two sets of waves are quite similar. The predicted
slope parameter is αðset 1Þ ¼ −0.023 and αðset 2Þ ¼
−0.020. Even though both sets describe the charged data
well, the predicted slope parameter in the neutral case is
above the PDG value. As shown in [23,30] the Dalitz plot
parameters of the neutral and charged decays are related by

α ¼ Q2
n

4Q2
c

�
dþ b −

1

4
a2 − ImðāÞ2

�

≤
Q2

n

4Q2
c

�
dþ b −

1

4
a2
�
; ð28Þ

where the factorsQc,Qn were defined below Eq. (24). Note
that we only take Qc ≠ Qn in the overall normalization
while we use Qc ¼ Qn when solving dispersion relations
for the partial wave amplitudes. Here, the complex param-
eters ā is the coefficient of the linear term in the expansion
of the charged amplitude ACðx; yÞ,

ACðx; yÞ ∝ 1þ āyþ � � � : ð29Þ

Using the Dalitz plot parameters fromWASA-at-COSYand
KLOE collaborations, one finds

αWASA ≤ −0.006; αKLOE ≤ −0.033: ð30Þ

TABLE II. Dalitz plot parameters for η → πþπ−π0. Set 1 and set 2 correspond to ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ and ðI; LÞ ¼
ð0; 0Þ; ð2; 0Þ; ð1; 1Þ cases, respectively (see Table I).

a b d f g

WASA-at-COSY [12] −1.144� 0.018 0.219� 0.019� 0.037 0.086�0.018�0.018 0.115� 0.037 � � �
KLOE [16] −1.090� 0.005þ0.008

−0.019 0.124�0.006�0.010 0.057� 0.006þ0.007
−0.016 0.14� 0.01� 0.02 � � �

CBarrel [14] −1.22� 0.07 0.22� 0.11 0.06� 0.04 (fixed) � � � � � �
Layter et al. [49] −1.080� 0.014 0.03� 0.03 0.05� 0.03 � � � � � �
Gormley et al. [50] −1.17� 0.02 0.21� 0.03 0.06� 0.04 � � � � � �
Theory

Set 1 −1.116� 0.030 0.188� 0.010 0.047� 0.005 0.093� 0.004 −0.020� 0.006
Set 2 −1.117� 0.035 0.188� 0.014 0.079� 0.003 0.090� 0.003 −0.063� 0.012

NLO [22] −1.371 0.452 0.053 0.027 � � �
NNLO [23] −1.271� 0.075 0.394� 0.102 0.055� 0.057 0.025� 0.160 � � �
Kambor et al. [24] −1.16 0.24…0.26 0.09…0.10 � � � � � �
NREFT [30] −1.213� 0.014 0.308� 0.023 0.050� 0.003 0.083� 0.019 −0.039� 0.002

TABLE III. Dalitz plot parameters for η → 3π0. Set 1 and set 2
correspond to ðI; LÞ ¼ ð0; 0Þ; ð1; 1Þ and ðI; LÞ ¼ ð0; 0Þ; ð2; 0Þ;
ð1; 1Þ cases, respectively (see Table I).

α β

GAMS-2000 [51] −0.022� 0.023 � � �
Crystal Barrel, LEAR [52] −0.052� 0.020 � � �
Crystal Ball, BNL [15] −0.031� 0.004 � � �
SND [53] −0.010� 0.023 � � �
CELSIUS-WASA [13] −0.026� 0.014 � � �
WASA-at-COSY [54] −0.027� 0.009 � � �
MAMI-B [55] −0.032� 0.004 � � �
MAMI-C [48] −0.032� 0.003 � � �
KLOE [17] −0.0301� 0.0050 � � �
PDG average [1] −0.0317� 0.0016 � � �
Theory

