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We present an analytical next-to-leading-order QCD calculation of the partonic cross sections for the
process pp → ðjethÞX, for which a specific hadron is observed inside a fully reconstructed jet. In order to
obtain the analytical results, we assume the jet to be relatively narrow. We show that the results can be cast
into a simple and systematic form based on suitable universal jet functions for the process. We confirm the
validity of our calculation by comparing to previous results in the literature for which the next-to-leading-
order cross section was treated entirely numerically by Monte Carlo integration techniques. We present
phenomenological results for experiments at the LHC and at RHIC. These suggest that pp → ðjethÞX
should enable very sensitive probes of fragmentation functions, especially of the one for gluons.
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I. INTRODUCTION

Final states produced at high transverse momentum (pT),
such as jets, single hadrons, or prompt photons, have long
been regarded as sensitive and well-understood probes of
short-distance QCD phenomena. Recently, a new “hybrid”
type of high-pT jet/hadron observable has been proposed
and explored theoretically [1–5]. It is defined by an
identified specific hadron found inside a fully reconstructed
jet, giving rise to a same-side hadron-jet momentum
correlation. This correlation may for example be described
in terms of the variable zh ≡ pT=p

jet
T , where pT and pjet

T are
the transverse momenta of the hadron and the jet, respec-
tively. The production of identified hadrons in jets was first
considered for the case of eþe− annihilation [1–3] and
subsequently also for pp scattering [4]. Experimental
studies have been pioneered in pp̄ → ðjethÞX at the
Tevatron [6]. At the LHC, the ATLAS [7,8] and CMS
[9] experiments have studied pp → ðjethÞX, and measure-
ments are being carried out by ALICE [10]. Measurements
of the cross section (and, perhaps, spin asymmetries)
should also be possible at RHIC.
There are several reasons why it is interesting to study

the production of hadrons inside jets. Perhaps most
importantly, the observable provides an alternative window
on fragmentation functions [4]. The latter, denoted here by
Dh

cðz; μÞ, describe the formation of a hadron h from a
parent parton c ¼ q; q̄; g. The variable z is the fraction of
the parton’s momentum transferred to the hadron, and μ
denotes the factorization scale at which the fragmentation
function is probed. Usually, fragmentation functions for a
hadron h are determined from the processes eþe− → hX or
ep → ehX. The power of these processes lies in the fact
that they essentially allow direct scans of the fragmentation
functions as functions of z. The reason for this is that to
leading order (LO) in QCD, it turns out that z is identical to

a kinematic (scaling) variable of the process. For instance,
in eþe− → hX one has z ¼ 2ph · q=q2 to LO, where ph is
the momentum of the observed hadron and q is the
momentum of the virtual photon that is produced by the
eþe− annihilation. NLO corrections dilute this direct
“local” sensitivity only a little. A drawback of eþe− →
hX or ep → ehX is on the other hand that the gluon
fragmentation function can be probed only indirectly by
evolution or higher-order corrections.
Being universal objects, the same fragmentation functions

are also relevant for describing hadron production in pp
scattering. So far, one has been using the process pp → hX
as a further source of information on the Dh

cðz; μÞ [11–13].
Although this process does probe gluon fragmentation, its
sensitivity to fragmentation functions is much less clear-cut
than in the case of eþe− → hX or ep → ehX. This is because
for the single-inclusive process pp → hX the fragmentation
functions arise in a more complex convolution with the
partonic hard-scattering functions, which involves an inte-
gration over a typically rather wide range of z already at LO.
As a result, information on the Dh

cðz; μÞ is smeared out and
not readily available at a given fixed value of z.
The process pp → ðjethÞX allows one to overcome this

shortcoming. As it turns out, if one writes its cross section
differential in the variable zh introduced above, then to LO
the hadron’s fragmentation function is to be evaluated at
z ¼ zh. This means that by selecting zh one can “dial” the
value at which the Dh

cðz; μÞ are probed, similarly to what is
available in eþe− → hX or ep → ehX. Thanks to the fact
that in pp scattering different weights are given to the
various fragmentation functions than compared to eþe− →
hX and ep → ehX, it is clear that pp → ðjethÞX has the
potential to provide complementary new information on the
Dh

cðz; μÞ, especially on gluon fragmentation. Data for
pp → ðjethÞX should thus become valuable input to global
QCD analyses of fragmentation functions. At the very least,
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they should enable novel tests of the universality of
fragmentation functions. We note that similar opportunities
are expected to arise when the hadron is produced on the
“away side” of the jet, that is, basically back to back with
the jet [14], although the kinematics is somewhat more
elaborate in this case.
The production of specific hadrons inside jets may also

provide new insights into the structure of jets and the
hadronization mechanism. Varying zh and/or the hadron
species, one can map out the abundances of specific hadrons
in jets. Particle identification in jets becomes particularly
interesting in a nuclear environment in AA scattering, where
distributions of hadrons may shed further light on the
phenomenon of “jet quenching.” Knowledge of fragmenta-
tion functions in jet production and a good theoretical
understanding of the process pp → ðjethÞX are also crucial
for studies of the Collins effect [15–17], an important probe
of spin phenomena in hadronic scattering [18].
In the present paper, we perform a new next-to-leading-

order (NLO) calculation of pp → ðjethÞX. In contrast to
the previous calculation [4] which was entirely based on a
numerical Monte Carlo integration approach, we will
derive analytical results for the relevant partonic cross
sections. Apart from providing independent NLO predic-
tions in a numerically very efficient way, this offers several
advantages. In the context of the analytical calculation, one
can first of all explicitly check that the final-state collinear
singularities have the structure required by the universality
of fragmentation functions, meaning that the same frag-
mentation functions occur for pp → ðjethÞX as for usual
single-inclusive processes such as pp → hX. We note that
to our knowledge this has not yet been formally proven
beyond NLO. Also, as we shall see, the NLO expressions
show logarithmic enhancements at high zh, which recur
with increasing power at every order in perturbation theory,
eventually requiring resummation to all orders. Having
explicit analytical results is a prerequisite for such a
resummation. In Ref. [3], considering the simpler case
of eþe−-annihilation, such resummation calculations for
large zh were presented.
Technically, we will derive our results by assuming the

jet to be relatively narrow, an approximation known as the
“narrow jet approximation” (NJA). This technique was
used previously for NLO calculations of single-inclusive jet
production in hadronic scattering, pp → jetX [19–23]. The
main idea is to start from NLO “inclusive-parton” cross
sections dσ̂cab for the processes ab → cX, which are
relevant for the cross section for pp → hX. They are
a priori not suitable for computing a jet cross section,
which is evident from the fact that the dσ̂cab require collinear
subtraction of final-state collinear singularities, whereas a
jet cross section is infrared safe as far as the final state is
concerned. Instead, it depends on the algorithm adopted to
define the jet and thereby on a generic jet (size) parameter
R. As was shown in Refs. [19–23], at NLO one may

