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We present a unitary dispersive model for the # — 37z decay process based upon the Khuri-Treiman
equations which are solved by means of the Pasquier inversion method. The description of the hadronic
final-state interactions for the # — 37 decay is essential to reproduce the available data and to understand
the existing discrepancies between Dalitz plot parameters from experiment and chiral perturbation theory.
Our approach incorporates substraction constants that are fixed by fitting the recent high-statistics WASA-
at-COSY data for  — 77z~ z°. Based on the parameters obtained, we predict the slope parameter for the
neutral channel to be @ = —0.022 4= 0.004. Through matching to next-to-leading-order chiral perturbation
theory, we estimate the quark mass double ratio to be O = 21.4 £ 0.4.
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I. INTRODUCTION

Production of three particles plays an important role in
hadron physics. It sheds light on the reaction dynamics, e.g.
the OZI rule, and can amplify production of hadron
resonances, with the mysterious XYZ states seen in the
spectrum of charmonia and bottomonia [1] being the most
recent examples. The need for precision analysis of final
states containing three light hadrons has become even more
pressing given the high quality data emerging from the
various hadron facilities around the world, including
Jefferson Lab, COMPASS and BESIII [2-5]. Recently,
significant progress has been made in analysis of hadron-
hadron interactions at low energies based on the S-matrix
principles of unitarity, analyticity and crossing symmetry
[6-9]. At low energies, unitarity is an important constraint
given that there is only a limited number of contributing
channels. Unitarity also determines the analytical proper-
ties of partial waves and constraints resonant scattering.
Implementation of crossing-symmetry is much more diffi-
cult since it is related to the underlying dynamics. However,
at low energies it can be systematically investigated by
identifying the most important, i.e. closest to the physical
region, singularities of the cross-channel amplitudes, and
for example in reactions involving Goldstone bosons these
can be constrained by chiral symmetry of QCD [10,11].

In this paper we focus on decays of the # meson to three
pions. From the experimental side, the high-quality data
from WASA-at-COSY [12,13], Crystal Barrel [14,15], and
KLOE [16,17], along with the data from CLAS [3], which
is currently being analyzed, present an opportunity for
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precision analysis of the Dalitz distribution. In the charged
decay channel,  — 7+ 7z, we only have access to the
binned data from the WASA-at-COSY [12] experiment and
therefore it is the only data set we use in our data-driven
analysis. From the theoretical point of view # — 37 decays
are of interest because of isospin violation. These decays
are dominated by the intrinsic isospin breaking effects in
QCD as electromagnetic effects are expected to be small
[18,19]. Consequently, the decay width for n — 37z is
expected to be proportional to the light quark mass differ-
ence and the decay amplitude is often expressed in terms of
the quantity, 1/Q? defined by

1 mi-m}

& mae v

Here /1 = (m, +my)/2 is the average of the u and d
quark masses. One determines Q by comparing a theo-
retical prediction with the experimental decay width
[(n = ntz= %) = 281 4 28 eV [1]. However, it is impor-
tant to emphasize that this procedure requires that the
amplitude implements chiral constraints or at least it agrees
with the leading-order chiral perturbation theory (yPT),
which is where Q originates. Once Q is extracted, it can be
combined with the knowledge of the /1 and my, e.g. from
lattice simulations, to determine the light-quark mass
difference.

It is necessary to consider the # — 37z decay amplitudes
beyond yPT. This is apparent when considering contribu-
tions to I'(y — a2z~ z°) from the first few terms in the low
energy expansion. Specifically, the leading-order yPT
result, Fbgﬂ*fﬂ‘) = 66 eV [20,21], is approximately four
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times smaller than expected. Inclusion of next-to-leading
(one loop) corrections increases the theoretical prediction
o I'NLO o = 16750 eV [22], which is still signifi-

n—ata

cantly below the data. The next-to-next-to-leading calcu-
lation (two loops) has been performed recently [23]. It
pushes the decay width further towards the data; however, it
contains a large number of low energy constants. In
addition to the apparent poor convergence, low orders of
xPT give an incorrect result for the shape of the Dalitz
distribution in the neutral 37° decay. To the leading order,
this distribution is represented by a single parameter, a,
which yPT predicts to be positive while the experimental
result is o« = —0.0317 £0.0016 [1]. The fact that chiral
expansion converges slowly indicates the importance of
final state interactions. This is expected to be a conse-
quence of unitarity, which in yPT is incorporated only order
by order. To fulfill unitarity various dispersive frameworks
were developed [24,25] with recent updates of [26,27] and
[28]. These analyses are based on the Khuri-Treiman (KT)
representation [29]. In the KT approach, partial waves are
given in the elastic approximation with the left-hand cut
contributions computed from cross-channel amplitudes that
are approximated by the same elastic partial waves as in the
direct channel and are bootstrapped. Other calculations
employed, for example, nonrelativistic effective field
theory (NREFT) [30] and alternative dispersive approaches
were studied in [31].

The final state interactions in # — 3z at low energies can
be approximated by elastic 7z scattering. These amplitudes
are available with high precision up to /s = 1.1 GeV [7].
However, dispersion calculations involve integrals over all
energies. In order to suppress the unknown high-energy
region, the dispersive integrals are usually over-subtracted
and the subtraction constants are fixed by comparing to the
data [27,32]. In [33] the authors used an alternative method
whereby the dispersive integral was split into elastic and
inelastic contributions and the latter was parametrized by a
power series in a suitably chosen conformal variable. In the
current work, we apply yet a different approach. We obtain
the solution of the KT equation using the so-called Pasquier
inversion method [34,35]. In this case the dependence on the
unknown high energy region is traded for by the dependence
on the far left-hand cuts. The advantages and disadvantages
of alternative procedures were discussed in [36].