Set 1 −0.023� 0.004 −0.000� 0.002
Set 2 −0.020� 0.004 −0.001� 0.003

NLO [22] þ0.013 � � �
NNLO [23] þ0.013� 0.032 � � �
Kambor et al. [24] −0.007… − 0.014 � � �
NREFT [30] −0.025� 0.005 −0.004� 0.001
Kampf et al. [31] −0.044� 0.004 � � �
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The large difference in the upper limits is due to the
difference in the b parameter which differs by a factor of
2 between the two data sets. As pointed out in [30] the
value for ImðāÞ can be sizable due to ππ final state
interactions. Our results confirm this finding and we obtain
ImðāÞ ¼ −0.18� 0.03. Nevertheless, since ðαWASAÞmax ¼
−0.006 is quite large the ImðāÞ term alone can not be
responsible for lowering α to the PDG value. Once the
KLOE data become available [56] it would be very
interesting to perform a combined fit of the WASA-at-
COSY and KLOE measurements.
The neutral channel does not depend on the P-wave

amplitude contributing to the charged decay mode and it
contains only even partial waves. Unfortunately, using the
charge mode we could not find sensitivity to the D-wave
which was omitted from the Table I. Finally, in Fig. 4 we
compare our results with the recent MAMI-C measurement
[48]. The RðzÞ function is determined as

RðzÞ ¼
R
2π
0 dϕθðφðs; t; uÞÞ jANðz;ϕÞj2

jANð0;0Þj2R
2π
0 dϕ θðφðs; t; uÞÞ ; ð31Þ

where

φðs; t; uÞ ¼ stu −m2
π0
ðm2

η −m2
π0
Þ2 ¼ 0 ð32Þ

defines the boundary of the Dalitz plot distribution and θðxÞ
is the step function. We observe that a cusp around z≃
0.765 appears in RðzÞ for nonzero β. This is a kinematical
effect which reflects the fact that for larger z the phase
space distribution in the Dalitz plot is no longer circular. We
find our results for sets 1 and 2 provide a satisfactory
agreement with the data.

B. Matching to χPT and the Q value

We remind that the data in [12] were normalized to the
center of the Dalitz plot and therefore our model only
predicts the Dalitz plot distributions for the charged and

neutral decays. The overall normalization can be fixed by
comparing the experimental decay widths with the phase
space integral over the corresponding squared amplitudes,

Γ ¼ N
Z

dxdy
jAðx; yÞj2
jAð0; 0Þj2 ; ð33Þ

with the boundaries of the integral determined by the phase
space. We emphasize that the quantityQ2 defined in Eq. (1)
enters into the normalization constant N. In order to
determine Q2 one has to match the model, dispersive
amplitude, with χPT where Q2 is defined.
As discussed in Sec. I, the χPT [23] series seems to

converge rather slowly and the question arises to which
order of the χPT should one match the model. It would be
desirable to find a matching point where on the χPT side
contributions, from powers of Mandelstam invariants, are
small. Therefore, matching the amplitudes in the physical
region may not be the best option. Up to NNLO the chiral
amplitude satisfies the decomposition of Eq. (4), and up to
this order matching is simplified since it is sufficient to
match the single variable, partial wave amplitudes aILðsÞ.
The χPT amplitude for the charged decay, up to NNLO can
be written in the form

AC
χPTðs; t; uÞ ¼ −

1

Q2

m2
Kðm2

K −m2
πÞ

3
ffiffiffi
3

p
m2

πF2
π

Mðs; t; uÞ; ð34Þ

where Fπ ¼ 92.3 MeV is the pion decay constant and

Mðs; t; uÞ ¼ M0ðsÞ −
2

3
M2ðsÞ þM2ðtÞ þM2ðuÞ

þ ðs − uÞM1ðtÞ þ ðs − tÞM1ðuÞ: ð35Þ

Explicit expressions for the functions MI at various orders
in the chiral expansion can be found in [23]. Comparing
Eq. (22) and Eqs. (34) and (35), one finds

a00ðsÞ ¼ 3NχPTM0ðsÞ;
a20ðsÞ ¼ 2NχPTM2ðsÞ;

a11ðsÞ ¼
2

3
NχPT

KðsÞ
s

M1ðsÞ; ð36Þ

where

NχPT ¼ −
1

Q2

m2
Kðm2

K −m2
πÞ

3
ffiffiffi
3

p
m2

πF2
π

: ð37Þ

The NNLO χPT calculation was performed in [23]. The
order Oðp6Þ low-energy couplings (LECs) were estimated
using a resonance saturation model and error analysis was
not provided. Given that uncertainties in the low energy
constants enteringMI’s at the NNLOs are not quantitatively
settled in the following we choose to match our dispersive
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FIG. 4 (color online). Comparison of RðzÞ plot from [48] (black
points) with our predictions from Table III that correspond to set 1
(blue band) and set 2 (red band).
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calculation with the NLO χPT result. In this case one can
use the NLO relations between decay constants and meson
masses which reduces the number of low energy constants
in the chiral amplitude to one, L3 ¼ ð−2.35� 0.37Þ × 10−3