nonetheless go rather straightforwardly from the single-
inclusive parton cross sections to the jet ones, for any
infrared-safe jet algorithm. The key is to properly account
for the fact that at NLO two partons can fall into the same
jet, so that the jet needs to be constructed from both. In fact,
within the NJA, one can derive the translation between the
dσ̂cab and the partonic cross sections for jet production
analytically. We note that the NJA formally corresponds to
the limit R → 0, but it turns out to be accurate even at
values R ∼ 0.4 − 0.7 relevant for experiment. In the NJA,
the structure of the NLO jet cross section is of the form
A logðRÞ þ B; corrections to this are of OðR2Þ and are
neglected. In this paper, we apply the NJA to the case of
pp → ðjethÞX, using it to derive the relevant NLO partonic
cross sections. In the course of the explicit NLO calcu-
lation, we find that the partonic cross sections for pp →
jetX and pp → ðjethÞX may be very compactly formulated
in terms of the single-inclusive parton ones dσ̂cab, con-
voluted with appropriate perturbative “jet functions.” These
functions are universal in the sense that they only depend
on the type of the outgoing partons that fragment and/or
produce the jet, but not on the underlying partonic hard-
scattering function. On the basis of the jet functions, the
NLO partonic cross sections for pp → jetX and pp →
ðjethÞX take a very simple and systematic form. In fact, it
turns out that for pp → ðjethÞX the jet functions have a
“two-tier” form, with a first jet function describing the
formation of the jet and a second one the fragmentation of a
parton inside the jet. We note that the concept of jet
functions for formulating jet cross sections is not new but
was introduced in the context of soft-collinear effective
theories (SCET) [1–3,24–26], although applications to
pp → ðjethÞX have to our knowledge not been given.
Jet functions in a more general context of SCET or QCD
resummation have been considered in Refs. [27] and [28],
for example. We also note that in Ref. [14] the NLO
corrections for the case of away-side jet-hadron correlations
were presented in the context of a Monte Carlo integra-
tion code.
Our paper is organized as follows. In Sec. II we present

our NLO calculation. In particular, Sec. II C contains our
main new result, the formulation of pp → ðjethÞX in terms
of suitable jet functions. Section III presents phenomeno-
logical results for pp → ðjethÞX for the LHC and RHIC.
We finally conclude our work in Sec. IV. The Appendices
collect some technical details of our calculations.

II. ASSOCIATED JET-PLUS-HADRON
PRODUCTION IN THE NJA

A. Single-inclusive hadron production in
hadronic collisions

Our formalism is best developed by first considering the
process H1H2 → hX, where a hadron h is observed at
large transverse momentum pT , but no requirement of a
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reconstructed hadronic jet is made. This is of course a
standard reaction, for which the NLO corrections have been
known for a long time [29,30]. The factorized cross section
at given hadron pT and rapidity η reads

dσH1H2→hX

dpTdη
¼ 2pT

S

X
abc

Z
1

xmin
a

dxa
xa

fH1
a ðxa; μFÞ

×
Z

1

xmin
b

dxb
xb

fH2

b ðxb; μFÞ

×
Z

1

zmin
c

dzc
z2c

dσ̂cabðŝ; p̂T; η̂; μF; μ0F; μRÞ
vdvdw

×Dh
cðzc; μ0FÞ; ð1Þ

with the usual parton distribution functions fHa , the frag-
mentation functions Dh

c , and the hard-scattering cross
sections dσ̂cab for the partonic processes ab → cX0, with
X0 denoting an unobserved partonic final state. Defining

V ≡ 1 −
pTffiffiffi
S

p e−η; W ≡ p2
T

SVð1 − VÞ ; ð2Þ

where
ffiffiffi
S

p
is the hadronic c.m. system energy, we have

xmin
a ¼W; xmin

b ¼ 1−V
1−VW=xa

; zmin
c ¼ 1−V

xb
þVW

xa
:

ð3Þ

The dσ̂cab are functions of the partonic c.m. system energy
ŝ ¼ xaxbS, the partonic transverse momentum p̂T ¼ pT=zc
and the partonic rapidity η̂ ¼ η − 1

2
logðxa=xbÞ. Since only

p̂T depends on zc, the last integral in Eq. (1) takes the form
of a convolution. The variables v and w in Eq. (1) are the
partonic counterparts of V and W:

v≡ 1 −
p̂Te−η̂ffiffiffî

s
p ; w≡ p̂2

T

ŝvð1 − vÞ : ð4Þ

One customarily expresses p̂T and η̂ by v and w:

p̂2
T ¼ ŝvwð1 − vÞ; η̂ ¼ 1

2
log

�
vw
1 − v

�
: ð5Þ

Finally, the various functions in Eq. (1) are tied together by
their dependence on the initial- and final-state factorization
scales, μF and μF

0, respectively, and the renormalization
scale μR.
The partonic hard-scattering cross sections may be

evaluated in QCD perturbation theory. We write the
perturbative expansion to NLO as

dσ̂cab
dvdw

¼dσ̂c;ð0Þab

dv
δð1−wÞþαsðμRÞ

2π

dσ̂c;ð1Þab

dvdw
þOðα2sðμRÞÞ; ð6Þ

where we have used that w ¼ 1 for leading-order
(LO) kinematics (since the unobserved partonic
final state X0 consists of a single parton), equivalent to

2p̂Tcoshðη̂Þ=
ffiffiffî
s

p ¼1. The NLO terms dσ̂c;ð1Þab have been
presented in Refs. [29,30].

B. Translation to single-inclusive jet cross section
via jet functions

As shown in Refs. [19–22], one can transform the
cross section for single-inclusive hadron production to a
single-inclusive jet one. References [19–22] explicitly
constructed this translation at NLO. We may write the
jet cross section as

dσH1H2→jetX

dpjet
T dηjet

¼ 2pjet
T

S

X
ab

Z
1

xmin
a

dxa
xa

fH1
a ðxa; μFÞ

×
Z

1

xmin
b

dxb
xb

fH2

b ðxb; μFÞ

×
dσ̂jet;algoab ðŝ; pjet

T ; η̂; μF; μR;RÞ
vdvdw

; ð7Þ

where pjet
T and ηjet are the jet’s transverse momentum and

rapidity, and where R denotes a parameter specifying the
jet algorithm. For the jet cross section we still have

xmin
a ¼ W; xmin

b ¼ 1 − V
1 − VW=xa

; ð8Þ

as in Eq. (3), but with V and W now defined by

V ≡ 1 −
pjet
Tffiffiffi
S

p e−η
jet
; W ≡ ðpjet

T Þ2
SVð1 − VÞ : ð9Þ

Likewise, v and w are as in Eq. (4) but with p̂T → pjet
T .