The paper is organized as follows. In Sec. II we present
the basic formalism and discuss how three body effects are
incorporated using the Pasquier inversion. The numerical
results are presented in Sec. III, which we divide into two
parts. In the first part we perform a data-driven dispersive
analysis of the WASA-at-COSY data [12] without input
from yPT. We show the fitted Dalitz plot parameters for the
charged decay and predict the slope parameter for the
neutral decay channel. In the second part we match our
amplitudes to yPT in order to extract the Q value.
Conclusions are summarized in Sec. IV.
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II. FORMALISM

A. Kinematics and partial wave expansion

The isospin violating # — 3z decay involves a Al =1
interaction. The transition matrix elements, A%""(s, t, u),
depends on four isospin indices, with the index 7 referring
to the isospin component of the interaction and «, 3,y to
three pions. In terms of the particle momenta the three
Mandelstam variables are s = (p; + p2)*> = (ps — p3)*
t=(py+p3)=(ps—p1)° and u=(p +ps)°=
(ps — p»)*. The Mandelstam variables satisfy s + ¢ 4+ u =
mg + m} + m3 + m3, with m, being the mass of the 7, also
referred to as particle i = 4 and m;, i = 1..3 to the pions.
On account of crossing symmetry, the following processes
are described by the same complex function (with the bar
denoting an antiparticle): the s-channel scattering
4+3—1+2, the t-channel scattering 4 +1 — 2 + 3,
the u-channel scattering, 4 +2 — 1 + 3, and the decay
channel 4 — 1 + 2 4 3. In particular the amplitude in the
decay channel will be derived by analytical continuation of
the s-channel partial wave expansion. In the s channel, the
amplitude A®7(s,t,u) has the following partial wave
(p-w.) decomposition,

A (s, tu) = 3N QLA 1)PL(z)PY Anls).  (2)
=0 1

where P (z,) is the Legendre polynomial and z; is a cosine
of the center-of-mass scattering angle 9,

(1= w) + (= m3)(m = md)
/11/2(5,m%,m%)ﬂlﬂ(s,m%,m%) '

(3)

7y =cosl; =

The usual Kéllén triangle function is given by A(a, b, c) =
a*+ b* + c¢*—2(ab + bc + ac) and (1,L) label isospin
and orbital angular momentum quantum numbers in the s
channel with / + L = even due to Bose symmetry of pions.

The isospin projection operators 73 are given in

afyn
Appendix A. We note that at this stage the partial waves
are arbitrarily normalized. The unitary relation, which we
discuss in the following is homogeneous in A and at the end
we will normalize the amplitude by comparing with the
experimental data.

The p.w. amplitudes A, (s) have both the right-hand cut
discontinuities demanded by the direct channel unitarity
and left-hand cut discontinuities from exchanges in the ¢
and u channels. We emphasize that Eq. (2) is exact in
the s-channel physical region, when the infinite sum
over L converges. The amplitudes in the other channels
are obtained by analytical continuation. Low-energy
approaches based on partial wave expansion involve
truncation of the partial waves series at some L = L, <
oo, which violates analytical properties of cross-channel
amplitudes. To partially recover those, we represent the
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amplitude as a sum of truncated partial wave series in each
of the three channels [29,34,37-41],

mdx

ZZ 2L + PL ZS)P;I;W,GIL(S)

AYP(s,t,u)

Pz ) Py (1) + Pr(z,) Py an (u))

4)

where the amplitudes are a;; defined as having only right-
hand discontinuities demanded by unitarity in the respec-
tive channels. The center of mass scattering angles in the ¢
and the u channel are given by

H(s — ) + (= ) o — )
Iy = s
! M2, mn,m%)/ll/z(t, m3, m3)
u(t—s) + (mi - m%)(m2 -my)
A2, m2 m3)AY2 (u,m3 m3)

(5)

Ly =

We remark that the decomposition in Eq. (4) satisfies
crossing symmetry explicitly; however, violation of ana-
lyticity remains since the amplitude contains a finite
number of high-spin partial waves in any given channel.
This would be a problem at high energies but hopefully
does not influence our low-energy analysis. What the
representation in Eq. (4) does is to allow for unitarity to
be implemented in all three channels. We also note that
decomposition in Eq. (4) is exact up to NNLO in yPT
[42,43] and is often referred to as “reconstruction theorem.”

It is convenient to express the p.w. amplitude A (s)
[cf. Eq. (2)] in terms of the amplitudes a;; (s) that are
defined by Eq. (4),

Righ e
A(s) = a™(s) + aj"(s). (6)
Here the amplitude alfLight(s) has only the right-hand

discontinuity,

=™ (s) = a.(s), (7)

and the left-hand discontinuities of a¢fi(s)

the exchange terms,

originate from

L,
max 2L/+1 1
i) =3 S P [y )

L'=0 I
x (P () Cf apy (1) + Pu(2,)Clliay (u)). - (8)

Here Cy; and C|, are the standard crossing matrices and are
given in Appendix A.
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B. Unitarity and the three-body effects in
the decay channel

In the following we consider both decay modes of the 5
meson, the charged decay n — z7 7z~ 7", and the neutral
decay n — 37°. When comparing with experimental data it
is important to have an accurate description of the phase
space boundary, thus in the computation of the kinematical
factors we use the physical pion masses. Elsewhere we
assume the isospin limit and use m; = (2m,+ + my)/3 =
m,, i.e. the isospin averaged mass.

The model is defined by Eq. (8) together with the elastic
unitarity constraint for the right-hand discontinuity [44],

Ad(5) = 52 (s + i) — (s — i)
= sz(S)ﬂ(S)(a?nght( ) + ajf(s)), 9)
where p(s) = /1 —4mZ2/s. The elastic 7z partial wave

amplitudes are denoted by f;, and normalized by
Im(1/f;.(s)) = —p(s). Therefore, the amplitudes a;; (s)
satisfy the relation,

T8 221 + 1)
K(s)/s

t+ (S) 2
<[ apuec a,m). (10)
t_(s)

Aap (s) = fi.(s)p(s) <01L<S) +

L'=0 I

The first term on the right-hand side of Eq. (10) represents
the contribution from the direct s channel, 4 +3 — 1 + 2,
to the s-channel partial-wave projection of the unitarity
relation, and it is illustrated in the diagram in Fig. 1(a). The
second term, illustrated in Fig. 1(b), gives the contribution
from the exchange contributions in the 7 channel 4 + 1 —
2+3 and u channel 4 +2 — 1+ 3. In Eq. (10), using
Eq. (3), we changed the integration over the z, to
integration over f,

tdzy [0 dr
/_12<~~>—/<s> ot

with the integration limits 7, (s) corresponding to z; = +1,

2 2
my +3m; —s

() =" K(s)

2s

(12)

The Kacser function K(s) is given by the product of the
triangle functions and has the following determination
[24,45]
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FIG. 1.
contribution from t and u-exchanges.