[57]. We choose the matching point to coincide with the
subtraction point in Eq. (21), which in turn was chosen to
coincide with the Adler zero in the LO χPT amplitude. In
that case the determined parameters from matching are the
same for the two-body and three-body scenarios.
In the following we consider two methods for matching

the dispersive analysis with χPT. In the first case we use
Eq. (37) together with the χPT NLO amplitudes MI’s to
compute the overall normalization and the parameters
gILðs0Þ, which in turn completely determine dispersive
amplitudes of our model. We find

g00ðs0Þ ¼ 16.1NχPT;

g00ðs0Þ=g20ðs0Þ=g11ðs0Þ ¼ 1=0.12=ð0.129� 0.014Þ: ð38Þ

This confirms that the amplitude ðI; LÞ ¼ ð0; 0Þ is domi-
nant. In the lower panel of Fig. 5, we compare the χPT
amplitudes with the dispersive ones, the latter obtained
using the subtraction constants from Eq. (38). The com-
parison with the WASA-at-COSY data shown in the upper

panel in Fig. 5, we find that the dispersive amplitude fixed
by Eq. (38) gives χ2=d:o:f. of approximately 13.0 using
only two-body amplitudes, which are reduced to 2.9 when
three-body rescattering contributions are included. Even
though the model compares reasonably well with the data,
the large value of χ2=d:o:f. prevents us from extracting the
Q value using this method.
To extract the Q value, we therefore use the χPT

amplitudes to determine the overall normalization only,
while for the subtraction constants gILðs0Þ we use the
results from the fit of the WASA-at-COSY data described
in the previous section. We find Qðset 1Þ ¼ 21.7� 0.4 and
Qðset 2Þ ¼ 21.1� 0.4 for the two sets of parameters given
in Table II. Comparison of our findings with previous
results is summarized in Table IV. We observe that the
extracted Q values are somewhat smaller compared to
[23,24,31] and within 1σ from the recent (Nf ¼ 2þ 1)
lattice computations [58]. We note that lattice calculations
of electromagnetic correction for Nf ¼ 2þ 1 are not yet
available, while forNf ¼ 2 these were reported in [59]. The
lattice result given in Table IV depends on the input value
for the light quark mass ratio,mu=md ¼ 0.46� 0.03 which
is the LO χPT result reduced by a factor of 8(4)% chosen as
an estimate of the correction from higher-order chiral
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FIG. 5 (color online). Upper panels: x and y projections of the Dalitz plots. Black circles represent the data. The red squares and blue
squares are model results using amplitudes with only two-body and including three-body correlations, respectively. The amplitudes were
computed using three partial wave components with ðI;LÞ ¼ ð0; 0Þ; ð2; 0Þ; ð1; 1Þ. For better visualization fit results are shifted
horizontally (three-body to right and two-body to left) from the experimental points. Bottom panels: The comparison of the NLO χPT
amplitudes MI’s (black curves), with the two-body (red curves) and three-body (blue curves) dispersive amplitudes. Real parts are
shown with solid lines and imaginary with dashed lines. In all figures the unknown couplings were fixed by matching to NLO χPT
[see Eq. (38)].