Furthermore, in analogy with the inclusive-hadron case,
η̂ ¼ ηjet − 1

2
logðxa=xbÞ. We note that the partonic cross

sections dσ̂jet;algoab relevant for jet production depend on the
algorithm used to define the jet. They do not carry any
dependence on a final-state factorization scale.
In order to go from the inclusive-parton cross sections

dσ̂cab to the jet ones dσ̂jetab, the idea is to apply proper
correction terms to the former. The dσ̂cab have been
integrated over the full phase space of all final-state partons
other than c. Therefore, they contain contributions where a
second parton in the final state is so close to parton c that
the two should jointly form the jet for a given jet definition.
One can correct for this by subtracting such contributions
from dσ̂cab and adding a piece where they actually do form
the jet together. At NLO, where there can be three partons
c; d; e in the final state, one has after suitable summation
over all possible configurations
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dσ̂jetab ¼ ½dσ̂cab − dσ̂cðdÞab − dσ̂cðeÞab � þ ½dσ̂dab − dσ̂dðcÞab − dσ̂dðeÞab �
þ ½dσ̂eab − dσ̂eðcÞab − dσ̂eðdÞab � þ dσ̂cdab þ dσ̂ceab þ dσ̂deab:

ð10Þ

Here dσ̂jðkÞab is the cross section where parton j produces the
jet, but parton k is so close that it should be part of the jet,
and dσ̂jkab is the cross section when both partons j and k
jointly form the jet. The decomposition (10) is completely
general to NLO. It may be applied for any jet algorithm, as
long as the algorithm is infrared safe. As mentioned before,
a property of the dσ̂jetab is that all dependence on the final-
state factorization scale μ0F, which was initially present in
the dσ̂jab, must cancel. This cancellation comes about in
Eq. (10) because the dσ̂jkab possess final-state collinear
singularities that require factorization. This introduces
dependence on μ0F in exactly the right way as to compensate
the μ0F dependence of the dσ̂jab.
In the NJA, the correction terms dσ̂jðkÞab and dσ̂jkab may be

computed analytically. At NLO, they both receive contri-
butions from real-emission 2 → 3 diagrams only. For the
NJA one assumes that the observed jet is rather collimated.
This in essence allows one to treat the two outgoing partons
j and k as collinear. The relevant calculations for the
standard cone1 and (anti-)kt [32–34] algorithms were
carried out in Refs. [21,22], while Ref. [23] addressed
the case of the “JET

” algorithm proposed in Refs. [35,36].
We note that we always define the four-momentum of the
jet as the sum of four-momenta of the partons that form the
jet. This so-called “E recombination scheme” [37] is the
most popular choice nowadays.

By close inspection of Eq. (10), we have found that in the
NJA the jet cross section may be cast into a form that makes
use of the single-inclusive parton production cross sections
dσ̂cab:

dσH1H2→jetX

dpjet
T dηjet

¼ 2pjet
T

S

X
abc

Z
1

xmin
a

dxa
xa

fH1
a ðxa; μFÞ

×
Z

1

xmin
b

dxb
xb

fH2

b ðxb; μFÞ

×
Z

1

zmin
c

dzc
z2c

dσ̂cabðŝ; p̂T; η̂; μF; μ0F; μRÞ
vdvdw

× J c

�
zc;

Rpjet
T

μ0F
; μR

�
; ð11Þ

with inclusive jet functions J q and J g. We have

p̂T ¼ pjet
T =zc, and xmin

a ; xmin
b ; zmin

c and v; w are now as in
Eqs. (3) and (4), respectively. Equation (11) thus states that
one can go directly from the cross section for single-hadron
production to that for jet production by replacing the
fragmentation functions Dh

c in Eq. (1) by the jet functions
J c. The latter are such that any dependence on μ0F disappears
from the cross section. They depend on the jet algorithm
and hence on a jet parameter R. For the cone and (anti-)kt
algorithms R is just given by the usual jet size parameter
R introduced for these algorithms, while for the jet
algorithm of Refs. [35,36] we have R ¼ 1=

ffiffiffiffiffiffiffi
βzc

p
with β

the “maximization” parameter defined for this algorithm.
In the NJAwe generally assumeR ≪ 1 and neglect OðR2Þ
contributions. The jet functions then read explicitly

J q

�
z; λ≡Rpjet

T

μF
0 ; μR

�
¼ δð1 − zÞ − αsðμRÞ

2π

�
2CFð1þ z2Þ

�
logð1 − zÞ

1 − z

�
þ
þ PqqðzÞ logðλ2Þ þ δð1 − zÞIalgoq þ CFð1 − zÞ

�

−
αsðμRÞ
2π

½PgqðzÞ log ðλ2ð1 − zÞ2Þ þ CFz�;

J g

�
z; λ≡Rpjet

T

μ0F
; μR

�
¼ δð1 − zÞ − αsðμRÞ

2π

�
4CAð1 − zþ z2Þ2

z

�
logð1 − zÞ

1 − z

�
þ
þ PggðzÞ logðλ2Þ þ δð1 − zÞIalgog

�

−
αsðμRÞ
2π

2nf½PqgðzÞ log ðλ2ð1 − zÞ2Þ þ zð1 − zÞ�; ð12Þ

where CF ¼ 4=3, CA ¼ 3 and nf is the number of active flavors, and where the LO splitting functions PijðzÞ as well as the
“plus” distribution are defined in Appendix A. The dependence on the jet algorithm is reflected in the terms Ialgoq and Ialgog ,
which are just numbers that we also collect in Appendix A.

1Here we have in mind primarily the “seedless infrared safe cone” (SISCone) algorithm introduced in Ref. [31] which represents
the only cone-based jet definition known to be strictly infrared safe. However, for single-inclusive jet cross sections, the lack
of infrared safety of other cone-type algorithms occurs first at next-to-next-to-leading order in perturbation theory and hence is not an
issue here.
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Equation (11) evidently exhibits a factorized structure in
the final state for the jet cross section in the NJA. Its
physical interpretation is essentially that the hard scattering
produces a parton c that “fragments” into the observed jet
via the jet function J c, the jet carrying the fraction zc of the
produced parton’s momentum. At NLO, the factorization is
in fact rather trivial. To get a clear sense of it, it is instructive
to see how one recovers Eqs. (7) and (10) from Eq. (11). To
this end, we combine Eqs. (6) and (12) and expand to first
order in the strong coupling. The products of the dσ̂cab with
the LO δð1 − zÞ terms in J c just reproduce the single-
inclusive parton cross sections at p̂T ¼ pjet

T , i.e. the terms
dσ̂cab; dσ̂

d
ab; dσ̂

e
ab in Eq. (10). The only other terms surviv-

ing in the expansion to OðαsÞ are the products of the LO

terms δð1 − wÞdσ̂c;ð0Þab =dv of Eq. (6) with theOðαsÞ terms in
the jet functions. These precisely give the remaining

contributions dσ̂cdab − dσ̂cðdÞab − dσ̂dðcÞab (plus the other combi-
nations) in Eq. (10). Because of the convolution in zc in
Eq. (11), the δð1 − wÞ function in the Born cross section
actually fixes zc to the value zc ¼ 2pjet

T coshðη̂Þ= ffiffiffî
s

p
. Based

on our NLO calculation, we evidently cannot prove the
factorization shown in Eq. (11) to beyond this order. We
note, however, that similar factorization formulas have been
derived using SCET techniques [24–26], for the case of jet
observables in eþe− annihilation. In particular, functions
closely related to our inclusive jet functions J q;g may be
found in Ref. [25], where they are termed “unmeasured”
quark (or gluon) jet functions. We shall return to compar-
isons with SCET results below.