+x(s), 4m%$ss(mn—mﬂ>2,

K(s) = ix(s),  (my—mg)* <s < (m,+my)?,
—«(s), (m, )SS<+oo,

k(s) = [A(s, my, mz)2 ( cm)|'2. (13)

In the scattering region s > (m, +m 2)? the integral in
Eq. (11) is well defined; however, when 4m2 <s <
(m, 4+ m,)?*, analytical continuation to the decay region
is needed. For this a positive infinitesimal imaginary part is
added to the eta mass [37,45,46], which leads to the
integration contour in the ¢ plane shown in Fig. 2. It is
worth noting that the contour avoids the unitary cut.
Finally, the amplitudes a;; (s) are obtained by bootstrap-
ping the dispersion reaction,

1 [ A !
anls) =+ [ ay B2, (14

T s =5

with a;; appearing on the right-hand side [cf. Eq. (10)]
together with the input two-body scattering ampli-
tudes, f(s).

t,(s)

FIG. 2 (color online). Integration contour in the complex #
plane. The arrows indicate the direction of increasing s in the
interval from 4m2 to co. The points labeled a through i correspond
to specific values of s, with (a) 7_(c0) = 0, (b) t_((m,+m,)?*) =

(=), ©) 1 ((my = m,)?) = (4 m,), (d) 1 (H525)

Am2, (@) 14 (4m2) = "5 () 1. (my(m, + my)) = (m, = my)2,
(g) t+((m71 - mrz)z) = mn(mn + mﬂ)’ (h) t+((m,7 + m”)Z) =
my(m, —m,), and (i) £, (o) = —oo, respectively.
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A diagrammatic representation of discontinuity relations in Eq. (10). (a) The contribution from the direct s-channel, (b) the

As in the standard N/D approach, the inhomogeneous
part in Eq. (10) can be accounted for writing a;; (s) as a
product of f;;(s) times another function of s, whose
discontinuity is given by the s-channel projection of the
cross-channel amplitudes. It is also convenient to remove
any zeros of f;; (s), e.g. the Adler zero, since these are
process dependent. Finally, the partial waves have kin-
ematical singularities, which do not contribute to the
discontinuity relation given by Eq. (10). Thus, we write

arp(s) = Zo(s)F 1 (s)f12(s)giL(s), (15)
where the first factor removes the kinematical singularities,
K(s) 1*
z = |— . 16
O (16)

and the second factor removes zeros from the 7z amplitude,

Fi(s) = (17)
1, L >0.

That is, we assume f;; has zeros in the § wave only. Note
that at leading order in yPT, Adler zeros are located at

s = m2/2 and s

= 2m? in the 7z S-wave isoscalar and
isotensor amplitudes, respectively, and at s}((o) = 4/3m2 for
n — 3z. In the actual calculation we use as input the 7z
amplitudes from the phenomenological analysis of [7]
which have zeros at the same position as the leading order
in yPT; when matching # — 37 with yPT, we use NLO

calculation which places the zeros in n — 37z at s;({0> =

1.25m2 and s;((z) =2.7m2 in the isoscalar and isotensor
channels, respectively.

Finally, it follows from Eq. (10) and Eq. (15) that the
function g;; has the discontinuity given by

Aguu(s) =—6( s)Afff(())g (5)

oy 2021/ +1) p(s)Py(z,)
S 4m Zo; /s .7:1L<S)ZL(>

1,.(s) ,
X/() dtPp(z,)CH Zp () Fpp (6) f o (8) gr (1).
f_(s

(18)
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The first term on the left-hand side takes into account the
left-hand cut of f;; (s); i.e. in addition to the unitary cut, g;;
has a left-hand cut determined by f;; to guarantee that
there is no dynamical left-hand cut in the amplitudes a;; .
The integrand in Eq. (18) is free from kinematical singu-
larities in ¢ and the function g;; (s) satisfies

(o) =+ [Tas B )

s =5

Inserting Eq. (18) into Eq. (19) we obtain a double integral
equations for g;; (), which can be reduced to a single integral
equation by changing the order of dispersive integral (over s)
and the angular projection (internal over ¢). The procedure,
which we referred to earlier as the Pasquier inversion, was
developed in [34,35] and recently revisited in [36]. It leads to
the following representation,

_ by 1 Afi(s)
gIL(s) - ﬂ/;mds s —s f}kL( )

+1/M " dt iZIC[L,/LI (s,1)

=0 I

9. (s")

X Cg,f]’L’(t)gI’L’(t)’ (20)

where the kernel function &C;; y;/(s, 1) is given explicitly in
Appendix B. The left-hand cut contribution to g (s) is
largely unknown. Since we are primarily interested in the
physical decay region we therefore parametrize contributions
to g;; from integration over s < 0. In the simplest approxi-
mation these are reduced to a constant. A more elaborated
representation could, for example, involve a conformal map
of the s plane cut along the negative real axis onto a unit circle
[47]. However, in the analysis of the data we find the simple
approximation to be sufficient:

mdx

Castyen

07
= Kiprw (s0: 1) fro () gr ().
(21)

1 (M-m,
91.(s) = g11.(s0) +—/
7 Jo

X (Kyppp(s.t)

This equation can now be solved using standard matrix
inversion methods with the subtraction constants g;; (s¢) as
fitting parameters. The subtraction point is arbitrary and we
choose it to coincide with the Adler zero of the LO yPT

= 4/3m2. After solving the integral equation for g;; (s),
we compute a;; (s) from Eq. (15). Finally, to compare with
the experimental data we convert the isospin amplitudes to
the charge amplitude, A€(s,t,u) for the n - ztz~2° and
AN (s, 1, u) for the neutral case. These are given by Eq. (4),
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AC(s,t,u) = ZPr(zs)(aoL(s) — ax (s))

& (2L + 1) [2
3

i

+ Pr(z,)(ai (1) + ay (1))
—Pagxmmw—anw»}

L
max 2L 1
AN(s,t,u) 74—)

M

[PL(z,)(aoL(s) + 2az.(s))

~
o

+ (s> 1)+ (s > u). (22)

III. NUMERICAL RESULTS

In this section we present our results for the decays n —
atx~ 7% and n — 37°. We study the systematic uncertainties
of the model by using different sets of partial waves, i.e.
varying L, and maximal isospin. We have found that partial
waves with (L > 2) are negligible in the physical decay
region, 4m3 < s < (m, —m,)*. As input we use two-pion
scattering amplitudes from the analysis of [7]. The parameters
of the fit are the subtraction constants, g;; (s,), for each
contributing partial wave. Our aim is to fix these by fitting
n — nn~7° decay using the high statistic WASA-at-COSY
data [12] and by matching to NLO yPT [22]. The results for
the 7 — 32° decay mode will then constitute a prediction,
which we compare with the Dalitz plot distribution from [48].
We investigate the role of cross-channel exchanges, also
known as final-state interactions in the decay region, by
performing two analyses. In the first, we do not include cross-
channel effects and approximate g;; (s) in Eq. (21) by a
constant, setting g;; (s) = gy (so)- It corresponds to a tradi-
tional isobar model, but with a fully incorporated two-pion
interaction. In the second, we include cross-channel rescat-
tering effects and solve Eq. (21). In the following we refer to
the two cases as “two-body” and “three-body,” respectively.