PENG GUO et al. PHYSICAL REVIEW D 92, 054016 (2015)

054016-10



effects [58]. Alternatively, using the extracted Q value and
the Nf ¼ 2þ 1 lattice result for ms=m̂ ¼ 27.46� 0.44
[58] we can estimate mu=md. We find

mu

md
¼ 0.42� 0.02 ð39Þ

as an average between sets 1 and 2. Another useful quantity
that can be calculated from ourQ andms=m̂ is the so-called
R value given by

R ¼ ms − m̂
md −mu

¼ 2Q2

�
1þms

m̂

�
−1

¼ 32.2� 1.3: ð40Þ

IV. CONCLUSIONS

In this paper, a new data-driven dispersive analysis of η →
3π was performed. The hadronic final state interactions were
incorporated using the Khuri-Treiman equation, which was
solved using Pasquier inversion technique. To the best of our
knowledge it is the first time such an approach has been used
in analysis of the η decays. In an earlier study [36], we
illustrated the pros and cons of the Pasquier technique using a
toy model with known exact solutions. The main limitation
of this method is related to the treatment of the left-hand cuts,
which in general are not known.We approximated them by a
constant which is absorbed in the subtraction constants. As it
was shown in [36], this approximation works very well,
when the physical region does not depend strongly on the
accurate form of the left-hand cut. On the other hand, the
advantage of the Pasquier inversion is that it eliminates
the need for specifying the high-energy behavior of the
absorptive parts in the physical region.
In the analysis of the η → 3π decays presented here, we

have shown that with a single real parameter (g11) and the
physical ππ partial-wave amplitudes [7], it is possible to
reproduce the Dalitz distribution of the charged η decay
mode [12]. We have also verified that including more
partial waves leads fits with comparable χ2=d:o:f. The
resulting Dalitz parameters, averaged over the various
combinations of partial waves considered in this paper, are

a ¼ 1.116� 0.032; b ¼ 0.188� 0.012;

d ¼ 0.063� 0.004; f ¼ 0.091� 0.003;

g ¼ 0.042� 0.009: ð41Þ

These are consistent, within 1σ with the analysis of WASA-
at-COSY having central values shifted towards values
obtained from analysis by the KLOE Collaboration, which
were not include in our fits. Based on the analysis of the
charged decay we made a prediction for the slope parameter
of the Dalitz distribution in the neutral decay channel,

α ¼ −0.022� 0.004: ð42Þ

This value is above the PDG value of αexp ¼ −0.0317�
0.0016. We speculate that the discrepancy may be a
consequence of the WASA-at-COSY b parameter being
significantly larger than in the earlier KLOE analysis [16].
We expect that in the future this issue will be resolved once
the new KLOE data [56] become available allowing a
simultaneous fit of both data sets.
Another useful test of the amplitudes is provided by the

ratio of neutral and charged decay rates. In the isospin limit
this ratio does not depend on the normalization, and if the
small electromagnetic isospin breaking is also ignored [60],
it depends only on the integrated Dalitz plot distributions.
From our amplitude we find

r ¼ Γðη → 3π0Þ
Γðη → πþπ−π0Þ ¼ 1.52� 0.09; ð43Þ

which is consistent with the experimental value of rexp ¼
1.43� 0.02 [1]. We have also compared our amplitudes
with the NLO χPT results and found the Q value of

Q ¼ 21.4� 0.4: ð44Þ

The error is of the statistical origin. It was computed through
standard error propagation of the uncertainties arising from
the ππ phase shifts, the L3 coefficient, the experimental
decay width Γðη → πþπ−π0Þ and the statistical error in
fitting the Dalitz plot. Inelasticity and higher partial waves
are also potential sources of uncertainties [61].
Using the extractedQ value and recent averages from the

Nf ¼ 2þ 1 lattice computation for m̂ ¼ 3.42� 0.09 and
ms ¼ 93.8� 0.24, [58] we estimate the up and down quark
masses to be

mu ¼ 2.02� 0.14 MeV;

md ¼ 4.82� 0.08 MeV: ð45Þ
The method for amplitude construction presented in this

work can be directly applied to decays of heavier mesons,
e.g. η0, and used, for example, to test reliability of the isobar
model. It can also be extended to incorporate couple

TABLE IV. Values of Q from different calculations.