C. Hadrons produced inside jets

We are now ready to tackle the case that we are really
interested in, H1H2 → ðjethÞX where the hadron is
observed inside a reconstructed jet and is part of the jet.
Our strategy for performing an analytical NLO calculation
will be to use the NJA and the same considerations as those
that gave rise to Eq. (10). Subsequently, we will again
phrase our results in a simple and rather general way in
terms of suitable jet functions.
The cross section we are interested in is specified by the

jet’s transverse momentum pjet
T and rapidity ηjet, and by the

variable

zh ≡ pT

pjet
T

; ð13Þ

where as in Sec. II A pT refers to the transverse momentum
of the produced hadron. As we are working in the NJA, we
consider collinear fragmentation of the hadron inside the
jet. Thus, the observed hadron and the jet have the same
rapidities, η ¼ ηjet, since differences in rapidity are OðR2Þ
effects and hence suppressed in the NJA.

The factorized jet-plus-hadron cross section is written as

dσH1H2→ðjethÞX

dpjet
T dηjetdzh

¼ 2pjet
T

S

X
a;b;c

Z
1

xmin
a

dxa
xa

fH1
a ðxa;μFÞ

×
Z

1

xmin
b

dxb
xb

fH2

b ðxb;μFÞ

×
Z

1

zh

dzp
zp

dσ̂ðjetcÞab ðŝ;pjet
T ; η̂;μF;μ0F;μR;R;zpÞ
vdvdwdzp

×Dh
c

�
zh
zp

;μ0F

�
; ð14Þ

where xmin
a , xmin

b , and η̂ ¼ ηjet − 1
2
logðxa=xbÞ are as for

the single-inclusive jet cross section, and where zp is the

partonic analog of zh. In other words, the dσ̂ðjet cÞab are the
partonic cross sections for producing a final-state jet
(subject to a specified jet algorithm), inside of which there
is a parton c with transverse momentum pc

T ¼ zpp
jet
T that

fragments into the observed hadron. The argument of the
corresponding fragmentation functions is fixed by pT ¼
zpc

T and hence, using Eq. (13), is given by z ¼ zh=zp. Thus
the new partonic cross sections are in convolution with the
fragmentation functions. Note that all other variables V;W
and v; w have the same definitions as in the single-inclusive
jet case; see Eq. (9).
At lowest order, there is only one parton forming the jet,

and this parton also is the one that fragments into the
observed hadron, implying zp ¼ 1. The partonic cross
sections hence have the perturbative expansions

dσ̂ðjet cÞab

dvdwdzp
¼ dσ̂c;ð0Þab

dv
δð1 − wÞδð1 − zpÞ þ

αsðμRÞ
π

dσ̂ðjet cÞ;ð1Þab

dvdwdzp

þOðα2sðμRÞÞ; ð15Þ

with the same Born terms dσ̂c;ð0Þab =dv as in Eq. (6).
In order to derive the NLO partonic cross sections

dσ̂ðjet cÞ;ð1Þab , we revisit Eq. (10). Since we now “observe”
a parton c in the final state (the fragmenting one), we must
not sum over all possible final states, but rather consider
only the contributions that contain parton c:

dσ̂cab − dσ̂cðdÞab − dσ̂cðeÞab þ dσ̂cdab þ dσ̂ceab: ð16Þ

However, for each term we now need to derive its proper
dependence on zp before combining all terms. For the terms

dσ̂cab and dσ̂cðdÞab , dσ̂cðeÞab this is trivial since for all of these
terms parton c alone produces the jet and also is the parton
that fragments. As a result, all these terms simply acquire a
factor δð1 − zpÞ. This becomes different for the pieces
dσ̂cdab; dσ̂

ce
ab. Following Refs. [21–23], in the NJA we may

write the NLO contribution to any dσ̂cdab as
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dσ̂cd;ð1Þab

dvdw
¼ αs

π
N ab→Kðv; w; εÞδð1 − wÞ

×
Z

1

0

dzpz−εp ð1 − zpÞ−ε ~P<
cKðzpÞ

×
Z

m2
max;algo

0

dm2
jet

m2
jet

m−2ε
jet ; ð17Þ

where we have used dimensional regularization with D ¼
4 − 2ε space-time dimensions. Equation (17) is derived
from the fact that the leading contributions in the NJA come
from a parton K splitting into partons c and d “almost”
collinearly in the final state. We therefore have an under-
lying Born process ab → KX (with some unobserved
recoil final state X), whose D-dimensional cross section
is contained in the “normalization factor” N ab→K , along
with some trivial factors. The integrand then contains the
D-dimensional LO splitting functions ~P<

cKðzÞ, where the
superscript “<” indicates that the splitting function is
strictly at z < 1, that is, without its δð1 − zÞ contribution
that is present when c ¼ K. The functions are defined in
Eq. (A3) in Appendix A. The argument of the splitting
function is the fraction of the intermediate particle’s
momentum (equal to the jet momentum) transferred in
the splitting. In the NJA it therefore coincides with our
partonic variable zp. In the second integral in Eq. (17) mjet

is the invariant mass of the jet. The explicit factorm2
jet in the

denominator represents the propagator of the splitting
parton K. The integral over the jet mass runs between
zero and an upper limit mmax;algo, which in the NJA is
formally taken to be relatively small. As indicated,mmax;algo

depends on the algorithm chosen to define the jet. We have
[21–23]

m2
max;algo ¼

8>>><
>>>:

ðpjet
T RÞ2min

�
zp

1−zp
;1−zpzp

�
cone algorithm;

ðpjet
T RÞ2zpð1− zpÞ ðanti-Þkt algorithm;

ðpjet
T Þ2
β minðzp;1− zpÞ JET

algorithm:

ð18Þ

To make the cross section dσ̂cd;ð1Þab differential in zp we now
just need to drop the integration over zp in Eq. (17). We
next expand the resulting expression in ε. The m2

jet

integration produces a collinear singularity in 1=ε. It also
contributes a factor ð1 − zpÞ−ε at large zp which may be
combined with the explicit factor ð1 − zpÞ−ε in Eq. (17). In
the presence of a diagonal splitting function in the
integrand we hence arrive at a term ð1 − zpÞ−1−2ε, which
may be expanded in ε to give a further pole in 1=ε and
“plus” distributions in 1 − zp. The double poles 1=ε2

arising in this way cancel against double poles in

dσ̂cðdÞab ; dσ̂cðeÞab . The remaining single poles are removed

by collinear factorization into the fragmentation function
for parton c. For nondiagonal splitting functions there are
only single poles which are directly subtracted by factori-

zation. We note that the original dσ̂cd;ð1Þab is in fact needed
both for the cross section with parton c fragmenting and
also for the one where d fragments. This is reflected in the
fact that the zp integral in Eq. (17) runs from 0 to 1, while

for dσ̂cd;ð1Þab the limit zp → 0 is never reached as long as
zh > 0. For parton d fragmenting, however, we need to use

dσ̂dc;ð1Þab which differs from dσ̂cd;ð1Þab only by a change of the
splitting function. In the case of a quark splitting into a
quark and a gluon, this change is from ~P<

qqðzÞ for an

observed quark to ~P<
gqðzÞ for an observed gluon. Because of

~P<
gqðzÞ ¼ ~P<

qqð1 − zÞ one precisely recovers the old expres-
sion for the inclusive-jet cross sections when all final states
are summed over. Likewise, if a gluon splits into a qq̄ or gg,
the relevant splitting functions ~P<

qgðzÞ, ~P<
ggðzÞ are by

themselves symmetric under z↔ 1 − z.
From this discussion, and combined with Eqs. (15) and