A. Fitting WASA-at-COSY data

1L.n—ann

In this subsection we summarize the results of the fit to the
recent WASA-at-COSY data on y — 77~ 2% [12], where a
binned Dalitz plot is given. Up to a normalization factor, the
Dalitz plot distribution is given by the amplitude squared,

d’r
dsdt

It is convenient to express the amplitude in terms of two
independent, dimensionless variables (x, y) which are lin-
early related to the Mandelstam variables by

V3
2m, Q.
3
2m, Q.

o |A(s, )] (23)

(t—u),

y= ((my =mp)? = 5) =1, (24)
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where Q. = m, —2m; — m? (for the neutral decay we use
Q, =m, - 3mY). A general property of these variables is
that the physical region of the Dalitz plot lies inside the unit
circle x> + y?> < 1 centered at x = y = 0. We fit our model
to the data [12] by minimizing the y* defined by

2 _ = |A|%lala - ‘AC<{glL(SO)})|2 2
N e

bins

over the set of subtraction constants, g;; (). In Eq. (25),
|A|gaa 18 the acceptance-corrected number of events in each
of the N = 59, Ax = Ay = 0.2 wide mass bins. The data is
normalized to unity at x =y =0 and A|Al|y,, is the
statistical uncertainty. Note, that since Eq. (21) is linear
in g;; , the parameter gy (sg) can be factored out and fixed
by the overall normalization. Since normalization of the
data is arbitrary the absolute value of go(sg) is irrelevant.
Therefore, in Table I, which summarized fit results,
when presenting results of two-body fits we quote
(977 (s0) £ Ag?? (s0))/ 935 (so). When presenting results of
three-body fit we quote (g3¢(so) = Agit (s0))/g2h (s0);
where g35(so) is the central value obtained in the two-body
fit with the same number of partial waves. We do the latter to
illustrate the relative change in normalization between two-
and three-body fits.

In the first fit we use a single, scalar-isoscalar, a, partial
wave. In this case, the model gives a parameter free
prediction for the event distribution. We observe that the
(I,L) = (0,0) amplitude provides the dominant contribu-
tion that covers approximately 90% of the Dalitz plot. The
calculated y?/d.o.f. for the two-body and three-body cases
are 2.2 and 15, respectively. In Fig. 3 (upper panels) we
compare our results and the data projected onto the x and y
axes. The error bars associated with the model originate
from the uncertainties in the pion-pion amplitude f;; [7]

PHYSICAL REVIEW D 92, 054016 (2015)

and from the statistical error in fitting the overall
normalization.

In the next step, we add the isospin-2 § wave. In this case
we fit two parameters, one gives the overall normalization
and the other contributes to a modification of the shape of
the Dalitz plot. The resulting parameters and y?/d.o.f are
given in Table I. In both, the two- and three-body fits we
find that the model slightly underestimates the data. The
inclusion of the second (I, L) = (2,0) wave significantly
improves y? and also drastically reduces the difference in
the fit quality between the two- and three-body cases
pertinent in the fit with the single (/,L) = 0 wave.

In the spirit of keeping the number of free parameters as
low as possible, we considered another set of two waves,
(I,L) = (0,0), (1,1), before taking into account a com-
plete sum of S and P waves. In this case there is also one
parameter that affects the shape of the Dalitz distribution
and we find y?/d.o.f. = 1.45 and y?/d.o.f. = 0.95 in the
two-body and three-body fits, respectively. Hence, it seems
that the data favor the isovector P-wave contribution over
the isospin-2 S wave. The results of the fit are shown
in Fig. 3.

We now turn to the case when a complete set of S and P
waves is incorporated, i.e. (I,L) = (0,0),(2,0),(1,1).
The two- and three-body fits result in a comparable
x*/d.o.f. around 0.9.

It is instructive to compare the results of the three-body
fits. In the fit with a single (/,L) = (0,0) amplitude, the
three-body fit converges poorly indicating importance
of higher partial waves that are brought in by the
cross-channel exchanges. Thus apparent convergence of
the two-body fit in this case is deceptive. With any
combination of higher partial waves all calculated three-
body y?/d.o.f. are quite similar to the two-body fits, except
for the case when only (/,L) = (0,0), (1,1) amplitudes
were considered.

TABLE I. Results of two-body and three-body fits for different wave sets.
2

go0(50)/ 950 920(50)/ 960 on(so)/g X /Aot
(I,L) = (0,0)
Two-body 1.000 £ 0.002 22
Three-body 1.062 £ 0.002 15
(I,L)=(0,0),(2,0)
Two-body 1.000 £ 0.003 0.04 £0.01 1.69
Three-body 1.138 £0.003 0.29 £0.01 1.67
(I,L) =(0,0),(1,1)
Two-body 1.000 £ 0.002 0.058 £ 0.009 1.45
Three-body 1.043 £0.005 0.233 £ 0.009 0.95 (set 1)
(I,L) =(0,0),(2,0),(1,1)
Two-body 1.00 +0.02 —0.26 +0.05 0.38 +£0.07 0.94
Three-body 1.19+0.01 0.14 +£0.03 0.28 £0.04 0.90 (set 2)
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FIG. 3 (color online).

Upper and middle panels are the x- and y-projection plots. Black circles are the data. Red squares and blue

squares represent results of the two-body and three-body fits, respectively. The fits are performed on the Dalitz distribution [12] sown in
the bottom left panel using a single, (1, L) = (0, 0) wave (upper panels) and two waves, (I, L) = (0,0), (1, 1) (central panels). For better
visualization fit results are shifted horizontally (three-body to right and two-body to left) from the experimental points. The bottom right
panel is the Dalitz distribution from the three-body fit with (7, L) = (0,0), (1, 1) waves.

Often, an effective range expansion of the Dalitz plot

near x =y =0 is used to parametrize the # decay dis-
tribution. For the charged decay it leads to

AC , 2
%zl%—@%—bﬂ—l—t’x—l—dﬂ
+exy+ fy* +gxly 4. (26)

The charge conjugation symmetry, x — —x requires terms
odd in x to vanish, i.e. ¢ = ¢ = 0. In Table II we give the

Dalitz plot parameters from our three-body fits based
on the (I,L) =(0,0),(1,1) (set 1) and (Z,L) = (0,0),
(2,0), (1, 1) (set 2) wave sets. For comparison we quote the
results of next-to-leading order (NLO) and next-to-next-to-
leading order (NNLO) of xPT [22,23], the dispersive
analysis from [24], NREFT [30] and alternative dispersive
approach [31]. We also include Dalitz parameters extracted
from direct fits to the experimental data [12,14,16,49,50].
The most recent analyses where performed by the
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TABLE 1l 0

(0,0),(2,0), (1, 1) cases, respectively (see Table I).