Theory Q

Set 1 21.7� 0.4
Set 2 21.1� 0.4

Lattice (Nf ¼ 2þ 1)a [57] 22.6� 0.9

NLO [22] 20.1
NNLO [23] 22.9
Kambor et al. [24] 22.4� 0.9
Kampf et al. [31] 23.1� 0.7

aHere and in the following we combined in quadrature the
errors quoted in [57].
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channels, which might be more relevant in decays of
heavier mesons.
All the material, including data and code, are available in

an interactive form online [62].
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APPENDIX A: ISOSPIN ALGEBRA

In Eq. (4) the isospin factors are given by

Pð0Þ
αβγη ¼

1

3
δαβδγη;

Pð1Þ
αβγη ¼

1

2
ðδαγδβη − δαηδβγÞ;

Pð2Þ
αβγη ¼

1

2
ðδαγδβη þ δαηδβγÞ −

1

3
δαβδγη; ðA1Þ

which satisfy

X
ηγ

PðIÞ
αβηγP

ðI0Þ
ηγα0β0 ¼ PðI0Þ

αβα0β0δII0 ;

X
ηγ

PðIÞ
βγαηP

ðI0Þ
ηγα0β0 ¼ PðI0Þ

αβα0β0 ½Cst�II0 ;
X
ηγ

PðIÞ
γαβηP

ðI0Þ
ηγα0β0 ¼ PðI0Þ

αβα0β0 ½Csu�II0 : ðA2Þ

Here α; β; γ; η are the Cartesian isovector indices and
isospin crossing matrices Cst and Csu and are given by

Cst ¼

0
BB@

1=3 1 5=3

1=3 1=2 −5=6
1=3 −1=2 1=6

1
CCA;

Csu ¼

0
BB@

1=3 −1 5=3

−1=3 1=2 5=6

1=3 1=2 1=6

1
CCA:

APPENDIX B: KERNEL FUNCTIONS

The kernel functions in Eq. (20) are determined as

KIL;I0L0 ðs; tÞ ¼ 2ð2L0 þ 1Þ
× ðθðtÞΔIL;I0L0 ðs; tÞ − θð−tÞΣIL;I0L0 ðs; tÞÞ;

ðB1Þ

with

ΔIL;I0L0 ðs; tÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0 − s
ρðs0Þðs0=4 −m2

πÞL
F ILðs0ÞKLþ1ðs0Þ=s0

×
F I0L0 ðtÞKL0 ðtÞ
ðt=4 −m2

πÞL0 PLðzs0 ÞPL0 ðztÞ; ðB2Þ

and

ΣIL;I0L0 ðs; tÞ ¼
Z

∞

sþðtÞ
ðC0Þ ds0

s0 − s
ρðs0Þðs0=4 −m2

πÞL
F ILðs0ÞKLþ1ðs0Þ=s0

×
F I0L0 ðtÞKL0 ðtÞ
ðt=4 −m2

πÞL0 PLðzs0 ÞPL0 ðztÞ; ðB3Þ

where the contour C0 is shown in Fig. 6 (see [36] for more
details). These kernel functions can be computed analyti-
cally, what significantly speeds up numerical computations.
In the calculations presented in this paper, only the
functions ΔIL;I0L0 ðs; tÞ are needed and their analytical
representations are below in terms of

ΔL;L0 ðs; tÞ≡ KL0 ðtÞ
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0 − s
1

Uðs0Þ

×
ðs0 − 4m2

πÞL
KLðs0Þ PLðzs0 ÞPL0 ðztÞ; ðB4Þ

so that for L ¼ 0,

ΔI0;I0L0 ðs; tÞ ¼ 4L
0−L F I0L0 ðtÞ

ðt − 4m2
πÞL0

×

�
Δ0;L0 ðs; tÞ
F I0ðsÞ

−
sðIÞχ − sðIÞA

s − sðIÞχ

Δ0;L0 ðsðIÞχ ; tÞ
�
;

ðB5Þ
and otherwise ðL ≠ 0Þ,
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ΔIL;I0L0 ðs; tÞ ¼ 4L
0−L F I0L0 ðtÞ