(16), we obtain to NLO in the NJA

dσ̂ðjet cÞab

dvdwdzp
¼

�
dσ̂cab
dvdw

−
dσ̂cðdÞab

dvdw
−
dσ̂cðeÞab

dvdw

�
δð1 − zpÞ

þ dσ̂cdab
dvdwdzp

þ dσ̂ceab
dvdwdzp

: ð19Þ

Computing and inserting all ingredients of this expression,
we find that the cross section may be cast into a form that
again makes use of the single-inclusive parton production
cross sections dσ̂cab, similar to the case of inclusive-jet
production in Eq. (11):

dσH1H2→ðjethÞX

dpjet
T dηjetdzh

¼2pjet
T

S

X
a;b;c

Z
1

xmin
a

dxa
xa

fH1
a ðxa;μFÞ

×
Z

1

xmin
b

dxb
xb

fH2

b ðxb;μFÞ

×
Z

1

zmin
c

dzc
z2c

dσ̂cabðŝ;p̂T;η̂;μF;μ0F;μRÞ
vdvdw

×
X
c0

Z
1

zh

dzp
zp

Kc→c0

�
zc;zp;

Rpjet
T

μ0F
;
Rpjet

T

μ00F
;μR

�

×Dh
c0

�
zh
zp
;μ00F

�
; ð20Þ

where xmin
a ; xmin

b and zmin
c are as given in Eq. (3), with V

and W defined in terms of jet transverse momentum and
rapidity. Furthermore, as in Eq. (11) we have p̂T ¼ pjet

T =zc.
The (jet-algorithm-dependent) functions Kc→c0 are new
“semi-inclusive” jet functions that describe the production
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of a fragmenting parton c0 inside a jet that results from a parton c produced in the hard scattering. For the “transition” q → q
we find

Kq→q

�
z; zp; λ ¼

Rpjet
T

μ0F
; κ ¼ Rpjet

T

μ00F
; μR

�
¼ δð1 − zÞδð1 − zpÞ þ

αsðμRÞ
2π

�
−δð1 − zpÞ

	
2CFð1þ z2Þ

�
logð1 − zÞ

1 − z

�
þ

þ PqqðzÞ logðλ2Þ þ CFð1 − zÞ


þ δð1 − zÞ

	
2CFð1þ z2pÞ

�
logð1 − zpÞ

1 − zp

�
þ

þ PqqðzpÞ logðκ2Þ þ CFð1 − zpÞ þ Ialgo
qq ðzpÞ


�
; ð21Þ

where Ialgo
qq ðzpÞ is a function that depends on the jet

algorithm. Since we will write our new jet functions in a
more compact form below, we do not present the other
functionsKc→c0 here but collect them in Appendix B, along
with the I algo

c0c ðzpÞ.
As indicated, Kq→q carries dependence on two (final-

state) factorization scales, μ0F and μ00F. The former is the
same as we encountered in the case of single-inclusive jets
in Eqs. (11) and (12). It was originally introduced in the
collinear factorization for the single-inclusive parton cross
sections, but now has to cancel exactly between the dσ̂cab
and the Kc→c0 . As in the case of single-inclusive jets, the

cancellation of dependence on μ0F is just a result of the fact
that we foremost define our observable by requiring a jet in
the final state. In this sense, μ0F is simply an artifact of the
way we organize the calculation and is not actually present
in the final answer. The scale μ00F, on the other hand, arises
because we now also require a hadron in the final state.
Technically it arises when we subtract collinear singular-

ities from the dσ̂cd;ð1Þab . The logarithms in μ00F are thus just the
standard scale logarithms that compensate the evolution of
the fragmentation functions at this order. We also note that
there are two sum rules that connect the inclusive and the
semi-inclusive jet functions [1,2]:

Z
1

0

dzpzp½Kq→qðz; zp; λ; κ; μRÞ þKq→gðz; zp; λ; κ; μRÞ� ¼ J qðz; λ; μRÞ;Z
1

0

dzpzp½Kg→gðz; zp; λ; κ; μRÞ þKg→qðz; zp; λ; κ; μRÞ� ¼ J gðz; λ; μRÞ: ð22Þ

Both are fulfilled by our expressions. Furthermore,
R
1
0 dzpKq→qðz; zp; λ; κ; μRÞ reproduces the quark splitting contributions

to J q, i.e. the first two lines in Eq. (12).
We may actually go one step further and decompose the functions Kc→c0 into products of jet functions that separate the

dependence on z and zp. We define two sets of functions:

jq→qðz; λ; μRÞ≡ δð1 − zÞ − αsðμRÞ
2π

�
2CFð1þ z2Þ

�
logð1 − zÞ

1 − z

�
þ
þ PqqðzÞ logðλ2Þ þ δð1 − zÞIalgoq þ CFð1 − zÞ

�
;

jq→gðz; λ; μRÞ≡ −
αsðμRÞ
2π

½PgqðzÞ log ðλ2ð1 − zÞ2Þ þ CFz�;

jg→gðz; λ; μRÞ≡ δð1 − zÞ − αsðμRÞ
2π

�
4CAð1 − zþ z2Þ2

z

�
logð1 − zÞ

1 − z

�
þ
þ PggðzÞ logðλ2Þ þ δð1 − zÞIalgog

�
;

jg→qðz; λ; μRÞ≡ −
αsðμRÞ
2π

½PqgðzÞ log ðλ2ð1 − zÞ2Þ þ zð1 − zÞ�; ð23Þ

(where as before λ ¼ Rpjet
T =μF 0), and
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~jq→qðzp;κ;μRÞ≡δð1−zpÞþ
αsðμRÞ
2π

�
2CFð1þz2pÞ

�
logð1−zpÞ

1−zp

�
þ
þPqqðzpÞ logðκ2ÞþCFð1−zpÞþI algo

qq ðzpÞ

þδð1−zpÞIalgoq

�
;

~jq→gðzp;κ;μRÞ≡αsðμRÞ
2π

½PgqðzpÞlogðκ2ð1−zpÞ2ÞþCFzpþI algo
gq ðzpÞ�;

~jg→gðzp;κ;μRÞ≡δð1−zpÞþ
αsðμRÞ
2π

�
4CAð1−zpþz2pÞ2

zp

�
logð1−zpÞ

1−zp

�
þ
þPggðzpÞlogðκ2ÞþI algo

gg ðzpÞþδð1−zpÞIalgog

�
;

~jg→qðzp;κ;μRÞ≡αsðμRÞ
2π

½PqgðzpÞlogðκ2ð1−zpÞ2Þþzpð1−zpÞþIalgo
qg ðzpÞ�; ð24Þ

where again κ ¼ Rpjet
T =μ00F and the Ialgoq;g are as given in Appendix A for the inclusive-jet case. To the order we are

considering we then have

Kc→c0 ðz; zp; λ; κ; μRÞ ¼
X
e

jc→eðz; λ; μRÞ~je→c0 ðzp; κ; μRÞ; ð25Þ

and hence from (20)

dσH1H2→ðjethÞX

dpjet
T dηjetdzh

¼ 2pjet
T

S

X
a;b;c

Z
1

xmin
a

dxa
xa

fH1
a ðxa; μFÞ

Z
1

xmin
b

dxb
xb

fH2

b ðxb; μFÞ
Z

1

zmin
c

dzc
z2c

dσ̂cabðŝ; p̂T; η̂; μF; μ0F; μRÞ
vdvdw

×
X
e

jc→e

�
zc;