PHYSICAL REVIEW D 92, 054016 (2015)

Dalitz plot parameters for # — ztz~z". Set 1 and set 2 correspond to (/,L) = (0,0),(1,1) and (I,L) =

a b

d f g

WASA-at-COSY [12] -1.144 £0.018

0.219 £0.019 £0.037 0.086£0.018+0.018 0.115 £ 0.037

KLOE [16] —1.090 £ 0.005790%  0.1244+0.006+0.010  0.057 £ 0.006J0%  0.14 £0.01 £ 0.02

CBarrel [14] —-1.22 £ 0.07 0.22 +0.11 0.06 £ 0.04 (fixed)

Layter et al. [49] —1.080 £ 0.014 0.03 £0.03 0.05 £ 0.03

Gormley et al. [50] —1.17 £ 0.02 0.21 £0.03 0.06 £ 0.04

Theory

Set 1 —1.116 £ 0.030 0.188 +0.010 0.047 +0.005 0.093 4+ 0.004 —0.020 £ 0.006
Set 2 —1.117 £ 0.035 0.188 = 0.014 0.079 £+ 0.003 0.090 £+ 0.003 —0.063 £0.012
NLO [22] —-1.371 0.452 0.053 0.027

NNLO [23] —-1.271 £0.075 0.394 £0.102 0.055 £ 0.057 0.025 £0.160

Kambor et al. [24] —1.16 0.24...0.26 0.09...0.10 e e

NREFT [30] —-1.213 +£0.014 0.308 +0.023 0.050 £ 0.003 0.083 +0.019 —0.039 £ 0.002

WASA-at-COSY [12] and KLOE [16] collaborations. As
expected, our Dalitz plot parameters are consistent with the
WASA-at-COSY parameters within the error bars. We also
observe that central values of the fit tend toward the KLOE
results.

2.7- 32"

The results obtained in the charged mode can be used to
predict the Dalitz plot parameters for the neutral channel.
The Dalitz parameters are defined as coefficients in the
expansion around the center of the Dalitz plot using
the polar coordinates x = \/zcos¢ and y = /zsin¢ in
Eq. (24),

AN (z. )

AT 0.0~ 1+ 2az + 263 sin3p+---.  (27)

The slope parameter @ has been extracted from several
experiments, while to the best of our knowledge, there is no
determination of £ or higher moments. In Table III we
compare our findings with the experimental measurements
and other theoretical predictions. The average of exper-
imental results compiled by the PDG is a = —0.0317 +
0.0016 [1].

As in the case of the charged mode, our results obtained
with the two sets of waves are quite similar. The predicted
slope parameter is a(setl) =—0.023 and a(set2) =
—0.020. Even though both sets describe the charged data
well, the predicted slope parameter in the neutral case is
above the PDG value. As shown in [23,30] the Dalitz plot
parameters of the neutral and charged decays are related by

2
a= 0 (d—i—b —iaz —Im(a)2)

407
0; 1
<10 <d+b—1a2>, (28)

where the factors Q.., Q,, were defined below Eq. (24). Note
that we only take Q. # Q,, in the overall normalization
while we use Q. = Q,, when solving dispersion relations
for the partial wave amplitudes. Here, the complex param-
eters a is the coefficient of the linear term in the expansion
of the charged amplitude A€ (x,y),

AC(x,y) < I 4ay+---. (29)

Using the Dalitz plot parameters from WASA-at-COSY and
KLOE collaborations, one finds

aVASA < —0.006, afOE < —0.033. (30)

TABLE III.  Dalitz plot parameters for 7 — 37°. Set 1 and set 2
correspond to (I,L) = (0,0),(1,1) and (I,L) = (0,0),(2,0),
(1,1) cases, respectively (see Table I).

a p

GAMS-2000 [51] —0.022 +£0.023
Crystal Barrel, LEAR [52] —0.052 + 0.020

Crystal Ball, BNL [15] —0.031 4+ 0.004

SND [53] —0.010 £0.023

CELSIUS-WASA [13] —0.026 £ 0.014

WASA-at-COSY [54] —0.027 £+ 0.009

MAMI-B [55] —0.032 4+ 0.004

MAMI-C [48] —0.032 +£0.003

KLOE [17] —0.0301 + 0.0050

PDG average [1] —-0.0317 £0.0016

Theory

Set 1 —0.023 £0.004  —0.000 £+ 0.002
Set 2 —0.020 £0.004  —0.001 £+ 0.003
NLO [22] +0.013

NNLO [23] +0.013 4+ 0.032

Kambor et al. [24] -0.007... = 0.014

NREFT [30] —0.025 +£0.005 —0.004 £+ 0.001
Kampf et al. [31] —0.044 £+ 0.004
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FIG. 4 (color online). Comparison of R(z) plot from [48] (black
points) with our predictions from Table III that correspond to set 1
(blue band) and set 2 (red band).

The large difference in the upper limits is due to the
difference in the b parameter which differs by a factor of
2 between the two data sets. As pointed out in [30] the
value for Im(a) can be sizable due to zz final state
interactions. Our results confirm this finding and we obtain
Im(a) = —0.18 £ 0.03. Nevertheless, since (aVASA) =
—0.006 is quite large the Im(a) term alone can not be
responsible for lowering a to the PDG value. Once the
KLOE data become available [56] it would be very
interesting to perform a combined fit of the WASA-at-
COSY and KLOE measurements.

The neutral channel does not depend on the P-wave
amplitude contributing to the charged decay mode and it
contains only even partial waves. Unfortunately, using the
charge mode we could not find sensitivity to the D-wave
which was omitted from the Table I. Finally, in Fig. 4 we
compare our results with the recent MAMI-C measurement
[48]. The R(z) function is determined as

R(ey _ 10t o10) et an
T R apoe(sitw)

where

@(s.t,u) = stu—m%,(my; —m%)* =0 (32)
defines the boundary of the Dalitz plot distribution and 6(x)
is the step function. We observe that a cusp around z =
0.765 appears in R(z) for nonzero f. This is a kinematical
effect which reflects the fact that for larger z the phase
space distribution in the Dalitz plot is no longer circular. We
find our results for sets 1 and 2 provide a satisfactory

agreement with the data.

B. Matching to yPT and the Q value

We remind that the data in [12] were normalized to the
center of the Dalitz plot and therefore our model only
predicts the Dalitz plot distributions for the charged and

PHYSICAL REVIEW D 92, 054016 (2015)

neutral decays. The overall normalization can be fixed by
comparing the experimental decay widths with the phase
space integral over the corresponding squared amplitudes,

|A(x, y)|?
AP (33)

with the boundaries of the integral determined by the phase
space. We emphasize that the quantity Q? defined in Eq. (1)
enters into the normalization constant N. In order to
determine Q2 one has to match the model, dispersive
amplitude, with yPT where Q? is defined.