ðt − 4m2
πÞL0 ΔL;L0 ðs; tÞ: ðB6Þ

The square root function UðzÞ is given by

UðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − ðmη −mπÞ2Þðz − ðmη þmπÞ2Þ

q
ðB7Þ

in the complex z plane. Here and in what follows, the
phase convention for UðzÞ is chosen by Uðs� i0Þ ¼
ð∓; i;�ÞjUðsÞj for s ∈ ðð−∞; ðmη −mπÞ2�, ½ðmη −mπÞ2;
ðmη þmπÞ2�; ½ðmη þmπÞ2;∞ÞÞ, respectively. The kin-
ematic factor KðsÞ=ðsρðsÞÞ is given by the value of
UðsÞ right below the two cuts attached to branch points
s ¼ ðmη �mπÞ2, i.e. KðsÞ=ðsρðsÞÞ ¼ Uðs − i0Þ. For real s
and t, the physical values of ΔL;L0 ðs; tÞ correspond to the
limit sþ i0 and tþ i0.

(i) ðL;L0Þ ¼ ð0; 0Þ:

Δ0;0ðs; tÞ ¼
1

UðsÞ
�
ln

����Rðs; tÞ þ UðsÞUðtÞ
Rðs; tÞ −UðsÞUðtÞ

����
− iπθðφðs; tÞÞ

�
;

Rðs; tÞ ¼ −m4
η þ ðs −m2

πÞðt −m2
πÞ þm2

ηðsþ tÞ;
φðs; tÞ ¼ stðm2

η þ 3m2
π − s − tÞ −m2

πðm2
η −m2

πÞ2:

(ii) ðL;L0Þ ¼ ð0; 1Þ:
Δ0;1ðs;tÞ¼ 2tΔaðtÞþ tð2sþ t−m2

η−3m2
πÞΔ0;0ðs;tÞ;

ΔaðtÞ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

Uðs0Þ

¼− ln
ðm2

η−m2
πþ tþUðtÞÞ2
4m2

ηt
:

(iii) ðL;L0Þ ¼ ð1; 0Þ:

Δ1;0ðs;tÞ¼
1

s
ðΔ̄1;0ðs;tÞ−Δ̄1;0ð0;tÞÞ;

Δ̄1;0ðs;tÞ¼Δ0;0ðs;tÞþ2ðtþmπðmη−mπÞÞΔðþÞ
b ðs;tÞ

þðmη−mπÞ2Δð−Þ
b ðs;tÞ

þ2ðtþmπðmη−mπÞÞ
×ðmη−mπÞ2Δcðs;tÞ;

Δð�Þ
b ðs;tÞ¼

Z
sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0−s
1

Uðs0Þ
1

s0−ðmη�mπÞ2

¼ 1

s−ðmη�mπÞ2
ðΔ0;0ðs;tÞ−Δð�Þ

d ðtÞÞ;

Δcðs;tÞ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0−s
1

U3ðs0Þ

¼Δ0;0ðs;tÞ
U2ðsÞ þ 1

4mπmη

Δð−Þ
d ðtÞ

s−ðmη−mπÞ2

−
1

4mπmη

ΔðþÞ
d ðtÞ

s−ðmηþmπÞ2
;

Δð�Þ
d ðtÞ¼

Z
sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0−ðmη�mπÞ2
1

Uðs0Þ

¼ UðtÞ
mηðmη�mπÞðt�mπðmη∓mπÞÞ

:

(iv) ðL;L0Þ ¼ ð1; 1Þ:

Δ1;1ðs; tÞ ¼
t
s
ðΔ̄1;1ðs; tÞ − Δ̄1;1ð0; tÞÞ;

Δ̄1;1ðs; tÞ ¼ 2ΔaðtÞ þ 4ðtþmπðmη −mπÞÞΔðþÞ
d ðtÞ

þ 2ðmη −mπÞ2Δð−Þ
d ðtÞ

þ 4ðtþmπðmη −mπÞÞðmη −mπÞ2ΔeðtÞ
þ ð2sþ t −m2

η − 3m2
πÞΔ̄1;0ðs; tÞ;

ΔeðtÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

U3ðs0Þ ¼
ΔðþÞ

d ðtÞ − Δð−Þ
d ðtÞ

4mπmη
:

(v) ðL;L0Þ ¼ ð0; 2Þ:
Δ0;2ðs; tÞ ¼ 6t2Δfðs; tÞ þ 6t2ð2sþ t −m2

η − 3m2
πÞ

× ΔaðtÞ

þ 3t2ð2sþ t −m2
η − 3m2

πÞ2 −U2ðtÞ
2

× Δ0;0ðs; tÞ;

Δfðs; tÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

Uðs0Þ ðs
0 − sÞ

¼ UðtÞ þ ðm2
η þm2

π − sÞΔaðtÞ:

FIG. 6. Integration contour C0 in the complex s plane after
Pasquier inversion. The black wiggle lines represent cuts attached
to two branch points: ðmη �mπÞ2 in the s plane. The points labeled
by a − i correspond to (a) s−ð0Þ ¼ −∞, (b)s−ð4m2

πÞ ¼ m2
η−m2

π

2
,

(c) s−ðm
2
η−m2

π

2
Þ ¼ 4m2

π , (d) s�ððmη −mπÞ2Þ ¼ mπðmπ þmηÞ,
(e) sþðmπðmη þmπÞÞ ¼ ðmη −mπÞ2, (f) sþð4m2

πÞ ¼ m2
η−m2

π

2
,

(g) sþð0Þ ¼ ∞, (h) sþðmπðmπ −mηÞÞ ¼ ðmη þmπÞ2, and
(i) sþð−∞Þ ¼ ∞, respectively.
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(vi) ðL;L0Þ ¼ ð2; 0Þ:

Δ2;0ðs; tÞ ¼ −
1

2
Δiðs; tÞ þ

3

2
Δð−Þ

j ðs; tÞ þ 6ðtþmπðmη −mπÞÞ
Δð−Þ

j ðs; tÞ − Δð−Þ
l ðtÞ

s − ðmη þmπÞ2

þ 3ðtþmπðmη −mπÞÞ2
2mηmπ

ΔðþÞ
j ðs; tÞ − ΔðþÞ

l ðtÞ
s − ðmη −mπÞ2

−
3ðtþmπðmη −mπÞÞ2

2mηmπ

Δð−Þ
j ðs; tÞ − Δð−Þ

l ðtÞ
s − ðmη þmπÞ2

;

Δiðs; tÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0ðs0 − sÞ
s0 − 4m2

π

U3ðs0Þ ¼
�
1 −

4m2
π

s

�
Δcðs; tÞ þ

4m2
π

s
Δcð0; tÞ;

Δð�Þ
j ðs; tÞ ¼

Z
sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0 − s
1

Uðs0Þ
1

ðs0 − ðmη �mπÞ2Þ2
¼ Δ0;0ðs; tÞ − Δð�Þ

d ðtÞ
ðs − ðmη �mπÞ2Þ2

−
Δð�Þ

k ðtÞ
s − ðmη �mπÞ2

;

Δð�Þ
k ðtÞ ¼

Z
sþðtÞ

s−ðtÞ
ðC0Þ ds0

Uðs0Þ
1

ðs0 − ðmη �mπÞ2Þ2
¼ � 4

3

mπðmη �mπÞðt�mπðmη∓mπÞÞ
ð4mηmπÞ2

×
UðtÞ

φððmη �mπÞ2; tÞ
�
3þm2

πU2ðtÞ þ 3m2
ηtðt − 4m2

πÞ
φððmη �mπÞ2; tÞ

�
;

Δð�Þ
l ðtÞ ¼

Z
sþðtÞ

s−ðtÞ
ðC0Þ ds0

U3ðs0Þ
1

s0 − ðmη �mπÞ2
¼ �Δð�Þ

k ðtÞ − ΔcðtÞ
4mηmπ

:

(vii) ðL;L0Þ ¼ ð2; 1Þ:

Δ2;1ðs; tÞ ¼ tð2sþ t −m2
η − 3m2

πÞΔ2;0ðs; tÞ − tΔeðtÞ þ 4m2
πtΔcð0; tÞ þ 3tΔð−Þ

k ðtÞ þ 6tðtþmπðmη −mπÞÞΔð−Þ
l ðtÞ

þ 6tðtþmπðmη −mπÞÞ2ΔmðtÞ;

ΔmðtÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þ ds0

U5ðs0Þ ¼
ΔðþÞ

l ðtÞ − Δð−Þ
l ðtÞ

4mηmπ
:

(viii) ðL;L0Þ ¼ ð1; 2Þ:

Δ1;2ðs; tÞ ¼
1

s
ðΔ̄1;2ðs; tÞ − Δ̄1;2ð0; tÞÞ;

Δ̄1;2ðs; tÞ ¼
�
1þ 2ðtþmπðmη −mπÞÞ

s − ðmη þmπÞ2
þ ðmη −mπÞ2
s − ðmη −mπÞ2

þ 2ðtþmπðmη −mπÞÞðmη −mπÞ2
U2ðsÞ

�
Δ0;2ðs; tÞ

−
1

4mπmη

2ðtþmπðmη −mπÞÞðmη þmπÞ2
s − ðmη þmπÞ2

ΔðþÞ
g ðtÞ þ 1

4mπmη

2ðt −mπðmη þmπÞÞðmη −mπÞ2
s − ðmη −mπÞ2

Δð−Þ
g ðtÞ;

Δð�Þ
g ðtÞ ¼

Z
sþðtÞ

s−ðtÞ
ðC0Þ ds0

s0 − ðmη �mπÞ2
1

Uðs0Þ
3t2ð2s0 þ t −m2

η − 3m2
πÞ2 − U2ðtÞ

2

¼ 6t2Δð�Þ
h ðtÞ þ 6t2ðm2

η � 4mηmπ −m2
π þ tÞΔaðtÞ þ

3t2ðm2
η � 4mηmπ −m2

π þ tÞ2 − U2ðtÞ
2

Δð�Þ
d ðtÞ;

Δð�Þ
h ðtÞ ¼

Z
sþðtÞ

s−ðtÞ
ðC0Þ ds0

Uðs0Þ ðs
0 − ðmη �mπÞ2Þ ¼ UðtÞ∓2mπmηΔaðtÞ:
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(ix) ðL;L0Þ ¼ ð2; 2Þ:

Δ2;2ðs; tÞ ¼
3t2ð2sþ t −m2

η − 3m2
πÞ2 −U2ðtÞ

2
Δ2;0ðs; tÞ þ 6t2Δnðs; tÞ þ 6t2ð2sþ t −m2

η − 3m2
πÞΔoðtÞ;

Δnðs; tÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þds0 1

s0

�
1 −

s
s0

�
1

U3ðs0Þ
3s02ð2tþ s0 −m2

η − 3m2
πÞ2 −U2ðs0Þ

2

¼ 3

2
½Δð−Þ

d ðtÞ − ðs − ðmη −mπÞ2ÞΔð−Þ
k ðtÞ� þ 6ðtþmπðmη −mπÞÞ

×

�
Δð−Þ

k ðtÞ − ðs − ðmη þmπÞ2Þ
ΔeðtÞ − Δð−Þ

k ðtÞ
4mηmπ

�
þ 6ðtþmπðmη −mπÞÞ2

�
ΔðþÞ

k ðtÞ − ΔeðtÞ
4mηmπ

þ ðs − ðmη −mπÞ2Þ
2ΔeðtÞ − ΔðþÞ

k ðtÞ − Δð−Þ
k ðtÞ

ð4mηmπÞ2
�
−
1

2
½ΔðþÞ

d ðtÞ − ðs − ðmη −mπÞ2ÞΔeðtÞ�

þ 2m2
π½ΔeðtÞ − sΔcð0; tÞ�;

Δoðs; tÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þds0 1

s02
1

U3ðs0Þ
3s02ð2tþ s0 −m2

η − 3m2
πÞ2 −U2ðs0Þ

2

¼ 3

2
Δð−Þ

k ðtÞ þ 6ðtþmπðmη −mπÞÞ
ΔeðtÞ − Δð−Þ

k ðtÞ
4mηmπ

− 6ðtþmπðmη −mπÞÞ2
2ΔeðtÞ − ΔðþÞ

k ðtÞ − Δð−Þ
k ðtÞ

ð4mηmπÞ2

−
1

2
ðΔeðtÞ − 4m2

πΔcð0; tÞÞ:
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