Rpjet
T

μ0F
; μR

�X
c0

Z
1

zh

dzp
zp

~je→c0

�
zp;

Rpjet
T

μF
00 ; μR

�
Dh

c0

�
zh
zp

; μ00F

�
: ð26Þ

In other words, in the NJA the production of a jet with an
observed hadron factorizes into the production cross
section for parton c, a jet function jc→e describing the
formation of a jet “consisting” of parton e which has taken
the fraction zc of the parent parton’s momentum, another jet
function ~je→c0 describing a “partonic fragmentation” of
parton e to parton c0 inside the jet, and finally a regular
fragmentation function Dh

c0 . This picture is sketched in
Fig. 1. It is interesting to see that the structure of the first
part of Eq. (26) is very similar to that of the inclusive-jet
cross section (11) when formulated in terms of the jet
functions J c. In fact, if we drop the terms starting with

P
c0

in (26) and perform the sum over parton-type e, we will
exactly arrive at Eq. (11), since

jq→qðz; λ; μRÞ þ jq→gðz; λ; μRÞ ¼ J qðz; λ; μRÞ;
2nfjg→qðz; λ; μRÞ þ jg→gðz; λ; μRÞ ¼ J gðz; λ; μRÞ: ð27Þ

The terms starting with
P

c0 in Eq. (26) thus describe the
production of an identified hadron in the jet.
We note that at the level of our NLO computation we

cannot prove the factorization in Eq. (26) to all orders. In
fact, at OðαsÞ we can move terms between jc→e and ~je→c0 .
On the other hand, it seems very natural that the jet
functions that we encountered in the single-inclusive jet

case should play a role also in this case in the “first step” of
the formation of the final state described by the jc→e. Also,
our jet functions ~je→c0 are identical to the corresponding
functions found in the SCET study [3] of hadrons in jets
produced in eþe− collisions, except for end-point

FIG. 1 (color online). Sketch of the production of an observed
hadron inside a jet, described in terms of the jet functions jc→e

and ~je→c0 (see text).
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contributions ∝ δð1 − zpÞ that are necessarily different in
the SCET formalism due to the presence of a soft function.
We finally note that the cross section (26) may also be

expressed in terms of the hadron kinematics, using the
relation

dσH1H2→ðjet hÞX

dpTdηdzh
ðpT; η; zhÞ

¼ 1

zh

dσH1H2→ðjet hÞX

dpjet
T dηjetdzh

�
pjet
T ¼ pT

zh
; η; zh

�
: ð28Þ

III. PHENOMENOLOGICAL RESULTS

We now present some phenomenological results for
associated jet-plus-hadron production. First, we compare
our analytical calculation in the NJAwith the one of Ref. [4],
where the NLO cross section was obtained numerically by
Monte Carlo integration techniques. As in that paper, we
consider the case of charged hadrons produced in pp
collisions at the LHC with center-of-mass energyffiffiffi
S

p ¼ 8 TeV. We define the jet by the anti-kt algorithm
with jet parameter R ¼ 0.4. The renormalization and initial-
state factorization scales are set equal to the transverse
momentum of the jet, μR ¼ μF ¼ pjet

T , while the final-state
factorization scale is chosen as μ00F ¼ Rpjet

T . The latter choice
serves to sum logarithms of R to all orders [38,39], although
this only becomes necessary for jet sizes much smaller than
R ¼ 0.4. As in Ref. [4] we use the CTEQ6.6M parton
distributions [40] and the “de Florian-Sassot-Stratmann”
(DSS07) fragmentation functions of Ref. [11]. Our results
refer to (summed) charged hadrons, i.e. h≡ hþ þ h−.
In Fig. 2 we show the ratio of the cross section in the NJA

with that obtained numerically in Ref. [4]. The ratio is
shown as a function of zh, where the cross sections have
been integrated over jηj < 1 and 30 GeV < pT <
200 GeV in hadron rapidity and transverse momentum.

As one can see, the agreement of the two NLO calculations
is very good. The deviations are smaller than 3% every-
where, which demonstrates the good accuracy of the NJA.
We note that in Ref. [4] a closely related variable Zh is
considered, which is defined as

Zh ≡ ~pT · ~pjet
T

j~pjet
T j2 : ð29Þ

This definition differs from Eq. (13) only by OðR2Þ
corrections, which are anyway neglected in the NJA. In
the limit zh → 1, the two definitions become equivalent.
This explains why the ratio in Fig. 2 is even closer to unity
for larger values of zh. The excellent accuracy of the NJA
observed in the figure is consistent with similar compar-
isons for the case of single-inclusive jet production in the
NJA [21,22].
Next, we show some results for the kinematics relevant

for the ongoing studies at ALICE [10]. We consider pp
collisions at

ffiffiffi
S

p ¼ 7 TeV and fragmentation into charged
pions (π ≡ πþ þ π−). For the rapidity interval we choose
jηj < 0.5 and we restrict the jet transverse momentum to
15 GeV < pjet

T < 20 GeV. As before, the jet is defined by
the anti-kt algorithm with R ¼ 0.4. We now use more
modern sets for the parton distributions, CT10 [41], and
fragmentation functions, DSS14 [12]. All scales are set
equal to the transverse momentum of the jet, μR ¼ μF ¼
μ00F ¼ pjet

T ≡ μ. Figure 3 shows the LO (dashed) and NLO
(solid) cross sections for associated jet-plus-pion produc-
tion differential in the transverse momentum of the pion.
Note that the variable zh is determined as pT=p

jet
T and hence
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T
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η 
dσ

pp
 →

 (
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t h
) 

X
 / 
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T
 / 

dη
 / 
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h 
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FIG. 2 (color online). Comparison of our results in the NJA to
the ones of Ref. [4] for LHC kinematics.
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pp → (jet π) X, √S = 7 TeV
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T < 20 GeV, |η| < 0.5
anti kt, R = 0.4
CT10, DSS14

∫dz
h 

dη
 d

σpp
 →

 (
je

t π
) 

X
 / 

dp
T
 / 

dη
 / 

dz
h   
  [

pb
 / 

G
eV

]
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pjet
T / 2 < μ < 2 pjet

T

pjet
T / 2 < μ < 2 pjet

T
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FIG. 3 (color online). LO (dashed) and NLO (solid) cross
sections for pp → ðjetπÞX for ALICE conditions, as functions of
pion pT . The bands show the scale dependence of the cross
section for variations of the scale between pjet

T =2 (upper end of
bands) and 2pjet

T (lower end of bands). The factorization and
renormalization scales have all been set equal and varied
simultaneously.
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is varied upon integration over pjet
T . The bands show the

changes of the cross sections when the scales are varied in
the range pjet

T =2 < μ < 2pjet
T . As one can see, the scale

dependence of the cross sections improves somewhat when
going from LO to NLO, although not as much as one would
have hoped. This feature was also observed for single-
inclusive hadron production in hadronic scattering [30].
For the same kinematical setup we also show the cross

section differential in zh; see Fig. 4. A fixed value of zh
implies that the hadron’s transverse momentum varies as
we integrate over pjet