As discussed in Sec. I, the yPT [23] series seems to
converge rather slowly and the question arises to which
order of the yPT should one match the model. It would be
desirable to find a matching point where on the yPT side
contributions, from powers of Mandelstam invariants, are
small. Therefore, matching the amplitudes in the physical
region may not be the best option. Up to NNLO the chiral
amplitude satisfies the decomposition of Eq. (4), and up to
this order matching is simplified since it is sufficient to
match the single variable, partial wave amplitudes a;; (s).
The yPT amplitude for the charged decay, up to NNLO can
be written in the form

F:N/dxdy

2 2 2
1 mK(mK — My

@ 3VamiE? >M(s,t,u), (34)

where F, = 92.3 MeV is the pion decay constant and

Afpr(s.tou) = —

M(s, 1, 1) = Mo(s) — %Mz(s) + M) + Mo(u)

+ (s =M, (1) + (s = )M, (u), (35)

Explicit expressions for the functions M; at various orders
in the chiral expansion can be found in [23]. Comparing
Eq. (22) and Egs. (34) and (35), one finds

ago(s) = 3N,prMy(s),
ax(s) = 2N,,prM(s),
2 K(s
ap(s) = gN;(PT¥Ml(S)7 (36)
where
1 m%(m% —m?2)
Nopp— —— KV K 72/ 37
T 0> 3V3miF2 (37)

The NNLO yxPT calculation was performed in [23]. The
order O(p®) low-energy couplings (LECs) were estimated
using a resonance saturation model and error analysis was
not provided. Given that uncertainties in the low energy
constants entering M;’s at the NNLOs are not quantitatively
settled in the following we choose to match our dispersive
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calculation with the NLO yPT result. In this case one can
use the NLO relations between decay constants and meson
masses which reduces the number of low energy constants
in the chiral amplitude to one, Ly = (=2.3540.37) x 1073
[57]. We choose the matching point to coincide with the
subtraction point in Eq. (21), which in turn was chosen to
coincide with the Adler zero in the LO yPT amplitude. In
that case the determined parameters from matching are the
same for the two-body and three-body scenarios.

In the following we consider two methods for matching
the dispersive analysis with yPT. In the first case we use
Eq. (37) together with the yPT NLO amplitudes M;’s to
compute the overall normalization and the parameters
gr(89), which in turn completely determine dispersive
amplitudes of our model. We find

900(50) = 16'1N;(PT,
900(50)/ 920(50)/ 911 (s0) = 1/0.12/(0.129 £ 0.014).

This confirms that the amplitude (,L) = (0,0) is domi-
nant. In the lower panel of Fig. 5, we compare the yPT
amplitudes with the dispersive ones, the latter obtained
using the subtraction constants from Eq. (38). The com-
parison with the WASA-at-COSY data shown in the upper

(38)

PHYSICAL REVIEW D 92, 054016 (2015)

panel in Fig. 5, we find that the dispersive amplitude fixed
by Eq. (38) gives y?/d.o.f. of approximately 13.0 using
only two-body amplitudes, which are reduced to 2.9 when
three-body rescattering contributions are included. Even
though the model compares reasonably well with the data,
the large value of y?/d.o.f. prevents us from extracting the
Q value using this method.

To extract the Q value, we therefore use the yPT
amplitudes to determine the overall normalization only,
while for the subtraction constants g;; (sy) we use the
results from the fit of the WASA-at-COSY data described
in the previous section. We find Q(set1) = 21.7 + 0.4 and
QO(set2) = 21.1 + 0.4 for the two sets of parameters given
in Table II. Comparison of our findings with previous
results is summarized in Table IV. We observe that the
extracted Q values are somewhat smaller compared to
[23,24,31] and within 1o from the recent (Ny =2+ 1)
lattice computations [58]. We note that lattice calculations
of electromagnetic correction for Ny =2 + 1 are not yet
available, while for N, = 2 these were reported in [59]. The
lattice result given in Table IV depends on the input value
for the light quark mass ratio, m, /m,; = 0.46 + 0.03 which
is the LO yPT result reduced by a factor of 8(4)% chosen as
an estimate of the correction from higher-order chiral

25 : ‘
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FIG. 5 (color online).

Upper panels: x and y projections of the Dalitz plots. Black circles represent the data. The red squares and blue

squares are model results using amplitudes with only two-body and including three-body correlations, respectively. The amplitudes were
computed using three partial wave components with (I,L) = (0,0),(2,0), (1,1). For better visualization fit results are shifted
horizontally (three-body to right and two-body to left) from the experimental points. Bottom panels: The comparison of the NLO yPT
amplitudes M,’s (black curves), with the two-body (red curves) and three-body (blue curves) dispersive amplitudes. Real parts are
shown with solid lines and imaginary with dashed lines. In all figures the unknown couplings were fixed by matching to NLO yPT

[see Eq. (38)].
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TABLE IV. Values of Q from different calculations.

Theory 0

Set 1 21.74+04
Set 2 21.1+04
Lattice (N; =2+ 1) [57] 22.6 +0.9
NLO [22] 20.1
NNLO [23] 22.9
Kambor et al. [24] 224 +09
Kampf et al. [31] 23.1+0.7

*Here and in the following we combined in quadrature the
errors quoted in [57].

effects [58]. Alternatively, using the extracted Q value and
the Ny =2+ 1 lattice result for m,/m = 27.46 + 0.44
[58] we can estimate m,/m,. We find
T — 0.42 +0.02 (39)
mg
as an average between sets 1 and 2. Another useful quantity
that can be calculated from our Q and m /7 is the so-called
R value given by

_ 2 -1
R:M:2Q2(1+ﬁ> =322413. (40)
m

mg—m,

IV. CONCLUSIONS

In this paper, a new data-driven dispersive analysis of  —
3z was performed. The hadronic final state interactions were
incorporated using the Khuri-Treiman equation, which was
solved using Pasquier inversion technique. To the best of our
knowledge it is the first time such an approach has been used
in analysis of the 7 decays. In an earlier study [36], we
illustrated the pros and cons of the Pasquier technique using a
toy model with known exact solutions. The main limitation
of this method is related to the treatment of the left-hand cuts,
which in general are not known. We approximated them by a
constant which is absorbed in the subtraction constants. As it
was shown in [36], this approximation works very well,
when the physical region does not depend strongly on the
accurate form of the left-hand cut. On the other hand, the
advantage of the Pasquier inversion is that it eliminates
the need for specifying the high-energy behavior of the
absorptive parts in the physical region.

In the analysis of the 7 — 3z decays presented here, we
have shown that with a single real parameter (g;;) and the
physical zz partial-wave amplitudes [7], it is possible to
reproduce the Dalitz distribution of the charged # decay
mode [12]. We have also verified that including more
partial waves leads fits with comparable y?/d.o.f. The
resulting Dalitz parameters, averaged over the various
combinations of partial waves considered in this paper, are

PHYSICAL REVIEW D 92, 054016 (2015)
a=1116+0032, b=0.188+0.012,
d=0063+0004,  f=0.091+0.003,

g = 0.042 + 0.009. (41)

These are consistent, within 1¢ with the analysis of WASA-
at-COSY having central values shifted towards values
obtained from analysis by the KLOE Collaboration, which
were not include in our fits. Based on the analysis of the
charged decay we made a prediction for the slope parameter
of the Dalitz distribution in the neutral decay channel,

a = —0.022 =+ 0.004. (42)

This value is above the PDG value of a®f = —0.0317 &+
0.0016. We speculate that the discrepancy may be a
consequence of the WASA-at-COSY b parameter being
significantly larger than in the earlier KLOE analysis [16].
We expect that in the future this issue will be resolved once
the new KLOE data [56] become available allowing a
simultaneous fit of both data sets.

Another useful test of the amplitudes is provided by the
ratio of neutral and charged decay rates. In the isospin limit
this ratio does not depend on the normalization, and if the
small electromagnetic isospin breaking is also ignored [60],
it depends only on the integrated Dalitz plot distributions.
From our amplitude we find

(- 3n°
r = Lﬂ_)o — 1524000,  (43)
NV 2 2% o

which is consistent with the experimental value of r**P =
1.43 +0.02 [1]. We have also compared our amplitudes
with the NLO yPT results and found the Q value of

0 =214+04. (44)

The error is of the statistical origin. It was computed through
standard error propagation of the uncertainties arising from
the zz phase shifts, the L; coefficient, the experimental
decay width I'(n — 772~2%) and the statistical error in
fitting the Dalitz plot. Inelasticity and higher partial waves
are also potential sources of uncertainties [61].

Using the extracted Q value and recent averages from the
N; =2+ 1 lattice computation for /2 = 3.42 4+ 0.09 and
m; = 93.8 £ 0.24, [58] we estimate the up and down quark
masses to be

m, = 2.02+0.14 MeV,
my = 4.82 +0.08 MeV. (45)

The method for amplitude construction presented in this
work can be directly applied to decays of heavier mesons,
e.g. ', and used, for example, to test reliability of the isobar
model. It can also be extended to incorporate couple
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channels, which might be more relevant in decays of
heavier mesons.

All the material, including data and code, are available in
an interactive form online [62].
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APPENDIX A: ISOSPIN ALGEBRA
In Eq. (4) the isospin factors are given by

p0 _1

apn §5a/357ﬂ’
m _1
Paﬁyn ) (5ar5ﬂf1 - 5w15ﬂr>’
2 1 1
,P<aﬂ)7’7 = 5 (5(176/}’7 + 5(”75/3}’) - 56{1/)’6;/;15 (Al)
which satisfy
() ) _ )
Zpaﬂnrpnya’/}’ - Pa/}a//,'/éll’,
ny
() ) _ )
ZP/}Y‘”IPVIJ/(II[}/ - Paﬁa’ 4 [Csl]l I
ny
I r b
S PO PL =P (Colur- (A2)
ny

Here a,f,y,n are the Cartesian isovector indices and
isospin crossing matrices Cy; and C,, and are given by
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13 1 5/3

c,=11/3 12 -5/6].

1/3 -1/2 1/6

1/3 -1 5/3
C.=|-1/3 1/2 5/6
1/3 1/2 1/6

APPENDIX B: KERNEL FUNCTIONS
The kernel functions in Eq. (20) are determined as
ICIL,I’L’(S’ t) = 2(2L/ + 1)
x (O() A (s, 1) = 0(=1) 2y (s, 1)),

(B1)
with
s+(0) ds' p(s')(s'/4 = mz)"
A 1y = 4
o (s,t) [_(z) (c s — s Fu (sKE (s /s
Fry ()K" (1)
X WPL(ZX’)PL'(ZJ’ (B2)
and
ds' p(s)(s'/4 - m2)
Z rr s - Cl
wenlonn = [ €0
Fuo (KX (t
T OR W) p ()P, (B

(t/4 = mz)"

where the contour C’ is shown in Fig. 6 (see [36] for more
details). These kernel functions can be computed analyti-
cally, what significantly speeds up numerical computations.
In the calculations presented in this paper, only the
functions A;; p;/(s,7) are needed and their analytical
representations are below in terms of

s+ (1) ds' 1

Ao =K [0 T

(s" —dm2)t
X WPL<ZS’)PL’(Z1)’ (B4)
so that for L = 0,
’ f/ /(t)
A (s, t) = 4L _L#,
Ao p(s.1) s)(/) - S,Ex]) Ao (s 1
Fro(s) s—s o

and otherwise (L # 0),
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FIG. 6. Integration contour C’ in the complex s plane after

Pasquier inversion. The black wiggle lines represent cuts attached
to two branch points: (11, + m,)? in the s plane. The points labeled
2 my—my
corr —o0, (b)s_(4m3z) = 5,
(©) s—(w) = 4m72rv (d si((mﬂ - m”)z) = mzr(mn + mn)’
m2—m?

(e) S+( ( +m )) = (mn _m”)z’ ® S+(4m%) =5
(g) S+(O) o0, (h) s+(mﬂ(mﬂ - mn)) = (mq + mﬂ)z’ and

(i) 5, (—00) = o0, respectively.

by a —i correspond to (a) s_(0) =

]:I’L'( )

A opri(s,t :4L/_L
]L,IL( ) (t—4 )

FAL(s,1). (B6)

The square root function U(z) is given by

U() = /(e = (my = m)(z = (m, +m,)?)  (B)

in the complex z plane. Here and in what follows, the
phase convention for U(z) is chosen by U(s =+ i0) =
(F.i. E)|U(s)] for s € (=00, (m, —my)?], [(m, —my)*,
(m, + m,)?]. [(m, + m,)* )), respectively. The kin-
ematic factor K(s)/(sp(s)) is given by the value of
U(s) right below the two cuts attached to branch points
s = (m, £m,)? ie. K(s)/(sp(s)) = U(s — i0). For real s
and ¢, the physical values of A; ;/(s, ) correspond to the
limit s + i0 and ¢ 4 i0.