T . As discussed in the Introduction, this
arguably is the most interesting distribution for pp →
ðjetπÞX since it allows direct scans of the fragmentation
functions. Apart from the scale variation, we also show in
the figure the uncertainty related to the fragmentation
functions, which we compute using the Hessian error sets
provided in the DSS14 set [12]. Note that the resulting
uncertainty band is reliable only up to zh ≈ 0.65, beyond
which there are presently hardly any hadron production
data available for eþe− annihilation or ep scattering. We
hence stop the main uncertainty band there and only sketch
its possible extrapolation to higher zh. It is clear from the
figure that precise measurements of the cross section as a
function of zh have the potential to provide new informa-
tion on fragmentation functions that is complementary
to—and in some respects better than—that available from
eþe− annihilation.
An interesting question is of course which of the

fragmentation functions are primarily probed when the
cross section for pp → ðjetπÞX is studied as a function of
zh. Depending on kinematics, different initial states may
dominate the contributions to the cross section, resulting
also in different weights with which the fragmentation
functions for the various parton species enter. Given how
little information on gluon fragmentation is available from

eþe− → hX and ep → ehX, it is especially interesting to
see how strongly the cross section for pp → ðjetπÞX
depends onDh

g . It is known that for LHC energies, channels
with gluonic initial states (especially gg) typically make
important contributions to cross sections. In order to
explore whether this allows probes of Dh

g at the LHC,
we investigate in Fig. 5 the relative contributions of quark/
antiquark (summed over all flavors) and gluon fragmenta-
tion to the cross section for pp → ðjetπÞX at ALICE (as
shown in the previous Fig. 4). We normalize the contri-
butions to the full cross section, so that the quark and gluon
contributions add up to unity. We use both the DSS07 and
DSS14 sets. As one can see, for zh ≲ 0.5 the two sets give
similar results and show that the cross section is strongly
dominated by gluon fragmentation here. This is already
interesting, since it implies that in this regime clean probes
of Dh

g should be possible that should be much more
sensitive than eþe− annihilation. Beyond zh ¼ 0.5, the
two sets of fragmentation functions show very different
behavior. For DSS07, gluon fragmentation continues to
dominate all the way up to zh ∼ 0.9, whereas for DSS14 the
quarks take over at zh ∼ 0.7. We stress again that the
uncertainties of the fragmentation functions become very
large at such values of z, as we saw in the previous figure,
and are in fact hard to quantify reliably. It is evident that
information from pp → ðjetπÞX in this regime will be most
valuable, regardless of whether quark or gluon fragmenta-
tion dominates. Detailed measurements for various bins in
transverse momentum and rapidity will likely help in
disentangling fragmenting quarks and gluons.
As mentioned in the Introduction, measurements of

charged hadrons produced in jets are already available
from ATLAS [7,8] and CMS [9]. ATLAS has published
measurements at

ffiffiffi
S

p ¼ 7 TeV [7] and presented prelimi-
nary data [8] also at

ffiffiffi
S

p ¼ 2.76 TeV. The two analyses
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FIG. 4 (color online). Same as in Fig. 3, but as a function of zh.
As before the solid bands show the scale uncertainty. The hatched
band displays the uncertainty of the cross section related to the
fragmentation functions. This band is only reliable up to zh ¼
0.65 and extrapolated beyond (see text).
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DSS07 [11] and DSS14 [12] fragmentation functions.
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each use a slightly different definition of zh which however
both coincide with our zh in the NJA limit. Figures 6 and 7
present comparisons of our NLO calculations to the
ATLAS data for the two energies. We have now gone
back to the DSS07 set, since unspecified charged-hadron
fragmentation functions are not available in the more recent
DSS14 set. As one can see, there is overall a very good
agreement. Note that this agreement extends even down to
values of zh < 0.05, well outside the region of validity of

the DSS sets. The figures clearly demonstrate the potential
of the data to further pin down the charged-hadron
fragmentation functions.
The CMS analysis [9] started from a dijet sample and

then studied charged-hadron production inside either the
leading jet (which is required to have pjet

T > 100 GeV) or
the subleading jet (with pjet

T > 40 GeV). As such, these
conditions are different from the single-inclusive jet sit-
uation we consider in this paper, and strictly speaking we
cannot compare to the CMS data. On the other hand, it
turns out that the CMS data for hadron production in the
leading and the subleading jet are in remarkable agreement
for zh ≳ 0.05, when one normalizes each of them indi-
vidually to the corresponding total (leading or subleading)
jet event rate. This finding clearly indicates that fragmen-
tation inside jets is really independent of the underlying
event topology and happens in the same way in any jet.
Therefore, the overall reservation notwithstanding, we
show in Fig. 8 the comparison of the normalized one-jet
rate differential in logð1=zhÞ to the CMS data for hadron
production in the leading jet. We show the theoretical curve
down to zh ∼ 0.1. As one can see, the agreement with the
data is very good in this regime. We have found that quark
and gluon fragmentation contribute roughly in equal parts
to the cross section.
We finally note that measurements of pp → ðjetπÞX

should readily be feasible at RHIC, especially in the STAR
experiment where both inclusive jet [42] and pion cross
sections [43,44] have been measured. Figure 9 shows our
NLO predictions as functions of zh for pp collisions atffiffiffi
S

p ¼ 200 GeV and
ffiffiffi
S

p ¼ 510 GeV. For the former, we
have integrated the jet transverse momentum over
5 GeV < pjet

T < 40 GeV, while for
ffiffiffi
S

p ¼ 510 GeV we
have used 10 GeV < pjet

T < 80 GeV. In both cases we
integrate over jηj < 1. The jet is defined by the anti-kt
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algorithm with R ¼ 0.6. As before we use CT10 and
DSS14 and set all scales equal to the jet transverse
momentum.

IV. CONCLUSIONS AND OUTLOOK

We have considered the process pp → ðjethÞX, for which
a specific hadron is observed inside a fully reconstructed jet.
Using the approximation of relatively narrow jets, we have
performed an analytical next-to-leading-order calculation of
the partonic cross sections for this process. We have found
that the NLO partonic cross sections may be systematically
formulated in terms of simple jet functions for the process.
These functions are universal; that is, they only dependon the
types of partons producing the jet and fragmenting into the
observed hadron. We note that in the process of computing
the jet functions we needed to perform subtractions of the
final-state collinear singularities. These take the same formas
the corresponding subtractions in single-inclusive hadron
production (without a reconstructed jet). This demonstrates
that the fragmentation functions are universal to NLO in the
sense that the same functions appear in pp → ðjethÞX as in
pp → hX. Essentially, all effects of the fact that a jet is
reconstructed along with the hadron factorize into a pertur-
batively computable factor, the jet function. The factorized
structure in terms of jet functions we find at NLO suggests
that this statement is true to all orders. Our finding is in line
with the result of Ref. [3].
Our numerical results are in very good agreement with

those obtained by Monte Carlo integration techniques in
Ref. [4].We have presented phenomenological results for the
NLO cross section for the kinematics relevant for forth-
coming measurements at ALICE and for previous ones by
ATLAS and CMS. These results show that pp → ðjethÞX
should enable very sensitive probes of fragmentation func-
tions. In particular, the cross section differential in zh probes
the fragmentation functions almost “locally” at the