() (L.L") =(0.0):

R(s, 1)+ U(s)U(r)
R(s, 1) = U(s)U(1)

0. = 553

— iﬂ@((p(s,t))},
R(s, 1) = —m + (s —m2)(t —m2) + m,%(s + 1),

@(s. 1) = st(mj +3m% — s — 1) — m2(m; — m%)>.

(i) (L,L)=(0,1):

Aoy (s,1) =210, (1) +1(2s + 1t —mi—3m2)Ago(s.1),
5. (1) ds’
A ()= / (e
0=/ 5
7_1n(m$—m,2,+t+U(t))2

2
4m,,t
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(i) (L.L’) = (1,0):

Bro5.0) =1 (Bro(s.0) A1 0(0.0)

By o(s.0) =B (5.1)+2(t+ my(m, —m,)) AL (5.1)
+ (my—m) 2 AL (s,1)
+2(t+my(m,—m,))

X (my,—mg)*A.(s.1),
1 1

)
(£) 5.(1) / ds'
AP (5.1)= c
(5.1 [_m O 7Ty

o e CTCORTV R O)]

s1(1) ds’ 1
A(s.f)= o) [l
C(S ) L_(t) ( )S/—SU3<S/)

_Bogplst) 1 AV @)
U(s)  4mumys—(m,—m,)?

- VRO
4m,,m,]s—(m,7+m”)2’
s, (1) ds’ 1
AP (n)= / c
a () s_(1) ( )s’—(mn:tm,r)zU(s')
U(t)

g (myEm) (£ m (m,Fm,))
(v) (L,L') = (1,1):

Apy(s,t) = é (Ay (s, 1) = Ay 4(0,1)),

Ay i(5.1) = 28, (1) + 4(1 + ma(m, — m) AL (1)
+2(m, —m 2)2A (t)
+ 4t + my(m, m,,>>< my = mg)2A, (1)
+ (25 + 1 —m} —3m2)A; o(s. 1),
5 (1) ds' AV () -l )

Al = [_(z) () U3(s")

dm,m,
V) (L.L) = (0,2):

Aga(s.t) = 612 As(s, 1) + 61*(2s + t — m} — 3m3)

x A,(t)
3225+t —m3 —3m2)? — U*(1)
+
2
X Aoﬁo(s, t),
s4.(1) ds’'
As, 1) = / C s’ —s
f( ) o (1) ( )U(S/)( )

= U(t) + (my; + mz = 5)A,(1).

054016-13



PENG GUO et al. PHYSICAL REVIEW D 92, 054016 (2015)
(vi) (L,L") =(2,0):

(=) (=)
1 3 (=) A (S, l) - A[ (l‘)
Asp(s, 1) = —EA,-(S, 1) +§Aj (s.1) +6(t + my(m, —m,)) ; y— 7

30+ mamy = my))? A7 (5. 0) = 87(0) 3004 ma(my —my))2 A7 (5,0 = A7)

2m,m, s — (my, —m,)? 2m,m, s — (m, +m,)?

s —dm? 4m? 4dm?
T=(1-——L)A.(s,1 ZA(0,1),
(s’ —s) U3(s") < s ) (s, 0) + s (0.7)

i
0=,
/ 1 1 Mgl =AY AT
o=

’

s —s U(s’) (s' = (m, £ my)?)? (s — (m, + m,)?)? s — (m, £ my)*’
L amOnEm)(Em )
(8" = (m, £m,) 2)2 3 (4m,7m,,)2
U(t) maU%(t) + 3mat(t — 4m3)
<3+ )

p((my £ mg)*. 1) @ ((my £ my)?,

(%)

() s, ds' 1 A1) = A

A 1) = C =+ .
() [(,) () U3(s') s’ — (m, £m,)? 4m,m,

(vii) (L,L’) = (2,1):

Ao y(s,t) = 1(2s + 1 — m2 = 3m2) Ay o (s, 1) — 1A, () + 4m2tA, (0, 1) + 3tAL) (1) + 61(t + my(my — m)) AT (1)
+ 6t<t + m/r(mn - mﬂ))zAm(t)’

s (1) ! A(+) _ A(_)
A, (1) = / ! () ds' A (1) -4 (t)
5-(1) U(s') A1y

(viii) (L.L’) = (1,2):

1 -
Aja(s. 1) = 3 (Apa(s 1) = Ap(0,1)),
K 2t +mg(my =mg))  (my=mg)* 2t + mg(my —myg))(m, = m)*
A L) = 1 3 n 3 n T T n yd n T A y
lz(s ) |: " = (m'? + mﬂ)2 §= (mn - mﬂ')z U2(S) 0’2(S )
1 2(t + my(m, —my))(m, + m,)* AGH 1 2(t = my(my, + my))(m, —m,)? AC)
_4mm s_(m +m)2 g (t)+4mm S—(m _m)2 g (t),
7T n 4 't n 53
5.4 (1) ds' 1 3225+t —m2 —3m2)? — U(1)
2w = e S !
5_(1) s = (m, £m,)> U(s') 2
32 (m2 £ 4mym, — m2 +1)> — U?(t
= 6t2AEli)(l‘) + 612 (m3 £ 4m,ym, —m2 + 1)A,(1) + (i = drmym 5 m ) () Aff)(t),

870 = [ (5 =y ) = U 2mm, ).
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THREE-BODY FINAL STATE INTERACTION IN ...
(ix) (L,L")=(2,2):

PHYSICAL REVIEW D 92, 054016 (2015)

Ays(s, 1) = W +i- m%Z_ 3mz)* - UA) Ay o(s. 1) + 612 A, (s, 1) + 612(2s + t —m3 — 3m2)A, (1),
I L OB 1 3522t + 5" —m2 —3m2)? — U(s')
An(s, 1) = K_m (€)as' (1 ——> ey h
= S8 1) = (5 = Omy = m )AL 0] + 601+ melom, =)
X [A/i_)(t) — (s = (my 4+ m,)?) ‘Ae(zn; :2_>(t)] + 6(1 4+ my(m, —m,))? A’(‘Hﬂ ;AE([)
28,0 - A" -A7 0] 1
+ (5 = (my = m,)?) oy } —S1857(1) = (5 = (my = m)*) A, (1)
+ 202, (1) = 5A.(0, )],
[ 11 3%Q2t+s —mp —3mi)? - U(s)
A,(s, 1) = [_(Z) (Chds' V) 5
_ A _AE iy A)
=380+ 600+ o =) B 14, = 22D 2 DA
~ 3 (8e(1) = 4m2A,(0,1))
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