momentum fraction zh. The combination of fragmentation
functions that is probed depends on the mix of initial-state
parton distributions and hard-scattering functions that domi-
nates. We find that, in contrast to the standard process
eþe− → hX that is customarily used for extractions of
fragmentation functions, the process pp → ðjethÞX should
offer detailed insights into gluon fragmentation. Also,
information at very large zh might become accessible,
although here it may become necessary to perform resum-
mations of large logarithmic terms in the jet functions. We
note that at high zh typical particle multiplicities in the jet are
very low, so that power corrections and nonperturbative
phenomena will become important here as well. As has
been discussed in Ref. [45], hadronization corrections to
inclusive-jet production may exhibit a scaling with 1=R,
making them especially relevant in the case of rather narrow
jets. Although these corrections are at the same time sup-
pressed by an inverse power of transverse momentum, it will
be an interesting and important task to investigate their
structure in the case of the hadron-plus-jet observable where
two separate transverse momenta are present.
There are various other possible extensions of our work

that we hope to address in the future. As is well known,
hadron production in jets has important applications in
studies of spin phenomena in QCD in terms of the Collins
effect [18], where the azimuthal distribution of a hadron
around the jet axis is considered. Studies of the effect in pp
scattering [15–17] will require a detailed theoretical under-
standing of the process, to which we hope we have
contributed in this paper by computing the NLO correc-
tions for the denominator of the spin asymmetry. We expect
that our method based on jet functions is also applicable to
the spin-dependent case. Finally, we mention that also
photon fragmentation in jets could be interesting as a means
to constrain the poorly known photon fragmentation
functions (see Ref. [46] for related work on eþe− annihi-
lation and ep scattering).
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APPENDIX A: DETAILS FOR JET FUNCTIONS
IN THE SINGLE-INCLUSIVE CASE

In our results [Eq. (12)] for the single-inclusive jet
functions we have the standard LO splitting functions
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PqqðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
;

PgqðzÞ ¼ CF
1þ ð1 − zÞ2

z
;

PggðzÞ ¼ 2CA
ð1 − zþ z2Þ2
zð1 − zÞþ

þ β0
2
δð1 − zÞ;

PqgðzÞ ¼
1

2
ðz2 þ ð1 − zÞ2Þ; ðA1Þ

with β0 ¼ 11
3
CA − 2

3
nf. The “plus” distribution is defined as

usual by

Z
1

0

dzfðzÞ½gðzÞ�þ ≡
Z

1

0

dzðfðzÞ − fð1ÞÞgðzÞ: ðA2Þ

Dropping the δ-function contributions and ignoring the
“plus” distributions, we obtain the splitting functions P<

ijðzÞ
at z < 1. For our calculations, we actually need these
functions computed in dimensional regularization in D ¼
4 − 2ε dimensions, where they are denoted as ~P<

ijðzÞ. We
have

~P<
ijðzÞ ¼ P<

ijðzÞ þ εPðεÞ
ij ðzÞ; ðA3Þ

with

PðεÞ
qq ðzÞ ¼ −CFð1 − zÞ; PðεÞ

gq ðzÞ ¼ −CFz;

PðεÞ
qg ðzÞ ¼ −zð1 − zÞ; PðεÞ

gg ðzÞ ¼ 0: ðA4Þ

We note in passing that the pieces in Eq. (12) that are
independent of the jet algorithm may be constructed
following a simple rule: each of the jet functions J c
contains the combination

−
αs
2π

X
i

½P<
ijðzÞ log ðλ2ð1 − zÞ2Þ − PðϵÞ

ij ðzÞ�; ðA5Þ

up to regularization by distributions at z ¼ 1.

The algorithm-dependent terms Ialgoq and Ialgog in Eq. (12)
may be determined from the calculations presented in
Refs. [22,23]. For cone algorithms we have

Iconeq ¼ CF

�
−
7

2
þ π2

3
− 3 log 2

�
;

Iconeg ¼ CA

�
−
137

36
þ π2

3
−
11

3
log 2

�

þ nf
2

�
23

18
þ 4

3
log 2

�
; ðA6Þ

while for the (anti-)kt algorithms

Iktq ¼ CF

�
−
13

2
þ 2π2

3

�
;

Iktg ¼ CA

�
−
67

9
þ 2π2

3

�
þ 23

18
nf: ðA7Þ

Finally, for the “JET
” algorithm

I
JET
q ¼ CF

�
−5þ π2

2
−
3

2
log 2

�
;

I
JET
g ¼ CA

�
−
45

8
þ π2

2
−
11

6
log 2

�

þ nf
2

�
23

12
þ 2

3
log 2

�
: ðA8Þ

Interestingly, we find

I
JET
j ¼ 1

2
ðIconej þ Iktj Þ: ðA9Þ

APPENDIX B: JET FUNCTIONS FOR
THE SEMI-INCLUSIVE CASE

In addition to Kalgo
q→q in Eq. (21) we have

Kalgo
q→gðz; zp; λ; κ; μRÞ ¼

αsðμRÞ
2π

½−δð1 − zpÞfPgqðzÞ log ðλ2ð1 − zÞ2Þ þ CFzg
þ δð1 − zÞfPgqðzpÞ log ðκ2ð1 − zpÞ2Þ þ CFzp þ Ialgo

gq ðzpÞg�; ðB1Þ

Kalgo
g→gðz; zp; λ; κ; μRÞ ¼ δð1 − zÞδð1 − zpÞ þ

αsðμRÞ
2π

�
−δð1 − zpÞ

	
4CAð1 − zþ z2Þ2

z

�
logð1 − zÞ

1 − z

�
þ
þ PggðzÞ logðλ2Þ




þ δð1 − zÞ
	
4CAð1 − zp þ z2pÞ2

zp

�
logð1 − zpÞ

1 − zp

�
þ
þ PggðzpÞ logðκ2Þ þ Ialgo

gg ðzpÞ

�

; ðB2Þ
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Kalgo
g→qðz; zp; λ; κ; μRÞ ¼

αsðμRÞ
2π

½−δð1 − zpÞfPqgðzÞ log ðλ2ð1 − zÞ2Þ þ zð1 − zÞg
þ δð1 − zÞfPqgðzpÞ log ðκ2ð1 − zpÞ2Þ þ zpð1 − zpÞ þ I algo

qg ðzpÞg�; ðB3Þ

where as before λ ¼ Rpjet
T =μF 0, κ ¼ Rpjet

T =μ00F, and where the algorithm-dependent terms are

I algo
c0c ðzÞ ¼

8>>><
>>>:

2Pc0cðzÞ log
�

z
1−z

�
Θð1=2 − zÞ cone algorithm;

2Pc0cðzÞ log z ðanti-Þkt algorithm;

Pc0cðzÞ
h
logðzÞ þ log

�
z

1−z

�
Θð1=2 − zÞ

i
JET

algorithm:

ðB4Þ

We note that a closely related result for the cone algorithm was obtained in Ref. [3]. Again, similar to Eq. (A9), we have

I
JET
c0c ðzÞ ¼

1

2
ðI cone

c0c þ Ikt
c0cÞ: ðB5Þ
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